JP2000212568A - Production of carbon raw material and apparatus therefor - Google Patents

Production of carbon raw material and apparatus therefor

Info

Publication number
JP2000212568A
JP2000212568A JP11020392A JP2039299A JP2000212568A JP 2000212568 A JP2000212568 A JP 2000212568A JP 11020392 A JP11020392 A JP 11020392A JP 2039299 A JP2039299 A JP 2039299A JP 2000212568 A JP2000212568 A JP 2000212568A
Authority
JP
Japan
Prior art keywords
heat
furnace
pyrolysis furnace
temperature
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11020392A
Other languages
Japanese (ja)
Inventor
Taira Kaneda
平 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANADA TIRE HANBAI KK
Original Assignee
SANADA TIRE HANBAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANADA TIRE HANBAI KK filed Critical SANADA TIRE HANBAI KK
Priority to JP11020392A priority Critical patent/JP2000212568A/en
Publication of JP2000212568A publication Critical patent/JP2000212568A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the structure of a carbon raw material-producing apparatus, efficiently promote carbonization and obtain a carbon raw material excellent in quality and useful for industries, etc., by thermally transferring the heat in a heat decomposition furnace from the high-temperature part to the low- temperature part to make the temperature distribution of the furnace uniform. SOLUTION: When organic matters such as organic matters contained in industrial waste, domestic garbage, etc., are thermally decomposed by low- temperature indirect heating under oxygen-free closed atmosphere replaced with nitrogen to produce carbon raw material in a heat decomposition furnace C, the heat in the heat decomposition furnace C is thermally transferred from the high-temperature part to the low-temperature part by a heat pipe F and temperature distribution in the heat decomposition furnace C is made uniform to provide the objective carbon raw material. Furthermore, it is preferable that the heat pipe F is arranged vertically in the heat decomposition furnace and a carbon raw material-producing apparatus is equipped with a decomposition gas treating part connected to the interior of the heat decomposition furnace C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば産業廃棄物や
家庭生ゴミ等に含まれる有機物を炭素化して各種の産業
用原料となる炭素素材を製造する際に用いられる炭素素
材製造方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing a carbon material used for producing carbon materials used as various industrial raw materials by carbonizing organic substances contained in, for example, industrial waste and household garbage. It is about.

【0002】[0002]

【従来の技術】従来この種の炭素素材製造方法及びその
装置として、特開平10−130007号公報の如く、
これら有機物を窒素置換により作製した無酸素閉鎖密閉
雰囲気下の加熱分解炉内において低温間接加熱により熱
分解させて炭素素材を製造する構造のものが知られてい
る。
2. Description of the Related Art Conventionally, as a method and an apparatus for producing this kind of carbon material, as disclosed in Japanese Patent Application Laid-Open No. Hei 10-130007,
There is known a structure in which a carbon material is produced by thermally decomposing these organic substances by low-temperature indirect heating in a pyrolysis furnace in an oxygen-free closed atmosphere prepared by nitrogen replacement.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
構造の場合、上記加熱分解炉内は遠赤外線ヒータ等の加
熱体により加熱され、有機物は間接加熱されることにな
り、この間接加熱において、殊に加熱分解炉が上下に延
びた縦型構造にあっては、加熱体の配置位置によって
は、熱は炉内の上部に集中して下部の温度が上がりずら
く、これら現象を考慮して、下部に加熱体としての加熱
源を集中配置したとしても、炉内各部の状況は他の要因
により相違するので、炉内温度の均熱化は困難であっ
て、温度分布が不均一となり、それだけ熱効率の低下を
生じさせることがあるという不都合を有している。
However, in the case of the above-mentioned conventional structure, the inside of the pyrolysis furnace is heated by a heating element such as a far-infrared heater, and organic matter is indirectly heated. In a vertical structure in which the pyrolysis furnace extends vertically, depending on the location of the heating element, heat concentrates on the upper part of the furnace and the temperature of the lower part does not easily rise. Even if the heating source as a heating element is centrally arranged, it is difficult to equalize the temperature inside the furnace because the conditions in each part of the furnace differ depending on other factors, and the temperature distribution becomes uneven, and the thermal efficiency In some cases may cause a decrease in

【0004】[0004]

【課題を解決するための手段】本発明はこのような不都
合を解決することを目的とするもので、本発明のうち、
請求項1記載の方法の発明は、有機物を窒素置換により
作製した無酸素閉鎖密閉雰囲気下の加熱分解炉内におい
て低温間接加熱により熱分解させて炭素素材を製造する
に際し、上記加熱分解炉内の熱をヒートパイプにより高
温部分から低温部分へと熱移動させて加熱分解炉内の温
度分布を均一にすることを特徴とする炭素素材製造方法
にある。
The object of the present invention is to solve such inconveniences.
The invention of the method according to claim 1 is a method for producing a carbon material by thermally decomposing an organic substance by low-temperature indirect heating in a pyrolysis furnace under an oxygen-free closed atmosphere prepared by replacing with nitrogen. A carbon material production method characterized in that heat is transferred from a high-temperature portion to a low-temperature portion by a heat pipe to make the temperature distribution in the pyrolysis furnace uniform.

【0005】又、請求項2記載の装置の発明は、有機物
が収納されたコンテナを搬送可能な搬送部と、該コンテ
ナで搬送されてくる有機物を窒素置換により作製した無
酸素閉鎖密閉雰囲気下において低温間接加熱により熱分
解させる加熱分解炉とを備えてなり、上記加熱分解炉内
に加熱分解炉内の熱を高温部分から低温部分へと熱移動
させて加熱分解炉内の温度分布を均一にするヒートパイ
プを設けてなることを特徴とする炭素素材製造装置にあ
る。
According to a second aspect of the present invention, there is provided a transport unit capable of transporting a container in which an organic substance is stored, and an oxygen-free closed atmosphere prepared by replacing the organic substance transported in the container with nitrogen. A pyrolysis furnace for performing pyrolysis by low-temperature indirect heating, wherein the heat in the pyrolysis furnace is transferred from the high-temperature portion to the low-temperature portion in the pyrolysis furnace to make the temperature distribution in the pyrolysis furnace uniform. The carbon material manufacturing apparatus is provided with a heat pipe that performs heat treatment.

【0006】又、請求項3記載の装置の発明は、上記ヒ
ートパイプを加熱分解炉内に上下方向に配置してなるこ
とを特徴とするものであり、又、請求項4記載の発明
は、上記加熱分解炉内に接続される分解ガス処理部を備
えてなることを特徴とするものであり、又、請求項5記
載の発明は、上記加熱分解炉は上記コンテナを上下方向
に搬送可能な炉内が上下に延びた縦型構造に構成されて
いることを特徴とするものであり、又、請求項6記載の
発明は、上記搬送部は上記コンテナを上下方向に吊下搬
送可能なトレーエレベータ型構造に構成されていること
を特徴とするものである。
The invention according to claim 3 is characterized in that the heat pipe is arranged vertically in a pyrolysis furnace, and the invention according to claim 4 is characterized in that: The thermal cracking furnace is provided with a cracked gas processing section connected to the inside of the thermal cracking furnace, and the invention according to claim 5 is characterized in that the thermal cracking furnace is capable of vertically transporting the container. The invention according to claim 6, wherein the inside of the furnace is configured in a vertical structure extending vertically, and wherein the transport section is configured to transport the container vertically in a tray. It is characterized by being configured in an elevator type structure.

【0007】[0007]

【発明の実施の形態】図1乃至図5は本発明の装置の実
施の形態例を示し、大別すると、有機物が収納されたコ
ンテナWを搬送可能な搬送部Aと、コンテナWの搬送経
路の手前側位置に配置された作動準備部Bと、コンテナ
Wの搬送経路中の作動準備部Bの後続位置に配置された
加熱分解炉Cと、コンテナWの搬送経路中の加熱分解炉
Cの後続位置に配置された冷却待機部Dと、加熱分解炉
Cに接続された分解ガス処理部Eとから構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 5 show an embodiment of the apparatus according to the present invention, which is roughly classified into a transport section A capable of transporting a container W containing organic substances, and a transport path of the container W. , A pyrolysis furnace C disposed at a position subsequent to the operation preparation unit B in the transport path of the container W, and a pyrolysis furnace C disposed in a position subsequent to the operation preparation section B in the transport path of the container W. It is composed of a cooling standby section D arranged at the subsequent position, and a cracked gas processing section E connected to the thermal cracking furnace C.

【0008】ここに、上記搬送部Aは、有機物が収納さ
れたコンテナWを作動準備部Bから加熱分解炉Cを経て
冷却待機部Dに至るまでの搬送経路において搬送させる
構造となっており、搬送部Aは、作動準備部B、加熱分
解炉C及び冷却待機部D毎に分離可能な内部搬送独立構
造となっている。
Here, the transport section A has a structure for transporting the container W containing the organic matter in a transport path from the operation preparation section B to the cooling standby section D via the pyrolysis furnace C, The transport section A has an independent internal transport structure that can be separated for each of the operation preparation section B, the thermal decomposition furnace C, and the cooling standby section D.

【0009】この場合、加熱分解炉Cは上記コンテナW
を上下方向に搬送可能な炉内が上下に延びた縦型構造に
構成され、搬送部Aは、作動準備部B及び冷却待機部D
においては、上記コンテナWを水平方向に載置搬送可能
なローラーコンベヤ構造となっており、又、加熱分解炉
C内においては、トレーエレベータ型構造に構成され、
作動準備部B内を水平搬送されたコンテナWは作動準備
部Bから加熱分解炉Cに受け渡され、加熱分解炉C内に
おいて、上方に搬送された後迂回して下方に搬送され、
加熱分解炉C内を上下迂回搬送されたコンテナWは加熱
分解炉C内から冷却待機部Dに受け渡され、冷却待機部
Dから搬出される。
In this case, the pyrolysis furnace C is connected to the container W
Is constructed in a vertical structure in which the inside of a furnace capable of vertically transporting is vertically extended, and a transport section A includes an operation preparation section B and a cooling standby section D.
Has a roller conveyor structure in which the container W can be placed and transported in the horizontal direction, and in the pyrolysis furnace C, it is configured as a tray elevator type structure,
The container W horizontally conveyed in the operation preparation unit B is transferred from the operation preparation unit B to the pyrolysis furnace C, and is conveyed upward and then conveyed downward in the pyrolysis furnace C,
The container W conveyed in the pyrolysis furnace C by detouring up and down is transferred from the pyrolysis furnace C to the cooling standby unit D, and is carried out of the cooling standby unit D.

【0010】この場合、加熱分解炉Cは円筒状の炉本体
1に耐火材2を配置し、耐熱、断熱、閉鎖密閉構造に構
成され、炉本体1内にトレーエレベータ型構造の搬送部
Aが配設され、即ち、上記加熱分解炉C内の下部及び上
部に架台Mにより回転軸3・4を架設し、回転軸3・4
の左右両側にスプロケット5・5・6・6を取り付け、
スプロケット5・6及びスプロケット5・6間に搬送チ
ェーン7・8を掛回し、搬送チェーン7・8に複数個の
取付部材9・9を所定間隔を置いて突設し、各取付部材
9・9間に吊下軸10を架設し、各吊下軸10にかごト
レー形状のケージ体11を懸垂状に吊下し、上部の回転
軸4に軸継手12を介して駆動モータ13を連結して構
成され、しかして、コンテナWは作動準備部Bから加熱
分解炉Cの一方下部のケージ体に受け渡され、駆動モー
タ13の回動により搬送チェーン7・8は循環回動し、
この循環回動によりケージ体11は上方に搬送された後
迂回して下方に搬送され、他方下部において、コンテナ
Wは加熱分解炉C内から冷却待機部Dに受け渡されるこ
とになる。
In this case, the pyrolysis furnace C has a refractory material 2 disposed in a cylindrical furnace body 1 and is configured to be heat-resistant, heat-insulated, and closed and enclosed. The rotating shafts 3 and 4 are installed on the lower and upper portions of the pyrolysis furnace C by the gantry M.
Attach sprockets 5, 5, 6, 6 to the left and right sides of the
Each of the sprockets 5.6 is wound around a transport chain 7.8 between the sprockets 5.6, and a plurality of mounting members 9.9 are protruded from the transport chain 7.8 at predetermined intervals. A suspension shaft 10 is installed between the suspension shafts, a cage-shaped cage body 11 is suspended from each suspension shaft 10 in a suspended manner, and a drive motor 13 is connected to the upper rotating shaft 4 via a shaft coupling 12. Thus, the container W is delivered from the operation preparation section B to the cage body at one lower side of the pyrolysis furnace C, and the transport chains 7.8 are circulated and rotated by the rotation of the drive motor 13,
By this circulating rotation, the cage body 11 is conveyed upward and then circumvented and conveyed downward. On the other hand, at the lower part, the container W is delivered from the pyrolysis furnace C to the cooling standby unit D.

【0011】又、作動準備部Bは、搬入待機部B1と搬
入部B2からなり、加熱分解炉Cの入口部分に配置さ
れ、搬入待機部B1及び搬入部B2は加熱分解炉Cと同様
に耐熱、断熱、閉鎖密閉構造に形成され、搬入部B2
内部に室温150℃程度の水分蒸発除去をなす予備加熱
に使用する遠赤外線ヒータや電磁波を利用した図示省略
の加熱体が配置され、搬入待機部B1及び搬入部B2は空
気と窒素ガスの入れ替えとしての窒素置換がなされ、無
酸素閉鎖密閉雰囲気が作製されている。
[0011] Also, arming unit B consists carry standby portion B 1 and the carry-in section B 2, is disposed at the inlet portion of the pyrolysis furnace C, loading stand portion B 1 and loading unit B 2 is thermal decomposition furnaces C Similarly heat as thermal insulation, is formed in a closed sealed structure, inside the heating body (not shown) using a far-infrared heater or electromagnetic waves to be used for pre-heating forming the water evaporation removal of about room temperature 0.99 ° C. of the carry section B 2 is is arranged, carrying standby unit B 1 and loading unit B 2 is made nitrogen substitution as exchange of air and nitrogen gas, oxygen-free closure confined atmosphere is produced.

【0012】又、加熱分解炉C内も空気と窒素ガスの入
れ替えとしての窒素置換がなされ、無酸素閉鎖密閉雰囲
気が作製され、内部に炉内温度450℃程度の加熱に使
用する遠赤外線ヒータや電磁波を利用した図示省略の加
熱体が配置され、コンテナWに収納されて搬送されてく
る有機物を無酸素閉鎖密閉雰囲気下において低温間接加
熱により熱分解可能な構造に構成されている。
The inside of the pyrolysis furnace C is also replaced with nitrogen as a replacement of air and nitrogen gas, an oxygen-free closed atmosphere is created, and a far-infrared heater used for heating the furnace temperature to about 450 ° C. A heating element (not shown) using electromagnetic waves is arranged, and is configured to be capable of thermally decomposing organic substances housed in the container W and conveyed by low-temperature indirect heating in an oxygen-free closed air atmosphere.

【0013】又、外部と搬入待機部B1との間、搬入待
機部B1と搬入部B2との間及び搬入部B2と加熱分解炉
Cの入口部分との間に遮断扉Nが上下開閉機構N1によ
り開閉自在に配設されている。
[0013] Also, between the loading stand portion B 1 and the outside, blocking the door N between and between the loading unit B 2 and the inlet portion of the pyrolysis furnace C with loading stand portion B 1 and the carry-in section B 2 is It is arranged to be freely opened and closed by upper and lower closing mechanism N 1.

【0014】又、冷却待機部Dは、コンテナW内の有機
物が加熱分解炉Cにより無酸素閉鎖密閉条件下において
低温間接加熱により熱分解されて製造された炭素素材を
冷却する冷却室D1と搬出待機室D2とにより構成され、
このそれぞれの冷却室D1及び搬出待機室D2にあって
も、耐熱、断熱、閉鎖密閉構造に構成されると共に冷却
室D1には炭素素材を冷却する液体窒素の注入や霧状の
冷水の噴射がなされ、搬出待機室D2にも必要に応じて
窒素ガスにより炭素素材を追加冷却可能な窒素ガスの注
入や冷水噴射がなされ、熱分解されて製造された直後の
高温の炭素素材が外部に出たとき酸素に触れて燃焼しな
い温度に下げ、又、加熱分解炉Cの出口部分と冷却室D
1との間、冷却室D1と搬出待機室D2との間及び搬出待
機室D2と外部との間にも遮断扉Nが上下開閉機構N1
より開閉自在に配設されている。
The cooling standby section D is provided with a cooling chamber D 1 for cooling a carbon material produced by thermally decomposing organic matter in the container W by low-temperature indirect heating in a pyrolysis furnace C under oxygen-free and closed conditions. is composed of a carry-out standby chamber D 2,
Even in each of the cooling chamber D 1 and the unloading standby chamber D 2 , the cooling chamber D 1 is configured to have a heat-resistant, heat-insulating, closed and sealed structure, and is filled with liquid nitrogen for cooling the carbon material or mist-like cold water. injection is made of, made injection and cold injection additional coolable nitrogen gas carbon material by nitrogen gas as necessary to carry-out the antechamber D 2, the pyrolyzed high temperature carbon material just after being produced by the When it comes to the outside, it is brought into contact with oxygen to a temperature that does not burn, and the outlet of the pyrolysis furnace C and the cooling chamber D
Between 1, also blocked the door N between and between the unloading standby chamber D 2 and the outside of the cooling chamber D 1 and unloading standby chamber D 2 is arranged to be freely opened and closed by upper and lower closing mechanism N 1.

【0015】尚、外部と搬入待機部B1との間及び搬出
待機室D2と外部との間には遮断扉Nに替えてエアーカ
ーテン構造を採用することもできる。
It is to be noted that an air curtain structure may be employed in place of the shut-off door N between the outside and the carry-in waiting section B 1 and between the carry-out waiting room D 2 and the outside.

【0016】Eは分解ガス処理部であって、上記加熱分
解炉C内において、有機物は無酸素閉鎖密閉雰囲気下で
低温間接加熱されて熱分解され、この熱分解により分解
ガスが発生し、加熱分解炉内は窒素ガスで充満されてい
るので、分解ガスのうち、窒素ガス(比重0.967
3)を境にして上下に分離され、比重の重い塩素ガス
(比重2.486)、ブタン(比重2.0908)、プ
ロパン(比重1.562)等は炉内の下部に集まり、比
重の軽いメタン(比重0.5544)等は上部へと集ま
ることになり、しかして、炉本体1の上部及び下部に取
出口14・14を配置し、比重差により各種ガスを取り
出すように構成している。
Reference symbol E denotes a decomposition gas processing section, in the pyrolysis furnace C, the organic matter is thermally decomposed by being indirectly heated at a low temperature in an oxygen-free closed atmosphere, and a decomposition gas is generated by the thermal decomposition. Since the inside of the cracking furnace is filled with nitrogen gas, of the cracking gas, nitrogen gas (specific gravity 0.967
Chlorine gas (specific gravity 2.486), butane (specific gravity 2.0908), propane (specific gravity 1.562), etc., which are separated vertically above and below the boundary of 3), gather in the lower part of the furnace and have a low specific gravity. Methane (specific gravity 0.5544) and the like are collected at the upper part. Therefore, the outlets 14 and 14 are arranged at the upper part and the lower part of the furnace main body 1 so that various gases are taken out according to a difference in specific gravity. .

【0017】Fはヒートパイプであって、上記加熱分解
炉C内に複数本配置され、加熱分解炉C内の熱を高温部
分から低温部分へと熱移動可能な構造に形成され、例え
ば、内部構造として、ステンレス、アルミニュウム、銅
等からなる封止パイプの内壁にステンレス網や焼結金
属、フェルト、カーボン繊維等からなるウイック材が内
張りされ(ウイック材の無い構造もある。)、内部は高
真空に減圧され、水、アルコール、アセトン、ベンゼ
ン、フレオン等の熱媒体が封止され、しかして、ヒート
パイプFの一方端部の入熱部を加熱すると封入された熱
媒体は蒸発し、局部的に高圧となり、ヒートパイプFの
他方端部の放熱部との間に圧力差が生じ、入熱部から放
熱部への蒸気の流れが生じ、蒸気流は音速の速さで放熱
部へ移動し、放熱部で放熱して熱媒体は凝縮して液体に
戻り、ウイック材の毛細管現象により熱媒体は放熱部か
ら入熱部へと還流し、入熱部と放熱部との温度差があれ
ばこの熱移動サイクルが継続され、加熱分解炉C内の熱
を高温部分から低温部分へと熱移動させ、加熱分解炉C
内を自身でコントロールして温度分布を均一にして加熱
することになり、かつ、加熱源としての加熱体を炉内全
体に配置せずに、炉内の下部に加熱体としての加熱源を
集中配置することもでき、加熱体の取付工事やメンテナ
ンス等の利便性を高めることができる。
F denotes a heat pipe, which is arranged in the plurality of pyrolysis furnaces C and has a structure capable of transferring heat in the pyrolysis furnace C from a high-temperature portion to a low-temperature portion. As a structure, a wick material made of stainless steel, sintered metal, felt, carbon fiber, etc. is lined on the inner wall of a sealing pipe made of stainless steel, aluminum, copper, etc. (some structures have no wick material), and the inside is high. The pressure is reduced to a vacuum, and a heat medium such as water, alcohol, acetone, benzene, and freon is sealed. However, when the heat input section at one end of the heat pipe F is heated, the heat medium enclosed therein evaporates and is locally evaporated. High pressure, a pressure difference is generated between the heat pipe F and the heat radiating section at the other end, and a steam flows from the heat input section to the heat radiating section, and the steam flow moves to the heat radiating section at the speed of sound. And in the radiator Heating causes the heat medium to condense and return to a liquid, and the heat medium flows back from the heat radiating section to the heat input section due to the capillary action of the wick material, and if there is a temperature difference between the heat input section and the heat radiating section, this heat transfer cycle is performed. The heat in the pyrolysis furnace C is continuously transferred from the high-temperature portion to the low-temperature portion.
Heating is performed by controlling the inside of the furnace by itself and making the temperature distribution uniform, and the heating source as a heating element is concentrated at the lower part of the furnace without disposing the heating element as a heating source throughout the furnace It can also be arranged, and convenience such as installation work and maintenance of the heating element can be improved.

【0018】この場合、上記ヒートパイプFを加熱分解
炉C内に複数本上下方向に配置しているから、加熱分解
炉C内の上部の高温の熱を下部の低温部に移動させ、加
熱分解炉C内の上部及び下部の温度分布の均一化を図
り、加熱分解炉C内を均一に加熱することになり、又、
この場合、ヒートパイプFの入熱部及び放熱部となる両
端部にそれぞれフィンF1が形成され、外気との接触面
積を増加させて入熱及び放熱作用を効果的に行うように
構成している。
In this case, since a plurality of the heat pipes F are vertically arranged in the pyrolysis furnace C, the upper high-temperature heat in the pyrolysis furnace C is transferred to the lower low-temperature section, and the pyrolysis is performed. The upper and lower temperature distributions in the furnace C are made uniform, and the inside of the pyrolysis furnace C is uniformly heated.
In this case, the fins F 1 respectively formed at both end portions of the heat input portion and the heat radiating portion of the heat pipe F, configured to perform the heat input and heat dissipation effect by increasing the area of contact with the outside air effectively I have.

【0019】この実施の形態例は上記構成であるから、
有機物が収納されたコンテナWは搬送部Aにより作動準
備部Bから加熱分解炉C内を経て冷却待機部Dに至る搬
送経路に沿って搬送され、先ず、作動準備部Bにあっ
て、コンテナW内の産業廃棄物や生ゴミ等に含まれる有
機物は耐熱、断熱、閉鎖密閉構造にして窒素置換による
無酸素閉鎖密閉雰囲気下の室内において室温150℃程
度で予備加熱され、有機物に含まれる水分除去がなさ
れ、次に、加熱分解炉Cにあって、コンテナW内の有機
物は耐熱、断熱、閉鎖密閉構造にして窒素置換による無
酸素閉鎖密閉雰囲気下の炉内で例えば450℃程度の低
温度条件で間接加熱され、これによりコンテナW内の有
機物は熱分解されて炭素素材が製造され、炭素素材とし
て再資源化を図ることができ、産業廃棄物やゴミの中に
有機塩酸系化合物が含まれていたとしても、無酸素故に
塩素ガス等の生ガスが分解するのみでダイオキシンは発
生せず、次いで、冷却待機部Dにあって、コンテナWの
炭素素材は耐熱、断熱、閉鎖密閉構造の室内において、
冷水や窒素ガスにより冷却され、有機物が発火しない温
度以下に冷却されて取出待機し、次いで、冷却待機部D
から有機物は随時搬出され、加熱分解炉C内に発生した
分解ガスは分解ガス処理部Eにより処理され、比重の軽
重等の各種のガスに分離して取り出されることになる。
Since this embodiment has the above configuration,
The container W containing the organic matter is transported by the transport unit A along the transport path from the operation preparation unit B to the cooling standby unit D via the pyrolysis furnace C. First, in the operation preparation unit B, the container W Organic matter contained in industrial waste and garbage in the building is heat-resistant, heat-insulated, closed and sealed, and pre-heated at room temperature of around 150 ° C in a room in an oxygen-free and closed atmosphere by nitrogen replacement to remove moisture contained in organic matter. Then, in the pyrolysis furnace C, the organic matter in the container W is heat-resistant, heat-insulated, has a closed hermetic structure, and has a low-temperature condition of about 450 ° C. in a furnace in an oxygen-free closed hermetic atmosphere by nitrogen replacement. The organic matter in the container W is thermally decomposed to produce a carbon material, which can be recycled as a carbon material. The industrial waste and garbage contain organic hydrochloric acid compounds. Even if it is, the raw gas such as chlorine gas is only decomposed due to the lack of oxygen, and no dioxin is generated. Then, in the cooling standby part D, the carbon material of the container W is heat-resistant, heat-insulated, and has a closed and sealed structure. Indoors
Cooled by cold water or nitrogen gas, cooled to a temperature below which organic matter does not ignite, and waits for removal.
The organic matter is carried out at any time, and the cracked gas generated in the thermal cracking furnace C is processed by the cracked gas processing unit E, and is separated and extracted into various gases having a specific gravity or the like.

【0020】この際、上記加熱分解炉C内に加熱分解炉
C内の熱を高温部分から低温部分へと熱移動させて加熱
分解炉C内の温度分布を均一にするヒートパイプFを設
けているから、加熱分解炉C内の高温部分の熱を低温部
分に移動させることができ、加熱分解炉C内を全体にほ
ぼ均一に加熱して炉内の温度分布の均一化を図ることが
でき、それだけコンテナW内の有機物の加熱分解を効率
的に行うことができ、熱の有効利用を図ることができる
と共に有機物の加熱分解による炭素化を促進することが
でき、作業性を高めることができ、炉内の高温部分の熱
を低温部に移送するファンを配備する構造に比べて、炉
内のガスの撹拌混合がなくなると共にヒートパイプFは
銅の500乃至1000倍の熱伝導率を有しているの
で、炉内の均熱化を効果的に行うことができ、かつ、機
械的に動く部分がないので、耐久的に使用することがで
き、保守保全も容易となり、有機物の加熱分解を一層良
好に行うことができる。
At this time, a heat pipe F is provided in the pyrolysis furnace C for transferring the heat in the pyrolysis furnace C from a high-temperature portion to a low-temperature portion to make the temperature distribution in the pyrolysis furnace C uniform. As a result, the heat of the high-temperature portion in the pyrolysis furnace C can be transferred to the low-temperature portion, and the inside of the pyrolysis furnace C can be almost uniformly heated to achieve a uniform temperature distribution in the furnace. Therefore, the thermal decomposition of the organic substance in the container W can be efficiently performed, the heat can be effectively used, and the carbonization by the thermal decomposition of the organic substance can be promoted, and the workability can be improved. Compared to a structure in which a fan for transferring heat from a high temperature portion in a furnace to a low temperature portion is provided, the gas in the furnace is not agitated and mixed, and the heat pipe F has a heat conductivity 500 to 1000 times that of copper. So that the soaking in the furnace It can be done result manner and, since there is no mechanically moving parts, can be durably used, maintenance conservation is facilitated, the thermal decomposition of the organic matter can be carried out more satisfactorily.

【0021】又、この場合、上記ヒートパイプFを加熱
分解炉C内に上下方向に配置してなるから、加熱分解炉
C内の上部に滞留する高温の熱を低温な下部へと熱移動
し、加熱分解炉Cの上部及び下部の均熱化を図ることが
でき、炉内全体を上下に亙ってほぼ均一に加熱すること
ができる。
In this case, since the heat pipe F is disposed vertically in the pyrolysis furnace C, the high-temperature heat staying in the upper portion of the pyrolysis furnace C is transferred to the lower-temperature lower portion. The upper and lower portions of the pyrolysis furnace C can be soaked, and the entire inside of the furnace can be heated substantially uniformly in the vertical direction.

【0022】又、この場合、上記加熱分解炉C内に接続
される分解ガス処理部Eを備えているから、加熱分解炉
C内に発生した分解ガスを比重の軽重等の各種のガスに
分離して取り出すことができ、分解ガスの再利用を図る
ことができる。
Further, in this case, since a cracking gas processing section E is provided to be connected to the inside of the cracking furnace C, the cracking gas generated in the cracking furnace C is separated into various gases having a specific gravity or the like. The decomposition gas can be reused.

【0023】又、上記加熱分解炉Cは上記コンテナWを
上下方向に搬送可能な炉内が上下に延びた縦型構造に構
成されているから、装置の設置面積を少なくできで設置
の融通性を高めることができると共に炉内の熱は上部か
ら下部又は下部から上部へ移動するので、広範囲に熱が
分布して熱効率を高めることができ、さらに、炉内全体
が加熱分解炉C内に発生した分解ガスの比重分離作用を
なし、分解ガスを比重の軽重等の各種のガスに容易に分
離して取り出すことができる。
Further, since the pyrolysis furnace C has a vertical structure in which the inside of the furnace capable of vertically transporting the container W extends vertically, the installation area of the apparatus can be reduced, and the installation flexibility is improved. And the heat in the furnace moves from the upper part to the lower part or from the lower part to the upper part, so that the heat can be distributed over a wide area and the thermal efficiency can be increased, and the entire furnace is generated in the pyrolysis furnace C The decomposed gas has a specific gravity separating action, and the decomposed gas can be easily separated and extracted into various gases having a specific gravity or the like.

【0024】又、上記加熱分解炉C内の搬送部Aは、上
記コンテナを上下方向に吊下搬送可能なトレーエレベー
タ型構造に構成されているから、熱分解に必要な十分な
時間を得ることができて加熱分解を連続して行うことが
でき、多量処理を効率的に行うことができる。
The transport section A in the pyrolysis furnace C has a tray elevator type structure capable of suspending and transporting the container in the vertical direction, so that a sufficient time required for the pyrolysis can be obtained. As a result, thermal decomposition can be performed continuously, and a large amount of processing can be performed efficiently.

【0025】尚、本発明は上記実施の形態例に限られる
ものではなく、搬送部A、作動準備部B、加熱分解炉
C、冷却待機部D、分解ガス液化部E及び排ガス処理部
Fの構造や材質等は適宜変更して設計される。
The present invention is not limited to the above-described embodiment, but includes a transport section A, an operation preparation section B, a thermal cracking furnace C, a cooling standby section D, a cracked gas liquefaction section E, and an exhaust gas processing section F. The structure, material, and the like are appropriately changed and designed.

【0026】又、搬送経路を通過する時間の設定は産業
廃棄物や生ゴミ等の有機物の種類や再利用の方法によっ
て決定することとし、又、加熱分解炉C内に複数個の搬
送機構を配置し、コンテナを複数列上下搬送することも
できる。
The setting of the time for passing through the transport route is determined according to the type of organic matter such as industrial waste and garbage and the method of reuse, and a plurality of transport mechanisms are provided in the pyrolysis furnace C. It is also possible to arrange and transport a plurality of rows of containers up and down.

【0027】[0027]

【発明の効果】本発明は上述の如く、請求項1又は2記
載の発明にあっては、有機物が収納されたコンテナは搬
送部により作動準備部から加熱分解炉内を経て冷却待機
部に至る搬送経路に沿って搬送され、先ず、作動準備部
にあって、コンテナ内の産業廃棄物や生ゴミ等に含まれ
る有機物は耐熱、断熱、閉鎖密閉構造にして窒素置換に
よる無酸素閉鎖密閉雰囲気下の室内において予備加熱さ
れ、有機物に含まれる水分除去がなされ、次に、加熱分
解炉にあって、コンテナ内の有機物は耐熱、断熱、閉鎖
密閉構造にして窒素置換による無酸素閉鎖密閉雰囲気下
の炉内で低温度条件で間接加熱され、これによりコンテ
ナ内の有機物は熱分解されて炭素素材が製造され、炭素
素材として再資源化を図ることができ、次いで、冷却待
機部にあって、コンテナの炭素素材は耐熱、断熱、閉鎖
密閉構造の室内において、冷水や窒素ガスにより冷却さ
れ、有機物が発火しない温度以下に冷却されて取出待機
し、次いで、冷却待機部から有機物は随時搬出され、加
熱分解炉内に発生した分解ガスは分解ガス処理部により
処理され、比重の軽重等の各種のガスに分離して取り出
されることになり、この際、上記加熱分解炉内に加熱分
解炉内の熱を高温部分から低温部分へと熱移動させて加
熱分解炉内の温度分布を均一にするヒートパイプを設け
ているから、加熱分解炉内の高温部分の熱を低温部分に
移動させることができ、上記ヒートパイプの自己制御に
より加熱分解炉内を全体にほぼ均一に加熱して炉内の温
度分布の均一化を図ることができ、それだけコンテナ内
の有機物の加熱分解を効率的に行うことができ、熱の有
効利用を図ることができると共に有機物の加熱分解によ
る炭素化を促進することができ、作業性を高めることが
できる。
According to the present invention, as described above, according to the first or second aspect of the present invention, the container containing the organic matter is transported from the operation preparation section to the cooling standby section through the inside of the pyrolysis furnace by the transport section. It is transported along the transport route. First, in the operation preparation section, the organic matter contained in industrial waste and garbage in the container is heat-resistant, heat-insulated, closed and sealed with oxygen-free closed atmosphere by nitrogen replacement. Preheated in the room to remove the water contained in the organic matter, and then in the pyrolysis furnace, the organic matter in the container is heat-resistant, heat-insulated, closed and sealed with an oxygen-free closed atmosphere by nitrogen replacement. Indirect heating is performed in a furnace at low temperature conditions, whereby the organic matter in the container is thermally decomposed to produce a carbon material, which can be recycled as a carbon material. Tena's carbon material is cooled by cold water or nitrogen gas in a room with heat resistance, heat insulation, closed hermetic structure, cooled to a temperature below which organic matter does not ignite and waits for removal, and then the organic matter is carried out from the cooling standby part at any time, The cracked gas generated in the pyrolysis furnace is processed by the cracked gas processing unit, and is separated and extracted into various gases such as specific gravity and light. A heat pipe is provided to transfer heat from the high-temperature part to the low-temperature part to make the temperature distribution in the pyrolysis furnace uniform, so the heat in the high-temperature part in the pyrolysis furnace can be transferred to the low-temperature part. Due to the self-control of the heat pipe, the inside of the pyrolysis furnace can be heated almost uniformly over the whole and the temperature distribution in the furnace can be made uniform, and the thermal decomposition of organic substances in the container can be efficiently performed accordingly. Bets can be, can promote carbonization by heat decomposition of organic matter it is possible to effectively utilize the heat, it is possible to enhance the workability.

【0028】又、請求項3記載の発明にあっては、上記
ヒートパイプを加熱分解炉内に上下方向に配置してなる
から、加熱分解炉内の上部に滞留する高温の熱を低温な
下部へと熱移動し、加熱分解炉の上部及び下部の均熱化
を図ることができ、炉内全体を上下に亙ってほぼ均一に
加熱することができ、又、請求項4記載の発明にあって
は、上記加熱分解炉内に接続される分解ガス処理部を備
えているから、加熱分解炉内に発生した分解ガスを比重
の軽重等の各種のガスに分離して取り出すことができ、
分解ガスの再利用を図ることができ、又、請求項5記載
の発明にあっては、上記加熱分解炉は上記コンテナを上
下方向に搬送可能な炉内が上下に延びた縦型構造に構成
されているから、装置の設置面積を少なくできで設置の
融通性を高めることができると共に炉内の熱は下部から
上部又は上部から下部へと移動するので、広範囲に熱が
分布して熱効率を高めることができ、更に、炉内全体が
加熱分解炉内に発生した分解ガスの比重分離作用をな
し、分解ガスを比重の軽重等の各種のガスに容易に分離
して取り出すことができ、又、請求項6記載の発明にあ
っては、上記加熱分解炉内の搬送部は、上記コンテナを
上下方向に吊下搬送可能なトレーエレベータ型構造に構
成されているから、熱分解に必要な十分な時間を得るこ
とができて加熱分解を連続して行うことができ、多量熱
分解処理を効率的に行うことができる。
According to the third aspect of the present invention, since the heat pipe is disposed vertically in the pyrolysis furnace, the high-temperature heat staying in the upper portion of the pyrolysis furnace can be reduced by the low-temperature lower portion. The heat is transferred to the furnace, so that the upper and lower parts of the pyrolysis furnace can be soaked, and the entire inside of the furnace can be heated almost uniformly up and down. Since it has a cracked gas processing unit connected to the pyrolysis furnace, it is possible to separate out the cracked gas generated in the pyrolysis furnace into various gases such as light and specific gravity, and to take out.
In the invention according to the fifth aspect, the pyrolysis furnace has a vertical structure in which a furnace capable of vertically transporting the container extends vertically. Therefore, the installation area of the equipment can be reduced, the flexibility of installation can be increased, and the heat in the furnace moves from the lower part to the upper part or from the upper part to the lower part. In addition, the entire furnace can perform a specific gravity separating action of the cracked gas generated in the thermal cracking furnace, and the cracked gas can be easily separated into various gases having a specific gravity, such as light weight, and can be taken out. According to the sixth aspect of the present invention, the transport section in the pyrolysis furnace is configured as a tray elevator type structure capable of suspending and transporting the container in the vertical direction. Time can be obtained by thermal decomposition Can be carried out continuously, it is possible to perform a large amount pyrolysis process efficiently.

【0029】以上所期の目的を充分達成することができ
る。
The intended purpose can be sufficiently achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態例の全体説明正断面図であ
る。
FIG. 1 is an overall explanatory front sectional view of an embodiment of the present invention.

【図2】本発明の実施の形態例の説明側断面図である。FIG. 2 is an explanatory side sectional view of an embodiment of the present invention.

【図3】本発明の実施の形態例の説明平断面図である。FIG. 3 is an explanatory plan sectional view of an embodiment of the present invention.

【図4】本発明の実施の形態例の説明部分拡大側断面図
である。
FIG. 4 is a partially enlarged side sectional view illustrating an embodiment of the present invention.

【図5】本発明の実施の形態例の構成系統図である。FIG. 5 is a configuration system diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

W コンテナ A 搬送部 B 作動準備部 C 加熱分解炉 D 冷却待機部 E 分解ガス処理部 F ヒートパイプ W Container A Transport section B Operation preparation section C Thermal decomposition furnace D Cooling standby section E Cracking gas processing section F Heat pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機物を窒素置換により作製した無酸素
閉鎖密閉雰囲気下の加熱分解炉内において低温間接加熱
により熱分解させて炭素素材を製造するに際し、上記加
熱分解炉内の熱をヒートパイプにより高温部分から低温
部分へと熱移動させて加熱分解炉内の温度分布を均一に
することを特徴とする炭素素材製造方法。
When a carbon material is produced by thermally decomposing an organic substance by a low-temperature indirect heating in a pyrolysis furnace in an oxygen-free closed atmosphere prepared by replacing nitrogen with nitrogen, the heat in the pyrolysis furnace is transferred by a heat pipe. A method for producing a carbon material, wherein heat is transferred from a high-temperature portion to a low-temperature portion to make the temperature distribution in the pyrolysis furnace uniform.
【請求項2】 有機物が収納されたコンテナを搬送可能
な搬送部と、該コンテナで搬送されてくる有機物を窒素
置換により作製した無酸素閉鎖密閉雰囲気下において低
温間接加熱により熱分解させる加熱分解炉とを備えてな
り、上記加熱分解炉内に加熱分解炉内の熱を高温部分か
ら低温部分へと熱移動させて加熱分解炉内の温度分布を
均一にするヒートパイプを設けてなることを特徴とする
炭素素材製造装置。
2. A transport section capable of transporting a container containing an organic substance, and a pyrolysis furnace for thermally decomposing the organic substance transported in the container by indirect heating at a low temperature in an oxygen-free closed atmosphere prepared by purging with nitrogen. The heat decomposition furnace is provided with a heat pipe for transferring heat in the pyrolysis furnace from a high temperature portion to a low temperature portion to make the temperature distribution in the pyrolysis furnace uniform. Carbon material production equipment.
【請求項3】 上記ヒートパイプを加熱分解炉内に上下
方向に配置してなることを特徴とする請求項2記載の炭
素素材製造装置。
3. The carbon material producing apparatus according to claim 2, wherein said heat pipe is disposed vertically in a pyrolysis furnace.
【請求項4】 上記加熱分解炉内に接続される分解ガス
処理部を備えてなることを特徴とする請求項2又は3記
載の炭素素材製造装置。
4. The carbon material producing apparatus according to claim 2, further comprising a cracked gas processing unit connected to the pyrolysis furnace.
【請求項5】 上記加熱分解炉は上記コンテナを上下方
向に搬送可能な炉内が上下に延びた縦型構造に構成され
ていることを特徴とする請求項3又は4記載の炭素素材
製造装置。
5. The carbon material production apparatus according to claim 3, wherein the pyrolysis furnace has a vertical structure in which the inside of the furnace capable of vertically transporting the container extends vertically. .
【請求項6】 上記搬送部は上記コンテナを上下方向に
吊下搬送可能なトレーエレベータ型構造に構成されてい
ることを特徴とする請求項3、4又は5記載の炭素素材
製造装置。
6. The carbon material producing apparatus according to claim 3, wherein the transport section is configured in a tray elevator type structure capable of suspending and transporting the container in a vertical direction.
JP11020392A 1999-01-28 1999-01-28 Production of carbon raw material and apparatus therefor Pending JP2000212568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020392A JP2000212568A (en) 1999-01-28 1999-01-28 Production of carbon raw material and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020392A JP2000212568A (en) 1999-01-28 1999-01-28 Production of carbon raw material and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2000212568A true JP2000212568A (en) 2000-08-02

Family

ID=12025758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020392A Pending JP2000212568A (en) 1999-01-28 1999-01-28 Production of carbon raw material and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2000212568A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358974C (en) * 2005-08-24 2008-01-02 南京工业大学 Biomass moving bed gasification furnace using heat pipe supplying heat
CN103878167A (en) * 2014-03-28 2014-06-25 张共敏 Comprehensive household garbage treatment process
JP2014518563A (en) * 2011-04-15 2014-07-31 バイオジェニック リージェンツ エルエルシー Process for producing high carbon bioreagents
US11213801B2 (en) 2013-10-24 2022-01-04 Carbon Technology Holdings, LLC Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
US11285454B2 (en) 2012-05-07 2022-03-29 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
US11358119B2 (en) 2014-01-16 2022-06-14 Carbon Technology Holdings, LLC Carbon micro-plant
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
US11458452B2 (en) 2014-02-24 2022-10-04 Carbon Technology Holdings, LLC Highly mesoporous activated carbon
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358974C (en) * 2005-08-24 2008-01-02 南京工业大学 Biomass moving bed gasification furnace using heat pipe supplying heat
US10167437B2 (en) 2011-04-15 2019-01-01 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11091716B2 (en) 2011-04-15 2021-08-17 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US9845440B2 (en) 2011-04-15 2017-12-19 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
US11674101B2 (en) 2011-04-15 2023-06-13 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
US10174267B2 (en) 2011-04-15 2019-01-08 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
US10611977B2 (en) 2011-04-15 2020-04-07 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
JP2014518563A (en) * 2011-04-15 2014-07-31 バイオジェニック リージェンツ エルエルシー Process for producing high carbon bioreagents
US10982161B2 (en) 2011-04-15 2021-04-20 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
US10889775B2 (en) 2011-04-15 2021-01-12 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11286440B2 (en) 2011-04-15 2022-03-29 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
US11965139B2 (en) 2011-04-15 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11891582B2 (en) 2011-04-15 2024-02-06 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11359154B2 (en) 2011-04-15 2022-06-14 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11285454B2 (en) 2012-05-07 2022-03-29 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
US11213801B2 (en) 2013-10-24 2022-01-04 Carbon Technology Holdings, LLC Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
US11358119B2 (en) 2014-01-16 2022-06-14 Carbon Technology Holdings, LLC Carbon micro-plant
US11458452B2 (en) 2014-02-24 2022-10-04 Carbon Technology Holdings, LLC Highly mesoporous activated carbon
CN103878167A (en) * 2014-03-28 2014-06-25 张共敏 Comprehensive household garbage treatment process
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom

Similar Documents

Publication Publication Date Title
JP2000212568A (en) Production of carbon raw material and apparatus therefor
KR102159297B1 (en) A process and apparatus for quenching coke
JP2022176193A (en) Thermal decomposition apparatus
US4439141A (en) Recuperative double chamber rotary furnace
CN106433717A (en) Heat accumulation type biomass pyrolysis and carbonization reaction system and method
CN107376802A (en) The technique of clean operation in a kind of holding chamber for microwave cracking damaged tire
JP2008000740A (en) Device and method for treating organic solid waste
JP2023040307A (en) Heat treatment furnace and method for producing inorganic material using heat treatment furnace
JPS6332886B2 (en)
JP2007332335A (en) Coke creating apparatus including fully automated, waste tire, and whole waste rubber liquefaction through extraction of oil component
JP5640254B2 (en) Continuous heating furnace for carbonization of organic waste
JP2000233912A (en) Carbon base material production device
EP3911905B1 (en) A pit type furnace for vacuum carburization of workpieces
JP2009144120A (en) Treatment device and treatment method for organic solid waste
JP2000212569A (en) Apparatus for producing carbon raw material
JPH0413817A (en) Bright annealing furnace
JP2004300186A (en) Pyrolysis apparatus for waste plastic
US9868908B2 (en) Retort and corresponding oven with ductwork
JP2000239009A (en) Apparatus for producing carbon material
KR101300203B1 (en) Device of radioactive waste carbonization
JP2008037909A (en) Carbonization oven heated by electric heating, and device of waste treatment by using the oven
JP2007289909A (en) Automatic intermittent-charge/discharge and automatic operation type apparatus for changing waste tire, waste plastics and the like into oil
JP3744401B2 (en) Heat treatment method and heat treatment apparatus
WO2017048323A1 (en) Multi-hearth roasters for use in metal recycling processes
JPH1030883A (en) Heat treatment furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees