JP2000208142A - Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it - Google Patents

Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it

Info

Publication number
JP2000208142A
JP2000208142A JP11011024A JP1102499A JP2000208142A JP 2000208142 A JP2000208142 A JP 2000208142A JP 11011024 A JP11011024 A JP 11011024A JP 1102499 A JP1102499 A JP 1102499A JP 2000208142 A JP2000208142 A JP 2000208142A
Authority
JP
Japan
Prior art keywords
positive electrode
solvent
electrode
polymer solution
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011024A
Other languages
Japanese (ja)
Inventor
Masazumi Segawa
全澄 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11011024A priority Critical patent/JP2000208142A/en
Publication of JP2000208142A publication Critical patent/JP2000208142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the non-poring of a porous polymer electrolytic film layer formed on the surface of an electrode to enhance charging/discharging performance by including a polymer solution obtained by dissolving a polymer wetting or swelling by an electrolyte to a solvent in the electrode to press an electrode body, and then extracting the solvent. SOLUTION: A paste consisting of a mixture of lithium nickel, acetylene black, vinylidene fluoride/hexafluoropropylene copolymer P(VdF/HFP), and NMP is applied to both sides of an aluminum foil followed by drying to prepare a positive electrode body. A polymer solution is prepared by dissolving the P(VdF/HFP) to NMP, and the positive electrode body is dipped in the polymer solution to include the polymer solution in the positive electrode body. The positive electrode body containing the polymer solution is pressed. The positive electrode body having the polymer solution adhered to the surface is dipped in a mixed solution of water and methanol to extract NMP, whereby a positive electrode having porous polymer electrolyte is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】従来の有孔性ポリマー電解質を備えた電
極の製作には、溶媒抽出法が用いられる。溶媒抽出法
は、溶媒aにポリマーを溶解したポリマー溶液a’を、
溶媒b中に浸漬することによって溶媒aを抽出し、溶媒
aが除去された部分が孔となって有孔性ポリマーを得る
ものである。
2. Description of the Related Art Conventionally, a solvent extraction method is used for manufacturing an electrode provided with a porous polymer electrolyte. In the solvent extraction method, a polymer solution a ′ obtained by dissolving a polymer in a solvent a is
The solvent a is extracted by being immersed in the solvent b, and the portion from which the solvent a is removed becomes a pore to obtain a porous polymer.

【0003】有孔性ポリマー電解質を備えた電極は次の
ように製作される。まず、活物質を含むペーストを集電
体上に塗布し、乾燥させ、活物質が集電体と一体に成形
された電極本体を製作する。こうして製作した電極本体
の空隙率は通常50〜60%程度である。次に、電極本
体を、電解液によって湿潤または膨潤する性質のあるポ
リマーを溶媒aに溶解したポリマー溶液a’中に浸漬
し、電極本体の合剤層内の孔に均一に前記ポリマー溶液
a’を浸透させる。次に、前記ポリマー溶液a’を含ん
でいる電極本体を溶媒bに浸漬すると、ポリマーを溶解
している溶媒aは溶媒bと相溶性があるために、溶媒a
が溶媒bによって抽出され、溶媒aの除去された部分が
孔となった状態でポリマーが固化する。この工程によ
り、正極合剤層内の孔に均一に有孔性ポリマーを備えた
電極本体が得られる。次に乾燥することで、電極に付着
した水等を除去し、最後に電極に集電性をもたせるため
にプレスし、電極の空隙率を30%程度にする。
[0003] An electrode with a porous polymer electrolyte is fabricated as follows. First, a paste containing an active material is applied on a current collector and dried to manufacture an electrode body in which the active material is formed integrally with the current collector. The porosity of the electrode body thus manufactured is usually about 50 to 60%. Next, the electrode body is immersed in a polymer solution a ′ in which a polymer having a property of being wetted or swelled by an electrolytic solution is dissolved in a solvent a, and the polymer solution a ′ is uniformly formed in pores in a mixture layer of the electrode body. Infiltrate. Next, when the electrode body containing the polymer solution a ′ is immersed in the solvent b, the solvent a in which the polymer is dissolved is compatible with the solvent b.
Is extracted by the solvent b, and the polymer is solidified in a state where the portion from which the solvent a is removed becomes a hole. By this step, an electrode body having a porous polymer uniformly in the pores in the positive electrode mixture layer can be obtained. Next, by drying, water or the like adhering to the electrode is removed, and finally, the electrode is pressed to have a current collecting property, and the porosity of the electrode is reduced to about 30%.

【0004】[0004]

【発明が解決しようとする課題】上記溶媒抽出法を用い
て電極に有孔性ポリマー電解質を備える際には、以下の
問題が発生する。溶媒抽出前に電極表面に付着したポリ
マーを溶解したポリマー溶液a’を除去しきれないと、
電極表面に有孔性ポリマー電解質層が形成される。とく
にポリマー溶液の粘度が高い場合は、電極表面に付着し
た前記ポリマー溶液a’を完全に除去することは難し
く、電極表面に有孔性ポリマー電解質層が形成される。
電極に有孔性ポリマー電解質を備えた後に、電極に集電
性を持たせるためにプレスすると、電極表面に形成され
た有孔性ポリマー電解質層の孔が消滅して無孔性ポリマ
ー電解質層になり、リチウムイオンの移動経路を阻害す
るため、電池の充放電性能が悪くなるという問題があっ
た。
When the electrode is provided with a porous polymer electrolyte using the above-mentioned solvent extraction method, the following problems occur. If the polymer solution a ′ in which the polymer attached to the electrode surface is dissolved before the solvent extraction cannot be completely removed,
A porous polymer electrolyte layer is formed on the electrode surface. In particular, when the viscosity of the polymer solution is high, it is difficult to completely remove the polymer solution a ′ attached to the electrode surface, and a porous polymer electrolyte layer is formed on the electrode surface.
When the electrode is provided with a porous polymer electrolyte and then pressed to give the electrode a current collecting property, the pores of the porous polymer electrolyte layer formed on the electrode surface disappear and the non-porous polymer electrolyte layer becomes Therefore, there is a problem that the charge / discharge performance of the battery is deteriorated because the movement path of lithium ions is hindered.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に種々の検討をおこなったところ、以下の電極の製作方
法が有効であることを見出した。本発明になる電極の製
造工程は、活物質と導電剤と結着剤を含むペーストを集
電体上に塗布し、乾燥して製作した電極本体を作製する
第1の工程と、この電極を、電解液によって湿潤または
膨潤する性質のあるポリマーを溶媒aに溶解したポリマ
ー溶液a’を含ませる第2の工程と、前記ポリマー溶液
a’を含んだ電極本体をプレスする第3の工程と、電極
本体に含まれている前記ポリマー溶液a’の溶媒aを、
溶媒aと相溶性のある溶媒bにより抽出し、電極の孔中
および表面に有孔性ポリマー電解質を備える第4の工程
からなる。この製造工程においては、電極本体をプレス
して電極に集電性を持たせた後に、溶媒抽出処理をおこ
なうので、電極表面に有孔性ポリマー電解質層が形成さ
れても、有孔性ポリマー電解質層の孔が消滅するおそれ
がない。
Various studies have been made to solve the above-mentioned problems, and it has been found that the following electrode manufacturing method is effective. The electrode manufacturing process according to the present invention includes a first step of applying a paste containing an active material, a conductive agent, and a binder on a current collector, and drying the electrode body to produce an electrode body. A second step of including a polymer solution a ′ in which a polymer having a property of being wet or swelling by the electrolytic solution is dissolved in a solvent a, and a third step of pressing an electrode body including the polymer solution a ′; The solvent a of the polymer solution a ′ contained in the electrode body,
A fourth step comprises extracting with a solvent b compatible with the solvent a and providing a porous polymer electrolyte in the pores and on the surface of the electrode. In this manufacturing process, after the electrode body is pressed to make the electrode current-collecting, solvent extraction is performed, so that even if a porous polymer electrolyte layer is formed on the electrode surface, the porous polymer electrolyte There is no risk that the holes in the layer will disappear.

【0006】また、次の電極製作方法も上記課題を解決
するために有効である。まず、活物質と導電剤と結着剤
を含むペーストを集電体上に塗布・乾燥して電極を製作
する第1の工程と、この電極本体をプレスし、電極に集
電性を持たせる第2の工程と、電解液によって湿潤また
は膨潤する性質のあるポリマーを溶媒aに溶解したポリ
マー溶液a’を電極に含ませる第3の工程と、電極に含
まれている前記溶媒aを、溶媒aと相溶性のある溶媒b
により抽出し、電極に有孔性ポリマー電解質を備える第
4の工程からなる。。この製造方法でも、電極表面に形
成される有孔性ポリマー電解質層の孔が消滅するおそれ
がない。
The following electrode manufacturing method is also effective for solving the above-mentioned problems. First, a first step of applying and drying a paste containing an active material, a conductive agent, and a binder on a current collector to manufacture an electrode, and pressing the electrode body to give the electrode a current collecting property A second step, a third step of including, in the electrode, a polymer solution a ′ obtained by dissolving a polymer having a property of being wetted or swelling by the electrolyte in a solvent a, solvent b compatible with a
And a fourth step of providing the electrode with a porous polymer electrolyte. . Also in this manufacturing method, there is no possibility that the pores of the porous polymer electrolyte layer formed on the electrode surface disappear.

【0007】さらに、上記のいずれの方法も、電極をプ
レスして集電性を持たせた後に、溶媒抽出処理をおこな
うため、電極表面に付着したポリマー溶液a’を所定の
厚みにすることで、電極表面に形成される有孔性ポリマ
ー電解質膜をセパレータとして用いることが可能であ
り、電池製作の工程削減につながるため、本発明の電極
の製作方法は非常に有用な方法である。
Further, in any of the above methods, after the electrode is pressed to have current collecting properties, the solvent extraction treatment is performed, so that the polymer solution a ′ attached to the electrode surface is formed to a predetermined thickness. Since the porous polymer electrolyte membrane formed on the electrode surface can be used as a separator, which leads to a reduction in the number of battery manufacturing steps, the electrode manufacturing method of the present invention is a very useful method.

【0008】[0008]

【発明の実施の形態】以下に本発明の好適な実施の形態
についてさらに詳しく説明する。本発明に用いられる正
極活物質としては、リチウムを吸蔵放出可能な化合物で
あれば特に制限はなく、無機化合物としては、組成式L
xMO2、またはLiy24(ただし、Mは遷移金
属、0≦x≦1、0≦y≦2)、またはLixy1 - y2
(ただしMは遷移金属、Nは金属、およびP、B、Fか
らなる群から選ばれる1種類以上の元素を含む、0≦x
≦1、0≦y≦1)で表される複合酸化物、トンネル状
の孔を有する酸化物、層状構造の金属カルコゲン化物を
用いることができる。その具体例としては、LiCoO
2、LiNiO2、LiMn24、Li2Mn24、Li
Ni0.5Co0.52、LiNi0.8Co0.17Al0.032
LiNi0 .8Co0.170.032、MnO2、FeO2、V2
5、V613、TiO2、TiS2などが挙げられる。ま
た、有機化合物としては、例えばポリアニリンなどの導
電性ポリマーなどが挙げられる。さらに、無機化合物、
化合物を問わず、上記各種活物質を混合して用いてもよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.
Will be described in more detail. Positive used in the present invention
The pole active material is a compound that can store and release lithium.
There is no particular limitation as long as it is present.
ixMOTwoOr LiyMTwoOFour(However, M is transition gold
Genus, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), or LixMyN1 - yOTwo
(However, M is a transition metal, N is a metal, and P, B, F
0 ≦ x containing one or more elements selected from the group consisting of
≦ 1, 0 ≦ y ≦ 1) complex oxide, tunnel-like
Oxides with pores, metal chalcogenides with a layered structure
Can be used. As a specific example, LiCoO
Two, LiNiOTwo, LiMnTwoOFour, LiTwoMnTwoOFour, Li
Ni0.5Co0.5OTwo, LiNi0.8Co0.17Al0.03OTwo,
LiNi0 .8Co0.17B0.03OTwo, MnOTwo, FeOTwo, VTwo
OFive, V6O13, TiOTwo, TiSTwoAnd the like. Ma
In addition, examples of organic compounds include compounds such as polyaniline.
And an electrically conductive polymer. In addition, inorganic compounds,
Regardless of the compound, the above various active materials may be used as a mixture.
No.

【0009】負極活物質としては、例えばAl、Si、
Pb、Sn、Zn、Cdなどとリチウムの合金、LiF
23などの遷移金属複合酸化物、WO2、MoO2など
の遷移金属酸化物、グラファイト、カーボンなどの炭素
質材料、Li5(Li3N)などの窒化リチウム、もしく
は金属リチウムが挙げられ、またこれらの混合物を用い
てもよい。
As the negative electrode active material, for example, Al, Si,
Alloy of lithium with Pb, Sn, Zn, Cd, etc., LiF
Transition metal composite oxides such as e 2 O 3 ; transition metal oxides such as WO 2 and MoO 2; carbonaceous materials such as graphite and carbon; lithium nitride such as Li 5 (Li 3 N); And mixtures thereof.

【0010】電極に備えるポリマーとしては、充放電に
よる活物質の体積膨張収縮に追随した形状変化の可能な
柔軟性を有するものが好ましく、ポリマーを電解液で膨
潤させたゲル状のイオン導電性ポリマーを用いるのがよ
い。具体的には、ポリビニリデンフルオライド(PVd
F)/ヘキサフルオロプロピレン(HFP)共重合体、
ポリビニリデンフルオライド、ヘキサフルオロプロピレ
ン、ポリ塩化ビニル、ポリアクリロニトリル、ポリエチ
レンオキシド、ポリプロピレンオキシド等のポリエーテ
ル、ポリアクリロニトリル、ポリビニリデンフルオライ
ド、ポリ塩化ビニリデン、ポリメチルメタクリレート、
ポリメチルアクリレート、ポリビニルアルコール、ポリ
メタクリロニトリル、ポリビニルアセテート、ポリビニ
ルピロリドン、ポリエチレンイミン、ポリブタジエン、
ポリスチレン、ポリイソプレン、もしくはこれらの誘動
体を、単独で、あるいは混合して用いることができる。
また、上記ポリマーを構成する各種モノマーを共重合さ
せたポリマーを用いることもできる。
As the polymer provided on the electrode, a polymer having flexibility capable of changing the shape following the volume expansion and contraction of the active material due to charge and discharge is preferable, and a gel-like ionic conductive polymer obtained by swelling the polymer with an electrolyte solution. It is better to use Specifically, polyvinylidene fluoride (PVd
F) / hexafluoropropylene (HFP) copolymer,
Polyether such as polyvinylidene fluoride, hexafluoropropylene, polyvinyl chloride, polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate,
Polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, polybutadiene,
Polystyrene, polyisoprene, or these inducers can be used alone or as a mixture.
Further, a polymer obtained by copolymerizing various monomers constituting the above polymer can also be used.

【0011】本発明になる電極は、溶媒抽出法によって
製作したリチウムイオン導電性有孔性ポリマー電解質を
備える。溶媒抽出法においてポリマーを溶解する溶媒a
としては、ジメチルホルムアミド、プロピレンカーボネ
ート、エチレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート等の
炭酸エステル、ジメチルエーテル、ジエチルエーテル、
エチルメチルエーテル、テトラヒドロフラン等のエーテ
ル、ジメチルアセトアミド、1−メチル−ピロリジノ
ン、n−メチル−2−ピロリドン等のポリマーを溶解す
る溶媒が挙げられる。
The electrode according to the present invention comprises a lithium ion conductive porous polymer electrolyte produced by a solvent extraction method. Solvent a that dissolves polymer in solvent extraction method
As, dimethylformamide, propylene carbonate, ethylene carbonate, dimethyl carbonate,
Dicarbonate, carbonates such as ethyl methyl carbonate, dimethyl ether, diethyl ether,
Solvents that dissolve ethers such as ethyl methyl ether and tetrahydrofuran, and polymers such as dimethylacetamide, 1-methyl-pyrrolidinone, and n-methyl-2-pyrrolidone.

【0012】また、抽出用溶媒bとしては、溶媒aと相
溶性があればよく、水、アルコール、またはアセトン等
が挙げられ、またはこれらの混合物を用いてもよい。ア
ルコールとしては、メタノール、エタノール、1−プロ
パノール、2−プロパノール等、またはこれらの混合物
が挙げられる。
The extraction solvent b may be compatible with the solvent a, and may be water, alcohol, acetone or the like, or a mixture thereof. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol and the like, or a mixture thereof.

【0013】有孔性ポリマー電解質を備えた正極は次の
ような工程で製作する。第1の工程では、正極活物質と
アセチレンブラック等の導電助剤と結着剤とを混練して
なるペーストを作製し、このペーストをアルミニウム薄
板等の集電体に塗布、乾燥することで正極本体を製作す
る。第2の工程では、正極本体をポリマーを溶媒aに溶
解したポリマー溶液a’に浸漬したり、または真空含浸
法などを用いて、正極本体にポリマーを溶解している溶
媒aを含ませる。第3の工程では、ポリマー溶液a’を
含んだ正極本体をプレスする。このようにして得られた
正極本体のポリマー溶液a’を除いた正極本体の空隙率
を50%以下とするのが好ましい。
A positive electrode provided with a porous polymer electrolyte is manufactured by the following steps. In the first step, a paste is prepared by kneading a positive electrode active material, a conductive auxiliary such as acetylene black, and a binder, and the paste is applied to a current collector such as an aluminum thin plate and dried to form a positive electrode. Build the body. In the second step, the positive electrode main body is immersed in a polymer solution a ′ in which the polymer is dissolved in a solvent a, or the positive electrode main body is made to contain the solvent a in which the polymer is dissolved by using a vacuum impregnation method or the like. In the third step, the positive electrode body containing the polymer solution a 'is pressed. It is preferable that the porosity of the positive electrode body obtained by removing the polymer solution a ′ of the positive electrode body thus obtained is 50% or less.

【0014】第4の工程では、正極本体の表面に付着し
たポリマー溶液a’前記溶媒aの厚みを所定の厚みにし
た後、抽出用溶媒b中に浸漬すると、溶媒aが抽出さ
れ、溶媒aの除去された部分が孔となった状態でポリマ
ーが固化し、正極合剤層内の孔中に、三次元連通性の孔
をもつ有孔性ポリマー電解質が均一に分布した正極板が
形成される。最後に、正極板を乾燥し、正極表面に存在
する水などを除去することによって、本発明になる有孔
性ポリマー電解質を備えた正極が完成する。
In the fourth step, the polymer solution a ′ attached to the surface of the positive electrode body is made to have a predetermined thickness, and then immersed in an extraction solvent b, whereby the solvent a is extracted, and the solvent a is extracted. The polymer is solidified in a state in which the removed portion becomes a hole, and a positive electrode plate is formed in which the porous polymer electrolyte having three-dimensionally communicating holes is uniformly distributed in the holes in the positive electrode mixture layer. You. Finally, the positive electrode plate is dried, and water and the like existing on the positive electrode surface are removed, thereby completing the positive electrode provided with the porous polymer electrolyte according to the present invention.

【0015】負極は、第1の工程で、活物質と結着剤と
を混練してなるペーストを銅薄板等の集電体に塗布、乾
燥して負極本体を製作した後に、第2の工程以下は正極
と同一の工程を経て製作する。
In the first step, a paste obtained by kneading an active material and a binder is applied to a current collector such as a copper thin plate in the first step and dried to produce a negative electrode body. The following is manufactured through the same steps as the positive electrode.

【0016】さらに有孔性ポリマーを備えた電極を製作
する方法として次の方法が挙げられる。第1の工程で、
正極活物質粒子とアセチレンブラック等の導電助剤と結
着剤とを混練してなるペーストをアルミニウム薄板等の
集電体に塗布、乾燥することで正極本体を製作し、第2
の工程で正極本体をプレスし、正極本体の空隙率を50
%以下とする。
Further, the following method can be cited as a method for producing an electrode provided with a porous polymer. In the first step,
A paste obtained by kneading a positive electrode active material particle, a conductive auxiliary such as acetylene black, and a binder is applied to a current collector such as an aluminum thin plate and dried to form a positive electrode body.
The positive electrode body is pressed in the step of
% Or less.

【0017】第3の工程では、正極本体を、ポリマーを
溶媒aに溶解したポリマー溶液a’に浸漬したり、真空
含浸法などにより、正極本体にポリマー溶液a’を含ま
せ、第4の工程で、正極表面に付着したポリマー溶液
a’の厚みを所定の厚みとした後、正極本体を抽出溶媒
b中に浸漬すると、ポリマー溶液a’の溶媒aが除去さ
れた部分が孔となった状態でポリマーが固化し、正極合
剤層内の孔中に、三次元連通性の孔をもつ有孔性ポリマ
ー電解質が均一に分布した正極板が形成される。最後に
正極を乾燥して正極表面に存在する水などを蒸発させ、
本発明になる有孔性ポリマー電解質を備えた正極が完成
する。
In the third step, the positive electrode main body is immersed in a polymer solution a 'in which a polymer is dissolved in a solvent a, or the positive electrode main body is made to contain the polymer solution a' by a vacuum impregnation method. After the thickness of the polymer solution a ′ attached to the positive electrode surface was set to a predetermined thickness, the positive electrode body was immersed in the extraction solvent b, and the portion of the polymer solution a ′ from which the solvent a was removed became a hole. Thus, the polymer is solidified, and a positive electrode plate is formed in which the porous polymer electrolyte having three-dimensionally communicating holes is uniformly distributed in the holes in the positive electrode mixture layer. Finally, the positive electrode is dried to evaporate water etc. existing on the positive electrode surface,
A positive electrode provided with the porous polymer electrolyte according to the present invention is completed.

【0018】負極は、第1の工程で、負極活物質粒子と
結着剤とを混練してなるペーストを銅薄板などの集電体
に塗布、乾燥して負極本体を製作した後に、だい2の工
程以下は正極と同一の過程を経て製作する。
In the first step, the paste obtained by kneading the negative electrode active material particles and the binder is applied to a current collector such as a copper thin plate and dried in the first step to produce a negative electrode body. The following steps are manufactured through the same process as the positive electrode.

【0019】こうして製作した正極と負極とを、セパレ
ータを介在させて電池ケース内に配置するか、あるいは
電極表面の有孔性ポリマー電解質膜をセパレータとして
用いる場合はセパレータを介在させずに電池ケース内に
配置する。そして、リチウム二次電池用の電解液を注液
すると、電解液が電極合剤の孔中に入いり、電極合剤の
孔中に備えられたポリマーを膨潤し、ポリマーがゲル状
となる。同時に、ポリマーの孔中にも電解液が入り、ポ
リマーの孔中に電解液が存在したリチウムイオン導電性
有孔性ポリマー電解質となる。このようにして、本発明
になる非水電解質二次電池が完成する。また、正極、負
極が、上記2種類の電極の製造方法の組み合わせからな
ってもよい。
The positive electrode and the negative electrode thus manufactured are arranged in a battery case with a separator interposed therebetween, or in a case where a porous polymer electrolyte membrane on the electrode surface is used as a separator, no separator is interposed. To place. When the electrolyte for the lithium secondary battery is injected, the electrolyte enters the pores of the electrode mixture, swells the polymer provided in the pores of the electrode mixture, and the polymer becomes a gel. At the same time, the electrolyte enters the pores of the polymer, resulting in a lithium ion conductive porous polymer electrolyte in which the electrolyte is present in the pores of the polymer. Thus, the non-aqueous electrolyte secondary battery according to the present invention is completed. Further, the positive electrode and the negative electrode may be composed of a combination of the above two types of electrode production methods.

【0020】また、電解液溶媒としては、エチレンカー
ボネートとジエチルカーボネートの混合溶媒、エチレン
カーボネート、プロピレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、γ−ブチロラクト
ン、スルホラン、ジメチルスルホキシド、アセトニトリ
ル、ジメチルホルムアミド、ジメチルアセトアミド、
1、2−ジメトキシエタン、1、2−ジエトキシエタ
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジオキソラン、メチルアセテート等の極性溶媒、も
しくはこれらの混合物を使用してもよい。
Examples of the electrolyte solvent include a mixed solvent of ethylene carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, and the like.
A polar solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.

【0021】さらに、電解液に含有させる塩としては、
LiPF6、LiBF4、LiAsF 6、LiClO4、L
iSCN、LiI、LiCF3SO3、LiCl、LiB
r、LiCF3CO2等のリチウム塩、もしくはこれらの
混合物を用いてもよく、その濃度も溶媒と塩の組み合わ
せにより、最適値とすればよい。
Further, as the salt to be contained in the electrolytic solution,
LiPF6, LiBFFour, LiAsF 6, LiClOFour, L
iSCN, LiI, LiCFThreeSOThree, LiCl, LiB
r, LiCFThreeCOTwoLithium salts such as
Mixtures may be used, and the concentration may vary depending on the combination of solvent and salt.
Therefore, the optimum value may be set.

【0022】また、セパレータとしては、ポリプロピレ
ン製微孔性膜、ポリエチレン製の微孔性膜や、上記有孔
性ポリマー電解質を構成するポリマーにより構成される
セパレータを用いてもよい。
As the separator, a polypropylene microporous membrane, a polyethylene microporous membrane, or a separator composed of a polymer constituting the porous polymer electrolyte may be used.

【実施例】次に、本発明による非水電解質二次電池の実
施例についてさらに詳しく説明する。 [実施例1]本発明の好適な実施例として、正極活物質
としてニッケル酸リチウム、負極活物質としてグラファ
イト、有孔性ポリマー電解質の材質としてビニリデンフ
ルオライド/ヘキサフルオロプロピレンコポリマー(P
(VdF/HFP))を用いた非水電解質二次電池につ
いて説明する。
Next, embodiments of the nonaqueous electrolyte secondary battery according to the present invention will be described in more detail. Embodiment 1 As a preferred embodiment of the present invention, lithium nickel oxide is used as a positive electrode active material, graphite is used as a negative electrode active material, and vinylidene fluoride / hexafluoropropylene copolymer (P) is used as a material of a porous polymer electrolyte.
(VdF / HFP)) will be described.

【0023】まず正極の製作工程について説明する。ニ
ッケル酸リチウム66.8wt%、アセチレンブラック
1.4wt%、P(VDF/HFP)2.8wt%、N
MP29wt%を混合したペーストを、幅20mm、長
さ480mm、厚さ20μmのアルミニウム箔の両面に
塗布し、90℃で乾燥してNMPを蒸発させて、正極本
体を準備した。
First, the manufacturing process of the positive electrode will be described. Lithium nickelate 66.8 wt%, acetylene black 1.4 wt%, P (VDF / HFP) 2.8 wt%, N
A paste mixed with 29 wt% of MP was applied to both sides of an aluminum foil having a width of 20 mm, a length of 480 mm and a thickness of 20 μm, dried at 90 ° C. to evaporate NMP, thereby preparing a positive electrode body.

【0024】次に、NMPに20wt%のP(VdF/
HFP)を溶解したポリマー溶液を作製し、このポリマ
ー溶液中に正極本体を浸漬し、正極本体にポリマー溶液
を含ませた。ここで、NMPは溶媒aに相当し、NMP
に20wt%のP(VdF/HFP)を溶解したポリマ
ー溶液はポリマー溶液a’に相当する。次に、ポリマー
溶液を含ませた正極本体をプレスした。ポリマー溶液を
除いた正極本体の厚みは160μmであり、空隙率は3
0%であった。
Next, 20 wt% of P (VdF /
HFP) was dissolved in the polymer solution, and the positive electrode body was immersed in the polymer solution, so that the positive electrode body contained the polymer solution. Here, NMP corresponds to the solvent a, and NMP
A polymer solution in which 20% by weight of P (VdF / HFP) is dissolved corresponds to a polymer solution a ′. Next, the positive electrode body containing the polymer solution was pressed. The thickness of the positive electrode body excluding the polymer solution was 160 μm, and the porosity was 3 μm.
It was 0%.

【0025】次に正極表面に付着したポリマー溶液の厚
みを45μmとし、正極本体を水25wt%とメタノー
ル75wt%の混合溶媒中に浸漬して、NMPの抽出を
おこなった。正極表面に形成された有孔性ポリマー電解
質膜の厚みは15μmであった。ここで、水25wt%
とメタノール75wt%の混合溶媒は溶媒bに相当す
る。次に電極を130℃で30分乾燥し、電極に付着し
た水等を除去し、本発明になる有孔性ポリマー電解質を
備えた正極を得た。単位面積当たりに充填された活物質
と導電助剤の合計重量は21mg/cm2であった。
Next, the thickness of the polymer solution attached to the positive electrode surface was set to 45 μm, and the positive electrode body was immersed in a mixed solvent of 25 wt% of water and 75 wt% of methanol to extract NMP. The thickness of the porous polymer electrolyte membrane formed on the positive electrode surface was 15 μm. Here, water 25 wt%
And a mixed solvent of methanol and 75 wt% corresponds to the solvent b. Next, the electrode was dried at 130 ° C. for 30 minutes to remove water and the like attached to the electrode, thereby obtaining a positive electrode provided with the porous polymer electrolyte according to the present invention. The total weight of the active material and the conductive additive filled per unit area was 21 mg / cm 2 .

【0026】次に、負極の製作工程について説明する。
グラファイト81wt%、P(VdF/HFP)9w
t、NMP10wt%を混合したペーストを、厚さ14
μmの銅箔の両面に塗布し、90℃で乾燥してNMPを
蒸発させ、負極本体を準備した。
Next, the steps of manufacturing the negative electrode will be described.
Graphite 81wt%, P (VdF / HFP) 9w
t, NMP 10 wt% mixed paste, thickness 14
It was applied to both sides of a copper foil of μm and dried at 90 ° C. to evaporate NMP, thereby preparing a negative electrode body.

【0027】次に、NMPに20wt%のP(VdF/
HFP)を溶解したポリマー溶液を作製し、このポリマ
ー溶液中に負極本体を浸漬し、負極本体にポリマー溶液
を含ませた。ここで、NMPは溶媒aに相当し、NMP
に20wt%のP(VdF/HFP)を溶解したポリマ
ー溶液はポリマー溶液a’に相当する。次に、ポリマー
溶液を含ませた負極本体をプレスした。ポリマー溶液を
除いた負極本体の厚みは190μmであり、空隙率は3
5%であった。
Next, 20 wt% of P (VdF /
A polymer solution in which HFP) was dissolved was prepared, and the negative electrode body was immersed in the polymer solution, so that the negative electrode body contained the polymer solution. Here, NMP corresponds to the solvent a, and NMP
A polymer solution in which 20% by weight of P (VdF / HFP) is dissolved corresponds to a polymer solution a ′. Next, the negative electrode body containing the polymer solution was pressed. The thickness of the negative electrode body excluding the polymer solution was 190 μm, and the porosity was 3 μm.
5%.

【0028】次に負極本体に付着したポリマー溶液の厚
みを45μmとし、負極本体を水25wt%とメタノー
ル75wt%の混合溶媒中に浸漬して、NMPの抽出を
おこなった。負極表面に形成された有孔性ポリマー電解
質膜の厚みは15μmであった。ここで、水25wt%
とメタノール75wt%の混合溶媒は溶媒bに相当す
る。
Next, the thickness of the polymer solution attached to the negative electrode main body was set to 45 μm, and the negative electrode main body was immersed in a mixed solvent of 25 wt% of water and 75 wt% of methanol to extract NMP. The thickness of the porous polymer electrolyte membrane formed on the negative electrode surface was 15 μm. Here, water 25 wt%
And a mixed solvent of methanol and 75 wt% corresponds to the solvent b.

【0029】次に電極を100℃で30分乾燥し、電極
に付着した水等を除去し、本発明になる有孔性ポリマー
電解質を備えた負極を得た。単位面積当たりに充填され
た活物質と導電助剤の合計重量は14mg/cm2であ
った。
Next, the electrode was dried at 100 ° C. for 30 minutes to remove water and the like adhering to the electrode, thereby obtaining a negative electrode provided with the porous polymer electrolyte according to the present invention. The total weight of the active material and the conductive additive filled per unit area was 14 mg / cm 2 .

【0030】上記正極と負極を重ねて巻き回したもの
を、底面の半径6.7mm、高さ47.0mm、のステ
ンレスケース中に挿入して、円筒形電池を組み立てた。
その後、1MのLiPF6を含むエチレンカーボネート
とジエチルカーボネートの混合(体積1:1)電解液
2.5gを加え、最後に60℃で48時間エージング処
理をおこない、公称容量520mAhの、本発明になる
電池(A)を用意した。
The positive electrode and the negative electrode were wound in a stacked state and inserted into a stainless steel case having a bottom surface with a radius of 6.7 mm and a height of 47.0 mm to assemble a cylindrical battery.
Thereafter, 2.5 g of a mixed (volume 1: 1) electrolyte solution of ethylene carbonate and diethyl carbonate containing 1 M LiPF 6 was added, and finally, aging treatment was performed at 60 ° C. for 48 hours to obtain a nominal capacity of 520 mAh of the present invention. A battery (A) was prepared.

【0031】[実施例2]正極の製作工程について説明
する。ニッケル酸リチウム66.8wt%、アセチレン
ブラック1.4wt%、P(VDF/HFP)2.8w
t%、NMP29wt%を混合したペーストを、幅20
mm、長さ480mm、厚さ20μmのアルミニウム箔
の両面に塗布し、90℃で乾燥してNMPを蒸発させ
て、正極本体を準備した。次に、正極本体をプレスし
た。プレス後の正極本体の厚みは160μmであり、空
隙率は30%であり、単位面積当たりに充填された活物
質と導電助剤の合計重量は21mg/cm2であった。
Example 2 A process for manufacturing a positive electrode will be described. Lithium nickelate 66.8wt%, acetylene black 1.4wt%, P (VDF / HFP) 2.8w
t% and 29 wt% of NMP are mixed to a width of 20%.
It was applied to both sides of an aluminum foil having a thickness of 480 mm, a length of 480 mm and a thickness of 20 μm, dried at 90 ° C. to evaporate NMP, thereby preparing a positive electrode body. Next, the positive electrode body was pressed. The thickness of the positive electrode body after pressing was 160 μm, the porosity was 30%, and the total weight of the active material and the conductive auxiliary filled per unit area was 21 mg / cm 2 .

【0032】次に、ジメチルホルムアミド(DMF)に
12wt%のP(VdF/HFP)を溶解したポリマー
溶液を作製し、このポリマー溶液中に正極本体を浸漬
し、正極本体にポリマー溶液を含ませた。ここで、DM
Fは溶媒aに相当し、DMFに12wt%のP(VdF
/HFP)を溶解したポリマー溶液はポリマー溶液b’
に相当する。次に、2本のガラス管で正極本体を挟ん
で、電極本体表面に付着したポリマー溶液を除去した後
に、正極本体を水に浸漬してDMFの抽出をおこなっ
た。ここで、水は溶媒bに相当する。
Next, a polymer solution was prepared by dissolving 12% by weight of P (VdF / HFP) in dimethylformamide (DMF), and the positive electrode body was immersed in this polymer solution, so that the positive electrode body contained the polymer solution. . Where DM
F corresponds to the solvent a, and 12 wt% of P (VdF
/ HFP) is a polymer solution b ′
Is equivalent to Next, after sandwiching the cathode body between the two glass tubes and removing the polymer solution attached to the electrode body surface, the cathode body was immersed in water to extract DMF. Here, water corresponds to the solvent b.

【0033】次に電極を130℃で30分乾燥し、電極
に付着した水等を除去し、本発明になる有孔性ポリマー
電解質を備えた正極を得た。正極表面に付着したポリマ
ー溶液を除去した後に溶媒抽出処理をおこなったにもか
かわらず、正極表面には厚さ5μmの有孔性ポリマー電
解質層が形成された。次に、負極の製作工程について説
明する。グラファイト81wt%、P(VdF/HF
P)9wt%、NMP10wt%を混合したペーストを
厚さ14μmの銅箔の両面に塗布し、90℃で乾燥して
NMPを蒸発させて、負極本体を準備した。次に負極本
体をプレスした。プレス後の負極本体の厚みは190μ
mであり、空隙率は35%であり、単位面積当たりに充
填された活物質と導電助剤の合計重量は14mg/cm
2であった。
Next, the electrode was dried at 130 ° C. for 30 minutes to remove water and the like adhering to the electrode to obtain a positive electrode provided with the porous polymer electrolyte according to the present invention. A porous polymer electrolyte layer having a thickness of 5 μm was formed on the surface of the positive electrode even though the solvent extraction treatment was performed after removing the polymer solution attached to the surface of the positive electrode. Next, a manufacturing process of the negative electrode will be described. Graphite 81wt%, P (VdF / HF
P) A paste in which 9 wt% of NMP and 10 wt% of NMP were mixed was applied to both surfaces of a copper foil having a thickness of 14 μm, dried at 90 ° C. to evaporate NMP, and a negative electrode body was prepared. Next, the negative electrode body was pressed. The thickness of the negative electrode body after pressing is 190μ.
m, the porosity is 35%, and the total weight of the active material and the conductive auxiliary filled per unit area is 14 mg / cm.
Was 2 .

【0034】次に、DMFに12wt%のP(VdF/
HFP)を溶解したポリマー溶液を作製し、このポリマ
ー溶液中に負極本体を浸漬し、負極本体にポリマー溶液
を含ませた。ここで、DMFは溶媒aに相当し、DMF
に12wt%のP(VdF/HFP)を溶解したポリマ
ー溶液はポリマー溶液b’に相当する。次に2本のガラ
ス管で負極本体を挟んで、負極本体表面に付着したポリ
マー溶液を除去した後に、負極本体を水に浸漬してDM
Fの抽出をおこなった。ここで水は溶媒bに相当する。
Next, 12 wt% of P (VdF /
A polymer solution in which HFP) was dissolved was prepared, and the negative electrode body was immersed in the polymer solution, so that the negative electrode body contained the polymer solution. Here, DMF corresponds to solvent a, and DMF
The polymer solution in which 12% by weight of P (VdF / HFP) is dissolved corresponds to the polymer solution b ′. Next, after sandwiching the negative electrode body between two glass tubes and removing the polymer solution adhering to the surface of the negative electrode body, the negative electrode body is immersed in water to form a DM.
F was extracted. Here, water corresponds to the solvent b.

【0035】次に負極を100℃で30分乾燥し、負極
表面に付着した水等を除去し、本発明になる有孔性ポリ
マー電解質を備えた負極を得た。負極表面に付着したポ
リマー溶液を除去した後に溶媒抽出処理をおこなったに
もかかわらず、負極表面には厚さ5μmの有孔性ポリマ
ー電解質層が形成された。
Next, the negative electrode was dried at 100 ° C. for 30 minutes to remove water and the like adhering to the negative electrode surface, thereby obtaining a negative electrode provided with the porous polymer electrolyte according to the present invention. Although the solvent extraction treatment was performed after removing the polymer solution attached to the negative electrode surface, a 5 μm-thick porous polymer electrolyte layer was formed on the negative electrode surface.

【0036】上記正極と負極とを有孔性ポリマー電解質
膜(厚さ23.7μm、空隙率41%)を介在して重ね
て巻き回したものを、底面の半径6.7mm、高さ4
7.0mm、のステンレスケース中に挿入して、円筒形
電池を組み立てた。その後、1MのLiPF6を含むエ
チレンカーボネートとジエチルカーボネートの混合(体
積1:1)電解液2.5gを注液し、最後に60℃で4
8時間エージング処理をおこない、公称容量520mA
hの、本発明による電池(B)を用意した。
The above positive electrode and negative electrode were wound together with a porous polymer electrolyte membrane (thickness: 23.7 μm, porosity: 41%) interposed therebetween, and the bottom surface had a radius of 6.7 mm and a height of 4 mm.
It was inserted into a 7.0 mm stainless case to assemble a cylindrical battery. Thereafter, 2.5 g of a mixed electrolyte (volume 1: 1) of ethylene carbonate and diethyl carbonate containing 1 M LiPF 6 was injected thereinto, and finally, 4 g at 60 ° C.
Aging treatment for 8 hours, nominal capacity 520mA
h, a battery (B) according to the present invention was prepared.

【0037】[比較例1]比較例として、電極本体にポ
リマー溶液を含ませ、溶媒抽出処理をおこなった後にプ
レスして製作した電極を用いた電池を用意した。まず正
極の製作工程について説明する。ニッケル酸リチウム6
6.8wt%、アセチレンブラック1.4wt%、P
(VDF/HFP)2.8wt%、NMP29wt%を
混合したペーストを、幅20mm、長さ480mm、厚
さ20μmのアルミニウム箔の両面に塗布し、90℃で
乾燥してNMPを蒸発させて、正極本体を準備した。
[Comparative Example 1] As a comparative example, a battery using an electrode manufactured by pressing a polymer solution after subjecting the electrode body to a polymer solution, performing a solvent extraction process, and preparing the battery was prepared. First, the manufacturing process of the positive electrode will be described. Lithium nickelate 6
6.8 wt%, acetylene black 1.4 wt%, P
(VDF / HFP) A paste in which 2.8 wt% of NMP and 29 wt% of NMP were mixed was applied to both sides of an aluminum foil having a width of 20 mm, a length of 480 mm, and a thickness of 20 μm, and dried at 90 ° C. to evaporate the NMP. The main body was prepared.

【0038】次に、NMPに20wt%のP(VdF/
HFP)を溶解したポリマー溶液を作製し、このポリマ
ー溶液中に正極本体を浸漬し、正極本体にポリマー溶液
を含ませた。ここで、NMPは溶媒a相当し、NMPに
20wt%のP(VdF/HFP)を溶解したポリマー
溶液はポリマー溶液a’に相当する。次に、2本のガラ
ス管で正極本体を挟んで、正極本体表面に付着したポリ
マー溶液を除去した後に、正極本体を水に浸漬してNM
Pの抽出をおこなった。ここで水は溶媒bに相当する。
Next, 20 wt% of P (VdF /
HFP) was dissolved in the polymer solution, and the positive electrode body was immersed in the polymer solution, so that the positive electrode body contained the polymer solution. Here, NMP corresponds to the solvent a, and a polymer solution obtained by dissolving 20 wt% of P (VdF / HFP) in NMP corresponds to the polymer solution a ′. Next, after sandwiching the positive electrode body between the two glass tubes and removing the polymer solution adhering to the surface of the positive electrode body, the positive electrode body is immersed in water and NM
P was extracted. Here, water corresponds to the solvent b.

【0039】次に130℃で30分、正極本体を乾燥
し、正極本体表面に付着した水などを除去した。電極表
面に付着したポリマー溶液を除去した後に溶媒抽出処理
をおこなったにもかかわらず、正極表面には厚さ5μm
の有孔性ポリマー電解質層が形成された。
Next, the positive electrode main body was dried at 130 ° C. for 30 minutes to remove water and the like adhering to the surface of the positive electrode main body. Despite performing the solvent extraction process after removing the polymer solution attached to the electrode surface, the thickness of the positive electrode surface was 5 μm.
Of the porous polymer electrolyte layer was formed.

【0040】次に有孔性ポリマー電解質を備えた正極本
体をプレスした。正極本体の厚みは160μmであり、
有孔性ポリマー電解質を除いた電極の空隙率は30%で
あった。プレス後の正極表面には有孔性ポリマー電解質
層は観測されず、正極表面は厚さ1μm以下の無孔性の
ポリマー電解質膜で覆われた。単位面積当たりに充填さ
れた活物質と導電助剤の合計重量は21mg/cm2
あった。
Next, the positive electrode body provided with the porous polymer electrolyte was pressed. The thickness of the positive electrode body is 160 μm,
The porosity of the electrode excluding the porous polymer electrolyte was 30%. No porous polymer electrolyte layer was observed on the positive electrode surface after pressing, and the positive electrode surface was covered with a nonporous polymer electrolyte membrane having a thickness of 1 μm or less. The total weight of the active material and the conductive additive filled per unit area was 21 mg / cm 2 .

【0041】次に、負極の製作工程について説明する。
グラファイト81wt%、P(VdF/HFP)9wt
%、NMP10wt%を混合したペーストを厚さ14μ
mの銅箔の両面に塗布し、90℃で乾燥してNMPを蒸
発させて負極本体を準備した。
Next, the manufacturing process of the negative electrode will be described.
Graphite 81wt%, P (VdF / HFP) 9wt
%, NMP 10wt% mixed paste with thickness 14μ
m, and dried at 90 ° C. to evaporate NMP to prepare a negative electrode body.

【0042】次に、NMPに20wt%のP(VdF/
HFP)を溶解したポリマー溶液を作製し、このポリマ
ー溶液中に負極本体を浸漬し、負極本体にポリマー溶液
を含ませた。ここで、NMPは溶媒a相当し、NMPに
20wt%のP(VdF/HFP)を溶解したポリマー
溶液はポリマー溶液a’に相当する。次に、2本のガラ
ス管で負極本体を挟んで、負極本体表面に付着したポリ
マー溶液を除去した後、負極本体を水に浸漬してNMP
の抽出をおこなった。ここで水は溶媒bに相当する。
Next, 20 wt% of P (VdF /
A polymer solution in which HFP) was dissolved was prepared, and the negative electrode body was immersed in the polymer solution, so that the negative electrode body contained the polymer solution. Here, NMP corresponds to the solvent a, and a polymer solution obtained by dissolving 20 wt% of P (VdF / HFP) in NMP corresponds to the polymer solution a ′. Next, after sandwiching the negative electrode body between two glass tubes and removing the polymer solution adhering to the surface of the negative electrode body, the negative electrode body is immersed in water and NMP
Was extracted. Here, water corresponds to the solvent b.

【0043】次に、負極本体を100℃で30分乾燥
し、負極本体に付着した水などを除去した。電極表面に
付着したポリマー溶液を除去した後に溶媒抽出処理をお
こなったにもかかわらず、負極表面には厚さ5μmの有
孔性ポリマー電解質層が形成された。
Next, the negative electrode body was dried at 100 ° C. for 30 minutes to remove water and the like adhering to the negative electrode body. Although the solvent extraction treatment was performed after removing the polymer solution attached to the electrode surface, a 5 μm-thick porous polymer electrolyte layer was formed on the negative electrode surface.

【0044】次に、有孔性ポリマー電解質を備えた負極
本体をプレスした。負極本体の厚みは190μmであ
り、有孔性ポリマー電解質を除いた電極の空隙率は35
%であった。プレス後の負極表面には有孔性ポリマー電
解質層は観測されず、負極表面は厚さ1μm以下の無孔
性のポリマー電解質膜で覆われた。単位面積当たりに充
填された活物質と導電助剤の合計重量は14mg/cm
2であった。
Next, the negative electrode body provided with the porous polymer electrolyte was pressed. The thickness of the negative electrode body was 190 μm, and the porosity of the electrode excluding the porous polymer electrolyte was 35 μm.
%Met. No porous polymer electrolyte layer was observed on the negative electrode surface after pressing, and the negative electrode surface was covered with a nonporous polymer electrolyte membrane having a thickness of 1 μm or less. The total weight of the active material and the conductive assistant filled per unit area is 14 mg / cm.
Was 2 .

【0045】上記正極と負極との間に有孔性ポリマー電
解質膜(厚さ26.7μm、空隙率44%)を介在させ
て重ねて巻き回したものを、底面の半径6.7mm、高
さ47.0mm、のステンレスケース中に挿入して、円
筒形電池を組み立てた。その後、1MのLiPF6を含
むエチレンカーボネートとジエチルカーボネートの混合
(体積1:1)電解液2.5gを注液し、最後に60℃
で48時間エージング処理をおこない、公称容量520
mAhの、電池(C)を用意した。
A porous polymer electrolyte membrane (having a thickness of 26.7 μm and a porosity of 44%) interposed between the positive electrode and the negative electrode was wound in a pile, and the bottom surface had a radius of 6.7 mm and a height of 6.7 mm. It was inserted into a 47.0 mm stainless steel case to assemble a cylindrical battery. Thereafter, 2.5 g of a mixed (volume 1: 1) electrolytic solution of ethylene carbonate and diethyl carbonate containing 1M LiPF 6 was injected, and finally 60 ° C.
Aging treatment for 48 hours at nominal capacity of 520
A battery (C) of mAh was prepared.

【0046】[放電性能]次に上記電池の放電性能につ
いて説明する。本発明になる電池(A)および(B)、
比較例(C)を、室温において1CAの電流で4.1V
まで充電し、続いて4.1Vの定電圧で2時間充電した
後、1CAの電流で3.0Vまで放電した。
[Discharge Performance] Next, the discharge performance of the battery will be described. Batteries (A) and (B) according to the present invention,
Comparative Example (C) was tested at room temperature with a current of 1 CA at 4.1 V.
After charging for 2 hours at a constant voltage of 4.1 V, the battery was discharged to 3.0 V at a current of 1 CA.

【0047】放電試験の結果を図1に示す。この結果、
本発明による電池(A)および(B)は、比較例電池
(C)よりも優れた放電性能を示していることがわか
る。実施例1では、正極表面および負極表面に付着した
ポリマー溶液の厚みを45μmとした後、抽出溶媒中に
電極を浸漬して溶媒抽出処理をおこない、電極表面に有
孔性ポリマー電解質膜を備えたが、それ以外にも、電極
表面に付着したポリマー溶液を除去した後に溶媒抽出処
理をおこない、正・負極間に有孔性ポリマー電解質、ま
たはポリプロピレンなどのセパレータを介在させて、電
極群としてもよい。さらに、溶媒bとしてアルコールと
水の混合物を用いたが、アルコール、水、アセトンを単
独で、あるいはこれらを混合して用いてもよい。また、
正極・負極のうち少なくとも一方に上記実施例1の電極
製造方法が用いていればよい。
FIG. 1 shows the results of the discharge test. As a result,
It can be seen that the batteries (A) and (B) according to the present invention show better discharge performance than the comparative battery (C). In Example 1, after the thickness of the polymer solution attached to the positive electrode surface and the negative electrode surface was set to 45 μm, the electrode was immersed in an extraction solvent to perform solvent extraction, and the electrode surface was provided with a porous polymer electrolyte membrane. However, in addition to the above, a solvent extraction process is performed after removing the polymer solution attached to the electrode surface, and a porous polymer electrolyte or a separator such as polypropylene is interposed between the positive electrode and the negative electrode to form an electrode group. . Furthermore, although a mixture of alcohol and water was used as the solvent b, alcohol, water, and acetone may be used alone or as a mixture thereof. Also,
At least one of the positive electrode and the negative electrode may use the electrode manufacturing method of the first embodiment.

【0048】さらに、上記実施例2では電極表面に付着
したポリマー溶液を除去した後に溶媒抽出処理をおこな
ったが、電極表面に付着したポリマー溶液を所定の厚さ
にした後に溶媒抽出処理をおこない、電極表面に形成し
た有孔性ポリマー電解質膜をセパレータとして用いても
よい。また、溶媒bとして水を用いたが、アルコール、
アセトン、あるいはこれらの混合物を用いてもよい。さ
らに、正極・負極のうち少なくとも一方に上記実施例2
の電極製造方法が用いられていればよい。また、正極・
負極が上記実施例1および2の電極製造法の組み合わせ
からなっていてもよい。
Further, in Example 2 described above, the solvent extraction treatment was performed after removing the polymer solution attached to the electrode surface. However, the solvent extraction treatment was performed after the polymer solution attached to the electrode surface was reduced to a predetermined thickness. The porous polymer electrolyte membrane formed on the electrode surface may be used as a separator. Although water was used as the solvent b, alcohol,
Acetone or a mixture thereof may be used. Further, at least one of the positive electrode and the negative electrode
It is sufficient that the electrode manufacturing method described above is used. The positive electrode
The negative electrode may be composed of a combination of the electrode manufacturing methods of Examples 1 and 2.

【0049】[0049]

【発明の効果】従来の有孔性ポリマー電解質を備えた電
極の製造工程は、まず未プレス状態の電極にポリマー溶
液を含ませ、次に溶媒抽出処理をおこない、その後にプ
レスをおこなっていたために、電極表面に形成されるポ
リマー電解質層の孔が押しつぶされて無孔となり、リチ
ウムイオンの移動を阻害し、電池の充放電特性が悪かっ
た。
According to the conventional manufacturing process of an electrode provided with a porous polymer electrolyte, first, a polymer solution is contained in an unpressed electrode, then a solvent extraction treatment is performed, and then a pressing is performed. In addition, the pores of the polymer electrolyte layer formed on the electrode surface were crushed to become non-porous, hindering the movement of lithium ions, and the charge / discharge characteristics of the battery were poor.

【0050】本発明になる有孔性ポリマー電解質を備え
た電極の製造工程では、電極本体にポリマー溶液を含ま
せた状態でプレスをおこない、その後に溶媒抽出処理を
おこなうため、電極表面に形成された有孔性ポリマー電
解質膜層が無孔化されず、電池の充放電性能が優れたも
のになる。
In the manufacturing process of the electrode provided with the porous polymer electrolyte according to the present invention, the electrode body is pressed with the polymer solution contained therein, and then the solvent is extracted. In addition, the porous polymer electrolyte membrane layer is not made nonporous, and the battery has excellent charge / discharge performance.

【0051】また、電極本体をプレスした後にポリマー
を溶解している溶媒を含ませ、溶媒抽出処理をおこなう
ため、電極表面に形成された有孔性ポリマー電解質層が
プレスされて無孔化されず、電池の充放電特性が優れた
ものになる。
Further, after the electrode body is pressed, a solvent in which the polymer is dissolved is included to perform the solvent extraction treatment. Therefore, the porous polymer electrolyte layer formed on the electrode surface is not pressed to be nonporous. As a result, the charge and discharge characteristics of the battery become excellent.

【0052】さらに電極表面に付着したポリマーを溶解
している溶媒を所定の厚みとした後に溶媒抽出処理をお
こなうことで、電極表面に形成される有孔性ポリマー電
解質膜をセパレータとして用いることができ、電池の製
作工程の削減になる。
Further, by subjecting the solvent in which the polymer adhering to the electrode surface is dissolved to a predetermined thickness and then performing a solvent extraction treatment, the porous polymer electrolyte membrane formed on the electrode surface can be used as a separator. Thus, the manufacturing process of the battery is reduced.

【0053】[0053]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電池(A)、(B)および比較例
(C)の4.1V充電後の放電曲線を示す特性図。
FIG. 1 is a characteristic diagram showing discharge curves after 4.1 V charging of batteries (A) and (B) according to the present invention and Comparative Example (C).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】活物質を備えた電極を製作する第1の工程
と、電解液によって湿潤または膨潤する性質のあるポリ
マーを溶媒aに溶解したポリマー溶液a’を前記電極に
含ませる第2の工程と、前記ポリマー溶液a’を含んだ
電極をプレスする第3の工程と、電極に含まれている前
記溶媒aを、溶媒aと相溶性のある溶媒bにより抽出す
る第4の工程からなることを特徴とする電極の製作方
法。
1. A first step of manufacturing an electrode provided with an active material, and a second step of including a polymer solution a ′ in which a polymer having a property of being wetted or swelled by an electrolytic solution is dissolved in a solvent a. A step of pressing the electrode containing the polymer solution a ′, and a fourth step of extracting the solvent a contained in the electrode with a solvent b compatible with the solvent a. A method for manufacturing an electrode, comprising:
【請求項2】活物質を備えた電極を製作する第1の工程
と、前記電極をプレスする第2の工程と、電解液によっ
て湿潤または膨潤する性質のあるポリマーを溶媒aに溶
解したポリマー溶液a’を電極に含ませる第3の工程
と、電極に含まれた前記溶媒aを、溶媒aと相溶性のあ
る溶媒bにより抽出する第4の工程からなることを特徴
とする電極の製作方法。
2. A first step of manufacturing an electrode provided with an active material, a second step of pressing the electrode, and a polymer solution obtained by dissolving a polymer having a property of being wetted or swelled by an electrolytic solution in a solvent a. a method for producing an electrode, comprising: a third step of including a ′ in an electrode; and a fourth step of extracting the solvent a contained in the electrode with a solvent b compatible with the solvent a. .
【請求項3】正極または負極の少なくとも一方に請求項
1または2記載の方法で製作された電極を用いた非水電
解質二次電池。
3. A non-aqueous electrolyte secondary battery in which at least one of a positive electrode and a negative electrode uses an electrode manufactured by the method according to claim 1.
JP11011024A 1999-01-19 1999-01-19 Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it Pending JP2000208142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011024A JP2000208142A (en) 1999-01-19 1999-01-19 Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011024A JP2000208142A (en) 1999-01-19 1999-01-19 Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it

Publications (1)

Publication Number Publication Date
JP2000208142A true JP2000208142A (en) 2000-07-28

Family

ID=11766545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011024A Pending JP2000208142A (en) 1999-01-19 1999-01-19 Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it

Country Status (1)

Country Link
JP (1) JP2000208142A (en)

Similar Documents

Publication Publication Date Title
JP4629902B2 (en) Method for manufacturing lithium secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP2001135359A (en) Nonaqueous electrolyte battery
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP4368114B2 (en) Lithium ion secondary battery and method for producing secondary battery
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPWO2018025469A1 (en) Lithium ion secondary battery and method of manufacturing the same
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP2002042868A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2001143755A (en) Non-aqueous electrolyte secondary cell
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2001319693A (en) Nonaqueous-electrolyte secondary battery
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JPH09199136A (en) Nonaqueous electrolyte secondary battery
JPH1126025A (en) Cylindrical nonaqueous battery
JP2002343437A (en) Nonaqueous electrolyte battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JPH10189053A (en) Manufacture of polyelectrolyte battery
JP2000208142A (en) Production of nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte battery using it
JP2000058044A (en) Manufacture of electrode provided with porous polymer electrolyte, and nonaqueous electrolyte secondary battery using the electrode
JPH1140201A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213