JP2000206037A - Spectroscopic analytical method - Google Patents

Spectroscopic analytical method

Info

Publication number
JP2000206037A
JP2000206037A JP11007471A JP747199A JP2000206037A JP 2000206037 A JP2000206037 A JP 2000206037A JP 11007471 A JP11007471 A JP 11007471A JP 747199 A JP747199 A JP 747199A JP 2000206037 A JP2000206037 A JP 2000206037A
Authority
JP
Japan
Prior art keywords
light
information
light receiving
sample
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11007471A
Other languages
Japanese (ja)
Other versions
JP3992390B2 (en
Inventor
Hitoshi Ishibashi
仁志 石橋
Keisuke Igarashi
慶介 五十嵐
Ryoji Suzuki
良治 鈴木
Masayuki Kashiyuu
政幸 加洲
Ryogo Yamauchi
良吾 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO COMM TECHNOLOGY RES ASSOC
BIO-COMMUNICATION TECHNOLOGY RES ASSOC
Original Assignee
BIO COMM TECHNOLOGY RES ASSOC
BIO-COMMUNICATION TECHNOLOGY RES ASSOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO COMM TECHNOLOGY RES ASSOC, BIO-COMMUNICATION TECHNOLOGY RES ASSOC filed Critical BIO COMM TECHNOLOGY RES ASSOC
Priority to JP00747199A priority Critical patent/JP3992390B2/en
Publication of JP2000206037A publication Critical patent/JP2000206037A/en
Application granted granted Critical
Publication of JP3992390B2 publication Critical patent/JP3992390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spectroscopic analytical method in which the component of a sample can be analyzed with high accuracy by a method wherein an influence due to a change in the output characteristic of a light receiving element due to the passage of time is removed by using a specific procedure. SOLUTION: A linear image sensor 4 detects, by using a plurality of light receiving elements, the intensity of a luminous flux, at every wavelength, which is spectrally reflected by a concave diffraction grating 3, and it outputs a signal according to the intensity of the luminous flux at every wavelength. A control part 5 uses a microcomputer, it processes output information from the sensor 4, it obtains an absorbence spectrum and a quadratic differential value in the wavelength region of the absorbence spectrum, and it calculates the component amount of a sample by using a specific working expression on the basis of the quadratic differential value. In addition, the control part 5 controls a motor 12 for filter changeover, a motor 16 for incident-light changeover and a motor 26 for a shutter so as to be operated. It performs an operation to remove an influence due to a change in the output characteristic of the respective light receiving elements in the sensor 4 when the component of the sample is analyzed while light which is being received by the sensor 4 is being changed over variously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光源からの測定用
光を試料に照射し、試料からの反射光又は透過光である
検出光を分光して、検出光の分光スペクトルを得、その
検出光の分光スペクトルを、並置した複数の受光素子に
て波長毎に同時に受光し、それら受光素子の受光情報に
基づいて、試料に含まれる成分を分析する分光分析方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a sample with a measuring light from a light source, spectrally detecting light, which is reflected light or transmitted light from the sample, and obtaining a spectral spectrum of the detected light. The present invention relates to a spectroscopic analysis method in which a plurality of light receiving elements arranged side by side receive light spectral spectra simultaneously for each wavelength, and analyze components contained in a sample based on light receiving information of the light receiving elements.

【0002】[0002]

【従来の技術】試料に測定用光を照射すると、試料に含
まれる成分に特有の波長域においてその成分の量に応じ
た吸光特性を示すことから、かかる分光分析方法は、試
料からの反射光又は透過光である検出光を分光して、そ
の分光スペクトルに基づいて試料に含まれる成分を分析
するものである。例えば、予め、充分に多い母集団にお
いて、成分に特有の波長での吸光度の情報に基づいて、
成分を分析するための演算式(所謂、検量式)を設定し
ておき、試料からの検出光の分光スペクトルを複数の受
光素子にて受光し、測定対象の成分に特有の波長での受
光情報に基づいて、検量式を用いて成分を分析する。従
来は、試料からの検出光の分光スペクトルを受光して得
られた受光情報を、そのままの状態で用いて、成分を分
析していた。
2. Description of the Related Art When a sample is irradiated with light for measurement, it exhibits an absorption characteristic corresponding to the amount of the component contained in the sample in a wavelength range peculiar to the component. Alternatively, the detection light, which is transmitted light, is spectrally analyzed, and components contained in the sample are analyzed based on the spectrum. For example, in advance, in a sufficiently large population, based on the information of the absorbance at a wavelength specific to the component,
Arithmetic expressions (so-called calibration expressions) for analyzing the components are set, and the spectral spectrum of the light detected from the sample is received by a plurality of light receiving elements, and light receiving information at a wavelength specific to the components to be measured is obtained. Based on the above, the components are analyzed using the calibration formula. Conventionally, components have been analyzed using the received light information obtained by receiving the spectral spectrum of the detection light from the sample as it is.

【0003】[0003]

【発明が解決しようとする課題】ところで、受光素子の
出力特性は、種々の要因により変化し、又、出力特性の
変化の仕方が受光素子夫々で異なることが分かった。例
えば、受光素子の出力特性は、図6及び図7に示すよう
に、測定雰囲気の温度及び受光素子に対する入射光量に
応じて変化する。又、時間経過に伴っても、変化する。
尚、図6は、複数の受光素子を列状に備えたリニアイメ
ージセンサにおいて、複数の受光素子夫々の測定雰囲気
温度が10°Cと25°Cのときの出力電圧を示す。
又、図7は、特定の一つの受光素子における入射光量と
出力との関係を、雰囲気温度がT1とT2のときについ
て示す。
By the way, it has been found that the output characteristics of the light receiving element change due to various factors, and that the manner of changing the output characteristics differs for each light receiving element. For example, as shown in FIGS. 6 and 7, the output characteristic of the light receiving element changes according to the temperature of the measurement atmosphere and the amount of light incident on the light receiving element. It also changes over time.
FIG. 6 shows the output voltage when the measurement atmosphere temperature of each of the plurality of light receiving elements is 10 ° C. and 25 ° C. in the linear image sensor including the plurality of light receiving elements in a row.
FIG. 7 shows the relationship between the amount of incident light and the output of one specific light receiving element when the ambient temperature is T1 and T2.

【0004】従って、従来の方法では、検出光の分光ス
ペクトルの受光情報をそのままの状態で用いることか
ら、測定時の受光素子の出力特性が検量式を設定したと
きの出力特性と異なっている場合があり、その場合は、
成分の分析精度が悪くなるという問題があった。
Therefore, in the conventional method, since the received light information of the spectrum of the detected light is used as it is, the output characteristics of the light receiving element at the time of measurement are different from the output characteristics when the calibration equation is set. In that case,
There is a problem that the analysis accuracy of the components is deteriorated.

【0005】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、受光素子の出力特性の変化にか
かわらず、試料の成分を精度良く分析することができる
分光分析方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spectroscopic analysis method capable of accurately analyzing the components of a sample irrespective of a change in output characteristics of a light receiving element. It is in.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の特徴構
成によれば、透過光量が互いに異なる複数のリファレン
スフィルタを用意し、予め、基準リファレンス情報とし
て、受光素子夫々について、リファレンスフィルタ毎
に、光源からの測定用光がリファレンスフィルタを透過
したリファレンス光の分光スペクトルの受光情報を得る
と共に、その基準リファレンス情報を記憶しておく。測
定のときは、受光素子夫々について、リファレンスフィ
ルタ毎に、リファレンス光の分光スペクトルの受光情報
を測定リファレンス情報として得る。そして、受光素子
夫々についての、リファレンスフィルタ毎の基準リファ
レンス情報、リファレンスフィルタ毎の測定リファレン
ス情報、及び、試料からの検出光の分光スペクトルの受
光情報に基づいて、検量式を設定したときからの受光素
子夫々の特性変化を考慮して、試料の成分を求める。
According to the characteristic configuration of the present invention, a plurality of reference filters having different transmitted light amounts are prepared, and the light receiving elements are set in advance as reference reference information for each of the light receiving elements. The light receiving information of the spectral spectrum of the reference light having the measuring light from the light source transmitted through the reference filter is obtained, and the reference reference information is stored. At the time of measurement, for each light receiving element, light receiving information of the spectral spectrum of the reference light is obtained as measurement reference information for each reference filter. Then, based on the reference reference information for each reference filter, the measurement reference information for each reference filter, and the light reception information of the spectral spectrum of the light detected from the sample, the light reception from when the calibration equation is set for each light receiving element. The components of the sample are determined in consideration of the characteristic change of each element.

【0007】つまり、成分を分析するに当たって、時間
経過に伴う受光素子の出力特性の変化による影響を除去
することができる。又、基準リファレンス情報及び測定
リファレンス情報は、透過光量が互いに異なる複数のリ
ファレンスフィルタを用いて得ることから、測定雰囲気
の温度及び受光素子に対する入射光量が異なることによ
り出力特性が変化しても、その出力特性の変化による影
響を除去することができる。又、基準リファレンス情報
及び測定リファレンス情報は受光素子毎に得ることか
ら、出力特性の変化の仕方が受光素子夫々で異なること
も考慮することができる。従って、受光素子の出力特性
の変化にかかわらず、試料の成分を精度良く分析するこ
とができるようになった。
That is, in analyzing the components, it is possible to eliminate the influence of the change in the output characteristics of the light receiving element over time. Further, since the reference reference information and the measurement reference information are obtained by using a plurality of reference filters having different transmitted light amounts, even if the output characteristics change due to a difference in the temperature of the measurement atmosphere and the incident light amount to the light receiving element, the change is not obtained. The effect due to the change in the output characteristics can be eliminated. In addition, since the reference reference information and the measurement reference information are obtained for each light receiving element, it is possible to consider that the way of changing the output characteristics differs for each light receiving element. Therefore, the components of the sample can be analyzed with high accuracy regardless of the change in the output characteristics of the light receiving element.

【0008】請求項2に記載の特徴構成によれば、受光
素子夫々について、リファレンスフィルタ毎の基準リフ
ァレンス情報と測定リファレンス情報とに基づいて、受
光素子の受光情報を、基準リファレンス情報を得た基準
状態における受光情報に変換する基準状態変換式を求め
る。そして、その基準状態変換式を用いて、受光素子に
おける検出光の分光スペクトルの受光情報を基準状態で
の受光情報に変換して、基準状態試料情報を求め、その
基準状態試料情報に基づいて試料の成分を求める。例え
ば、受光素子毎に、複数個の基準リファレンス情報及び
測定リファレンス情報に基づいて、基準リファレンス情
報と測定リファレンス情報との対応関係を示す式である
基準状態変換式を設定する。そして、その基準状態変換
式を用いて、受光素子の受光情報を基準状態での受光情
報に変換するのである。
According to a second aspect of the present invention, for each light receiving element, the light receiving information of the light receiving element is determined based on the reference reference information and the measurement reference information for each reference filter. A reference state conversion formula for converting into light reception information in the state is obtained. Then, using the reference state conversion formula, the received light information of the spectral spectrum of the light detected by the light receiving element is converted into the received light information in the reference state to obtain the reference state sample information, and the sample is obtained based on the reference state sample information. Find the components of For example, for each light receiving element, based on a plurality of pieces of reference reference information and measurement reference information, a reference state conversion equation, which is an equation indicating the correspondence between the reference reference information and the measurement reference information, is set. Then, using the reference state conversion formula, the light reception information of the light receiving element is converted into the light reception information in the reference state.

【0009】ちなみに、基準リファレンス情報、測定リ
ファレンス情報、及び、検出光の分光スペクトルの受光
情報に基づいて、受光素子夫々の特性変化を考慮して試
料の成分を求める場合、以下のような方法が考えられ
る。即ち、基準リファレンス情報及び測定リファレンス
情報を用いて、検出光の分光スペクトルの受光情報に基
づいて暫定的に求めた暫定成分値を特性変化を考慮した
値に補正するための係数を求める。そして、検出光の分
光スペクトルの受光情報に基づいて暫定成分値を求め、
その暫定成分値を前記係数にて補正することが考えられ
る。両者の方法を比較すると、請求項2に記載の特徴構
成による方法の方が、入射光量の差による出力特性の変
化による影響をより効果的に除去することができ、出力
特性の変化に伴う成分分析値の誤差をより小さくするこ
とができる。従って、受光素子の出力特性の変化に伴う
成分分析値の誤差を小さくする上で、好ましい具体方法
を提供することができる。
Incidentally, when the components of the sample are determined based on the reference reference information, the measurement reference information, and the received light information of the spectrum of the detected light in consideration of the characteristic change of each light receiving element, the following method is used. Conceivable. That is, using the reference reference information and the measurement reference information, a coefficient for correcting the provisional component value provisionally obtained based on the received light information of the spectral spectrum of the detected light to a value in consideration of the characteristic change is obtained. Then, a provisional component value is obtained based on the received light information of the spectral spectrum of the detection light,
It is conceivable that the provisional component value is corrected by the coefficient. Comparing the two methods, the method according to the second aspect can more effectively remove the influence of the change in the output characteristic due to the difference in the amount of incident light, and the component accompanying the change in the output characteristic. The error of the analysis value can be reduced. Therefore, it is possible to provide a preferable specific method for reducing an error of the component analysis value due to a change in the output characteristic of the light receiving element.

【0010】請求項3に記載の特徴構成によれば、予
め、基準状態において、複数の受光素子に対する光の照
射を禁止する遮光状態で、受光素子夫々について、受光
情報を得ると共にその受光情報を基準暗情報として記憶
しておく。測定のときは、前記遮光状態で、受光素子夫
々について、受光情報を測定暗情報として得る。そし
て、基準状態変換式を、リファレンスフィルタ毎の基準
リファレンス情報と基準暗情報との差と、リファレンス
フィルタ毎の測定リファレンス情報と測定暗情報との差
に基づいて求める。つまり、かかる受光素子では、光が
全く照射されない前記遮光状態でも電流(所謂、暗電
流)が流れ、その暗電流が成分を分析するときのノイズ
となる。しかも、その暗電流は、測定雰囲気の温度や経
過時間により変化する。例えば、図7に示すように、雰
囲気温度がT1のときの暗情報D1と、雰囲気温度がT
2のときの暗情報D2とが相違している。そこで、予
め、基準状態において、暗電流に対応する暗情報を基準
暗情報として得て、記憶しておくと共に、測定のときに
暗情報を測定暗情報として得る。そして、基準状態変換
式を、リファレンスフィルタ毎の基準リファレンス情報
と基準暗情報との差と、リファレンスフィルタ毎の測定
リファレンス情報と測定暗情報との差に基づいて求める
ことにより、出力特性の変化を考慮した状態で暗電流の
影響を除去できる基準変換式を求めることができるので
ある。従って、受光素子の出力特性の変化を考慮した状
態で、暗電流の影響を除去して成分を分析することがで
きるので、成分分析精度をより一層向上することができ
る。
According to a third aspect of the present invention, in a light-shielding state in which light irradiation to a plurality of light-receiving elements is prohibited in a reference state, light-receiving information is obtained for each of the light-receiving elements and the light-receiving information is obtained in advance. It is stored as reference dark information. At the time of measurement, light receiving information is obtained as measurement dark information for each of the light receiving elements in the light-shielded state. Then, a reference state conversion formula is obtained based on the difference between the reference reference information and the reference dark information for each reference filter and the difference between the measurement reference information and the measured dark information for each reference filter. That is, in such a light receiving element, a current (a so-called dark current) flows even in the light-shielded state where no light is irradiated, and the dark current becomes noise when analyzing components. In addition, the dark current changes depending on the temperature of the measurement atmosphere and the elapsed time. For example, as shown in FIG. 7, the dark information D1 when the ambient temperature is T1, and the dark information D1 when the ambient temperature is T1.
2 is different from the dark information D2. Therefore, in the reference state, the dark information corresponding to the dark current is previously obtained and stored as the reference dark information, and at the time of measurement, the dark information is obtained as the measured dark information. Then, a change in the output characteristic is obtained by obtaining a reference state conversion formula based on the difference between the reference reference information and the reference dark information for each reference filter and the difference between the measurement reference information and the measurement dark information for each reference filter. It is possible to obtain a reference conversion formula that can remove the influence of the dark current in a state where the consideration is taken. Therefore, the components can be analyzed while removing the influence of the dark current in a state in which the change in the output characteristics of the light receiving element is taken into consideration, so that the component analysis accuracy can be further improved.

【0011】請求項4に記載の特徴構成によれば、試料
に対して測定用光を照射しない状態で、複数の受光素子
により、検出光の分光スペクトルの受光情報を得ると共
に、その受光情報を基準状態変換式を用いて基準状態で
の受光情報に変換して、基準状態外乱光情報を求める。
そして、基準状態試料情報と基準状態外乱光情報とに基
づいて、その基準状態外乱光情報を検出光以外の外乱光
に対応する情報として処理して、試料に含まれる成分を
分析する。つまり、試料に測定用光を照射する状態で
は、受光素子が受光する光は、試料からの検出光とそれ
以外の光(以下、外乱光と称する場合がある)とを含ん
だものであり、試料に測定用光を照射しない状態では、
受光素子が受光する光は外乱光のみであるそこで、試料
に対して測定用光を照射しない状態で得た受光素子の受
光情報を、基準状態変換式を用いて基準状態での受光情
報に変換して、基準状態外乱光情報を求め、その基準状
態外乱光情報を外乱光による情報であるとして処理する
ことにより、成分分析に当たって、出力特性の変化を考
慮した状態で外乱光の影響を除去することができるので
ある。一方、外乱光を遮るためのフード等を設けること
により、成分分析に当たっての外乱光の影響を除去する
ことが考えられるが、フードの着脱が面倒であるばかり
か、場合によっては、フードで覆った状態で成分を分析
することができない場合がある。例えば、栽培中の青果
物の成分を分析するような場合である。従って、フード
等の外乱光を遮蔽するための手段を設けることなく、出
力特性の変化を考慮した状態で外乱光の影響を除去する
ことができるので、外乱光を遮蔽するための操作を無く
して操作を簡略化しながら、成分分析精度をより一層向
上することができる。
According to a fourth aspect of the present invention, light-receiving information of a spectral spectrum of detected light is obtained by a plurality of light-receiving elements in a state where the sample is not irradiated with measurement light, and the light-receiving information is obtained. The light is converted into light reception information in the reference state using the reference state conversion formula, and reference state disturbance light information is obtained.
Then, based on the reference state sample information and the reference state disturbance light information, the reference state disturbance light information is processed as information corresponding to disturbance light other than the detection light, and components contained in the sample are analyzed. That is, in a state where the sample is irradiated with the measurement light, the light received by the light receiving element includes the detection light from the sample and other light (hereinafter, sometimes referred to as disturbance light), When the sample is not irradiated with the measuring light,
Since the light received by the light receiving element is only disturbance light, the light receiving information of the light receiving element obtained without irradiating the sample with the measuring light is converted into the light receiving information in the reference state using the reference state conversion formula. Then, the reference state disturbance light information is obtained, and the reference state disturbance light information is processed as information based on the disturbance light, thereby removing the influence of the disturbance light in a component analysis in a state in which a change in the output characteristic is considered. You can do it. On the other hand, by providing a hood or the like for blocking disturbance light, it is conceivable to remove the influence of the disturbance light on the component analysis, but it is not only troublesome to attach and detach the hood, but in some cases, the hood is covered with the hood. It may not be possible to analyze the components in the state. For example, there is a case where a component of a growing fruit or vegetable is analyzed. Therefore, it is possible to remove the influence of the disturbance light in a state in which the change in the output characteristics is taken into consideration without providing a means for shielding the disturbance light such as a hood, thereby eliminating the operation for blocking the disturbance light. The component analysis accuracy can be further improved while simplifying the operation.

【0012】請求項5に記載の特徴構成によれば、成分
分析用の波長範囲において少なくとも2つのピーク部を
備えた校正用光が得られる校正用フィルタを用意する。
測定のときは、校正用フィルタを透過した校正用光の分
光スペクトルを複数の受光素子で受光し、その受光情報
を基準状態変換式を用いて基準状態での受光情報に変換
して、基準状態校正情報を求めると共に、その基準状態
校正情報に基づいて、複数の受光素子と受光波長との対
応関係を求め、その対応関係に基づいて、各受光素子の
受光波長の校正を行う。つまり、複数の受光素子が夫々
受光する光の波長は、検出光を分光する光学部品との位
置関係により決まるが、この位置関係が測定雰囲気の温
度の影響や時間経過により、わずかであるが基準状態に
おける位置関係からずれる場合がある。これに対して、
受光素子の出力特性の変化を考慮した状態で、測定のと
きの受光素子と前記光学部品との位置関係に適応した、
複数の受光素子と受光波長との対応関係を求め、その対
応関係に基づいて、各受光素子の受光波長の校正を行う
のである。従って、複数の受光素子と受光波長との対応
関係を測定時の状態に適応した適正な状態に校正して、
成分を分析することができるので、成分分析精度をより
一層向上することができる。
According to a fifth aspect of the present invention, there is provided a calibration filter capable of obtaining calibration light having at least two peak portions in a wavelength range for component analysis.
At the time of measurement, the spectral spectrum of the calibration light that has passed through the calibration filter is received by a plurality of light-receiving elements, and the received light information is converted into light-receiving information in the reference state using a reference state conversion formula, and the reference state is converted. In addition to obtaining the calibration information, the correspondence between the plurality of light receiving elements and the light receiving wavelength is obtained based on the reference state calibration information, and the light receiving wavelength of each light receiving element is calibrated based on the correspondence. In other words, the wavelength of the light received by each of the plurality of light receiving elements is determined by the positional relationship with the optical component that separates the detection light, and this positional relationship is small due to the influence of the temperature of the measurement atmosphere and the passage of time. The position may deviate from the positional relationship in the state. On the contrary,
While taking into account the change in the output characteristics of the light receiving element, adapted to the positional relationship between the light receiving element and the optical component at the time of measurement,
The correspondence between the plurality of light receiving elements and the light receiving wavelengths is obtained, and the light receiving wavelength of each light receiving element is calibrated based on the correspondence. Therefore, the correspondence between the plurality of light receiving elements and the light receiving wavelength is calibrated to an appropriate state adapted to the state at the time of measurement,
Since the components can be analyzed, the component analysis accuracy can be further improved.

【0013】[0013]

【発明の実施の形態】以下、図面に基づいて、 本発明の
分光分析方法を適用した分光分析装置の実施の形態を説
明する。図1に示すように、分光分析装置は、光源1
と、その光源1からの測定用光を試料Sに対して照射す
ると共に、試料Sからの拡散反射光である検出光を受光
する投受光部2と、その投受光部2が受光した光を分光
して、検出光の分光スペクトルを得る凹面回折格子3、
その凹面回折格子3にて得られた検出光の分光スペクト
ルを波長毎に同時に受光するように複数の受光素子を列
状に備えたリニアイメージセンサ4と、そのリニアイメ
ージセンサ4の受光情報に基づいて、試料に含まれる成
分を分析する制御部5と、その制御部5による分析結果
を表示出力する表示部6等を備えて構成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a spectroscopic analyzer to which the spectroscopic analysis method of the present invention is applied will be described below with reference to the drawings. As shown in FIG.
Irradiating the sample S with the measuring light from the light source 1 and receiving the detection light which is the diffuse reflection light from the sample S; A concave diffraction grating 3, which splits the spectrum to obtain a spectrum of the detection light,
A linear image sensor 4 having a plurality of light receiving elements arranged in a row so as to simultaneously receive the spectral spectrum of the detection light obtained by the concave diffraction grating 3 for each wavelength, based on light receiving information of the linear image sensor 4 And a control unit 5 for analyzing components contained in the sample, a display unit 6 for displaying and outputting the analysis results by the control unit 5, and the like.

【0014】更に、リニアイメージセンサ4の各受光素
子の出力特性の変化が成分分析に与える影響を除去する
ため等に、試料Sからの検出光以外に、光源1からの計
測用光を各種のフィルタを通過させた状態で凹面回折格
子3に入射させる等、凹面回折格子3に入射させる光を
種々に切り換える入射光切換部Mを設けてある。
Further, in order to remove the influence of the change in the output characteristics of each light receiving element of the linear image sensor 4 on the component analysis, various kinds of measurement light from the light source 1 are used in addition to the detection light from the sample S. There is provided an incident light switching section M for variously switching the light to be incident on the concave diffraction grating 3 such that the light is incident on the concave diffraction grating 3 while passing through a filter.

【0015】光源1は、赤外線光を測定用光として放射
するタングステン−ハロゲンランプを備えて構成してあ
る。
The light source 1 is provided with a tungsten-halogen lamp which emits infrared light as measurement light.

【0016】更に、光源1からの計測用光を投受光部2
に導く照射用光ファイバ7、投受光部2が受光した光を
入射光切換部Mに導く検出用光ファイバ8、及び、光源
1からの計測用光を直接に入射光切換部Mに導く校正用
光ファイバ9を設けてある。
Furthermore, the measuring light from the light source 1
, An optical fiber for detection 7 for guiding the light received by the light emitting and receiving unit 2 to the incident light switching unit M, and a calibration for directly guiding the measuring light from the light source 1 to the incident light switching unit M. Optical fiber 9 is provided.

【0017】投受光部2は、詳細な説明は省略するが、
リング状の照射部2oと、そのリング状の照射部2oの
内側にそれと同心状に位置する円状の受光部2iとを備
えていて、照射用光ファイバ7にて導かれてきた計測用
光を照射部2oから照射するように案内すると共に、受
光部2iにて受光した光を検出用光ファイバ8に入射さ
せるべく案内するように構成してある。そして、照射部
2oと受光部2iとの間隔を20mm程度に設定して、
試料Sの内部で反射した拡散反射光を受光部2iにて受
光できるようにしてある。
Although the detailed description of the light emitting and receiving unit 2 is omitted,
It has a ring-shaped irradiation unit 2o and a circular light receiving unit 2i located concentrically inside the ring-shaped irradiation unit 2o, and measurement light guided by the irradiation optical fiber 7. Is irradiated from the irradiating section 2o, and the light received by the light receiving section 2i is guided so as to be incident on the optical fiber 8 for detection. Then, the distance between the irradiation unit 2o and the light receiving unit 2i is set to about 20 mm,
The diffusely reflected light reflected inside the sample S can be received by the light receiving section 2i.

【0018】凹面回折格子3は、分光対象の光を入射さ
せるスリット10sを備えた分光部用暗箱10内におい
て、スリット10sから入射した光を受けて分光反射で
きる位置に配置してある。リニアイメージセンサ4は、
分光部用暗箱10内において、凹面回折格子3にて分光
反射された分光スペクトルを複数の受光素子にて同時に
受光できるように配置してある。そして、そのリニアイ
メージセンサ4は、複数の受光素子により、凹面回折格
子3にて分光反射された波長毎の光線束強度を検出し
て、波長毎に光線束強度に応じた信号を出力するように
構成してある。
The concave diffraction grating 3 is arranged at a position where the light incident from the slit 10s can be spectrally reflected in the dark box 10 for a spectroscopic section having the slit 10s into which the light to be spectrally incident. The linear image sensor 4 is
In the spectroscopic unit dark box 10, the spectroscopic spectrum reflected by the concave diffraction grating 3 is arranged so as to be simultaneously received by a plurality of light receiving elements. Then, the linear image sensor 4 detects the light flux intensity for each wavelength spectrally reflected by the concave diffraction grating 3 by a plurality of light receiving elements, and outputs a signal corresponding to the light flux intensity for each wavelength. It is configured in.

【0019】入射光切換部Mについて説明を加える。ス
リット10sに対する入射光路Pと直交する状態で、入
射光路Pと平行な軸心周りに回転操作自在に設けたフィ
ルタ装備用円板11と、そのフィルタ装備用円板11を
回転駆動するフィルタ切換用モータ12と、検出光案内
用光ファイバ13及び校正光案内用光ファイバ14を備
えると共に、各光ファイバ13,14の光の出射端面が
フィルタ装備用円板11よりも入射光路Pの上手側でそ
の入射光路P上に交互に位置するように往復直線移動操
作自在に設けたファイバ支持体15と、そのファイバ支
持体15を移動駆動するための入射光切換用モータ16
と、その入射光切換用モータ16にてファイバ支持体1
5を往復直線移動駆動するようにそれらを連結するギア
機構17とを備えて構成してある。それらフィルタ装備
用円板11、フィルタ切換用モータ12、ファイバ支持
体15、入射光切換用モータ16、ギア機構17は、入
射光路Pへの有害光の進入を防止する入射光切換部用暗
箱18内に設けてある。
The incident light switching section M will be described. A filter-equipped disk 11 provided rotatably around an axis parallel to the incident optical path P in a state orthogonal to the incident optical path P with respect to the slit 10s, and a filter switching mechanism for driving the filter-equipped disk 11 to rotate. It has a motor 12, an optical fiber 13 for detecting light guiding and an optical fiber 14 for calibrating light guiding, and the light emitting end face of each of the optical fibers 13, 14 is located on the upstream side of the incident optical path P with respect to the filter mounting disk 11. A fiber support 15 provided to be reciprocally linearly movable so as to be alternately positioned on the incident optical path P, and an incident light switching motor 16 for moving and driving the fiber support 15
And the fiber support 1 by the incident light switching motor 16.
5 is provided with a gear mechanism 17 for connecting them so as to drive the reciprocating linear movement. The filter-equipped disk 11, the filter switching motor 12, the fiber support 15, the incident light switching motor 16, and the gear mechanism 17 are provided with an incident light switching unit dark box 18 for preventing harmful light from entering the incident optical path P. It is provided inside.

【0020】図2にも示すように、フィルタ装備用円板
11には、入射光路Pと交差する円周に沿って並ぶ状態
で、透過光量の異なる3枚のリファレンスフィルタ19
a,19b,19c、成分分析用の波長範囲において少
なくとも2つのピーク部を備えた校正用光が得られる校
正用フィルタ20、光の通過させない遮光部21、及
び、開口22を備えてある。
As shown in FIG. 2, three reference filters 19 having different amounts of transmitted light are arranged on the filter-equipped disk 11 in a state of being arranged along the circumference intersecting the incident optical path P.
a, 19b, 19c, a calibration filter 20 for obtaining calibration light having at least two peaks in a wavelength range for component analysis, a light-shielding portion 21 that does not allow light to pass, and an opening 22.

【0021】又、図4の(イ)にも示すように、ファイ
バ支持体15を検出光案内用光ファイバ13の出射端面
が入射光路P上に位置するように移動操作したときに、
検出用光ファイバ8の出射端面が検出光案内用光ファイ
バ13の光の入射端面に対向位置するように、検出用光
ファイバ8を入射光切換部用暗箱18に接続してある。
以下、このように、検出光案内用光ファイバ13の出射
端面が入射光路P上に位置し、且つ、検出光案内用光フ
ァイバ13の入射端面と検出用光ファイバ8の出射端面
が対向して、検出用光ファイバ8にて案内される光が入
射光路Pに入射する状態を、検出光入射状態と称する場
合がある。
Further, as shown in FIG. 4A, when the fiber support 15 is moved so that the exit end face of the detection light guiding optical fiber 13 is located on the incident optical path P,
The detection optical fiber 8 is connected to the incident light switching section dark box 18 so that the exit end face of the detection optical fiber 8 faces the light incident end face of the detection light guiding optical fiber 13.
Hereinafter, as described above, the emission end face of the detection light guiding optical fiber 13 is located on the incident optical path P, and the incidence end face of the detection light guiding optical fiber 13 and the emission end face of the detection optical fiber 8 face each other. The state in which the light guided by the detection optical fiber 8 enters the incident optical path P may be referred to as a detection light incidence state.

【0022】又、図4の(ロ)にも示すように、ファイ
バ支持体15を校正光案内用光ファイバ14の出射端面
が入射光路P上に位置するように移動操作したときに、
校正用光ファイバ9の出射端面が校正光案内用光ファイ
バ14の入射端面に対向位置するように、校正用光ファ
イバ9を入射光切換部用暗箱18に接続してある。以
下、このように、校正光案内用光ファイバ14の出射端
面が入射光路P上に位置し、且つ、校正光案内用光ファ
イバ14の入射端面と校正用光ファイバ9の出射端面が
対向して、校正用光ファイバ9にて案内される光が入射
光路Pに入射する状態を、校正光入射状態と称する場合
がある。
As shown in FIG. 4B, when the fiber support 15 is moved so that the exit end face of the calibration light guiding optical fiber 14 is positioned on the incident optical path P,
The calibration optical fiber 9 is connected to the incident light switching section dark box 18 such that the emission end face of the calibration optical fiber 9 faces the incidence end face of the calibration light guide optical fiber 14. Hereinafter, as described above, the emission end face of the calibration light guide optical fiber 14 is located on the incident optical path P, and the incidence end face of the calibration light guide optical fiber 14 and the emission end face of the calibration optical fiber 9 face each other. The state where the light guided by the calibration optical fiber 9 enters the incident optical path P may be referred to as a calibration light incident state.

【0023】又、図3にも示すように、光通過用の開口
23wと光を遮断する遮光部23cとが交互に周方向に
並ぶ状態で備えたシャッタ用円板23を、光源1から照
射用光ファイバ7の入射端面に対する入射光路を横切る
状態で、回転自在に設け、更に、シャッタ用円板23を
回転駆動するシャッタ用モータ24を設けてある。そし
て、そのシャッタ用モータ24にてシャッタ用円板23
を一定速度で回転駆動することにより、周期的に、計測
用光が試料Sに照射される照射状態と照射されない非照
射状態とに切り換えられる。
As shown in FIG. 3, the light source 1 irradiates the shutter disk 23 provided with the light-passing openings 23w and the light-shielding portions 23c that block the light alternately in the circumferential direction. A shutter motor 24 for rotatably driving the shutter disk 23 is provided so as to be rotatable in a state of crossing the incident optical path with respect to the incident end face of the optical fiber 7. Then, the shutter disk 23 is driven by the shutter motor 24.
Is rotated at a constant speed, so that the sample S is periodically switched between an irradiation state in which the sample light is irradiated and a non-irradiation state in which the measurement light is not irradiated.

【0024】次に、成分を分析するための制御部5の制
御作動について説明する。制御部5は、マイクロコンピ
ュータを利用して構成してあり、基本的には、リニアイ
メージセンサ4からの出力情報を処理して、吸光度スペ
クトル、及び、吸光度スペクトルの波長領域での二次微
分値を得ると共に、その二次微分値に基づいて、下記の
式1の検量式に基づいて成分量Qを算出する。
Next, the control operation of the control unit 5 for analyzing the components will be described. The control unit 5 is configured using a microcomputer, and basically processes output information from the linear image sensor 4 to obtain an absorbance spectrum and a second derivative value in a wavelength region of the absorbance spectrum. Is obtained, and the component amount Q is calculated based on the secondary differential value based on the calibration equation of the following equation 1.

【0025】[0025]

【数1】(式1) Q=K0 +K1 ×A(λ1 )+K2 ×A(λ2 )+K3
×A(λ3 )……
(Equation 1) Q = K 0 + K 1 × A (λ 1 ) + K 2 × A (λ 2 ) + K 3
× A (λ 3 ) ……

【0026】但し、 K0 ,K1 ,K2 ,K3 ……;充分に多い母集団で求め
た係数 A(λ1 ),A(λ2 ),A(λ3 )……;特定波長λ
における吸光度スペクトルの二次微分値
Where K 0 , K 1 , K 2 , K 3 ...; Coefficients A (λ 1 ), A (λ 2 ), A (λ 3 ) obtained from a sufficiently large population; λ
Derivative of absorbance spectrum at

【0027】又、制御部5は、フィルタ切換用モータ1
2、入射光切換用モータ16及びシャッタ用モータ24
夫々の作動を制御して、リニアイメージセンサ4が受光
する光を種々に切り換えながら、成分を分析するに当た
って、リニアイメージセンサ4の各受光素子の出力特性
の変化による影響を除去するための処理を行う。以下、
その処理について説明を加える。
The control unit 5 includes a filter switching motor 1.
2. Incident light switching motor 16 and shutter motor 24
In analyzing the components while controlling the respective operations to variously change the light received by the linear image sensor 4, a process for removing the influence due to the change in the output characteristics of each light receiving element of the linear image sensor 4 is performed. Do. Less than,
The processing will be described.

【0028】予め、測定雰囲気温度が基準温度(例え
ば、25°C)において、入射光切換用モータ16の作
動により前記校正光入射状態にした状態で、フィルタ切
換用モータ12により、リファレンスフィルタ19a,
19b,19cを順次入射光路Pに位置させて、リファ
レンスフィルタ毎に、受光素子夫々について、光源1か
らの測定用光がリファレンスフィルタを透過したリファ
レンス光の分光スペクトルの出力情報を基準リファレン
ス情報Rae (i),Rbe (i),Rce (i)とし
て得ると共に、その基準リファレンス情報を制御部5の
記憶部5mに記憶させておく。但し、i=1,2,3…
…であり、受光素子の番号である。
In advance, when the measuring atmosphere temperature is a reference temperature (for example, 25 ° C.) and the calibration light is incident by the operation of the incident light switching motor 16, the filter switching motor 12 causes the reference filter 19a,
19b and 19c are sequentially positioned on the incident optical path P, and for each reference filter, for each light receiving element, output information of the spectral spectrum of the reference light in which the measuring light from the light source 1 has passed through the reference filter is used as reference reference information Ra e. (i), Rb e (i ), together with obtained as Rc e (i), allowed to store the reference reference information in the storage section 5m of the control unit 5. However, i = 1, 2, 3 ...
, And are the numbers of the light receiving elements.

【0029】又、前記基準温度において、フィルタ切換
用モータ12により、遮光部21を入射光路Pに位置さ
せて、リニアイメージセンサ4に対する光の照射を禁止
する遮光状態として、受光素子夫々について、受光情報
を得ると共にその受光情報を基準暗情報De (i)とし
て記憶部5mに記憶しておく。
At the reference temperature, the light-shielding portion 21 is positioned on the incident optical path P by the filter switching motor 12 so that the light irradiation to the linear image sensor 4 is prohibited. The information is obtained and the received light information is stored in the storage unit 5m as the reference dark information De (i).

【0030】測定のときには、入射光切換用モータ16
の作動により前記校正光入射状態にした状態で、フィル
タ切換用モータ12により、リファレンスフィルタ19
a,19b,19cを順次入射光路Pに位置させて、リ
ファレンスフィルタ毎に、受光素子夫々について、リフ
ァレンス光の分光スペクトルの受光情報を測定リファレ
ンス情報Ram (i),Rbm (i),Rcm (i)と
して得る。又、フィルタ切換用モータ12により、遮光
部21を入射光路Pに位置させて、前記遮光状態とし
て、受光素子夫々について、受光情報を得ると共にその
受光情報を測定暗情報Dm (i)として得る。
At the time of measurement, the incident light switching motor 16
In the state where the calibration light is incident by the operation of the above, the reference filter 19 is driven by the filter switching motor 12.
a, 19b, 19c sequentially is located in the incident light path P and for each reference filter, the light receiving element respectively measuring the reference information received information spectrum of the reference light Ra m (i), Rb m (i), Rc m (i). Further, the light-shielding portion 21 is positioned on the incident optical path P by the filter switching motor 12, and in the light-shielding state, light-receiving information is obtained for each of the light-receiving elements, and the light-receiving information is obtained as measurement dark information D m (i). .

【0031】又、入射光切換用モータ16の作動により
前記校正光入射状態にした状態で、フィルタ切換用モー
タ12により、校正用フィルタ20を入射光路Pに位置
させて、リニアイメージセンサ4により、光源1からの
測定用光が校正用フィルタ20を通過した校正用光の分
光スペクトルを受光する状態として、受光素子夫々につ
いて、測定校正情報Vm (i)を得る。
In the state where the calibration light is incident by the operation of the incident light switching motor 16, the calibration filter 20 is positioned on the incident optical path P by the filter switching motor 12, and the linear image sensor 4 As a state in which the measuring light from the light source 1 receives the spectrum of the calibration light that has passed through the calibration filter 20, measurement calibration information V m (i) is obtained for each of the light receiving elements.

【0032】又、入射光切換用モータ16の作動により
前記検出光入射状態にした状態で、シャッタ用モータ2
4を設定時間の間作動させて、周期的に前記照射状態と
前記非照射状態とに切り換えられるようにする。そし
て、受光素子夫々について、前記照射状態のときの情報
として測定外乱光含有試料情報Swm (i)を、及び、
前記非照射状態ときの情報として測定外乱光情報Scm
(i)を得る。
In the state where the detection light is incident by the operation of the incident light switching motor 16, the shutter motor 2
4 is operated for a set time so that the irradiation state and the non-irradiation state can be periodically switched. Then, for each of the light receiving elements, measured disturbance light-containing sample information Sw m (i) as information in the irradiation state, and
As the information in the non-irradiation state, measured disturbance light information Sc m
(I) is obtained.

【0033】続いて、以下のように、基準状態変換式設
定処理を行う。即ち、受光素子夫々について、記憶部5
mに記憶されている基準リファレンス情報Ra
e (i),Rbe (i),Rce (i)及び基準暗情報
e (i)、並びに、測定した測定リファレンス情報R
m (i),Rbm (i),Rcm (i)及び測定暗情
報Dm (i)を、下記の式2に示すように処理して、そ
れらの処理結果を用いて、最小二乗近似を行い、図5に
示すように、下記の式3を与える係数α(i),β
(i)を求める。
Subsequently, a reference state conversion formula setting process is performed as follows. That is, for each light receiving element, the storage unit 5
m, reference reference information Ra stored in
e (i), Rb e ( i), Rc e (i) and reference dark information D e (i), as well as the measurement reference information R measured
a m (i), Rb m (i), Rc m (i) and the measured dark information D m a (i), was processed as shown in Equation 2 below, using these processing results, the least squares After approximation, as shown in FIG. 5, coefficients α (i), β
Find (i).

【0034】[0034]

【数2】(式2) Xa(i)=Ram (i)−Dm (i) Xb(i)=Rbm (i)−Dm (i) Xc(i)=Rcm (i)−Dm (i) Ya(i)=Rae (i)−De (i) Yb(i)=Rbe (i)−De (i) Yc(i)=Rce (i)−De (i) (式3) Y=α(i)×X+β(i)[Number 2] (Equation 2) Xa (i) = Ra m (i) -D m (i) Xb (i) = Rb m (i) -D m (i) Xc (i) = Rc m (i) -D m (i) Ya (i ) = Ra e (i) -D e (i) Yb (i) = Rb e (i) -D e (i) Yc (i) = Rc e (i) -D e (i) (Equation 3) Y = α (i) × X + β (i)

【0035】但し、記憶部5mの記憶情報を得た時(以
下、基準状態と称する場合がある)における受光素子の
出力情報をE(i)とし、測定時における受光素子の出
力情報をM(i)とすると、X,Yは、下記の式4にて
表される。
However, when the information stored in the storage unit 5m is obtained (hereinafter sometimes referred to as a reference state), the output information of the light receiving element is E (i), and the output information of the light receiving element at the time of measurement is M ( Assuming that i), X and Y are represented by Equation 4 below.

【0036】[0036]

【数3】(式4) X=M(i)−Dm (i) Y=E(i)−De (i)X = M (i) −D m (i) Y = E (i) −D e (i)

【0037】続いて、制御部5は、測定時に得た受光情
報を基準状態における値に変換する基準状態変換処理を
行う。すなわち、上記の式3及び式4を用いて、測定外
乱光含有試料情報Swm (i)を基準状態における値に
変換して、基準状態外乱光含有試料情報Swe (i)を
求める。つまり、測定外乱光含有試料情報Swm (i)
を測定時における受光素子の出力情報をM(i)とし、
基準状態における受光素子の出力情報E(i)を基準状
態外乱光含有試料情報Swe (i)として求めるのであ
る。同様に、上記の式3及び式4を用いて、測定外乱光
情報Scm (i)を基準状態における値に変換して、基
準状態外乱光情報Sce (i)を求め、並びに、測定校
正情報Vm (i)を基準状態における値に変換して、基
準状態校正情報Ve(i)を得る。
Subsequently, the control unit 5 performs a reference state conversion process of converting the received light information obtained at the time of measurement into a value in the reference state. In other words, the measured disturbance light-containing sample information Sw m (i) is converted into a value in the reference state using the above Expressions 3 and 4, and the reference state disturbance light-containing sample information Sw e (i) is obtained. That is, the measurement disturbance light-containing sample information Sw m (i)
Let M (i) be the output information of the light receiving element at the time of measurement,
Output information E of the light receiving element in the reference state (i) is determine as a reference state disturbance light containing sample information Sw e (i). Similarly, using the above equations 3 and 4, the measured disturbance light information Sc m (i) is converted into a value in the reference state to obtain the reference state disturbance light information Sc e (i), and the measurement calibration is performed. The information V m (i) is converted into a value in the reference state to obtain reference state calibration information V e (i).

【0038】続いて、以下のように、外乱光情報除去処
理を行う。即ち、下記の式5に基づいて、基準状態外乱
光含有試料情報Swe (i)及び基準状態外乱光情報S
e (i)により、基準状態外乱光情報Sce (i)を
外乱光のみによる情報として処理して、光源1からの計
測用光のみによる検出光の情報として、基準状態外乱光
非含有試料情報S(i)を得る。
Subsequently, disturbance light information removal processing is performed as follows. That is, based on the following equation 5, the reference state disturbance light-containing sample information Sw e (i) and the reference state disturbance light information S
The c e (i), and the reference state ambient light information Sc e (i) is treated as information only by disturbance light, as the information of the detection light by only measurement light from the light source 1, the reference state ambient light-free sample Obtain information S (i).

【0039】[0039]

【数4】(式5) S(i)=Swe (i)−Sce (i)[Number 4] (Equation 5) S (i) = Sw e (i) -Sc e (i)

【0040】続いて、以下のように、波長校正処理を行
う。即ち、基準状態校正情報Ve (i)を用いて、複数
の受光素子と受光波長との対応関係を求めて、各受光素
子の受光波長の校正を行う。
Subsequently, a wavelength calibration process is performed as follows. That is, using the reference state calibration information V e (i), the correspondence between the plurality of light receiving elements and the light receiving wavelength is obtained, and the light receiving wavelength of each light receiving element is calibrated.

【0041】そして、このように、各受光素子の受光波
長の校正を行った状態で、基準状態外乱光非含有試料情
報S(i)を用いて、上記の式1に示す検量式に基づい
て、成分量Qを算出する。
Then, in the state where the light receiving wavelength of each light receiving element is calibrated as described above, based on the calibration equation shown in the above equation 1, using the reference state disturbance light free sample information S (i). , The component amount Q is calculated.

【0042】〔別実施形態〕次に別実施形態を説明す
る。 (イ) リニアイメージセンサ4の受光素子の暗電流が
小さくて、それが成分の分析に与える影響を無視できる
ときは、上記の実施形態において、遮光部21を入射光
路Pに位置させて前記遮光状態として、基準暗情報De
(i)を得てそれを記憶部5mに記憶させる処理、及
び、測定のときに、同様に前記遮光状態として、測定暗
情報Dm (i)を得る処理を省略して、前記基準状態変
換式設定処理においては、基準リファレンス情報Rae
(i),Rbe (i),Rce (i)及び測定リファレ
ンス情報Ram (i),Rbm (i),Rcm (i)の
みで、上記の式3を与える係数α(i),β(i)を求
めることができる。従って、遮光部21を省略すること
ができる。従って、基準状態変換処理においては、式3
を用いて、測定外乱光含有試料情報Swm (i)をXと
して、Yを基準状態外乱光含有試料情報Swe (i)と
して求め、同様に、測定外乱光情報Scm (i)をXと
して、Yを基準状態外乱光情報Sce (i)として求
め、測定校正情報Vm (i)をXとして、Yを基準状態
校正情報Ve (i)として求める。この場合、分析に要
する時間の短縮化、装置構成の簡略化を図ることができ
る。
[Another Embodiment] Next, another embodiment will be described. (A) When the dark current of the light receiving element of the linear image sensor 4 is small and its influence on the component analysis can be neglected, in the above embodiment, the light shielding unit 21 is positioned on the incident optical path P and the light shielding is performed. As the state, the reference dark information De
The process of obtaining (i) and storing it in the storage unit 5m and the process of obtaining the measurement dark information D m (i) as the light-shielding state at the time of measurement are also omitted, and the reference state conversion is performed. In the equation setting process, the reference information Ra e
(I), Rb e (i ), Rc e (i) and measuring the reference information Ra m (i), Rb m (i), only Rc m (i), the coefficient giving the equation 3 above alpha (i) , Β (i). Therefore, the light shielding part 21 can be omitted. Therefore, in the reference state conversion processing, the expression 3
Is used to determine the measured disturbance light-containing sample information Sw m (i) as X, and Y as the reference state disturbance light-containing sample information Sw e (i). Similarly, the measured disturbance light information Sc m (i) is calculated as X , Y is obtained as reference state disturbance light information Sc e (i), measurement calibration information V m (i) is set as X, and Y is obtained as reference state calibration information V e (i). In this case, the time required for the analysis can be reduced, and the configuration of the apparatus can be simplified.

【0043】(ロ) 外乱光を遮光するフード等を設け
て、外乱光が入射しない状態で分析する場合は、外乱光
が含まれない状態で検出光を得ることができるので、上
記の実施形態において、測定外乱光情報Scm (i)を
得るための処理、及び、外乱光情報除去処理が不要とな
る。従って、シャッタ用円板23及びシャッタ用モータ
24を省略することができる。この場合、分析に要する
時間の短縮化、装置構成の簡略化を図ることができる。
(B) In the case where a hood or the like that blocks disturbance light is provided and analysis is performed in a state where disturbance light is not incident, detection light can be obtained in a state where disturbance light is not included. In the above, the process for obtaining the measured disturbance light information Sc m (i) and the process of removing the disturbance light information are not required. Therefore, the shutter disk 23 and the shutter motor 24 can be omitted. In this case, the time required for the analysis can be reduced, and the configuration of the apparatus can be simplified.

【0044】(ハ) 複数の受光素子と試料からの検出
光を分光する光学部品との位置関係の変化がないか又は
小さくて、それが成分の分析に与える影響を無視できる
場合は、上記の実施形態において、校正用フィルタ20
を入射光路Pに位置させて測定校正情報Vm (i)を得
て、複数の受光素子と受光波長との対応関係を求める波
長校正処理を省略することができる。従って、校正用フ
ィルタ20を省略することができる。この場合、分析に
要する時間の短縮化、装置構成の簡略化を図ることがで
きる。
(C) If there is no or small change in the positional relationship between the plurality of light receiving elements and the optical components that disperse the detection light from the sample, and the influence of the change on the component analysis can be ignored. In the embodiment, the calibration filter 20 is used.
Is located in the incident optical path P, the measurement calibration information V m (i) is obtained, and the wavelength calibration processing for obtaining the correspondence between the plurality of light receiving elements and the received light wavelengths can be omitted. Therefore, the calibration filter 20 can be omitted. In this case, the time required for the analysis can be reduced, and the configuration of the apparatus can be simplified.

【0045】(ニ) 上記の(イ)に記載した如き、受
光素子の暗電流を影響を除去するための処理を省略する
別実施形態、上記の(ロ)に記載した如き、外乱光情報
除処理を省略する別実施形態、及び、上記の(ハ)に記
載した如き、波長校正処理を省略する別実施形態は、そ
れらのすべてを実施しても良いし、それらのうちのいず
れか二つを実施しても良いし、あるいは、それらのうち
のいずれか一つを省略しても良い。
(D) Another embodiment of omitting the process for removing the influence of the dark current of the light receiving element as described in (a) above, and removing the disturbance light information as described in (b) above In another embodiment in which the processing is omitted, and in another embodiment in which the wavelength calibration processing is omitted as described in (c) above, all of them may be executed, or any two of them may be executed. May be performed, or one of them may be omitted.

【0046】(ホ) 上記の実施形態において、基準状
態変換処理では、式3を用いて、測定外乱光含有試料情
報Swm (i)をXとして、Yを基準状態外乱光含有試
料情報Swe (i)として求め、同様に、測定外乱光情
報Scm (i)をXとして、Yを基準状態外乱光情報S
e (i)として求め、測定校正情報Vm (i)をXと
して、Yを基準状態校正情報Ve (i)として求めても
良い。この場合、成分分析の誤差が多少が大きくなる
が、演算処理を簡略化することができる。
(E) In the above-described embodiment, in the reference state conversion processing, the measured disturbance light-containing sample information Sw m (i) is set to X using Expression 3, and Y is set to the reference state disturbance light-containing sample information Sw e. (I), and similarly, the measured disturbance light information Sc m (i) is X, and Y is the reference state disturbance light information S
It may be obtained as c e (i), the measurement calibration information V m (i) as X, and Y as reference state calibration information V e (i). In this case, the error of the component analysis is slightly increased, but the arithmetic processing can be simplified.

【0047】(ヘ) 透過光量が互いに異なるリファレ
ンスフィルタの設置個数は、上記の実施形態において例
示した3個の限定されるものではなく2個でも良いし、
4個以上でも良い。設置個数を多くするほど、分析精度
を良くすることができるが処理時間が長くなる。
(F) The number of reference filters having different amounts of transmitted light is not limited to the three illustrated in the above embodiment, but may be two.
Four or more may be used. As the number of installations increases, the analysis accuracy can be improved, but the processing time becomes longer.

【0048】(ト) 上記の実施形態においては、試料
からの検出光として、拡散反射光を得る場合について例
示したが、検出光としては、試料からの反射光又は透過
光を得ても良い。そして、試料に対して計測用光を照射
すると共に、試料からの検出光を受光するための手段と
しては、上記の実施形態において例示した投受光部2に
代えて、受光する検出光に応じて種々に構成可能であ
る。
(G) In the above embodiment, the case where diffuse reflected light is obtained as the detection light from the sample has been described. However, the detection light may be light reflected or transmitted from the sample. As means for irradiating the sample with measurement light and receiving the detection light from the sample, instead of the light emitting and receiving unit 2 exemplified in the above embodiment, according to the received detection light Various configurations are possible.

【0049】(チ) 入射光切換部Mの具体構成は、上
記の実施形態において例示した構成に限定されるもので
はない。例えば、光源1からの測定用光をリファレンス
フィルタや校正用フィルタ20に通過させるための構成
としては、投受光部2と試料Sとの間に、投受光部2か
ら照射される計測用光を反射させる反射鏡を出退自在に
設け、計測用光をその反射鏡により反射させて投受光部
2に受光させて、検出用光ファイバ8にて導くように構
成しても良い。この場合は、校正用光ファイバ9、ファ
イバ支持体15及び入射光切換用モータ16を省略する
ことができる。 (リ) 試料Sからの検出光以外に、光源1からの計測
用光を各種のフィルタを通過させた状態で凹面回折格子
3に入射させる等、凹面回折格子3に入射させる光を種
々に切り換える操作については、上記の実施形態におい
ては、入射光切換部Mを設けて自動的に行う場合につい
て例示したが、手動にて行うようにしても良い。
(H) The specific configuration of the incident light switching section M is not limited to the configuration exemplified in the above embodiment. For example, as a configuration for allowing the measurement light from the light source 1 to pass through the reference filter and the calibration filter 20, the measurement light emitted from the light emitting and receiving unit 2 is interposed between the light emitting and receiving unit 2 and the sample S. A reflecting mirror for reflection may be provided so as to be able to move back and forth, and the measuring light may be reflected by the reflecting mirror, received by the light emitting / receiving unit 2, and guided by the detection optical fiber 8. In this case, the calibration optical fiber 9, the fiber support 15, and the incident light switching motor 16 can be omitted. (I) In addition to the detection light from the sample S, the light to be incident on the concave diffraction grating 3 is variously switched such that the measurement light from the light source 1 is incident on the concave diffraction grating 3 while passing through various filters. In the above embodiment, the operation has been described by way of example in which the incident light switching unit M is provided and the operation is automatically performed. However, the operation may be performed manually.

【0050】(ヌ) 複数の受光素子を備えた受光用の
デバイスの具体構成としては、上記の実施形態において
例示したリニアイメージセンサ4に限定されるものでは
なく、CCD等種々のデバイスを用いることができる。
The specific configuration of the light receiving device having a plurality of light receiving elements is not limited to the linear image sensor 4 exemplified in the above embodiment, and various devices such as a CCD may be used. Can be.

【0051】(ル) 本発明による方法において、成分
を分析する対象とする試料としては、青果物や穀物等、
種々のものを適用することができる。又、分析する成分
としては、分析対象の試料に応じて、糖度、酸度等、種
々の成分を分析することができる。従って、分析対象と
なる試料及び成分に応じて、検量式を設定することにな
る。
(G) In the method according to the present invention, samples to be analyzed for components include fruits and vegetables, grains, etc.
Various things can be applied. In addition, as components to be analyzed, various components such as sugar content and acid content can be analyzed according to the sample to be analyzed. Therefore, a calibration formula is set according to the sample and the component to be analyzed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】分光分析装置のブロック図FIG. 1 is a block diagram of a spectroscopic analyzer.

【図2】分光分析装置のフィルタ装備用円板を示す図FIG. 2 is a diagram showing a disc for a filter device of the spectroscopic analyzer.

【図3】分光分析装置のシャッタ用円板を示す図FIG. 3 is a diagram illustrating a shutter disk of the spectroscopic analyzer.

【図4】受光素子に受光させる光を切り換えるための構
成を説明する図
FIG. 4 is a diagram illustrating a configuration for switching light to be received by a light receiving element.

【図5】基準状態変換式を示す図FIG. 5 is a diagram showing a reference state conversion formula.

【図6】受光素子の出力特性の変化を示す図FIG. 6 is a diagram showing a change in output characteristics of a light receiving element.

【図7】受光素子の出力特性の変化を示す図FIG. 7 is a diagram showing a change in output characteristics of a light receiving element.

【符号の説明】[Explanation of symbols]

1 光源 19a,19b,19c リファレンスフィルタ 20 校正用フィルタ Reference Signs List 1 light source 19a, 19b, 19c reference filter 20 calibration filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 良治 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 (72)発明者 加洲 政幸 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 (72)発明者 山内 良吾 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 Fターム(参考) 2G059 AA01 BB11 CC20 EE01 EE02 FF06 GG10 HH01 JJ02 JJ05 JJ17 JJ23 JJ30 KK04 LL04 MM01 MM05 MM10 MM14 NN05 NN06 PP04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Ryoji Suzuki 1-1-1, Hama, Amagasaki-shi, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. (72) Inventor Masayuki Kasu 1-1-1, Hama, Amagasaki-shi, Hyogo Stock (72) Inventor Ryogo Yamauchi 1-1-1 Hama, Amagasaki-shi, Hyogo F-term in Kubota Technology Development Laboratory Co., Ltd. (reference) 2G059 AA01 BB11 CC20 EE01 EE02 FF06 GG10 HH01 JJ02 JJ05 JJ17 JJ23 JJ30 KK04 LL04 MM01 MM05 MM10 MM14 NN05 NN06 PP04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光源からの測定用光を試料に照射し、試
料からの反射光又は透過光である検出光を分光して、検
出光の分光スペクトルを得、その検出光の分光スペクト
ルを、並置した複数の受光素子にて波長毎に同時に受光
し、それら受光素子の受光情報に基づいて、試料に含ま
れる成分を分析する分光分析方法であって、 透過光量が互いに異なる複数のリファレンスフィルタを
用意し、 予め、基準リファレンス情報として、前記受光素子夫々
について、前記リファレンスフィルタ毎に、前記光源か
らの測定用光が前記リファレンスフィルタを透過したリ
ファレンス光の分光スペクトルの受光情報を得ると共
に、その基準リファレンス情報を記憶しておき、 測定のときは、前記受光素子夫々について、前記リファ
レンスフィルタ毎に、前記リファレンス光の分光スペク
トルの受光情報を測定リファレンス情報として得て、 前記受光素子夫々についての、前記リファレンスフィル
タ毎の前記基準リファレンス情報、前記リファレンスフ
ィルタ毎の前記測定リファレンス情報、及び、試料から
の検出光のスペクトルの受光情報に基づいて、試料の成
分を求める分光分析方法。
A sample is irradiated with measurement light from a light source, and detection light, which is reflected light or transmitted light from the sample, is separated to obtain a spectrum of the detection light. A spectral analysis method in which a plurality of juxtaposed light receiving elements simultaneously receive light for each wavelength and analyze components contained in a sample based on light receiving information of the light receiving elements. Prepare and obtain, as reference reference information, in advance, for each of the light receiving elements, light receiving information of a spectral spectrum of reference light transmitted from the light source through the reference filter for measurement light from the light source for each of the reference filters. Reference information is stored, and at the time of measurement, for each of the light receiving elements, the reference information is stored for each of the reference filters. Obtaining light reception information of a spectral spectrum of reference light as measurement reference information, for each of the light receiving elements, the reference reference information for each of the reference filters, the measurement reference information for each of the reference filters, and detection light from a sample. Spectroscopic analysis method for determining the components of a sample based on the received light information of the spectrum.
【請求項2】 前記受光素子夫々について、前記リファ
レンスフィルタ毎の前記基準リファレンス情報と前記測
定リファレンス情報とに基づいて、前記受光素子の受光
情報を、前記基準リファレンス情報を得た基準状態にお
ける受光情報に変換する基準状態変換式を求め、 その基準状態変換式を用いて、前記受光素子における前
記検出光の分光スペクトルの受光情報を前記基準状態で
の受光情報に変換して、基準状態試料情報を求め、その
基準状態試料情報に基づいて試料の成分を求める請求項
1記載の分光分析方法。
2. For each of the light receiving elements, based on the reference reference information and the measurement reference information for each of the reference filters, the light receiving information of the light receiving element is changed to the light receiving information in a reference state in which the reference reference information is obtained. The reference state conversion formula is obtained by converting the received light information of the spectral spectrum of the detection light in the light receiving element into the received light information in the reference state using the reference state conversion formula. 2. The spectroscopic analysis method according to claim 1, wherein the components of the sample are obtained based on the obtained reference state sample information.
【請求項3】 予め、前記基準状態において、前記複数
の受光素子に対する光の照射を禁止する遮光状態で、前
記受光素子夫々について、受光情報を得ると共にその受
光情報を基準暗情報として記憶しておき、 測定のときは、前記遮光状態で、前記受光素子夫々につ
いて、受光情報を測定暗情報として得て、 前記基準状態変換式を、前記リファレンスフィルタ毎の
前記基準リファレンス情報と前記基準暗情報との差と、
前記リファレンスフィルタ毎の前記測定リファレンス情
報と前記測定暗情報との差に基づいて求める請求項2記
載の分光分析方法。
3. In a light-shielding state in which irradiation of light to the plurality of light-receiving elements is prohibited in the reference state, light-receiving information is obtained for each of the light-receiving elements, and the light-receiving information is stored as reference dark information. In the measurement, the light receiving information is obtained as measurement dark information for each of the light receiving elements in the light-shielded state, and the reference state conversion formula is obtained by calculating the reference state conversion formula using the reference reference information and the reference dark information for each reference filter. And the difference
3. The spectroscopic analysis method according to claim 2, wherein the determination is performed based on a difference between the measurement reference information and the measurement dark information for each of the reference filters.
【請求項4】 測定のときは、試料に対して前記測定用
光を照射しない状態で、前記複数の受光素子により、試
料からの検出光の分光スペクトルの受光情報を得ると共
に、その受光情報を前記基準状態変換式を用いて前記基
準状態での受光情報に変換して、基準状態外乱光情報を
求め、 前記基準状態試料情報と前記基準状態外乱光情報とに基
づいて、その基準状態外乱光情報を前記検出光以外の外
乱光に対応する情報として処理して、試料に含まれる成
分を分析する請求項2又は3記載の分光分析方法。
4. During measurement, the plurality of light-receiving elements obtain light-receiving information of a spectral spectrum of detection light from the sample and do not transmit the light-receiving information while the sample is not irradiated with the measuring light. By converting the received light information in the reference state using the reference state conversion formula, to obtain the reference state disturbance light information, based on the reference state sample information and the reference state disturbance light information, the reference state disturbance light 4. The spectroscopic analysis method according to claim 2, wherein the information is processed as information corresponding to disturbance light other than the detection light, and a component contained in the sample is analyzed.
【請求項5】 成分分析用の波長範囲において少なくと
も2つのピーク部を備えた校正用光が得られる校正用フ
ィルタを用意し、 測定のときは、前記校正用フィルタを透過した校正用光
の分光スペクトルを前記複数の受光素子で受光し、その
受光情報を前記基準状態変換式を用いて前記基準状態で
の受光情報に変換して、基準状態校正情報を求めると共
に、その基準状態校正情報に基づいて、前記複数の受光
素子と受光波長との対応関係を求め、 その対応関係に基づいて、各受光素子の受光波長の校正
を行う請求項2〜4のいずれか1項に記載の分光分析方
法。
5. A calibration filter that can obtain calibration light having at least two peaks in a wavelength range for component analysis, and for measurement, disperse the calibration light transmitted through the calibration filter. The spectrum is received by the plurality of light receiving elements, the received light information is converted into the received light information in the reference state using the reference state conversion formula, and the reference state calibration information is obtained, and based on the reference state calibration information. 5. The spectral analysis method according to claim 2, wherein a correspondence between the plurality of light receiving elements and the light receiving wavelength is obtained, and the light receiving wavelength of each light receiving element is calibrated based on the correspondence. .
JP00747199A 1999-01-14 1999-01-14 Spectroscopic analysis method Expired - Lifetime JP3992390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00747199A JP3992390B2 (en) 1999-01-14 1999-01-14 Spectroscopic analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00747199A JP3992390B2 (en) 1999-01-14 1999-01-14 Spectroscopic analysis method

Publications (2)

Publication Number Publication Date
JP2000206037A true JP2000206037A (en) 2000-07-28
JP3992390B2 JP3992390B2 (en) 2007-10-17

Family

ID=11666714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00747199A Expired - Lifetime JP3992390B2 (en) 1999-01-14 1999-01-14 Spectroscopic analysis method

Country Status (1)

Country Link
JP (1) JP3992390B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194767A (en) * 2005-01-14 2006-07-27 Iseki & Co Ltd Measuring method of internal component information of fruit
JP2008002903A (en) * 2006-06-21 2008-01-10 Mitsui Mining & Smelting Co Ltd Internal quality evaluation apparatus of vegetables and fruits
JP2008298466A (en) * 2007-05-29 2008-12-11 Shizuoka Shibuya Seiki Co Ltd Internal quality measuring device for agricultural product
JP2017058267A (en) * 2015-09-17 2017-03-23 株式会社サタケ Reflection type component analysis device
US9797774B2 (en) 2013-12-27 2017-10-24 Seiko Epson Corporation Spectrometry system, spectroscopic module, and positional deviation detection method
US9880055B2 (en) 2014-06-30 2018-01-30 Seiko Epson Corporation Spectroscopic imaging apparatus and spectroscopic imaging method
JP2018048980A (en) * 2016-09-23 2018-03-29 大塚電子株式会社 Spectrometry device
JP2018520354A (en) * 2015-08-13 2018-07-26 ハリバートン エナジー サヴィシーズ インコーポレイテッド Calibration of optical computing devices using traceable filters
JP2019032270A (en) * 2017-08-09 2019-02-28 シチズン時計株式会社 Spectroscopic measurement device, and spectroscopic measurement method
JP2020101409A (en) * 2018-12-20 2020-07-02 株式会社クボタ Portable measurement device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621876B2 (en) * 2005-01-14 2011-01-26 井関農機株式会社 Near-infrared spectrum measuring device
JP2006194767A (en) * 2005-01-14 2006-07-27 Iseki & Co Ltd Measuring method of internal component information of fruit
JP2008002903A (en) * 2006-06-21 2008-01-10 Mitsui Mining & Smelting Co Ltd Internal quality evaluation apparatus of vegetables and fruits
JP2008298466A (en) * 2007-05-29 2008-12-11 Shizuoka Shibuya Seiki Co Ltd Internal quality measuring device for agricultural product
US9797774B2 (en) 2013-12-27 2017-10-24 Seiko Epson Corporation Spectrometry system, spectroscopic module, and positional deviation detection method
US9880055B2 (en) 2014-06-30 2018-01-30 Seiko Epson Corporation Spectroscopic imaging apparatus and spectroscopic imaging method
JP2018520354A (en) * 2015-08-13 2018-07-26 ハリバートン エナジー サヴィシーズ インコーポレイテッド Calibration of optical computing devices using traceable filters
US10551302B2 (en) 2015-08-13 2020-02-04 Halliburton Energy Services, Inc. Calibration of optical computing devices using traceable filters
JP2017058267A (en) * 2015-09-17 2017-03-23 株式会社サタケ Reflection type component analysis device
CN107870037A (en) * 2016-09-23 2018-04-03 大塚电子株式会社 spectroscopic measurement device
KR20180033054A (en) * 2016-09-23 2018-04-02 오츠카덴시가부시끼가이샤 Spectroscopic measurement apparatus
JP2018048980A (en) * 2016-09-23 2018-03-29 大塚電子株式会社 Spectrometry device
TWI728177B (en) * 2016-09-23 2021-05-21 日商大塚電子股份有限公司 Spectrophotometer
CN107870037B (en) * 2016-09-23 2021-06-29 大塚电子株式会社 Spectrometry device
KR102355342B1 (en) * 2016-09-23 2022-01-24 오츠카덴시가부시끼가이샤 Spectroscopic measurement apparatus
JP2019032270A (en) * 2017-08-09 2019-02-28 シチズン時計株式会社 Spectroscopic measurement device, and spectroscopic measurement method
JP2020101409A (en) * 2018-12-20 2020-07-02 株式会社クボタ Portable measurement device
JP7280038B2 (en) 2018-12-20 2023-05-23 株式会社クボタ Portable measuring device

Also Published As

Publication number Publication date
JP3992390B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
EP1784624B1 (en) Calibration for spectroscopic analysis
US3973849A (en) Self-calibratable spectrum analyzer
US5731581A (en) Apparatus for automatic identification of gas samples
US20080094623A1 (en) Autonomous Calibration for Optical Analysis System
KR20110127122A (en) Sample analyzing apparatus
US7316322B2 (en) Quality evaluation apparatus for fruits and vegetables
GB2128359A (en) Double-beam spectrophotometer
JP2000206037A (en) Spectroscopic analytical method
WO2007121593A1 (en) Method for measurement and determination of concentration within a mixed medium
JPH052931B2 (en)
JP2002098636A (en) Spectroscopic analyzer
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP2006300674A (en) Spectrophotometer
WO2019069526A1 (en) Spectrometer
JP2002082050A (en) Spectrum analyzer
JP4486805B2 (en) Spectroscopic analyzer
JPH085550A (en) Spectroscopic analyzer
JPH0720042A (en) Device for spectroscopic analysis
JP3576105B2 (en) Internal quality measurement device
JP2006266868A (en) Absorption analyzer and absorption analysis method
JPS5827029A (en) Plural channels spectrophotometric measuring device
JP2008058155A (en) Medical photometer
JPH0829333A (en) Spectrum analyser
JP2001021489A (en) Spectroscopic analyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040401

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

EXPY Cancellation because of completion of term