JP2000214084A - Method and apparatus for decision of test substance - Google Patents

Method and apparatus for decision of test substance

Info

Publication number
JP2000214084A
JP2000214084A JP1577099A JP1577099A JP2000214084A JP 2000214084 A JP2000214084 A JP 2000214084A JP 1577099 A JP1577099 A JP 1577099A JP 1577099 A JP1577099 A JP 1577099A JP 2000214084 A JP2000214084 A JP 2000214084A
Authority
JP
Japan
Prior art keywords
substance
spectrum
inspected
time
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1577099A
Other languages
Japanese (ja)
Inventor
Naoyuki Shiratori
直行 白鳥
Takeshi Ashida
彪 芦田
Sadao Ibe
定雄 井部
Kazuya Negi
一弥 根木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1577099A priority Critical patent/JP2000214084A/en
Publication of JP2000214084A publication Critical patent/JP2000214084A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus in which a test substance is identified and in which the degradation state of the substance can be measured quantitatively and in a short time. SOLUTION: Near-infrared light or infrared reflected light which is reflected from the surface of the test substance is spectrally diffracted by a spectral apparatus 10. In a state such that the obtained spectral data on the test substance and the time-dependent degradation calibrated absorption spectrum group of various substances stored in advance in a database 21 are standardized by a standardization means 22, the time-dependent degradation calibrated absorption spectrum group is substance-retrieved by a retrieval means 23 on the basis of spectrum data on the test substance, and the substance is identified. In addition, by referring to the time-dependent degradation calibrated absorption spectrum group of the identified substance and that of a substance similar to the substance, the substance composition ratio, the degradation history time or the like of the test substance is calibrated and calculated by a calibration means 24. Its calculated result is outputted by an output means as a result in which the substance to be inspected is identified or the degradation state of the substance is converted into a numerical value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、検査対象物質表面
の近赤外または赤外反射光を分光したスペクトルデータ
を測定し、これに基づいて物質特定を行うと共に、これ
に加えて劣化状態をも定量的に判定する検査対象物質判
定方法及びその装置に関する。したがって、物質を分
類、分析する産業分野や建築物、輸送車体等の劣化した
資材および資材表面を更新する産業分野に好適なもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures spectral data obtained by analyzing near-infrared or infrared reflected light on the surface of a substance to be inspected, specifies the substance based on the spectrum data, and additionally determines the deterioration state. Also, the present invention relates to a method and apparatus for determining a substance to be inspected, which quantitatively determines a target substance. Therefore, the present invention is suitable for the industrial field of classifying and analyzing substances, and the renewing of deteriorated materials and surfaces of materials such as buildings and transportation vehicles.

【0002】[0002]

【従来の技術】劣化した資材および資材表面の更新は建
築物、輸送車体等の寿命を延ばす上で重要である。例え
ば、住宅、橋梁、鉄塔等の建築物および船舶、鉄道車両
等の輸送車体等の外装に塗料が塗装されている。これら
の外装塗料は塗装後、年月が経つとともに劣化し、建築
物、輸送車体等の内部保護の役目を果たせなくなる。し
たがって、塗料の寿命が来る前に再塗装して保護する必
要がある。
2. Description of the Related Art Renewal of deteriorated materials and material surfaces is important for extending the life of buildings, transportation bodies and the like. For example, paint is applied to buildings such as houses, bridges, and steel towers, and exteriors of transport bodies such as ships and railway vehicles. These exterior paints deteriorate over time after painting, and can no longer serve the role of protecting the interior of buildings, transportation bodies and the like. Therefore, they need to be repainted and protected before the life of the paint.

【0003】しかし、塗料の寿命を判定する方法は合理
的手法が今まで無く、塗装専門家の経験による目視判断
か、あるいは塗料メーカーの品質保証する耐用年限以内
で定期的に再塗装するのが一般的であった。塗料の劣化
を分析的に測定する方法としては以下の方法がある。塗
料を塗装した試験サンプルをサンシャインウェザーメー
ターやキセノンランプ光曝露試験機のような劣化促進試
験機で、あるいは実際に屋外で太陽光や風雨に曝す実曝
露試験で、長時間劣化させた後、評価する。評価項目と
しては、塗料の劣化による酸化等の物質的化学変化を直
接測定するのではなく、塗料の物性である表面光沢保持
率、色差、表面硬度等の変化を指標とする間接測定が一
般的で、前記方法を用いて塗料の相対的性能差異や耐用
年限等の予測に利用していた。
However, there is no rational method for judging the life of a paint, and it is necessary to perform visual judgment based on the experience of a paint expert or to periodically repaint the paint within a service life guaranteed by a paint maker. Was common. As a method of analytically measuring the deterioration of the paint, there is the following method. Evaluate the test sample coated with the paint after prolonged deterioration with a deterioration acceleration tester such as a sunshine weather meter or a xenon lamp light exposure tester, or in an actual exposure test where the test sample is actually exposed outdoors to sunlight or wind and rain. I do. As an evaluation item, instead of directly measuring physical chemical changes such as oxidation due to paint deterioration, indirect measurement using indexes such as changes in the physical properties of paint such as surface gloss retention, color difference, surface hardness etc. Thus, the above method was used to predict the relative performance difference and the service life of the paint.

【0004】最近、プラスチック、塗料等の物質識別に
赤外や近赤外光を利用した測定装置が開発され、実用化
されつつある(特開平6−210632号公報、特開平
6−308022号公報、化学とソフトウェア,Vo
l.19,No.1,p3(1997))。前記識別装
置は廃プラスチックの分別や自動車塗料の鑑識分析に応
用されているが、屋外等に曝されて劣化した塗料や資材
は物質の化学変化を起こしており、物質を同定するのは
難しいことがあった。また、検査対象物の定量的な物質
同定、劣化状態等を測定できる方法および装置は皆無で
あった。
Recently, measuring devices utilizing infrared or near-infrared light for discriminating substances such as plastics and paints have been developed and are being put into practical use (JP-A-6-210632 and JP-A-6-308022). , Chemistry and Software, Vo
l. 19, no. 1, p3 (1997)). The identification device has been applied to the separation of waste plastics and forensic analysis of automotive paints.However, paints and materials that have been degraded by exposure to the outdoors have undergone a chemical change in substances, making it difficult to identify substances. was there. In addition, there has been no method or apparatus capable of quantitatively identifying a substance to be inspected, measuring a deterioration state, and the like.

【0005】[0005]

【発明が解決しようとする課題】目視検査による資材の
識別は難しく、ましてや劣化した資材の同定は前記識別
装置においても難しいことがあった。また、目視検査に
よる塗料の劣化や資材等の寿命判定は評価に長年の熟練
度が必要であり、定量性にも欠けるので更新時期判定に
は差異があり、信頼度に欠ける点があった。塗料メーカ
ーや資材メーカーが保証する耐用年数以内に更新するこ
とは経済的負担が大きかった。
It is difficult to identify materials by visual inspection, and it is sometimes difficult to identify deteriorated materials even with the above-mentioned identification device. In addition, judgment of deterioration of paint and life of materials by visual inspection requires many years of skill in evaluation, and lacks quantitativeness. Therefore, there is a difference in judgment of update time and lack of reliability. Updating within the service life guaranteed by paint and material manufacturers was a significant financial burden.

【0006】一方、塗料の劣化を分析的に測定する方法
は劣化促進試験といえども長時間かかり、煩雑な測定操
作を行うため、多大な労力も必要とした。しかも、検査
対象物の寿命予測となると、該対象物と同一の試験サン
プルの作製を必要とし、さらに、測定指標が劣化の直接
測定ではなく間接測定のため、同一試験サンプルを使用
して劣化促進試験による検量データを作成し求めても、
寿命予測が不正確な場合が多かった。
On the other hand, the method of analytically measuring the deterioration of the paint requires a long time and a complicated measurement operation, which requires a great deal of labor, even in the accelerated deterioration test. In addition, when it comes to the life expectancy of the inspection object, it is necessary to prepare the same test sample as the object, and since the measurement index is an indirect measurement rather than a direct measurement of deterioration, the same test sample is used to accelerate the deterioration. Even if you create and request test calibration data,
Life predictions were often inaccurate.

【0007】資材および資材表面の物質同定、劣化状態
を分析的に精度よく、短時間で測定する方法および装置
は信頼性、経済性の面から社会的要望が強いにもかかわ
らず、適切な方法および装置がなかった。そこで、本発
明は、検査対象物質である塗料等の経時劣化が物質の化
学変化を伴うことから検査対象物の近赤外または赤外反
射光を分光装置で分光して劣化を直接測定し、得られる
スペクトルとコンピューターに予め入力してある各種物
質の経時劣化検量スペクトル群を規格化し、得られるス
ペクトルを各種物質の経時劣化検量スペクトル群から物
質検索して検査対象物の物質を特定する検査物質判定方
法及びその装置を提供することを目的としている。
[0007] A method and an apparatus for analytically and accurately measuring the material identification and deterioration state of a material and the surface of the material in a short time are suitable methods despite social demands in terms of reliability and economy. And no equipment. Therefore, the present invention directly measures the deterioration by spectroscopically measuring the near-infrared or infrared reflected light of the inspection object because the temporal deterioration of the paint or the like as the inspection object involves a chemical change of the substance, A test substance that normalizes the obtained spectrum and the time-dependent calibration spectrum group of various substances previously input to the computer, searches the obtained spectrum from the time-dependent calibration spectrum group of various substances, and specifies the substance to be tested. An object of the present invention is to provide a determination method and a device therefor.

【0008】また、特定された物質及び該物質と組成比
は相違しても同組成物質の経時劣化検量スペクトル群を
参照して検査対象物の物質組成比、劣化履歴時間等を検
量算出して、検査対象物の物質同定、劣化状態を数値で
短時間に求めることができる検査対象物質判定方法及び
その装置を提供することを目的としている。
In addition, even if the specified substance and the composition ratio are different from each other, the substance composition ratio, deterioration history time, etc. of the inspection object are calibrated and calculated by referring to the time-dependent calibration spectrum group of the same composition substance. It is an object of the present invention to provide a method and apparatus for determining a substance to be inspected, which can identify the substance of the object to be inspected and the deterioration state in a short time by numerical values.

【0009】[0009]

【課題を解決するための手段】このような目的を達成す
るために、請求項1に係る検査対象物質判定方法は、検
査対象物質表面の近赤外または赤外反射光を分光手段で
分光して検査対象スペクトルデータを得ると共に、予め
各種物質の経時劣化検量スペクトル群を当該物質名と関
連付けてスペクトル群記憶手段に格納し、前記検査対象
検索スペクトルデータ及び前記スペクトル群記憶手段に
格納した経時劣化検量スペクトル群を共に規格化した状
態で当該検査対象スペクトルデータをもとに前記スペク
トル群記憶手段を物質検索して、検査対象物の物質を特
定することを特徴としている。
In order to achieve the above object, a method for determining a substance to be inspected according to the present invention is characterized in that near-infrared or infrared reflected light on the surface of the substance to be inspected is spectrally separated by spectral means. In addition to obtaining the inspection target spectrum data, the time-dependent deterioration calibration spectrum group of various substances is stored in the spectrum group storage unit in association with the substance name in advance, and the inspection target search spectrum data and the time-dependent deterioration stored in the spectrum group storage unit are stored. In a state where the calibration spectrum group is standardized together, a substance is searched in the spectrum group storage means based on the spectrum data to be inspected to specify a substance of the inspection object.

【0010】この請求項1に係る発明においては、検査
対象物質の近赤外または赤外反射光を赤外線分光手段で
分光し、得られる検査対象スペクトルデータをもとにス
ペクトル群記憶手段に予め格納されている各種物質の経
時劣化検量スペクトル群から物質検索して検査対象物の
物質を特定する。ここでいう経時劣化検量スペクトル群
とは、或る物質の劣化を受けていない新しい状態から寿
命に達した状態までの経時劣化状態を劣化履歴時間毎に
スペクトルの測定をしたもので、一物質に付き複数のス
ペクトルを有し、検査対象物の物質検索、および物質組
成比、劣化履歴時間等の検量を可能とするものである。
In the invention according to the first aspect, near-infrared or infrared reflected light of the substance to be inspected is spectrally separated by the infrared spectroscopic means and stored in the spectrum group storage means in advance based on the obtained spectral data to be inspected. A substance is inspected from the group of the aging calibration spectra of various substances, and the substance to be inspected is specified. The term “aging calibration spectrum group” as used herein refers to a measurement of the spectrum over time from the new state in which a certain substance has not been degraded to the state in which it has reached the end of its life. It has a plurality of attached spectra, and enables a substance search of an inspection object and a calibration of a substance composition ratio, a deterioration history time, and the like.

【0011】また、請求項2に係る検査対象物質判定方
法は、検査対象物質表面の近赤外または赤外反射光を分
光手段で分光して検査対象スペクトルデータを得ると共
に、予め各種物質の経時劣化検量スペクトル群を当該物
質名と関連付けてスペクトル群記憶手段に格納し、前記
スペクトルデータ及び前記スペクトル群記憶手段に格納
した経時劣化検量スペクトル群を共に規格化した状態で
当該検査対象スペクトルデータをもとに前記スペクトル
群記憶手段を物質検索して、検査対象物の物質を特定
し、該物質および該物質と組成比は相違しても同組成の
物質群の経時劣化検量スペクトル群を参照して検査対象
物の物質組成比及び劣化履歴時間を算出するようにした
ことを特徴としている。
According to a second aspect of the present invention, there is provided a method for judging a substance to be inspected, wherein near-infrared or infrared reflected light on the surface of the substance to be inspected is spectrally separated by spectroscopic means to obtain spectral data to be inspected. The deterioration calibration spectrum group is stored in the spectrum group storage unit in association with the substance name, and the inspection target spectrum data is also stored in a state where both the spectrum data and the time-dependent calibration group stored in the spectrum group storage unit are standardized. The spectrum group storage means is searched for a substance at the same time, and the substance of the inspection object is specified, and the substance and the substance and the composition ratio are different from each other with reference to the temporal deterioration calibration spectrum group of the substance group having the same composition. It is characterized in that the material composition ratio and the deterioration history time of the inspection object are calculated.

【0012】この請求項2に係る発明においては、検査
対象物表面の近赤外または赤外反射光を赤外線分光手段
で分光し、得られる検査対象スペクトルをもとにスペク
トル群記憶手段に予め格納してある各種物質の経時劣化
検量スペクトル群から物質検索して検査対象物の物質を
特定し、該物質および該物質と組成比は相違しても同組
成の物質群の経時劣化検量スペクトル群を参照して検査
対象物の物質組成比、劣化履歴時間等に検量算出し、検
査対象物の物質同定、劣化状態を数値に換算する。
In the invention according to the second aspect, the near-infrared or infrared reflected light on the surface of the inspection object is separated by the infrared spectroscopy means and stored in the spectrum group storage means in advance based on the obtained inspection object spectrum. A substance to be inspected is specified by searching for substances from the aging calibration spectrum group of various substances, and the aging calibration spectrum group of the same group of substances having the same composition even if the substance and the composition ratio are different. The calibration is calculated by referring to the material composition ratio of the inspection object, the deterioration history time, and the like, and the material identification and the deterioration state of the inspection object are converted into numerical values.

【0013】さらに、請求項1または2に係る発明にお
いては、前記検査対象スペクトルデータをもとに経時劣
化検量スペクトル群を物質検索する際に、検査対象スペ
クトルデータおよび経時劣化検量スペクトル群を規格化
してから物質検索を行うようにしたことを特徴としてい
る。ここで、規格化とは、各スペクトルを強度の最も強
い変化部の強度を或る一定の値になるように全分光領域
のスペクトルを修正したり、スペクトルの或る一定の分
光領域の変化部とベースラインで囲まれた面積を或る一
定の値になるように全分光領域のスペクトルを修正した
り、さらには全分光領域のスペクトルとベースラインで
囲まれた面積が或る一定の値になるようにスペクトルを
修正することを言い、後の検索や検量を容易化する。
Furthermore, in the invention according to claim 1 or 2, when searching for a substance of a time-dependent calibration spectrum group based on the spectrum data of the test object, the spectrum data of the test object and the time-dependent calibration spectrum group are standardized. The feature is that the substance search is performed after the search. Here, the normalization means that the spectrum of the entire spectral region is corrected so that the intensity of the portion where the intensity has the strongest change becomes a certain value, or the change portion of the spectrum where the intensity is a certain constant region. And the spectrum of the entire spectral region is modified so that the area surrounded by the baseline becomes a certain value, and further, the spectrum of the entire spectral region and the area surrounded by the baseline become a certain value. Modifying the spectrum to make it easier to retrieve and calibrate later.

【0014】さらにまた、請求項3に係る検査対象物質
判定方法は、請求項1又は2に係る発明において、前記
検査対象スペクトルデータ及びスペクトル群記憶手段の
経時劣化検量スペクトル群を規格化するに際し、各スペ
クトルデータの1次微分または2次微分スペクトルを求
めるようにしたことを特徴としている。この請求項3に
係る発明では、各スペクトルを1次微分または2次微分
スペクトルに計算し直すことによって該スペクトルのベ
ースラインが前記データベースのベースラインと一致し
なくとも物質の同定および前記面積の算出ができる。
Further, in the method for judging a substance to be inspected according to claim 3, in the invention according to claim 1 or 2, when standardizing the time-dependent deterioration calibration spectrum group of the spectrum data for inspection and spectrum group storage means, The first or second derivative spectrum of each spectrum data is obtained. According to the third aspect of the present invention, each spectrum is recalculated into a first derivative or a second derivative spectrum, thereby identifying a substance and calculating the area even if the baseline of the spectrum does not match the baseline of the database. Can be.

【0015】なおさらに、請求項4に係る検査対象物質
判定方法は、請求項1〜3の何れかの発明において、前
記検査対象スペクトルデータをもとに物質検索するに際
し、最小自乗法、回帰分析法、重回帰分析法、ニューラ
ルネットワーク法等を用いて検索することを特徴として
いる。この請求項4に係る発明においては、検査対象ス
ペクトルデータをもとに経時劣化検量スペクトル群を検
索する際に、各スペクトルデータを最小自乗法、回帰分
析法、重回帰分析法、ニューラルネットワーク法を使用
して比較することにより、短時間で正確な検索を行うこ
とができる。
Furthermore, a method for determining a substance to be inspected according to claim 4 is the method according to any one of claims 1 to 3, wherein a least squares method, a regression analysis, It is characterized in that the search is performed using a method, multiple regression analysis, neural network method, or the like. In the invention according to claim 4, when searching for a time-dependent deterioration calibration spectrum group based on the inspection target spectrum data, each spectrum data is subjected to a least square method, a regression analysis method, a multiple regression analysis method, and a neural network method. By using and comparing, an accurate search can be performed in a short time.

【0016】また、請求項5に係る検査対象物質判定方
法は、検査対象物表面の近赤外または赤外反射光を分光
して検査対象スペクトルデータを出力する分光手段と、
予め各種物質の経時劣化検量スペクトル群を当該物質名
と関連付けて格納したスペクトル群記憶手段と、前記分
光手段から出力される検査対象スペクトルデータをもと
に前記スペクトル群記憶手段を参照して、該当する物質
名を特定する物質名特定手段とを備えたことを特徴とし
ている。
According to a fifth aspect of the present invention, there is provided a method for judging a substance to be inspected, comprising: spectral means for dispersing near-infrared light or infrared reflected light on the surface of the object to be inspected and outputting spectrum data to be inspected;
Referring to the spectrum group storage means in which the time-dependent calibration spectrum groups of various substances are stored in advance in association with the substance names, and the spectrum group storage means based on the inspection target spectrum data output from the spectroscopic means. And a substance name specifying means for specifying a substance name to be specified.

【0017】この請求項5に係る発明においては、前述
した請求項1と同様に検査対象物質から得られる検査対
象スペクトルをもとにスペクトル群記憶手段に予め格納
されている各種物質の経時劣化検量スペクトル群から物
質検索して検査対象物の物質を特定する。さらに、請求
項6に係る発明においてては、前記物質名特定手段は、
前記検査対象スペクトルデータをもとに前記スペクトル
群記憶手段を参照して、経時劣化検量スペクトル群から
該当するスペクトルを検索して、検査対象物質を特定す
る検索手段と、該検索手段で特定された物質の経時劣化
検量スペクトル群と前記検査対象スペクトルデータとの
偏差を個々に算出し、該偏差を物質の劣化履歴時間軸で
表す関数として検査対象物の劣化履歴時間を算出する検
量手段とを少なくとも備えていることを特徴としてい
る。
According to the fifth aspect of the present invention, similarly to the above-described first aspect, based on the spectrum to be inspected obtained from the substance to be inspected, the time-dependent calibration of various substances stored in the spectrum group storage means in advance. A substance is retrieved from the spectrum group to specify a substance to be inspected. Further, in the invention according to claim 6, the substance name specifying means includes:
With reference to the spectrum group storage means based on the spectrum data to be inspected, a corresponding spectrum is searched from the time-dependent deterioration calibration spectrum group, and a search means for specifying the substance to be inspected, and the search means specified by the search means A calibration means for individually calculating a deviation between the substance time-dependent deterioration calibration spectrum group and the inspection target spectrum data, and calculating the deterioration history time of the inspection object as a function representing the deviation on a deterioration history time axis of the substance; It is characterized by having.

【0018】この請求項6に係る発明においては、検査
対象物の物質名を特定することができると共に、経時劣
化検量スペクトル群と検査対象スペクトルとの偏差を個
々に算出し、算出された偏差に基づいて検査対象物質の
劣化履歴時間を算出することにより、寿命や耐用年数等
を正確に判断することが可能となる。さらにまた、請求
項7に係る発明においては、前記検量手段は、同定され
た物質の経時劣化検量スペクトル群及び該物質とは組成
比は相違しても同組成の物質群の経時劣化検量スペクト
ル群を抽出し、両経時劣化検量スペクトル群と検査対象
スペクトルデータとの偏差を個々に算出し、該偏差を物
質の組成比軸と劣化履歴時間軸で表す関数として検査対
象物の組成比及び劣化履歴時間を算出するように構成さ
れていることを特徴としている。
In the invention according to claim 6, the substance name of the inspection object can be specified, and the deviation between the time-dependent deterioration calibration spectrum group and the inspection object spectrum is individually calculated. By calculating the deterioration history time of the inspection target material based on the above, it is possible to accurately determine the life, the useful life, and the like. Still further, in the invention according to claim 7, the calibration means includes a time-dependent calibration spectrum group of the identified substance and a time-dependent calibration spectrum group of a substance group having the same composition as the substance even though the composition ratio is different. , And individually calculate the deviation between the two-time degradation calibration spectrum group and the spectrum data to be inspected, and calculate the deviation as a function expressed by the composition ratio axis of the substance and the degradation history time axis. It is characterized in that it is configured to calculate time.

【0019】この請求項7に係る発明においては、物質
検索によって特定された物質の経時劣化検量スペクトル
群および特定された物質とは組成比は相違しても同一組
成の物質群の経時劣化検量スペクトル群を抽出し、これ
ら各経時劣化検量スペクトル群と検査対象スペクトルデ
ータとの偏差を個々に算出し、算出した偏差に基づいて
検査対象物質の組成比を特定することができる。
In the invention according to claim 7, the time-dependent calibration spectrum group of the substance specified by the substance search and the time-dependent calibration spectrum of the substance group having the same composition as the specified substance even though the composition ratio is different. A group is extracted, and a deviation between each of the time-dependent deterioration calibration spectrum groups and the spectrum data to be inspected is individually calculated, and the composition ratio of the substance to be inspected can be specified based on the calculated deviation.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は本発明の一実施形態を示す基
本構成図である。本発明は、検査対象物に物質特有の近
赤外または赤外光領域のスペクトルがあり、しかも経時
劣化が物質の化学変化に基づくことを利用して、該変化
が近赤外または赤外光領域のスペクトルに変化として現
れることを利用するものであり、さらにスペクトル信号
の解析方法に特徴があり、本発明に関するスペクトル解
析処理を以下順次説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a basic configuration diagram showing an embodiment of the present invention. The present invention utilizes the fact that a test object has a spectrum in the near-infrared or infrared light region peculiar to a substance and that the change with time is based on a chemical change of the substance, and the change is in the near-infrared or infrared light range. It utilizes the fact that it appears as a change in the spectrum of a region, and is characterized by a spectrum signal analysis method. Spectrum analysis processing according to the present invention will be sequentially described below.

【0021】図1において、10は検査対象物表面の近
赤外又は赤外反射光を分光する分光手段としての赤外線
分光装置であって、この赤外線分光装置10は、近赤外
スペクトル測定用分光器又は赤外スペクトルスペクトル
分光器等で構成され、波長25.0〜0.8μmの光を
全体的あるいは部分的に分光し、分光波長と同期して光
強度を検出し、これを電気信号に変換することによっ
て、検査対象スペクトルデータを出力するように構成さ
れている。
In FIG. 1, reference numeral 10 denotes an infrared spectroscope as spectroscopic means for spectroscopically reflecting near-infrared or infrared reflected light on the surface of the inspection object. Or a spectroscope for infrared spectrum spectroscopy, which totally or partially disperses light having a wavelength of 25.0 to 0.8 μm, detects light intensity in synchronization with the spectral wavelength, and converts this into an electric signal. By performing the conversion, the spectrum data to be inspected is output.

【0022】この赤外線分光装置10から出力された近
赤外又は赤外の検査対象スペクトルデータは、例えばパ
ーソナルコンピュータで構成される物質判定装置20に
入力される。この物質判定装置20は、各種物質の経時
劣化検量スペクトル群を格納したスペクトル群記憶手段
としてのデータベース21と、赤外線分光装置10から
入力される近赤外又は赤外の検査対象スペクトルデータ
及びデータベース21に格納されている各種物質の経時
劣化検量スペクトル群データに基づく検索及び検量処理
を容易に行えるように規格化処理する規格化手段22
と、この規格化手段22で規格化処理された検査対象ス
ペクトルデータと一致するスペクトルをデータベース2
1から検索し、検査対象物の物質を特定する検索手段2
3と、この検索手段23で特定された物質及びこの物質
と組成比は相違しても同組成の物質群の経時劣化検量ス
ペクトル群を選択し、検査対象物の物質組成比、劣化履
歴時間等を算出する検量手段24と、この検量手段で算
出した物質組成比、劣化履歴時間に基づいて耐用年限等
を算出し、同定物質名、組成比、寿命、劣化履歴時間等
をディスプレイ又はプリンタ等の出力装置30に出力す
る出力手段25とを備えている。
The near-infrared or infrared spectrum data to be inspected output from the infrared spectroscopy apparatus 10 is input to a substance determination apparatus 20 composed of, for example, a personal computer. The substance determination apparatus 20 includes a database 21 as a spectrum group storage unit that stores a time-dependent calibration spectrum group of various substances, a near-infrared or infrared inspection target spectrum data and a database 21 input from the infrared spectroscopy apparatus 10. Standardizing means 22 for performing standardization processing so that search and calibration processing based on the time-dependent deterioration calibration spectrum group data of various substances stored in the storage device can be easily performed.
And a spectrum that matches the spectrum data to be inspected standardized by the standardizing means 22.
Searching means 2 for searching from 1 and specifying the substance to be inspected
3 and a substance specified by the search means 23 and a time-dependent deterioration calibration spectrum group of a substance group having the same composition even if the composition ratio is different from the substance, and the substance composition ratio of the inspection object, the deterioration history time, etc. Calibration means 24 to calculate the material composition ratio calculated by the calibration means, the life expectancy and the like based on the degradation history time, identification material name, composition ratio, life, degradation history time and the like, such as a display or a printer Output means 25 for outputting to the output device 30.

【0023】ここで、データベース21は、検査対象物
の物質組成比、劣化履歴時間等を短時間で算出ためのも
のであり、塗料や資材等の各種物質を試験サンプルとし
て、屋外実暴露劣化試験、サンシャインウェザーメータ
ー暴露劣化促進試験、キセノンアーク式暴露劣化促進試
験機及び/又はメタルハライド暴露劣化促進試験機等の
劣化試験で長時間劣化させた後、近赤外又は赤外スペク
トル測定用分光器で測定して得た各種物質の経時劣化検
量スペクトル群が格納されている。このとき、各種物質
の劣化履歴時間毎のスペクトルを劣化履歴時間と共に格
納し、その格納時に各種物質の重合体及び/又は共重合
体組成及び組成比も格納し、さらに各種物質の屋外暴露
試験及び促進試験で確認された寿命も格納する。
Here, the database 21 is for calculating the material composition ratio of the inspection object, the deterioration history time, etc. in a short time. , Sunshine weather meter exposure deterioration acceleration test, xenon arc type exposure deterioration acceleration tester and / or metal halide exposure deterioration acceleration tester A group of aging calibration spectra of various substances obtained by measurement is stored. At this time, the spectrum for each deterioration history time of various substances is stored together with the deterioration history time, and the polymer and / or copolymer composition and composition ratio of various substances are also stored at the time of storage, and further, the outdoor exposure test of various substances and The life span confirmed by the accelerated test is also stored.

【0024】また、規格化手段22は、測定条件等によ
るスペクトル強度の相違を抑制し、次の演算処理段階の
検索、検量を容易ならしめるものである。検査対象物か
ら得られる検査対象スペクトルデータ及びデータベース
21に格納された各種物質の経時劣化検量スペクトル群
を吸収強度の最も強い変化部の強度を或る一定の値にな
るように全分光領域のスペクトルを修正する。又は、ス
ペクトルの或る一定の分光領域の変化部とベースライン
で囲まれた面積を或る一定の値になるように全分光領域
のスペクトルを修正する。さらには、全分光領域のスペ
クトルとベースラインで囲まれた面積が或る一定の値に
なるようにスペクトルを修正するなどの方法を用いて規
格化を行う。なお、データベースに格納された各種物質
の経時劣化検量スペクトル群は予め前記規格化処理をし
た状態で格納するようにしてもよく、この場合には、検
査対象スペクトルデータのみを規格化手段21で規格化
する。
The normalizing means 22 suppresses a difference in spectrum intensity due to measurement conditions and the like, and facilitates retrieval and calibration in the next operation processing stage. The spectral data of the inspection object obtained from the inspection object and the time-dependent deterioration calibration group of various substances stored in the database 21 are used to adjust the spectrum of the entire spectral region so that the intensity of the portion where the absorption intensity has the strongest change becomes a certain value. To correct. Alternatively, the spectrum of the entire spectral region is corrected so that the area surrounded by the changing part of the certain spectral region and the baseline is a certain value. Further, normalization is performed using a method such as correcting the spectrum so that the area surrounded by the spectrum and the baseline of the entire spectral region has a certain value. Note that the time-dependent deterioration calibration spectrum group of various substances stored in the database may be stored in a state where the above-described normalization processing has been performed. In this case, only the inspection target spectrum data is standardized by the standardization unit 21. Become

【0025】しかしながら、検査対象物の形態や劣化し
た状態等によって得られるスペクトルのベースラインが
不安定で一定にならず勾配や凹凸等のある場合には、上
記規格化処理をしても次の演算処理段階の検索処理や検
量処理が困難になる場合がある。その場合、規格化処理
前または後にスペクトルを1次微分または2次微分する
操作によって不安定なベースラインによる不正確さを除
去可能としして、より正確に検索および検量処理をする
ことができる。ここでも、データベース21に格納され
た各種物質の経時劣化検量スペクトル群は予め前記1次
微分または2次微分したスペクトル群として格納するよ
うにしてもよい。
However, in the case where the baseline of the spectrum obtained due to the form of the inspection object or the state of deterioration is unstable and not constant and has a gradient or unevenness, the following normalization processing is performed even if the above-described normalization processing is performed. In some cases, search processing and calibration processing in the arithmetic processing stage become difficult. In this case, before or after the normalization processing, the operation of performing the first or second differentiation of the spectrum can remove the inaccuracy due to the unstable baseline, thereby enabling more accurate search and calibration processing. Also in this case, the time-dependent calibration spectrum group of various substances stored in the database 21 may be stored in advance as a spectrum group obtained by performing the primary differentiation or the secondary differentiation.

【0026】さらに、検索手段23は、最小自乗法、回
帰分析法、重回帰分析法、ニューラルネットワーク法等
の演算処理方法を使用して検査対象スペクトルデータを
もとにデータベース21に格納されている各種物質の経
時劣化検量スペクトル群を物質検索する。すなわち、検
査対象物の劣化状態を含む検査対象スペクトルデータを
もとに、データベース21内に格納された各種物質の経
時劣化検量スペクトル群のデータベースの中から最も近
似したスペクトルを検索し、選択する。最も近似したス
ペクトルは或る物質の或る経時劣化した状態のスペクト
ルであるから、或る物質を検査対象物の物質と同定する
ことは容易である。ここで、前記各種検索処理は、市販
のプログラムを使用することができる。
Further, the search means 23 is stored in the database 21 based on the spectrum data to be inspected using an arithmetic processing method such as a least square method, a regression analysis method, a multiple regression analysis method, a neural network method, or the like. A substance search is performed on the time-dependent deterioration calibration spectrum group of various substances. That is, based on the spectrum data of the inspection object including the deterioration state of the inspection object, the most similar spectrum is searched and selected from the database of the time-dependent deterioration calibration spectrum group of various substances stored in the database 21. Since the most similar spectrum is a spectrum of a certain substance in a certain time-degraded state, it is easy to identify a certain substance as a substance to be inspected. Here, a commercially available program can be used for the various search processes.

【0027】さらにまた、検量手段24は検査対象物の
物質組成比、劣化履歴時間等の数値を求める。データベ
ースから選択され、同定された物質の経時劣化検量スペ
クトル群を抽出し、前記演算処理方法を用いて該スペク
トル群と得られるスペクトルとの偏差を個々に算出し、
この偏差を物質の劣化履歴時間軸で表す関数とし、この
関数の最小点を内挿で求め、検査対象物の劣化履歴時間
を算出する。
Further, the calibration means 24 obtains numerical values such as the material composition ratio of the test object and the deterioration history time. Selected from the database, extract the time-dependent calibration spectrum group of the identified substance, individually calculate the deviation between the spectrum group and the obtained spectrum using the arithmetic processing method,
This deviation is used as a function represented by the deterioration history time axis of the substance, and the minimum point of this function is obtained by interpolation to calculate the deterioration history time of the inspection object.

【0028】または、同定された物質の経時劣化検量ス
ペクトル群および該物質と組成比は相違しても同組成の
物質群の経時劣化検量スペクトル群を抽出し、前記演算
処理方法を用いて該スペクトル群と得られるスペクトル
との偏差を個々に算出し、この偏差を物質の組成比軸と
劣化履歴時間軸で表す関数とし、この関数の最小点を内
挿で求め、検査対象物の物質組成比、劣化履歴時間を算
出する。
Alternatively, a time-dependent calibration spectrum group of the identified substance and a time-dependent calibration spectrum group of a substance group having the same composition even if the composition ratio is different from the substance are extracted, and the spectrum is determined using the above-described arithmetic processing method. The deviation between the group and the obtained spectrum is calculated individually, and this deviation is used as a function represented by the composition ratio axis of the substance and the deterioration history time axis.The minimum point of this function is obtained by interpolation, and the substance composition ratio of the inspection object is obtained. , The deterioration history time is calculated.

【0029】なおさらに、出力手段25は、同定物質
名、組成比、寿命、検査対象物の劣化履歴時間等を換算
して出力装置30に出力する。同定物質が前記データベ
ース21の内挿で求められた場合、寿命についても組成
比の関数で表した後、同様に内挿で寿命を換算し、出力
する。また、実際の履歴年数と促進試験の履歴時間の関
係がデータベースに入力されている場合は、検査対象物
の劣化状態を履歴年数、耐用年数等に換算して出力する
こともできる。あるいは、実際の寿命と促進試験の寿命
が入力されている場合は、線形近似を仮定して履歴年
数、耐用年数等に推定換算して出力することも可能であ
る。
Further, the output means 25 converts the identification substance name, the composition ratio, the life, the deterioration history time of the inspection object, and the like, and outputs them to the output device 30. When the identified substance is obtained by interpolation of the database 21, the life is also represented by a function of the composition ratio, and then the life is similarly converted by interpolation and output. In addition, when the relationship between the actual history years and the history time of the accelerated test is input to the database, the deterioration state of the inspection object can be converted into the history years, the service life, and the like and output. Alternatively, when the actual life and the life of the accelerated test have been input, it is also possible to output by converting the estimated life to the number of years of history, the number of years of service, etc., assuming linear approximation.

【0030】そして、上記構成において、少なくとも検
索手段23および検量手段24を含んで物質名特定手段
が構成されている。
In the above configuration, the substance name specifying means includes at least the search means 23 and the calibration means 24.

【0031】[0031]

【実施例】以下に、実際に行った資材の劣化診断結果を
示す。裏面および側面をクロムメッキした鉄板を塗面に
して、シリコン変性アクリル水系塗料をクリアコートし
た試験サンプル(クリアコート層の厚みは50μm)を
作製し、メタルハライド曝露促進試験機(照射強度 6
80W/m2 、照射時間18時間/日、水噴霧 1分/
回×2回/日の促進条件)で或る劣化履歴時間曝露させ
て検査対象物とした。
The following is a result of a material deterioration diagnosis actually performed. A test sample (clear coat layer having a thickness of 50 μm) was prepared by clear-coating a silicon-modified acrylic water-based paint using an iron plate coated with a chromium-plated back and side surfaces, and a metal halide exposure acceleration tester (irradiation intensity 6)
80 W / m 2 , irradiation time 18 hours / day, water spray 1 minute /
(Accelerating conditions x 2 times / day), and exposed to a certain degradation history time to obtain an inspection object.

【0032】データベースを作成する目的で、同一条件
で作製した試験サンプルを同一促進条件のメタルハライ
ド曝露促進試験機で曝露促進試験を行い、劣化履歴時間
が0〜1100時間の試験サンプル表面を近赤外分光器
(ニレコ、NIRSystems6500)で測定し、
シリコン変性アクリル水系塗料の経時劣化検量スペクト
ル群とした。これらのスペクトル群の代表例を図2に示
す。この図2において符号L0で示す曲線は劣化履歴時
間が0時間、L1 で示す曲線は劣化履歴時間が296時
間、L2で示す曲線は劣化履歴時間が504時間、L3
で示す曲線は劣化履歴時間が728時間、L4で示す曲
線は劣化履歴時間が1045時間のときのスペクトルを
示す。
For the purpose of creating a database, a test sample prepared under the same conditions was subjected to an exposure acceleration test using a metal halide exposure acceleration tester under the same acceleration conditions. Measured with a spectrometer (Nireco, NIRSystems6500)
This is a group of calibration spectra for the deterioration with time of the silicone-modified acrylic water-based paint. FIG. 2 shows representative examples of these spectrum groups. In FIG. 2, a curve denoted by reference symbol L0 indicates a deterioration history time of 0 hour, a curve denoted by L1 indicates a deterioration history time of 296 hours, a curve denoted by L2 indicates a deterioration history time of 504 hours, and L3
The curve indicated by indicates the spectrum when the deterioration history time is 728 hours, and the curve indicated by L4 indicates the spectrum when the deterioration history time is 1045 hours.

【0033】屋外曝露試験によって5年の寿命が明らか
になっているアクリル水系塗料についても同様の試験を
行い、アクリル水系塗料の経時劣化検量スペクトル群を
作成し、これを図3に示す。この図3において符号L0
で示す曲線は劣化履歴時間が0時間、L1で示す曲線は
劣化履歴時間が120時間、L2で示す曲線は劣化履歴
時間が240時間、L3で示す曲線は劣化履歴時間が3
24時間、L4で示す曲線は劣化履歴時間が500時間
のときのスペクトルを示す。
The same test was carried out for an acrylic water-based paint having a life expectancy of 5 years, which was determined by an outdoor exposure test. A calibration spectrum group for deterioration with time of the acrylic water-based paint was prepared, and this is shown in FIG. In FIG.
The curve indicated by is the deterioration history time of 0 hours, the curve indicated by L1 is the deterioration history time of 120 hours, the curve indicated by L2 is the deterioration history time of 240 hours, and the curve indicated by L3 is the deterioration history time of 3 hours.
The curve indicated by L4 for 24 hours shows a spectrum when the deterioration history time is 500 hours.

【0034】他に、スチレン−アクリル系、アクリル−
ウレタン系などの各種塗料の経時劣化検量スペクトル群
も加えてコンピュータ(富士通、FMV−S167)に
入力し、2次微分変換した後、さらに規格化変換を行
い、データベースとした。劣化履歴時間の不明な検査対
象物を前記と同様に測定して、得られる検査対象スペク
トルを同様の変換処理をした後、データベースの個々の
スペクトルと比較して最小自乗法で偏差を計算する処理
を行い、偏差の最も小さいスペクトルを選定し、そのス
ペクトルの物質と履歴時間を検索した結果、シリコン変
性アクリル水系塗料で履歴500時間のものが最も近似
している結果が得られた。
In addition, styrene-acrylic, acrylic-
A group of calibration spectra of aging degradation of various paints such as urethanes was also input to a computer (Fujitsu, FMV-S167) and subjected to second-order differential transformation. A process of measuring a test object whose deterioration history time is unknown in the same manner as described above, performing a similar conversion process on the obtained test target spectrum, and comparing each spectrum in the database with a least square method to calculate a deviation. The spectrum with the smallest deviation was selected, and the substance and the history time of the spectrum were searched. As a result, the result obtained that the silicon-modified acrylic water-based paint having a history of 500 hours was most similar was obtained.

【0035】さらに、履歴時間の精度を向上するため
に、シリコン変性アクリル水系塗料の経時劣化検量スペ
クトル群と検査対象スペクトルデータとの個々の偏差を
算出し、該偏差を劣化履歴時間の或る関数に収束させた
後、或る関数を微分して偏差が最小値になる履歴時間を
計算した結果、550時間と求められた。劣化履歴時間
と偏差の関係と最も近似した関数を図4に示した。
Further, in order to improve the accuracy of the history time, individual deviations between the time-dependent calibration spectrum group of the silicon-modified acrylic water-based paint and the spectrum data to be inspected are calculated, and the deviation is calculated as a function of the deterioration history time. After converging to a certain function, a certain function was differentiated to calculate the history time at which the deviation became the minimum value, and as a result, 550 hours was obtained. FIG. 4 shows a function that is most similar to the relationship between the deterioration history time and the deviation.

【0036】シリコン変性アクリル水系塗料の試験サン
プルでは、促進試験の劣化履歴時間が1048時間で錆
の発生があり、また寿命は16年と入力されているの
で、計算で求められた検査対象物の劣化履歴時間550
時間は屋外曝露8.5年と換算され、履歴年数8.5年
と出力された。また、耐用年限はあと7.5年とも出力
された。
In the test sample of the silicone-modified acrylic water-based paint, the accelerated test had a history of deterioration of 1048 hours, and rust occurred. The life was entered as 16 years. Degradation history time 550
The time was converted to 8.5 years of outdoor exposure, and the output was 8.5 years of history. The service life was output for another 7.5 years.

【0037】以上の操作のうち、検査対象物を分光装置
10で測定して、得られる検査対象スペクトルデータを
コンピュータに入力した後については、すべてコンピュ
ータが計算しており、所要時間は数秒であった。なお、
上記実施例では、塗料の物質判定を行う場合について説
明したが、これに限定されるものではなく、同定された
物質の経時劣化検量スペクトル群および該物質と組成比
は相違しても同組成の物質群の経時劣化検量スペクトル
群を抽出し、前記演算処理方法を用いて該スペクトル群
と得られるスペクトルとの偏差を個々に算出し、この偏
差を物質の組成比軸と劣化履歴時間軸で表す関数とし、
この関数の最小点を内挿で求め、検査対象物の物質組成
比、劣化履歴時間を算出することにより、複数の樹脂を
混合して成型された資材の樹脂組成比、劣化履歴時間を
算出することができる。
Of the above operations, after the object to be inspected is measured by the spectroscopic device 10 and the obtained spectral data to be inspected is input to the computer, all the calculations are performed by the computer, and the required time is several seconds. Was. In addition,
In the above-described embodiment, the case where the substance of the paint is determined has been described.However, the present invention is not limited to this, and the aging calibration spectrum group and the composition of the identified substance have the same composition even if the composition ratio is different. A group of aging calibration spectra of a substance group is extracted, and the deviation between the spectrum group and the obtained spectrum is individually calculated using the above-mentioned arithmetic processing method, and this deviation is represented by a composition ratio axis of the substance and a deterioration history time axis. Function
The minimum point of this function is obtained by interpolation, and the material composition ratio of the inspection object and the deterioration history time are calculated to calculate the resin composition ratio and the deterioration history time of the material molded by mixing a plurality of resins. be able to.

【0038】また、上記実施例においては、コンピュー
タとしてデスクトップ型を適用した場合について説明し
たが、これに限定されるものではなく、分光器を小型化
すると共に、コンピュータをノート型或いはサブノート
型等の小型のパーソナルコンピュータを使用すること
で、これらを検査対象物のある現場に容易に持ち運ぶこ
とが可能となり、簡単に検査対象物の物質同定、劣化状
態等の測定をすることができる。
Further, in the above-described embodiment, the case where the desktop type is applied as the computer has been described. However, the present invention is not limited to this. By using a small personal computer, it is possible to easily carry them to the site where the inspection target is located, and to easily measure the substance identification, deterioration state, and the like of the inspection target.

【0039】さらに、上記実施例では物質表面からの検
査対象スペクトルデータを使用する場合について説明し
たが、これに限定されるものではなく、検査対象物の断
面を測定することによって検査対象物の内部の物質同
定、劣化状態も測定することができる。
Further, in the above embodiment, the case where the spectrum data of the inspection object from the surface of the substance is used has been described. However, the present invention is not limited to this. By measuring the cross section of the inspection object, the inside of the inspection object can be measured. The substance identification and the state of deterioration can be measured.

【0040】[0040]

【発明の効果】以上説明したように、請求項1および請
求項5に係る発明によれば、検査対象物の近赤外または
赤外反射光を赤外線分光手段で分光し、得られる検査対
象スペクトルをもとにスペクトル群記憶手段に予め格納
されている各種物質の経時劣化検量スペクトル群から物
質検索して検査対象物の物質を特定するので、検査対象
物質が経時劣化して化学変化を生じている場合であって
も、正確に物質の同定を行うことができるという効果が
得られる。しかも、検査対象スペクトルデータをもとに
経時劣化検量スペクトル群を物質検索する際に、検査対
象スペクトルデータおよび経時劣化検量スペクトル群を
規格化してから物質検索を行うので、物質検索を行う場
合のスペクトル同志の照合を容易且つ正確に行うことが
できるという効果が得られる。
As described above, according to the first and fifth aspects of the present invention, the near-infrared or infrared reflected light of the object to be inspected is separated by the infrared spectroscopic means, and the spectrum of the object to be obtained is obtained. The substance to be inspected is identified by searching for substances from the time-dependent calibration spectrum group of various substances stored in advance in the spectrum group storage means based on the spectrum group. Even if there is, the effect that the substance can be accurately identified can be obtained. In addition, when performing a substance search for the aging calibration spectrum group based on the inspection target spectrum data, the substance search is performed after the inspection target spectrum data and the aging calibration spectrum group are standardized. An effect is obtained that collation of comrades can be performed easily and accurately.

【0041】また、請求項2、請求項6および請求項7
に係る発明によれば、検査対象物質から得られる検査対
象スペクトルをもとにスペクトル群記憶手段に予め格納
してある各種物質の経時劣化検量スペクトル群から物質
検索して検査対象物の物質を特定し、該物質および該物
質と組成比は相違しても同組成の物質群の経時劣化検量
スペクトル群を参照して検査対象物の物質組成比、劣化
履歴時間等に検量算出し、検査対象物の物質同定、劣化
状態を数値に換算することができ、請求項1および5に
係る発明の効果に加えて、物質の組成比、寿命、耐用年
数等を正確に求めることができるという効果が得られ
る。
Further, claim 2, claim 6, and claim 7
According to the invention according to the above, based on the inspection target spectrum obtained from the inspection target substance, the substance is retrieved from the temporal deterioration calibration spectrum group of various substances stored in the spectrum group storage means in advance to specify the substance of the inspection object. However, even if the substance and the composition ratio are different from each other, the calibration is calculated based on the substance composition ratio of the test object, the deterioration history time, etc. Can be converted into numerical values, and in addition to the effects of the inventions according to claims 1 and 5, the composition ratio, life, useful life, etc. of the substance can be obtained accurately. Can be

【0042】さらに、請求項3に係る発明によれば、検
査対象スペクトルおよび経時劣化検量スペクトル群を規
格化するに際し、各スペクトルを1次微分または2次微
分スペクトルに計算し直すことによって該スペクトルの
ベースラインが前記データベースのベースラインと一致
しなくとも物質の同定および前記面積の算出ができると
いう効果が得られる。
Further, according to the third aspect of the present invention, when standardizing a spectrum to be inspected and a group of calibration spectra with time degradation, each spectrum is recalculated into a first derivative or a second derivative spectrum, thereby obtaining the spectrum of the spectrum. The effect is obtained that the substance can be identified and the area can be calculated even if the baseline does not match the baseline in the database.

【0043】さらにまた、請求項4に係る発明によれ
ば、検査対象スペクトルデータをもとに経時劣化検量ス
ペクトル群を検索する際に、各スペクトルデータを最小
自乗法、回帰分析法、重回帰分析法、ニューラルネット
ワーク法を使用して比較するので、物質検索を短時間で
正確に行うことができるという効果が得られる。
According to the fourth aspect of the present invention, when retrieving a time-dependent deterioration calibration spectrum group based on the spectrum data to be inspected, each spectrum data is subjected to a least squares method, a regression analysis method, a multiple regression analysis. Since the comparison is performed using the neural network method and the neural network method, it is possible to obtain an effect that a substance search can be accurately performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の基本構成を示す機能ブロック図
である。
FIG. 1 is a functional block diagram showing a basic configuration of an embodiment of the present invention.

【図2】経時劣化したシリコン変性アクリル水系塗料の
近赤外スペクトル群の代表例である。
FIG. 2 is a representative example of a near-infrared spectrum group of a silicon-modified acrylic water-based paint aged over time.

【図3】経時劣化したアクリル水系塗料の近赤外スペク
トル群の代表例である。
FIG. 3 is a representative example of a near-infrared spectrum group of an acrylic water-based paint aged over time.

【図4】検査対象物のスペクトルと検索された物質(シ
リコン変性アクリル水系塗料)の経時劣化検量スペクト
ル群との偏差を劣化履歴時間でプロットし、或る関数で
フィッティングした図である。
FIG. 4 is a diagram in which a deviation between a spectrum of an inspection object and a time-dependent calibration calibration spectrum group of a retrieved substance (silicon-modified acrylic water-based paint) is plotted by deterioration history time, and fitted with a certain function.

【符号の説明】[Explanation of symbols]

10 赤外線分光装置 20 物質同定劣化診断装置 21 データベース 22 規格化手段 23 検索手段 24 検量手段 25 出力手段 30 出力装置 DESCRIPTION OF SYMBOLS 10 Infrared spectroscopy apparatus 20 Substance identification deterioration diagnostic apparatus 21 Database 22 Normalization means 23 Search means 24 Calibration means 25 Output means 30 Output device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井部 定雄 静岡県富士市鮫島2番地の1 旭化成工業 株式会社内 (72)発明者 根木 一弥 静岡県富士市鮫島2番地の1 旭化成工業 株式会社内 Fターム(参考) 2G050 AA04 AA05 AA07 CA10 EB07 2G059 AA01 AA05 BB08 BB20 DD20 EE12 FF04 FF08 HH01 JJ01 KK01 MM01 MM02 MM05 MM09 MM10 MM12 MM17 PP01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sadao Ibe 2 Asame Kasei Kogyo Co., Ltd., Fuji-shi, Shizuoka Prefecture, Asahi Kasei Kogyo Co., Ltd. F term (reference) 2G050 AA04 AA05 AA07 CA10 EB07 2G059 AA01 AA05 BB08 BB20 DD20 EE12 FF04 FF08 HH01 JJ01 KK01 MM01 MM02 MM05 MM09 MM10 MM12 MM17 PP01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物質表面の近赤外または赤外反
射光を分光手段で分光して検査対象スペクトルデータを
得ると共に、予め各種物質の経時劣化検量スペクトル群
を当該物質名と関連付けてスペクトル群記憶手段に格納
し、前記検査対象検索スペクトルデータ及び前記スペク
トル群記憶手段に格納した経時劣化検量スペクトル群を
共に規格化した状態で当該検査対象スペクトルデータを
もとに前記スペクトル群記憶手段を物質検索して、検査
対象物の物質を特定することを特徴とする検査対象物質
判定方法。
1. A near-infrared or infrared reflected light on a surface of a substance to be inspected is spectrally separated by a spectroscopic means to obtain spectrum data of the substance to be inspected. The spectrum group storage means is stored in the group storage means, and the spectrum group storage means is stored on the basis of the inspection target spectrum data in a state where both the inspection object search spectrum data and the time-dependent deterioration calibration spectrum group stored in the spectrum group storage means are standardized. A method for judging a substance to be inspected, comprising searching and identifying a substance of the object to be inspected.
【請求項2】 検査対象物質表面の近赤外または赤外反
射光を分光手段で分光して検査対象スペクトルデータを
得ると共に、予め各種物質の経時劣化検量スペクトル群
を当該物質名と関連付けてスペクトル群記憶手段に格納
し、前記スペクトルデータ及び前記スペクトル群記憶手
段に格納した経時劣化検量スペクトル群を共に規格化し
た状態で当該検査対象スペクトルデータをもとに前記ス
ペクトル群記憶手段を物質検索して、検査対象物の物質
を特定し、該物質および該物質と組成比は相違しても同
組成の物質群の経時劣化検量スペクトル群を参照して検
査対象物の物質組成比及び劣化履歴時間を算出するよう
にしたことを特徴とする検査対象物質判定方法。
2. A near-infrared or infrared reflected light on the surface of a substance to be inspected is spectrally separated by spectroscopic means to obtain spectrum data of the substance to be inspected. Storing in the group storage means, performing a material search of the spectrum group storage means based on the inspection target spectrum data in a state where both the spectrum data and the time-dependent deterioration calibration spectrum group stored in the spectrum group storage means are normalized. Identify the substance to be inspected, and determine the substance composition ratio and deterioration history time of the inspection object by referring to the time-dependent deterioration calibration spectrum group of the substance group having the same composition even if the substance and the composition ratio are different. A method for judging a substance to be tested, wherein the method is to calculate.
【請求項3】 前記検査対象スペクトルデータ及びスペ
クトル群記憶手段の経時劣化検量スペクトル群を規格化
するに際し、各スペクトルデータの1次微分または2次
微分スペクトルを求めるようにしたことを特徴とする請
求項1または2に記載の検査対象物質判定方法。
3. The method according to claim 1, wherein a first derivative or a second derivative spectrum of each spectrum data is obtained when standardizing the inspection target spectrum data and the aging calibration spectrum group of the spectrum group storage means. Item 3. The method for determining a substance to be tested according to Item 1 or 2.
【請求項4】 前記検査対象スペクトルデータをもとに
物質検索するに際し、最小自乗法、回帰分析法、重回帰
分析法、ニューラルネットワーク法等を用いて検索する
ことを特徴とする請求項1乃至3の何れかに記載の検査
対象物質判定方法。
4. The method according to claim 1, wherein a substance is searched based on the spectrum data to be inspected using a least squares method, a regression analysis method, a multiple regression analysis method, a neural network method, or the like. 3. The method for determining a substance to be tested according to any one of 3.
【請求項5】 検査対象物質表面の近赤外または赤外反
射光を分光して検査対象スペクトルデータを出力する分
光手段と、予め各種物質の経時劣化検量スペクトル群を
当該物質名と関連付けて格納したスペクトル群記憶手段
と、前記分光手段から出力される検査対象スペクトルデ
ータをもとに前記スペクトル群記憶手段を参照して、該
当する物質名を特定する物質名特定手段とを備えたこと
を特徴とする検査対象物質判定装置。
5. A spectroscopy means for spectrally outputting near-infrared or infrared reflected light on the surface of a substance to be inspected and outputting spectrum data to be inspected, and a time-dependent deterioration calibration group of various substances is stored in advance in association with the substance name. Spectrum group storage means, and substance name specifying means for specifying a corresponding substance name by referring to the spectrum group storage means based on the spectrum data to be inspected output from the spectroscopic means. Inspection target substance determination device.
【請求項6】 前記物質名特定手段は、前記検査対象ス
ペクトルデータをもとに前記スペクトル群記憶手段を参
照して、経時劣化検量スペクトル群から該当するスペク
トルを検索して、検査対象物質を特定する検索手段と、
該検索手段で特定された物質の経時劣化検量スペクトル
群と前記検査対象スペクトルデータとの偏差を個々に算
出し、該偏差を物質の劣化履歴時間軸で表す関数として
検査対象物の劣化履歴時間を算出する検量手段とを少な
くとも備えていることを特徴とする請求項5記載の検査
対象物質判定装置。
6. The substance name identification means refers to the spectrum group storage means based on the spectrum data to be inspected, retrieves a corresponding spectrum from a time-dependent calibration calibration spectrum group, and identifies the substance to be inspected. Search means to
The deviation between the time-dependent degradation calibration spectrum group of the substance specified by the search means and the spectrum data to be inspected is individually calculated, and the deviation history time of the inspection object is calculated as a function expressing the deviation on the degradation history time axis of the substance. The apparatus for determining a substance to be inspected according to claim 5, further comprising at least calibration means for calculating.
【請求項7】 前記検量手段は、同定された物質の経時
劣化検量スペクトル群及び該物質とは組成比は相違して
も同組成の物質群の経時劣化検量スペクトル群を抽出
し、両経時劣化検量スペクトル群と検査対象スペクトル
データとの偏差を個々に算出し、該偏差を物質の組成比
軸と劣化履歴時間軸で表す関数として検査対象物の組成
比及び劣化履歴時間を算出するように構成されているこ
とを特徴とする請求項6記載の検査対象物質判定装置。
7. The calibration means extracts a time-dependent calibration spectrum group of the identified substance and a time-dependent calibration spectrum group of a substance group having the same composition as the substance even though the composition ratio is different. It is configured to individually calculate the deviation between the calibration spectrum group and the spectrum data to be inspected, and calculate the composition ratio and the deterioration history time of the inspection object as a function expressing the deviation by the composition ratio axis of the substance and the deterioration history time axis. 7. The apparatus for judging a substance to be inspected according to claim 6, wherein:
JP1577099A 1999-01-25 1999-01-25 Method and apparatus for decision of test substance Withdrawn JP2000214084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1577099A JP2000214084A (en) 1999-01-25 1999-01-25 Method and apparatus for decision of test substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1577099A JP2000214084A (en) 1999-01-25 1999-01-25 Method and apparatus for decision of test substance

Publications (1)

Publication Number Publication Date
JP2000214084A true JP2000214084A (en) 2000-08-04

Family

ID=11898048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1577099A Withdrawn JP2000214084A (en) 1999-01-25 1999-01-25 Method and apparatus for decision of test substance

Country Status (1)

Country Link
JP (1) JP2000214084A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090299A (en) * 2000-09-11 2002-03-27 Opt Giken Kk Method for distinguishing grade of high-molecular material
JP2002207003A (en) * 2001-01-10 2002-07-26 Kansai Paint Co Ltd Method for estimating deterioration of exterior material of building
JP2002267601A (en) * 2001-03-07 2002-09-18 Kurabo Ind Ltd Method and apparatus for discriminating material such as plastic material or the like
WO2003038412A1 (en) * 2001-10-29 2003-05-08 Matsushita Eco Technology Center Co., Ltd. Device and method for identifying plastic
WO2003046523A1 (en) * 2001-11-28 2003-06-05 Matsushita Eco Technology Center Co., Ltd. Plastic identifying method
JP2008134091A (en) * 2006-11-27 2008-06-12 Ihi Corp Diagnosis method of concrete
JP2009139098A (en) * 2007-12-03 2009-06-25 Fujita Kensetsu Consultant:Kk Device and method for detecting deteriorated component with optional depth in concrete structure
JP2010071961A (en) * 2008-09-22 2010-04-02 Chubu Electric Power Co Inc Deterioration diagnosis method of polymer material
JP2010216818A (en) * 2009-03-13 2010-09-30 Meidensha Corp Method for determining quantity of chemical species and device for determining quantity of chemical species
JP2011064538A (en) * 2009-09-16 2011-03-31 Japan Environmental Sanitation Center Method for calculating presence ratio of solid waste at each kind
JP2011214940A (en) * 2010-03-31 2011-10-27 Caloria Japan Co Ltd Method and device for discriminating foreign matter contamination in object
CN104849226A (en) * 2015-05-26 2015-08-19 谭森 Device and method for monitoring water quality on line
JP2020067380A (en) * 2018-10-24 2020-04-30 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program
JP2020102047A (en) * 2018-12-21 2020-07-02 セイコーエプソン株式会社 Information system and specification method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581039B2 (en) * 2000-09-11 2010-11-17 オプト技研株式会社 Grade identification method for polymer materials
JP2002090299A (en) * 2000-09-11 2002-03-27 Opt Giken Kk Method for distinguishing grade of high-molecular material
JP2002207003A (en) * 2001-01-10 2002-07-26 Kansai Paint Co Ltd Method for estimating deterioration of exterior material of building
JP2002267601A (en) * 2001-03-07 2002-09-18 Kurabo Ind Ltd Method and apparatus for discriminating material such as plastic material or the like
WO2003038412A1 (en) * 2001-10-29 2003-05-08 Matsushita Eco Technology Center Co., Ltd. Device and method for identifying plastic
US7157713B2 (en) 2001-10-29 2007-01-02 Matsushita Eco Technology Center Co., Ltd. Device and method for identifying plastic
WO2003046523A1 (en) * 2001-11-28 2003-06-05 Matsushita Eco Technology Center Co., Ltd. Plastic identifying method
US7161151B2 (en) 2001-11-28 2007-01-09 Matsushita Eco Technology Center Co., Ltd. Plastic identifying method
JP2008134091A (en) * 2006-11-27 2008-06-12 Ihi Corp Diagnosis method of concrete
JP2009139098A (en) * 2007-12-03 2009-06-25 Fujita Kensetsu Consultant:Kk Device and method for detecting deteriorated component with optional depth in concrete structure
JP2010071961A (en) * 2008-09-22 2010-04-02 Chubu Electric Power Co Inc Deterioration diagnosis method of polymer material
JP2010216818A (en) * 2009-03-13 2010-09-30 Meidensha Corp Method for determining quantity of chemical species and device for determining quantity of chemical species
JP2011064538A (en) * 2009-09-16 2011-03-31 Japan Environmental Sanitation Center Method for calculating presence ratio of solid waste at each kind
JP2011214940A (en) * 2010-03-31 2011-10-27 Caloria Japan Co Ltd Method and device for discriminating foreign matter contamination in object
CN104849226A (en) * 2015-05-26 2015-08-19 谭森 Device and method for monitoring water quality on line
JP2020067380A (en) * 2018-10-24 2020-04-30 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program
JP7237516B2 (en) 2018-10-24 2023-03-13 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
JP2020102047A (en) * 2018-12-21 2020-07-02 セイコーエプソン株式会社 Information system and specification method
JP7238390B2 (en) 2018-12-21 2023-03-14 セイコーエプソン株式会社 Information system and identification method

Similar Documents

Publication Publication Date Title
JP2000214084A (en) Method and apparatus for decision of test substance
EP2710353B1 (en) SPECTROSCOPIC APPARATUS AND METHOD of DETERMINING COMPONENTS PRESENT IN A SAMPLE
RU2308684C1 (en) Method of producing multi-dimension calibrating models
CN103134767B (en) Method for liquor quality identification through infrared spectrum revision
CA2028822A1 (en) Method and apparatus for spectroscopic comparison of compositions
CN107703097B (en) Method for constructing model for rapidly predicting crude oil property by using near-infrared spectrometer
CN101010567A (en) Method for producing independent multidimensional calibrating patterns
US20160025565A1 (en) Apparatus and method for testing materials
CN109324013A (en) A method of it is quickly analyzed using Gaussian process regression model building oil property near-infrared
CN107860743A (en) Utilize the method and its application of the model of reflective near infrared fibre-optical probe structure fast prediction oil property
CN115993344A (en) Quality monitoring and analyzing system and method for near infrared spectrum analyzer
US6477516B1 (en) System and method for predicting parameter of hydrocarbon with spectroscopy and neural networks
JP3615390B2 (en) Measured value analysis method of on-line spectrometer
CN111999258A (en) Spectral baseline correction-oriented weighting modeling local optimization method
CN113340943B (en) Method for analyzing odor type and odor intensity in water body based on fingerprint
TWI237694B (en) Gas analysis system and method
de Souza et al. Validation of the near infrared spectroscopy method for determining soil organic carbon by employing a proficiency assay for fertility laboratories
CN110793959A (en) Metal brand identification method based on laser-induced breakdown spectroscopy
Bao et al. Partial least squares with outlier detection in spectral analysis: A tool to predict gasoline properties
CN113362194A (en) Coating quality prediction device and method for generating learned model
Bauer et al. Rapid, reliable tests of clearcoat weatherability: a proposed protocol
CN102103079B (en) Spectrum analysis method
CN100547385C (en) Mobile oil pick-up unit and detection method thereof
US11754539B2 (en) System and computer-implemented method for extrapolating calibration spectra
CN111257265A (en) Rapid detection method for penetration index of asphalt for steel bridge deck pavement

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404