JP2000225302A - Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor - Google Patents

Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor

Info

Publication number
JP2000225302A
JP2000225302A JP11027137A JP2713799A JP2000225302A JP 2000225302 A JP2000225302 A JP 2000225302A JP 11027137 A JP11027137 A JP 11027137A JP 2713799 A JP2713799 A JP 2713799A JP 2000225302 A JP2000225302 A JP 2000225302A
Authority
JP
Japan
Prior art keywords
particles
light
data
amount
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11027137A
Other languages
Japanese (ja)
Inventor
Hironobu Takeda
浩伸 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11027137A priority Critical patent/JP2000225302A/en
Publication of JP2000225302A publication Critical patent/JP2000225302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique of automatically and continuously estimating the parameters for particle distribution such as the average particle diameter of a crystal to be produced in a crystallization can, the ratio of existing microcrystals, and the existence ratio of existing large crystals at high precision and to provide an economical apparatus for the estimation. SOLUTION: While time-series data of the quantity of transmitted light and the quantities of forth and back scattered light is obtained a particle state detector 6 by radiating light to a slurry solution taken out by a product taking pump in a crystallization apparatus using a crystallization can 1, the data of slurry concentrations in the crystallization can and a circulation line. The parameters for particle diameter distribution are estimated by carrying out computation using (either totally or partly) the above defined data and also various kinds of data such as the rotation speed of a stirring apparatus 9, the current value of a circulation pump 4, the input and output temperature of a heater in the circulation line, the pressure in the gas phase in the crystallization can, etc., as process data relevant to the crystallization can.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は粒子を製造する装置
より製造される粒子の平均粒径、微粒子存在率、大粒子
存在率を推定する技術と装置並びにこれらを用い粒子を
製造することに関し、特に晶析装置内で晶析工程により
製造される結晶の粒度推定に好適な方法と装置並びにこ
れらを用い粒子を製造することに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique and an apparatus for estimating the average particle diameter, the abundance of fine particles, and the abundance of large particles produced by an apparatus for producing particles, and to the production of particles using these techniques. In particular, the present invention relates to a method and an apparatus suitable for estimating the particle size of crystals produced by a crystallization step in a crystallization apparatus, and to producing particles using these.

【0002】[0002]

【従来の技術】硝安、亜硝曹、硫安、塩化ナトリウム、
などに代表される晶析プロセスでは、ウェービング現象
と一般に呼ばれている、缶内濃度、缶内結晶粒度分布、
製品結晶粒度分布などの継続的振動現象が生じるため、
晶析缶による結晶製造運転においては、所望の粒子径や
形状の結晶の取得率向上のため、製品粒径等の粒径分布
情報を把握し、運転条件に反映することが重要である。
製品粒径の自動測定方法としては、粒径に応じた超音波
の吸収特性を利用した物理現象に基づく測定方法と、製
品スラリーへの照射光に対する透過光量、散乱光量、吸
収光量、散乱光量÷透過光量、等のリアルタイムデータ
に、予め手分析等の検定用データと照合して算出した換
算係数をかけて推定する測定方法が知られている。
2. Description of the Related Art Ammonite, nitrite, ammonium sulfate, sodium chloride,
In the crystallization process represented by, for example, the concentration in the can, the crystal grain size distribution in the can,
Because continuous vibration phenomena such as product crystal grain size distribution occur,
In the crystal production operation using a crystallizer, it is important to grasp the particle size distribution information such as the product particle size and reflect it in the operating conditions in order to improve the acquisition rate of crystals having a desired particle size and shape.
Automatic measurement methods for the product particle size include a measurement method based on physical phenomena using the absorption characteristics of ultrasonic waves according to the particle size, and the amount of transmitted light, the amount of scattered light, the amount of absorbed light, and the amount of scattered light with respect to the irradiation light to the product slurry. There is known a measurement method in which real-time data such as the amount of transmitted light is multiplied by a conversion coefficient calculated in advance by comparing it with test data such as manual analysis.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前者に
ついては大変高価であるため、採用することが困難であ
る場合が多い。また後者については前者に比較して安価
ではあるものの、その推定精度が十分とはいえなかっ
た。結局現状では晶析缶から製品スラリー抜き出しライ
ンを経て抜き出され、固液分離された後の製品粒径を手
篩い等で手分析していることが多い。ところが前述のウ
ェービングの周期が一般に数時間〜数十時間であるた
め、当該手分析は2時間毎、4時間毎といった頻度で行
わなければならず、オペレータへの大きな負担となって
いるばかりではなく、手分析値が離散値であるため、運
転への素早い反映が困難であり、処置の遅れを招くこと
もあった。また粒径分布測定が手分析では、運転の自動
化を図ることも困難であった。以上のことから、晶析缶
にて製造される結晶の平均粒径、微結晶存在率、大結晶
存在率などの粒度分布の特徴量を、連続的に自動で精度
良く推定する技術及びそのための安価な装置が望まれて
いた。
However, since the former is very expensive, it is often difficult to adopt it. Although the latter is less expensive than the former, its estimation accuracy was not sufficient. In the present situation, in many cases, the product is extracted from the crystallizer via a product slurry extraction line, and the particle size of the product after solid-liquid separation is often manually analyzed by a hand sieve or the like. However, since the above-described waving cycle is generally several hours to several tens of hours, the hand analysis must be performed at a frequency of every two hours or every four hours. In addition, since the hand analysis values are discrete values, it is difficult to promptly reflect the values on driving, which may lead to a delay in treatment. In addition, it is difficult to automate the operation by manual analysis of the particle size distribution measurement. From the above, the average particle size of the crystal produced in the crystallizer, fine crystal abundance, feature amount of the particle size distribution such as the large crystal abundance, technology to continuously and accurately estimate automatically and accurately An inexpensive device has been desired.

【0004】製品スラリーへの照射光に対する透過光
量、散乱光量、吸収光量等の光学的なリアルタイムデー
タに、予め手分析等の検定用データと照合して算出して
おいた換算係数をかけて推定する従来の粒度測定方法で
は、透過光量、散乱光量、吸収光量といった測定量が、
粒径分布のみならず、結晶スラリー濃度にも影響を受け
る。また、検定用の手分析データは通常固液分離器を通
過した後の製品を手篩いして求めたものであり、固液分
離器にて、固液分離器のフィルタ穴径より小さい微結晶
の一部は濾液側へ流出してしまうため、手分析粒度分布
は製品抜き出しラインに設置した上記の原理に基づく光
学的データを検出する装置がとらえている結晶粒度分布
とは異なる。以上より、上記の原理に基づく光学的デー
タを検出する装置のリアルタイムデータからの換算のみ
では、手分析粒度推定の十分な精度が得られないと考え
られる。
Estimation is performed by multiplying optical real-time data, such as the amount of transmitted light, the amount of scattered light, and the amount of absorbed light, with respect to the irradiation light on the product slurry, by a conversion coefficient calculated in advance by comparing it with verification data such as manual analysis. In the conventional particle size measuring method, the amount of measurement such as the amount of transmitted light, the amount of scattered light, and the amount of absorbed light is
Not only the particle size distribution but also the crystal slurry concentration is affected. In addition, the hand analysis data for verification is usually obtained by hand sieving the product after passing through the solid-liquid separator. Is partly discharged to the filtrate side, so that the particle size distribution analyzed by hand is different from the crystal particle size distribution captured by the device for detecting optical data based on the above principle installed in the product extraction line. From the above, it is considered that sufficient accuracy of hand analysis granularity estimation cannot be obtained only by conversion from real-time data of a device that detects optical data based on the above principle.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題に
鑑みて鋭意検討を重ねた。その結果、粒子を含有する液
に光を照射して得られる光学的リアルタイムデータと、
他の特定のデータとを組み合わせることにより以上説明
した課題を解決しうることを見出し本発明に到達した。
すなわち、本発明は、(1) 液中で粒子を成長させる
工程を含む粒子の製造において、粒子を含有する液へ光
を照射し、照射された光に対する散乱光量、透過光量及
び吸収光量のうち一つ以上のデータと、粒子を成長させ
る装置のプロセスデータとを用いて演算処理を行うこと
を特徴とする粒度分布の特徴量の推定方法、(2) 液
中で粒子を成長させる工程を含む粒子の製造において、
粒子を含有する液へ光を照射し、照射された光に対する
散乱光量、透過光量及び吸収光量のうち一つ以上の時系
列データを用いて演算処理を行うことを特徴とする粒度
分布の特徴量の推定方法、
Means for Solving the Problems The present inventors have made intensive studies in view of the above problems. As a result, optical real-time data obtained by irradiating the liquid containing the particles with light,
The present inventors have found that the above-described problem can be solved by combining with other specific data, and arrived at the present invention.
That is, the present invention provides (1) in the production of particles including a step of growing particles in a liquid, irradiating the liquid containing the particles with light, and scattering light, transmitted light, and absorbed light with respect to the irradiated light. A method for estimating a characteristic amount of a particle size distribution, wherein an arithmetic processing is performed using one or more data and process data of an apparatus for growing particles, (2) including a step of growing particles in a liquid In the production of particles,
A characteristic amount of a particle size distribution, in which a liquid containing particles is irradiated with light, and arithmetic processing is performed using one or more time-series data of scattered light amount, transmitted light amount, and absorbed light amount with respect to the irradiated light. Estimation method,

【0006】(3) 液中で粒子を成長させる工程を含
む粒子の製造において、粒子を含有する液へ光を照射
し、照射された光に対する散乱光量、透過光量及び吸収
光量のうち一つ以上のデータと、粒子を成長させる装置
のプロセスデータとを用いて演算処理を行う操作を含む
ことを特徴とする粒子の製造方法、(4) 液中で粒子
を成長させる工程を含む粒子の製造において、粒子を含
有する液へ光を照射し、照射された光に対する散乱光
量、透過光量及び吸収光量のうち一つ以上の時系列デー
タを用いて演算処理を行う操作を含むことを特徴とする
粒子の製造方法、
(3) In the production of particles including a step of growing particles in a liquid, the liquid containing the particles is irradiated with light, and at least one of a scattered light amount, a transmitted light amount, and an absorbed light amount with respect to the irradiated light. And (4) a method for producing particles including a step of growing particles in a liquid, the method comprising an operation of performing an arithmetic process using the data of (1) and process data of an apparatus for growing particles. Irradiating the liquid containing the particles with light, and performing an arithmetic process using one or more time-series data of the amount of scattered light, the amount of transmitted light, and the amount of absorbed light with respect to the irradiated light, the particles comprising: Manufacturing method,

【0007】(5) 液中で粒子を成長させる工程を含
む粒子の製造に用いることのできる装置であって、粒子
を含有する液へ光を照射し、照射された光に対する散乱
光量、透過光量及び吸収光量のうち一つ以上のデータ
と、粒子を成長させる装置のプロセスデータとを用いて
演算処理を行うことの可能な装置、(6) 液中で粒子
を成長させる工程を含む粒子の製造に用いることのでき
る装置であって、粒子を含有する液へ光を照射し、照射
された光に対する散乱光量、透過光量及び吸収光量のう
ち一つ以上の時系列データを用いて演算処理を行うこと
の可能な装置、
(5) An apparatus which can be used for producing particles including a step of growing particles in a liquid, wherein the liquid containing the particles is irradiated with light, and the amount of scattered light and the amount of transmitted light with respect to the irradiated light An apparatus capable of performing arithmetic processing using one or more data of the absorbed light amount and process data of an apparatus for growing particles, (6) production of particles including a step of growing particles in a liquid A device that can be used for irradiating a liquid containing particles with light and performing arithmetic processing using one or more time-series data of scattered light, transmitted light, and absorbed light for the irradiated light. Equipment capable of

【0008】(7) 液中で粒子を成長させる工程を含
む粒子の製造に用いることのできる装置であって、
(i)粒子を含有する液へ光を照射し、照射された光に
対する散乱光量、透過光量及び吸収光量のうち一つ以上
を求めることのできる手段、及び、(ii)上記散乱光
量、透過光量及び吸収光量のうち一つ以上の時系列デー
タを用いて演算処理を行うことの可能な手段、を有する
装置、
(7) An apparatus which can be used for producing particles including a step of growing particles in a liquid,
(I) means for irradiating the liquid containing the particles with light and obtaining at least one of a scattered light amount, a transmitted light amount and an absorbed light amount with respect to the irradiated light; and (ii) the scattered light amount and the transmitted light amount And means capable of performing arithmetic processing using one or more time-series data of the absorbed light amount,

【0009】(8) 液中で粒子を成長させる工程を含
む粒子の製造に用いることのできる装置であって、
(i)粒子を含有する液へ光を照射し、照射された光に
対する散乱光量、透過光量及び吸収光量のうち一つ以上
を求めることのできる手段、(ii)粒子を成長させる
装置のプロセスデータを求めることのできる手段、及
び、(iii)上記散乱光量、透過光量及び吸収光量の
うち一つ以上と、上記プロセスデータとを用いて演算処
理を行うことのできる手段、を有する装置、に存する。
(8) An apparatus which can be used for producing particles including a step of growing particles in a liquid,
(I) means for irradiating the liquid containing the particles with light and obtaining at least one of a scattered light amount, a transmitted light amount and an absorbed light amount with respect to the irradiated light; (ii) process data of an apparatus for growing particles And (iii) means for performing arithmetic processing using one or more of the scattered light amount, transmitted light amount, and absorbed light amount and the process data. .

【0010】ここで言う粒度分布の特徴量とは、平均粒
径、もしくは所定の大きさ以下の粒子の存在率、もしく
は所定の大きさ以上の粒子の存在率をさす。これらのう
ち一つ以上を推定することが粒度分布の特徴量の推定に
該当する。また演算処理とは、前述した各データをもと
に予め求めておいた回帰式により、粒度分布の特徴量を
計算することをさす。
The characteristic amount of the particle size distribution as used herein refers to the average particle diameter, the abundance of particles having a size smaller than a predetermined size, or the abundance of particles having a size larger than a predetermined size. Estimating one or more of them corresponds to estimating the feature amount of the particle size distribution. The arithmetic processing refers to calculating the characteristic amount of the particle size distribution by using a regression equation obtained in advance based on each data described above.

【0011】[0011]

【発明の実施の形態】本発明で用いる装置は、少なくと
も以下のア)〜エ)を具備するのが望ましい。ア)生成
した粒子を抜き出すラインを具備した粒子生成装置。
イ)粒子が含まれる液に光を照射し、透過光量、反射光
量、吸収光量のうち少なくとも一つの光学的量を検出す
る装置。ウ)前述したプロセスデータの検出手段。エ)
イ、ウのデータを用いて粒度分布の特徴量を演算処理す
るための機器、である。上記の従来技術のように光学的
データの検出器のリアルタイムデータのみを用いる方法
では、十分に精度良く、製品結晶平均粒径、製品微結晶
存在率、製品大結晶存在率などの製品結晶粒度分布の特
徴量を推定できなかったのに対し、本発明により、新た
な情報を加えて回帰式により当該製品結晶粒度分布の特
徴量を精度良く推定するための方法と、この推定機能を
組み込んだ装置を提供することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus used in the present invention preferably has at least the following items a) to d). A) A particle generating apparatus having a line for extracting generated particles.
B) A device that irradiates a liquid containing particles with light and detects at least one optical amount among a transmitted light amount, a reflected light amount, and an absorbed light amount. C) The means for detecting the process data described above. D)
A device for calculating and processing the characteristic amount of the particle size distribution using the data of (a) and (c). In the method using only real-time data of the optical data detector as in the prior art described above, the product crystal particle size distribution such as product crystal average particle diameter, product crystallite abundance, product large crystal abundance is sufficiently accurate. The present invention has been able to estimate the characteristic amount of the product crystal particle size distribution accurately by a regression equation by adding new information, while an apparatus incorporating this estimation function. Can be provided.

【0012】例えば、本発明を、溶液から結晶を析出さ
せて粒子を得る、晶析工程による粒子の製造に適用する
場合には、製品結晶平均粒径、製品微結晶存在率、製品
大結晶存在率などの製品結晶粒度分布の特徴量を推定す
るための、回帰式の説明変数として、晶析缶からの製品
スラリー液抜き出しラインに、スラリー液へ光を照射し
て透過光量、散乱光量、吸収光量等の光学的データを検
出する装置を設置し、該装置より得られる当該光学的リ
アルタイムデータのみならず、次の2項目のうちいずれ
か、もしくは両方を加えることにより、製品結晶粒度分
布の特徴量の推定精度を向上させることができる。
For example, when the present invention is applied to the production of particles by a crystallization step in which crystals are obtained by precipitating crystals from a solution, the product crystal average particle diameter, the product crystallite abundance, the product large crystal presence As an explanatory variable of the regression equation for estimating the characteristic amount of the product crystal grain size distribution such as the rate, the slurry liquid is irradiated with light to the product slurry liquid extraction line from the crystallizer to transmit light, scatter light, and absorb light. By installing a device that detects optical data such as the amount of light, and adding not only the optical real-time data obtained from the device but also one or both of the following two items, the characteristics of the product crystal grain size distribution The accuracy of the quantity estimation can be improved.

【0013】その一つは、粒子を成長させる装置のプロ
セスデータを用いることである。本発明で装置のプロセ
スデータとは、液中の固体濃度あるいは、液中におけ
る、所定の粒径以下の微細な粒子の量の情報を含むデー
タをいう。例えば晶析による粒子の製造の場合は、晶析
缶内スラリー濃度もしくは外部循環ラインスラリー濃度
の少なくともどちらか一方のデータを用いることが挙げ
られる。好ましくは両者共に用いる。なぜならそれらの
データはスラリー濃度および所定の粒径以下の微結晶粒
子量と相関があり、これらの情報を加えることにより、
スラリー液へ光を照射して透過光量、散乱光量、吸収光
量等の光学的データを検出する装置より得られる当該光
学的データから晶析缶内スラリー濃度と微結晶量による
影響分を補正できるからである。また更に好ましくは、
晶析缶廻りプロセスデータのうちの幾つかも合わせて用
いる。ここでいう晶析缶廻りプロセスデータとは、具体
的には攪拌機回転数、循環ラインポンプ電流値、循環ラ
イン加熱器入出各温度、分級流量、製品スラリー抜き出
し流量、循環ライン加熱器熱媒流量、晶析缶内温度、晶
析缶内気相部圧力をさす。
One of them is to use process data of an apparatus for growing particles. In the present invention, the process data of the apparatus refers to data including information on the solid concentration in a liquid or the amount of fine particles having a predetermined particle size or less in the liquid. For example, in the case of producing particles by crystallization, it is possible to use data of at least one of the slurry concentration in the crystallization can and the slurry concentration in the external circulation line. Preferably, both are used. Because those data are correlated with the slurry concentration and the amount of microcrystalline particles below a given particle size, by adding these information,
The influence of the slurry concentration in the crystallization can and the amount of microcrystals can be corrected from the optical data obtained from the device that irradiates the slurry liquid with light and detects optical data such as the amount of transmitted light, the amount of scattered light, and the amount of absorbed light. It is. Still more preferably,
Some of the process data around the crystallizer can also be used. The process data around the crystallizer here means, specifically, the rotation speed of the stirrer, the current value of the circulation line pump, each temperature of the circulation line heater, the classification flow rate, the product slurry withdrawal flow rate, the circulation line heater heating medium flow rate, It refers to the temperature inside the crystallizer and the gas phase pressure inside the crystallizer.

【0014】もう一つは当該光学的データを検出する装
置のリアルタイムデータのみならず、その時系列データ
を用いることである。一般に晶析プロセスにおいては、
前述のように晶析缶内粒度分布等のウェービング現象が
生じる。ウェービング現象において、晶析缶内の平均粒
径が上昇傾向にあるときに、2次核と呼ばれる缶内結晶
より剥離した微結晶量が増加し、缶内結晶平均粒径が極
大となる時間の少し前でその微結晶量が極大となる。即
ち、缶内微結晶量と缶内平均粒径の時間トレンドでは、
缶内微結晶量の位相が、缶内平均粒径の位相にやや先行
する。なお製品結晶の粒径分布変動の位相は晶析缶内の
粒径分布変動の位相に同調している。このため缶内平均
粒径が上昇、下降傾向であるといった動的な情報を製品
結晶粒度分布の特徴量推定用回帰式に組み込めば、所定
の粒径以下の微結晶粒子量の情報を強化でき、製品結晶
粒度分布の特徴量推定値の精度を向上させることができ
る。当該時系列データがまさにこの缶内平均粒径の動的
な情報を与えるのである。
The other is to use not only real-time data of the device for detecting the optical data but also time-series data thereof. Generally, in the crystallization process,
As described above, a waving phenomenon such as a particle size distribution in the crystallization can occurs. In the waving phenomenon, when the average particle size in the crystallization can is on the rise, the amount of microcrystals separated from crystals in the can called secondary nuclei increases, and the time during which the average particle size in the can becomes maximal is increased. Shortly before, the amount of microcrystals reaches a maximum. That is, in the time trend of the amount of microcrystals in the can and the average particle size in the can,
The phase of the amount of microcrystals in the can slightly precedes the phase of the average particle size in the can. The phase of the variation in the particle size distribution of the product crystal is synchronized with the phase of the variation in the particle size distribution in the crystallizer. For this reason, if dynamic information such as the average particle size in the can is increasing and decreasing is incorporated into the regression equation for estimating the characteristic amount of the product crystal particle size distribution, the information on the amount of fine crystal particles smaller than a predetermined particle size can be enhanced. In addition, it is possible to improve the accuracy of the feature value estimation value of the product crystal grain size distribution. The time series data just gives dynamic information of the average particle diameter in the can.

【0015】なお、上記製品結晶粒度分布特徴量の推定
方法により粒度分布の特徴量を推定する工程を含む本発
明の粒子の製造方法については、当該工程以外は公知の
方法を採用できる。具体的には例えば、晶析装置製品結
晶抜き出しラインに設置された、スラリー液へ光を照射
して光学的データを検出する装置により得られる透過光
量、散乱光量のデータと、晶析装置の缶内スラリー濃度
等のプロセスデータを用いて、本発明の方法により製品
結晶平均粒径を推定する工程を含む晶析装置がそうであ
る。
The method for producing the particles of the present invention including the step of estimating the characteristic amount of the particle size distribution by the above-described method for estimating the characteristic amount of the product crystal particle size distribution can employ a known method other than this step. Specifically, for example, data of transmitted light amount and scattered light amount obtained by a device installed on a crystallizer product crystal extraction line and irradiating the slurry liquid with light to detect optical data, and a crystallizer can This is the case with a crystallizer including a step of estimating the average crystal grain size of a product by the method of the present invention using process data such as the internal slurry concentration.

【0016】[0016]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 (実施例1)図1は本発明を用いた硫安晶析プロセスを
実施することのできる装置の一例の概略を示す図であ
る。図1で示した装置を用いて硫安の晶析により硫安結
晶を製造し、固液分離後の重量基準結晶平均粒径の推定
を行った。
EXAMPLES The present invention will be described more specifically with reference to the following examples. (Embodiment 1) FIG. 1 is a view schematically showing an example of an apparatus capable of performing an ammonium sulfate crystallization process using the present invention. Ammonium sulfate crystals were produced by crystallization of ammonium sulfate using the apparatus shown in FIG. 1, and the weight-based crystal average particle size after solid-liquid separation was estimated.

【0017】製品スラリー抜き出しラインに設置した、
スラリー液へ光を照射して透過光量、散乱光量の光学的
データを検出する装置(6)より、透過光量、前方散乱
光量、後方散乱光量のデータが得られる。また外部循環
ライン(2)の加熱器入口に設置されたスラリー濃度計
(7)からは、外部循環ラインのスラリー濃度データが
得られ、晶析缶(1)に設置されたスラリー濃度計
(8)からは、晶析缶内のスラリー濃度データが得られ
る。この他、晶析缶廻りプロセスデータとして、攪拌機
(9)回転数、循環ポンプ(4)電流値、循環ライン加
熱器入、出温度、分級流量、製品スラリー抜き出し流
量、循環ライン加熱器熱媒流量、晶析缶内温度、晶析缶
内気相部圧力など多くのデータを利用することができ
る。本実施例では、スラリー液へ光を照射して光学的デ
ータを検出する装置から得られる前方散乱光量と後方散
乱光量の時系列データと、晶析缶内スラリー濃度、循環
ラインスラリー濃度、他1種類のリアルタイムデータを
用いて固液分離後の重量基準結晶平均粒径推定のための
回帰式を求めた。
Installed in a product slurry extraction line,
The apparatus (6) for irradiating the slurry liquid with light to detect the optical data of the amount of transmitted light and the amount of scattered light provides data of the amount of transmitted light, the amount of forward scattered light, and the amount of backscattered light. From the slurry concentration meter (7) installed at the heater inlet of the external circulation line (2), the slurry concentration data of the external circulation line is obtained, and the slurry concentration meter (8) installed in the crystallization can (1) is obtained. ) Gives data on the slurry concentration in the crystallization can. In addition, the process data around the crystallization can include stirrer (9) rotation speed, circulation pump (4) current value, circulation line heater input / output temperature, classification flow rate, product slurry extraction flow rate, circulation line heater heating medium flow rate Many data can be used, such as the temperature inside the crystallization can, the pressure in the gas phase inside the crystallization can. In this embodiment, the time series data of the forward scattered light amount and the back scattered light amount obtained from the apparatus that irradiates the slurry liquid with light to detect optical data, the slurry concentration in the crystallization can, the slurry concentration in the circulation line, A regression equation for estimating the weight-based average crystal grain size after solid-liquid separation was obtained using various kinds of real-time data.

【0018】つまり、平均粒径推定式の説明変数とし
て、スラリー液へ光を照射して光学的データを検出する
装置より得られる前方散乱光量、後方散乱光量の時系列
データ及び、晶析缶内スラリー濃度と循環ラインスラリ
ー濃度、その他のリアルタイムプロセスデータを用いて
いる。図2に、実施例1による晶析結晶重量基準平均粒
径推定値の時間的変化を実線で示す。実線で示す(b)
重量基準結晶平均粒径推定値と、点線で示す(a)手分
析値との相関係数は約0.8であり良い推定結果が得られ
ている。
That is, as the explanatory variables of the average particle diameter estimation formula, time series data of the forward scattered light amount and the back scattered light amount obtained from the apparatus for irradiating the slurry liquid with light and detecting the optical data, Slurry concentration, circulation line slurry concentration, and other real-time process data are used. FIG. 2 shows the change over time of the estimated value of the average particle size based on the weight of the crystallized crystals according to Example 1 by a solid line. Shown by solid line (b)
The correlation coefficient between the estimated value of the weight-based average crystal grain size and the (a) hand analysis value indicated by the dotted line is about 0.8, and a good estimation result is obtained.

【0019】(比較例1)図3に、スラリー液へ光を照
射して光学的データを検出する装置より得られる後方散
乱光量のリアルタイムデータのみによる晶析結晶重量基
準平均粒径推定値と同手分析値の比較を示す。照射光に
対する光学的データを検出する装置から得られる透過光
量、前方散乱光量、後方散乱光量、前方散乱光量÷透過
光量のデータの内、最も当該平均粒径推定精度が良かっ
た後方散乱光量と手分析値との比較であり、実線(d)
で後方散乱光量による推定値、点線(c)で手分析の結
果を示すが、両者の相関係数は約0.65であり、明らかに
本発明の方式の方が優れている。
(Comparative Example 1) FIG. 3 shows the same as the estimated value of the crystal grain weight-based average particle diameter based on only real-time data of the amount of backscattered light obtained from the apparatus for irradiating the slurry liquid with light and detecting optical data. 3 shows a comparison of hand analysis values. Among the data of transmitted light amount, forward scattered light amount, back scattered light amount, forward scattered light amount ら れ る transmitted light amount obtained from the device that detects optical data for irradiation light, the back scattered light amount and hand It is a comparison with the analysis value, and the solid line (d)
Shows the estimated value based on the amount of backscattered light, and the dotted line (c) shows the result of manual analysis. The correlation coefficient between the two is about 0.65, and the method of the present invention is clearly superior.

【0020】図4は本発明の装置の構成の一例である。
スラリー液へ光を照射して光学的データを検出する装置
より得られる透過光量、散乱光量のデータ及びプロセス
データをパソコンやDCS(分散型制御システム)へ取
り込むデータ入力部分と、当該光学的データを時系列デ
ータとして定周期で保存する部分、この時系列データと
リアルタイムプロセスデータを用いて、回帰式演算によ
り、晶析製品結晶粒度分布の特徴量を演算する部分、及
び平均粒径等の結晶粒径情報を表示する部分とから構成
される。これらはDCSやパソコン、PLC(プログラ
マブル・ロジック・コントローラ)等に実装可能であ
る。また推定結果を晶析制御へ応用することも更なる利
用方法の一つである。
FIG. 4 shows an example of the configuration of the apparatus of the present invention.
A data input part for taking in the transmitted light amount, the scattered light amount data and the process data obtained from a device for irradiating the slurry liquid with light and detecting the optical data to a personal computer or a DCS (distributed control system); A part that is stored at regular intervals as time-series data, a part that uses the time-series data and real-time process data to calculate the characteristic amount of the crystal grain size distribution of the crystallized product by regression equation calculation, and a crystal grain such as the average particle diameter And a portion for displaying diameter information. These can be mounted on a DCS, a personal computer, a PLC (programmable logic controller), or the like. Further, applying the estimation result to crystallization control is one of the further utilization methods.

【0021】[0021]

【発明の効果】本発明により、固液分離後の重量基準結
晶平均粒径をオンラインでリアルタイムに連続データと
して精度良く推定することができる。また本発明により
晶析プロセス運転の細かな調整が可能となるばかりでな
く、手篩いによる粒度分布測定の頻度を大幅に削減する
ことができる。
According to the present invention, the weight-based average crystal grain size after solid-liquid separation can be accurately estimated online as real-time continuous data. Further, according to the present invention, not only the fine adjustment of the crystallization process operation can be performed, but also the frequency of the particle size distribution measurement by the hand sieve can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を用いた硫安晶析プロセスを実施するこ
とのできる装置の一例の概略を示す図
FIG. 1 is a diagram schematically illustrating an example of an apparatus capable of performing an ammonium sulfate crystallization process using the present invention.

【図2】実施例1による晶析結晶重量基準平均粒径推定
値の時間的変化と、手分析値との比較を示す図
FIG. 2 is a diagram showing a comparison between a temporal change of an estimated value of a crystal grain weight-based average particle diameter according to Example 1 and a manual analysis value.

【図3】スラリー液へ光を照射して光学的データを検出
する装置より得られる後方散乱光量のリアルタイムデー
タのみによる晶析結晶重量基準平均粒径推定値と同手分
析値の比較を示す図
FIG. 3 is a graph showing a comparison between a crystallized crystal weight-based average particle diameter estimated value based on only real-time data of the amount of backscattered light obtained from an apparatus for irradiating light to a slurry liquid and detecting optical data and the same analysis value.

【図4】本発明の装置の構成の一例を示す図FIG. 4 is a diagram showing an example of the configuration of the device of the present invention.

【符号の説明】[Explanation of symbols]

1 … 晶析缶 2 … 外部循環ライン 3 … 熱交換器 4 … 循環ポンプ 5 … 製品抜出しポンプ 6 … 光学式粒径性状検出器 7 … 循環ラインスラリー濃度計 8 … 晶析缶内スラリー濃度計 9 … 攪拌機 10 … 原料液供給 DESCRIPTION OF SYMBOLS 1 ... Crystallizer 2 ... External circulation line 3 ... Heat exchanger 4 ... Circulation pump 5 ... Product extraction pump 6 ... Optical particle size property detector 7 ... Circulation line slurry concentration meter 8 ... Slurry concentration meter in a crystallization can 9 … Stirrer 10… Raw material liquid supply

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 液中で粒子を成長させる工程を含む粒子
の製造において、粒子を含有する液へ光を照射し、照射
された光に対する散乱光量、透過光量及び吸収光量のう
ち一つ以上のデータと、粒子を成長させる装置のプロセ
スデータとを用いて演算処理を行うことを特徴とする粒
度分布の特徴量の推定方法。
In the production of particles including a step of growing particles in a liquid, the liquid containing the particles is irradiated with light, and at least one of a scattered light amount, a transmitted light amount, and an absorbed light amount with respect to the irradiated light. A method for estimating a feature amount of a particle size distribution, wherein arithmetic processing is performed using data and process data of an apparatus for growing particles.
【請求項2】 液中で粒子を成長させる工程を含む粒子
の製造において、粒子を含有する液へ光を照射し、照射
された光に対する散乱光量、透過光量及び吸収光量のう
ち一つ以上の時系列データを用いて演算処理を行うこと
を特徴とする粒度分布の特徴量の推定方法。
2. In the production of particles including a step of growing particles in a liquid, the liquid containing the particles is irradiated with light, and at least one of a scattered light amount, a transmitted light amount, and an absorbed light amount with respect to the irradiated light. A method for estimating a feature amount of a particle size distribution, characterized in that arithmetic processing is performed using time-series data.
【請求項3】 液中で粒子を成長させる工程を含む粒子
の製造において、粒子を含有する液へ光を照射し、照射
された光に対する散乱光量、透過光量及び吸収光量のう
ち一つ以上のデータと、粒子を成長させる装置のプロセ
スデータとを用いて演算処理を行う操作を含むことを特
徴とする粒子の製造方法。
3. In the production of particles including a step of growing particles in a liquid, the liquid containing the particles is irradiated with light, and at least one of a scattered light amount, a transmitted light amount, and an absorbed light amount with respect to the irradiated light. A method for producing particles, comprising an operation of performing arithmetic processing using data and process data of an apparatus for growing particles.
【請求項4】 液中で粒子を成長させる工程を含む粒子
の製造において、粒子を含有する液へ光を照射し、照射
された光に対する散乱光量、透過光量及び吸収光量のう
ち一つ以上の時系列データを用いて演算処理を行う操作
を含むことを特徴とする粒子の製造方法。
4. In the production of particles including a step of growing particles in a liquid, the liquid containing the particles is irradiated with light, and at least one of a scattered light amount, a transmitted light amount, and an absorbed light amount with respect to the irradiated light. A method for producing particles, comprising an operation of performing arithmetic processing using time-series data.
【請求項5】 液中で粒子を成長させる工程を含む粒子
の製造に用いることのできる装置であって、粒子を含有
する液へ光を照射し、照射された光に対する散乱光量、
透過光量及び吸収光量のうち一つ以上のデータと、粒子
を成長させる装置のプロセスデータとを用いて演算処理
を行うことの可能な装置。
5. An apparatus which can be used for producing particles including a step of growing particles in a liquid, the method comprising irradiating a liquid containing particles with light;
A device capable of performing arithmetic processing using one or more data of transmitted light amount and absorbed light amount and process data of a device for growing particles.
【請求項6】 液中で粒子を成長させる工程を含む粒子
の製造に用いることのできる装置であって、粒子を含有
する液へ光を照射し、照射された光に対する散乱光量、
透過光量及び吸収光量のうち一つ以上の時系列データを
用いて演算処理を行うことの可能な装置。
6. An apparatus that can be used for producing particles including a step of growing particles in a liquid, wherein the liquid containing the particles is irradiated with light, and the amount of scattered light with respect to the irradiated light;
An apparatus capable of performing arithmetic processing using one or more time-series data of a transmitted light amount and an absorbed light amount.
【請求項7】 液中で粒子を成長させる工程を含む粒子
の製造に用いることのできる装置であって、(i)粒子
を含有する液へ光を照射し、照射された光に対する散乱
光量、透過光量及び吸収光量のうち一つ以上を求めるこ
とのできる手段、及び、(ii)上記散乱光量、透過光
量及び吸収光量のうち一つ以上の時系列データを用いて
演算処理を行うことの可能な手段、を有する装置。
7. An apparatus that can be used for producing particles including a step of growing particles in a liquid, comprising: (i) irradiating the liquid containing the particles with light; Means for obtaining one or more of the transmitted light amount and the absorbed light amount, and (ii) arithmetic processing using one or more time-series data of the scattered light amount, the transmitted light amount and the absorbed light amount Device having various means.
【請求項8】 液中で粒子を成長させる工程を含む粒子
の製造に用いることのできる装置であって、(i)粒子
を含有する液へ光を照射し、照射された光に対する散乱
光量、透過光量及び吸収光量のうち一つ以上を求めるこ
とのできる手段、(ii)粒子を成長させる装置のプロ
セスデータを求めることのできる手段、及び、(ii
i)上記散乱光量、透過光量及び吸収光量のうち一つ以
上と、上記プロセスデータとを用いて演算処理を行うこ
とのできる手段、を有する装置。
8. An apparatus that can be used for producing particles including a step of growing particles in a liquid, comprising: (i) irradiating the liquid containing the particles with light; (Ii) means for obtaining one or more of the transmitted light amount and the absorbed light amount, (ii) means for obtaining process data of an apparatus for growing particles, and (ii)
i) A device having means capable of performing arithmetic processing using one or more of the scattered light amount, transmitted light amount and absorbed light amount and the process data.
JP11027137A 1999-02-04 1999-02-04 Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor Pending JP2000225302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11027137A JP2000225302A (en) 1999-02-04 1999-02-04 Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11027137A JP2000225302A (en) 1999-02-04 1999-02-04 Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor

Publications (1)

Publication Number Publication Date
JP2000225302A true JP2000225302A (en) 2000-08-15

Family

ID=12212675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11027137A Pending JP2000225302A (en) 1999-02-04 1999-02-04 Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor

Country Status (1)

Country Link
JP (1) JP2000225302A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524804A (en) * 2008-06-18 2011-09-08 ジーイーエー メッソ ゲーエムベーハー Method and apparatus for continuously producing crystals having a stable particle size distribution
CN105547933A (en) * 2015-12-09 2016-05-04 中国科学院遥感与数字地球研究所 Atmospheric pollution monitoring method and device
KR20170030541A (en) * 2014-06-25 2017-03-17 뉴욕 유니버시티 In-line particle characterization
CN107121363A (en) * 2017-03-22 2017-09-01 华南理工大学 A kind of method of crystallization processes process particle size distribution prediction
JP2018130685A (en) * 2017-02-16 2018-08-23 住友金属鉱山株式会社 Prediction method of grain size distribution of crystallization grain
CN108905262A (en) * 2018-06-12 2018-11-30 崇义章源钨业股份有限公司 The system and method for ammonium para-tungstate crystal automation control
US10634604B2 (en) 2009-01-16 2020-04-28 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US10641696B2 (en) 2015-09-18 2020-05-05 New York University Holographic detection and characterization of large impurity particles in precision slurries
US10670677B2 (en) 2016-04-22 2020-06-02 New York University Multi-slice acceleration for magnetic resonance fingerprinting
US10983041B2 (en) 2014-02-12 2021-04-20 New York University Fast feature identification for holographic tracking and characterization of colloidal particles
US11085864B2 (en) 2014-11-12 2021-08-10 New York University Colloidal fingerprints for soft materials using total holographic characterization
WO2022105632A1 (en) * 2020-11-18 2022-05-27 青岛科技大学 Online measurement device for size and shape of crystal in high-solid-content crystallization process
US11385157B2 (en) 2016-02-08 2022-07-12 New York University Holographic characterization of protein aggregates
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
WO2023058394A1 (en) * 2021-10-06 2023-04-13 栗田工業株式会社 Fine particle measurement method
WO2023058395A1 (en) * 2021-10-07 2023-04-13 栗田工業株式会社 Method for measuring fine particles, method for estimating fine particle component, and method for estimating state of pure-water producing device
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524804A (en) * 2008-06-18 2011-09-08 ジーイーエー メッソ ゲーエムベーハー Method and apparatus for continuously producing crystals having a stable particle size distribution
US11892390B2 (en) 2009-01-16 2024-02-06 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US10634604B2 (en) 2009-01-16 2020-04-28 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US10983041B2 (en) 2014-02-12 2021-04-20 New York University Fast feature identification for holographic tracking and characterization of colloidal particles
KR102383995B1 (en) 2014-06-25 2022-04-07 뉴욕 유니버시티 In-line particle characterization
JP2017528689A (en) * 2014-06-25 2017-09-28 ニューヨーク ユニヴァーシティー Inline particle characterization
KR20170030541A (en) * 2014-06-25 2017-03-17 뉴욕 유니버시티 In-line particle characterization
US11085864B2 (en) 2014-11-12 2021-08-10 New York University Colloidal fingerprints for soft materials using total holographic characterization
US11977015B2 (en) 2014-11-12 2024-05-07 New York University Colloidal fingerprints for soft materials using total holographic characterization
US10641696B2 (en) 2015-09-18 2020-05-05 New York University Holographic detection and characterization of large impurity particles in precision slurries
CN105547933A (en) * 2015-12-09 2016-05-04 中国科学院遥感与数字地球研究所 Atmospheric pollution monitoring method and device
US11747258B2 (en) 2016-02-08 2023-09-05 New York University Holographic characterization of protein aggregates
US11385157B2 (en) 2016-02-08 2022-07-12 New York University Holographic characterization of protein aggregates
US10670677B2 (en) 2016-04-22 2020-06-02 New York University Multi-slice acceleration for magnetic resonance fingerprinting
JP2018130685A (en) * 2017-02-16 2018-08-23 住友金属鉱山株式会社 Prediction method of grain size distribution of crystallization grain
CN107121363A (en) * 2017-03-22 2017-09-01 华南理工大学 A kind of method of crystallization processes process particle size distribution prediction
CN108905262A (en) * 2018-06-12 2018-11-30 崇义章源钨业股份有限公司 The system and method for ammonium para-tungstate crystal automation control
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11921023B2 (en) 2019-10-25 2024-03-05 New York University Holographic characterization of irregular particles
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay
WO2022105632A1 (en) * 2020-11-18 2022-05-27 青岛科技大学 Online measurement device for size and shape of crystal in high-solid-content crystallization process
JP2023055462A (en) * 2021-10-06 2023-04-18 栗田工業株式会社 Method for measuring fine particles
JP7268710B2 (en) 2021-10-06 2023-05-08 栗田工業株式会社 Particle measurement method
WO2023058394A1 (en) * 2021-10-06 2023-04-13 栗田工業株式会社 Fine particle measurement method
WO2023058395A1 (en) * 2021-10-07 2023-04-13 栗田工業株式会社 Method for measuring fine particles, method for estimating fine particle component, and method for estimating state of pure-water producing device
JP2023056297A (en) * 2021-10-07 2023-04-19 栗田工業株式会社 Method for measuring fine particles, method for estimating components of fine particles, and method for estimating state of pure water manufacturing device

Similar Documents

Publication Publication Date Title
JP2000225302A (en) Method for estimating parameter for particle distribution, production of particle, and apparatus to be employed therefor
US4263010A (en) Control method and apparatus for crystallizer process control
Jagadesh et al. Large and mono-sized product crystals from natural cooling mode batch crystallizer
Mesbah et al. A model-based control framework for industrial batch crystallization processes
US10822666B2 (en) Method for obtaining crystals from a mother solution, and crystallization device suitable for this purpose
US8425625B2 (en) Crystallization method and crystallization apparatus
Akrap et al. Effect of mixing on the crystal size distribution of borax decahydrate in a batch cooling crystallizer
Pertig et al. Inline analyzing of industrial crystallization processes by an innovative ultrasonic probe technique
Omar et al. Application of Ultrasonics in the On‐line Determination of Supersaturation
Kobayashi et al. A method for making large agglomerated ice crystals for freeze concentration
Nagy et al. Monitoring and advanced control of crystallization processes
Barthe et al. Utilization of focused beam reflectance measurement in the control of crystal size distribution in a batch cooled crystallizer
Bonnin-Paris et al. Determination of the metastable zone width of glycine aqueous solutions for batch crystallizations
CN105659072A (en) Method for monitoring a control parameter of a polymerization reaction and relative apparatus for implementing said method
US20090043054A1 (en) Monomer concentration prediction and control in a polymerization process
CN201990588U (en) Device for manufacturing glass materials
Rohani et al. A simplified approach to the operation of a batch crystallizer
Wey Analysis of batch crystallization processes
Yucel et al. Ultrasonic characterization of lactose crystallization in gelatin gels
Kalbasenka et al. Modeling batch crystallization processes: Assumption verification and improvement of the parameter estimation quality through empirical experiment design
US5124265A (en) Method and apparatus for crystallization process control
JP2517875B2 (en) Method and apparatus for measuring component concentration in salt making process
Li et al. Monitoring batch cooling crystallization using NIR: development of calibration models using genetic algorithm and PLS
Parisi et al. The use of nephelometric measurements in crystallization operations
Markande et al. Investigation of the crystallization kinetics of dextrose monohydrate using in situ particle size and supersaturation monitoring