JP2000205051A - Diesel engine - Google Patents

Diesel engine

Info

Publication number
JP2000205051A
JP2000205051A JP11010365A JP1036599A JP2000205051A JP 2000205051 A JP2000205051 A JP 2000205051A JP 11010365 A JP11010365 A JP 11010365A JP 1036599 A JP1036599 A JP 1036599A JP 2000205051 A JP2000205051 A JP 2000205051A
Authority
JP
Japan
Prior art keywords
water
engine
fuel
amount
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11010365A
Other languages
Japanese (ja)
Inventor
Yukio Okano
幸雄 岡野
Tetsutsugu Yamada
哲嗣 山田
Kenji Tanabe
研志 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Diesel Manufacturing Co Ltd
Original Assignee
Daihatsu Diesel Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Diesel Manufacturing Co Ltd filed Critical Daihatsu Diesel Manufacturing Co Ltd
Priority to JP11010365A priority Critical patent/JP2000205051A/en
Publication of JP2000205051A publication Critical patent/JP2000205051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent water separation from emulsified fuel oil and damage to engine sliding portions economically, and lower the concentration of nitrogen oxides in exhaust while ensuring desirable engine operations. SOLUTION: A waterline 11 in which a variable displacement pump 13 is interposed leads a prescribed quantity of water from a water tank 12 to a mixer 10 interposed in a fuel oil line 9. During an engine operation, based on the output torque, fuel flow rate, charging pressure, fuel rack quantity and engine speed that are from a torque sensor 17, fuel flow rate transmitter 14, charging pressure sensor 16 and rack scale sensor 18, a computer 7 that preliminary stores water mixing ratios as a function of the output torque, fuel flow rate, charging pressure, fuel rack quantity and engine speed refers to the stored water mixing ratios to compute a necessary quantity of water added and outputs a signal indicative of the computed added water quantity to the variable displacement pump 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気中の窒素酸化
物を低減すべく燃料油に所定量の水を加える加水装置を
有するディーゼル機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel engine having a water adding device for adding a predetermined amount of water to fuel oil in order to reduce nitrogen oxides in exhaust gas.

【0002】[0002]

【従来の技術】従来、排気中のNOxを低減するディー
ゼル機関として、例えば本出願人による特公平6−58
058号に記載のものが知られている。このディーゼル
機関は、排気系に選択還元アンモニア脱硝装置を備えた
ディーゼル機関の排気中のNOx濃度を、季節による給
気の乾湿に拘わらず一定の低レベルに更に低減すべく、
給気に所定量の水蒸気や微水滴を加えて加湿するもので
ある。
2. Description of the Related Art Conventionally, as a diesel engine for reducing NOx in exhaust gas, for example, Japanese Patent Publication No. 6-58 by the present applicant.
No. 058 is known. This diesel engine is designed to further reduce the NOx concentration in the exhaust gas of a diesel engine equipped with a selective reduction ammonia denitration device in the exhaust system to a constant low level irrespective of the seasonal air supply.
The air supply is humidified by adding a predetermined amount of water vapor or fine water droplets.

【0003】しかし、本出願人の最近の研究によれば、
燃料油に所定量の水を加えて乳化燃料油としてディーゼ
ル機関に供給することによっても、排気中のNOx濃度
を低減でき、しかも低減効果が給気を加湿する上記方法
よりも2割ほど高いことが明らかになった。ただし、燃
料油に水を添加し,乳化燃料油としてディーゼル機関に
供給するというこの方法は、未だ実験段階にあって実用
化されておらず、実験では例えば機関に供給される燃料
油の流量に比例して全出力範囲に亘って一定率で水を加
えるといった手法がとられている。
However, according to a recent study by the present applicant,
By adding a predetermined amount of water to the fuel oil and supplying it to the diesel engine as an emulsified fuel oil, the NOx concentration in the exhaust gas can be reduced, and the reduction effect is about 20% higher than the above method of humidifying the supply air. Was revealed. However, this method of adding water to the fuel oil and supplying it to the diesel engine as an emulsified fuel oil has not yet been put into practical use at the experimental stage. A technique has been adopted in which water is added at a constant rate over the entire output range in proportion.

【0004】[0004]

【発明が解決しようとする課題】ところが、本出願人が
更に研究を進めた結果、上記方法は、機関の全出力範囲
に亘って燃料油の流量に比例して一定率で水を加えるも
のであるため、機関出力が高くて燃料流量が多い場合
は、水添加量が燃焼温度上昇を抑えきれず、燃焼温度が
高くなって排気中の窒素酸化物が増大する一方、機関出
力が低くて燃料流量が少ない場合は、水添加量が多過ぎ
て、燃焼悪化をもたらすことが判明した。また、燃料
油,特に粘度の低い良質燃料油に水を混合して乳化する
と、混合後早期に水が燃料油から分離し、この状態で運
転を続けると、分離した水塊によって機関が多大な支障
をきたすため、水の分離を妨げるとともに、水混入によ
り機関摺動箇所の潤滑性を失い、損傷に至るのを防ぐた
めに界面活性剤等の添加剤を乳化燃料油に注入する必要
がある。しかし、本出願人の研究の結果、機関出力に無
関係に燃料流量に比例した一定率で添加剤を注入したの
では、添加剤が過小でその役目を果たさなかったり、添
加剤が過大で不経済になるなどの問題点が明らかになっ
た。
However, as a result of further research conducted by the present applicant, the above-mentioned method involves adding water at a constant rate in proportion to the flow rate of fuel oil over the entire output range of the engine. Therefore, when the engine output is high and the fuel flow rate is large, the amount of water cannot suppress the increase in the combustion temperature, and the combustion temperature increases to increase the nitrogen oxides in the exhaust gas. It was found that when the flow rate was small, the amount of added water was too large, resulting in deterioration of combustion. Also, if water is mixed and emulsified with fuel oil, especially high-quality fuel oil with low viscosity, water separates from the fuel oil early after mixing, and if operation is continued in this state, the separated water mass will cause a large amount of engine damage. It is necessary to inject an additive such as a surfactant into the emulsified fuel oil in order to prevent the separation of water and to prevent the loss of lubrication of the sliding portion of the engine due to mixing with water, thereby preventing damage. However, as a result of the applicant's research, if the additive is injected at a constant rate proportional to the fuel flow rate regardless of the engine output, the additive is too small to fulfill its function, or the additive is too large to be uneconomical. The problems, such as becoming, became clear.

【0005】そこで、本発明の目的は、燃料油に加える
水や添加剤の比率を機関出力に応じて変化させることに
よって、乳化燃料油からの水の分離を経済的に防ぐこと
可能で、機関を良好に運転しつつ排気中の窒素酸化物濃
度を低減することができるディーゼル機関を提供するこ
とにある。
Therefore, an object of the present invention is to change the ratio of water and additives to be added to fuel oil according to the engine output, thereby economically preventing the separation of water from emulsified fuel oil. It is an object of the present invention to provide a diesel engine that can reduce the concentration of nitrogen oxides in exhaust gas while operating the diesel engine well.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、排気中の窒素酸化物濃度を低減
できるディーゼル機関において、上記ディーゼル機関の
燃料油管系に設けられ、燃料油に所定量の水を加えて乳
化燃料油とする乳化装置と、上記燃料油に加えるべき水
量の率である加水率を、軸トルク,燃料流量,給気圧力,
燃料ラック量の少なくとも1つおよび機関回転数の関数
データとして記憶する加水率記憶手段と、機関運転中に
検出される軸トルク,燃料流量,給気圧力,燃料ラック量
の少なくとも1つおよび機関回転数に基づき、上記加水
率記憶手段に記憶された加水率を参照して加水量を算出
し、算出した加水量を表わす信号を上記乳化装置に出力
する加水量制御手段を備えたことを特徴とする。
In order to achieve the above object, a first aspect of the present invention relates to a diesel engine capable of reducing the concentration of nitrogen oxides in exhaust gas, provided in a fuel oil pipe system of the diesel engine. An emulsifying apparatus in which a predetermined amount of water is added to an emulsified fuel oil, and a water addition rate which is a rate of an amount of water to be added to the fuel oil, the shaft torque, fuel flow rate, air supply pressure,
Means for storing at least one of the fuel rack amount and function data of the engine speed, and at least one of the shaft torque, fuel flow rate, supply pressure, fuel rack amount and engine speed detected during operation of the engine. Based on the number, calculate the amount of water by referring to the water content stored in the water content storage means, comprising a water content control means for outputting a signal representing the calculated water content to the emulsifier. I do.

【0007】請求項1のディーゼル機関において、加水
率記憶手段は、燃料油に加えるべき加水率を、軸トル
ク,燃料流量,給気圧力,燃料ラック量の少なくとも1つ
および機関回転数の関数データとして記憶している。加
水量制御手段は、機関運転中に検出される軸トルク,燃
料流量,給気圧力,燃料ラック量の少なくとも1つおよび
機関回転数に基づき、上記加水率記憶手段に記憶された
加水率を参照して加水量を算出し、算出した加水量を表
わす信号を乳化装置に出力し、乳化装置は、燃料油に上
記加水量の水を加えて乳化燃料油として機関に供給す
る。
In the diesel engine according to the first aspect, the water storage ratio storage means stores the water storage ratio to be added to the fuel oil as at least one of a shaft torque, a fuel flow rate, a supply pressure, a fuel rack amount, and a function data of an engine speed. It is remembered as. The water addition amount control means refers to the water addition rate stored in the water addition rate storage means based on at least one of the shaft torque, fuel flow rate, supply pressure, fuel rack amount, and engine speed detected during operation of the engine. Then, a signal representing the calculated amount of water is output to the emulsifier, and the emulsifier adds the water having the amount of water to the fuel oil and supplies the fuel oil to the engine as an emulsified fuel oil.

【0008】機関出力は、上記関数データたる加水率の
変数である軸トルク,燃料流量,給気圧力,燃料ラック量
のいずれか1つおよび機関回転数を変数とする単調増加
関数として表わされるので、乳化装置によって燃料油に
加えられる水の加水率は、運転中の機関出力が増えるほ
ど増加する。従って、機関出力が増加して燃料流量が増
え、燃焼温度が上昇しようとすると、より高率で燃料油
に水が加えられて燃焼温度の上昇を抑えるから、排気中
の窒素酸化物の増加が抑えられる。また、機関出力が減
り、燃料流量が減少すると、より低率で燃料油に適量の
水が加えられるから、燃焼悪化が生じず、良好に機関が
運転される。
The engine output is represented as a monotonically increasing function using any one of the shaft torque, fuel flow rate, supply pressure, fuel rack quantity and engine speed as variables of the water addition rate as the function data. The rate of water addition to the fuel oil by the emulsifier increases as the engine output during operation increases. Therefore, when the engine output increases, the fuel flow rate increases, and the combustion temperature rises, water is added to the fuel oil at a higher rate to suppress the rise in combustion temperature. Can be suppressed. Further, when the engine output is reduced and the fuel flow rate is reduced, an appropriate amount of water is added to the fuel oil at a lower rate, so that combustion does not deteriorate and the engine operates properly.

【0009】また、請求項2の発明は、請求項1のディ
ーゼル機関において、上記ディーゼル機関の燃料油管系
に設けられ、燃料油と水の分離および機関摺動箇所の損
傷を防止すべく所定量の添加剤を上記燃料油に加える添
加装置と、上記燃料油に加えるべき添加剤量の率である
添加率を、軸トルク,燃料流量,給気圧力,燃料ラック量
の少なくとも1つおよび機関回転数の関数データとして
記憶する添加率記憶手段と、機関運転中に検出される軸
トルク,燃料流量,給気圧力,燃料ラック量の少なくとも
1つおよび機関回転数に基づき、上記添加率記憶手段に
記憶された添加率を参照して添加剤量を算出し、算出し
た添加剤量を表わす信号を上記添加装置に出力する添加
量制御手段をさらに備えたことを特徴とする。
According to a second aspect of the present invention, in the diesel engine of the first aspect, a predetermined amount is provided in the fuel oil pipe system of the diesel engine so as to prevent separation of fuel oil and water and damage to a sliding portion of the engine. An addition device for adding the above-mentioned additive to the fuel oil, and an addition rate, which is a rate of the amount of the additive to be added to the fuel oil, to at least one of a shaft torque, a fuel flow rate, a supply pressure, a fuel rack amount, and an engine speed. The addition rate storage means for storing as a function data of the number, and the addition rate storage means based on at least one of shaft torque, fuel flow rate, supply pressure, fuel rack quantity and engine speed detected during operation of the engine. It is characterized by further comprising an addition amount control means for calculating an additive amount with reference to the stored addition ratio and outputting a signal representing the calculated additive amount to the addition device.

【0010】請求項2のディーゼル機関において、添加
率記憶手段は、燃料油と水の分離および機関摺動箇所の
損傷を防止すべく燃料油に加えるべき添加剤量の率であ
る添加率を、軸トルク,燃料流量,給気圧力,燃料ラック
量の少なくとも1つおよび機関回転数の関数データとし
て記憶している。添加量制御手段は、機関運転中に検出
される軸トルク,燃料流量,給気圧力,燃料ラック量の少
なくとも1つおよび機関回転数に基づき、上記添加率記
憶手段に記憶された添加率を参照して添加剤量を算出
し、算出した添加剤量を表わす信号を添加装置に出力
し、添加装置は、燃料油に上記添加量の添加剤を加えて
機関に供給する。
[0010] In the diesel engine of claim 2, the addition rate storage means stores the addition rate, which is the rate of the amount of the additive to be added to the fuel oil in order to prevent separation of the fuel oil and water and damage to sliding parts of the engine. At least one of shaft torque, fuel flow rate, supply pressure, fuel rack amount, and function data of the engine speed are stored. The addition amount control means refers to the addition rate stored in the addition rate storage means based on at least one of a shaft torque, a fuel flow rate, a supply pressure, a fuel rack amount, and an engine speed detected during operation of the engine. To calculate the amount of the additive, and to output a signal indicating the calculated amount of the additive to the addition device, and the addition device adds the additive amount of the additive amount to the fuel oil and supplies the fuel oil to the engine.

【0011】機関出力は、上記関数データたる添加率の
変数である軸トルク,燃料流量,給気圧力,燃料ラック量
のいずれか1つおよび機関回転数を変数とする単調増加
関数として表わされるので、添加装置によって燃料油に
加えられる添加剤の添加率は、運転中の機関出力が増え
るほど増加する。従って、機関出力が増加して燃料流量
が増え、燃焼温度上昇とこれに伴う排気中の窒素酸化物
の増加を抑えるべく燃料油により高率で水が加えられる
と、より高率で添加剤が加えられて乳化燃料油からの水
の分離および機関摺動箇所の損傷が抑えられる。また、
機関出力が減り、燃料流量が減少し、燃焼悪化を防ぐべ
く燃料油により低率で適量の水が加えられると、より低
率で最小量の添加剤が加えられて乳化燃料油からの水の
分離および機関摺動箇所の損傷が経済的に抑えられる。
The engine output is expressed as a monotonically increasing function using one of shaft torque, fuel flow rate, supply pressure, fuel rack quantity and engine speed as variables of the addition rate as the function data. The addition rate of the additive added to the fuel oil by the addition device increases as the engine output during operation increases. Therefore, when the engine output is increased and the fuel flow rate is increased, and when the water is added at a high rate by the fuel oil in order to suppress the increase in the combustion temperature and the accompanying increase in the nitrogen oxides in the exhaust gas, the additive is increased at a higher rate. In addition, separation of water from the emulsified fuel oil and damage to sliding parts of the engine are suppressed. Also,
When the engine output is reduced, the fuel flow rate is reduced, and the fuel oil is added at a lower rate with an appropriate amount of water to prevent combustion deterioration, a lower rate and a minimum amount of additives are added to reduce the water from the emulsified fuel oil. Separation and damage to sliding parts of the engine are economically suppressed.

【0012】[0012]

【発明の実施の形態】以下、本発明を図示の実施の形態
により詳細に説明する。図1は、本発明の請求項1に記
載のディーゼル機関の一例を示す概略図であり、1は給
気管2と排気管3と燃料供給系4を備えたエンジン本
体、5は上記給気管2の入口に圧縮機5aを、排気管3
の出口にこの圧縮機に連結するタービン5bを夫々配置
してなる過給機、6はこの過給機5の下流側の給気管2
に介設した空気冷却器、7は後述する加水率記憶手段と
加水量制御手段を兼ねるコンピュータである。上記燃料
供給系4は、燃料送油配管9を介してエンジン本体1に
接続される燃料タンク8と、上記燃料送油配管9を経て
供給される燃料油に所定量の水を加えて乳化燃料油とす
る乳化装置とからなる。この乳化装置は、燃料送油配管
9に介設されて燃料油に水を混合する混合ミキサ10
と、この混合ミキサ10に送水管11を介して接続され
る水タンク12と、上記送水管11に介設される可変容
量ポンプ13と、上記混合ミキサ10よりも燃料タンク
8側の燃料送油配管9に介設され,エンジン本体1に供
給される燃料油の流量を検出して,検出信号を上記コン
ピュータ7に出力する燃料流量発信器14で構成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 is a schematic view showing an example of a diesel engine according to claim 1 of the present invention. Reference numeral 1 denotes an engine body including an air supply pipe 2, an exhaust pipe 3, and a fuel supply system 4. Compressor 5a at the inlet of the exhaust pipe 3
The turbocharger 6 is provided with a turbine 5b connected to the compressor at the outlet of the compressor.
The air cooler 7 is a computer which also serves as a water content storage means and a water content control means, which will be described later. The fuel supply system 4 includes a fuel tank 8 connected to the engine body 1 via a fuel oil supply pipe 9, and a fuel oil supplied via the fuel oil supply pipe 9, to which a predetermined amount of water is added to emulsified fuel. And an emulsifying device for making oil. This emulsifying device is provided with a mixing mixer 10 which is provided in a fuel oil supply pipe 9 and mixes water with fuel oil.
A water tank 12 connected to the mixing mixer 10 via a water pipe 11, a variable displacement pump 13 provided in the water pipe 11, and a fuel tank 8 closer to the fuel tank 8 than the mixing mixer 10. A fuel flow transmitter 14 is provided in the pipe 9 and detects a flow rate of fuel oil supplied to the engine body 1 and outputs a detection signal to the computer 7.

【0013】上記ディーゼル機関は、機関出力Lを求め
るパラメータとして、軸トルクT,燃料流量Q,給気圧力
P,燃料ラック量Fおよび機関回転数Rを選び、これら
を検出すべく、機関出力軸1aにトルクセンサ15と回
転数センサ17を,給気管2に給気圧力センサ16を,燃
料ラックにラック目盛センサ18を,燃料送油配管9に
上記燃料流量発信器14を夫々設けており、これらのセ
ンサからの検出信号は、総べてコンピュータ7に入力さ
れる。
In the diesel engine, a shaft torque T, a fuel flow rate Q, a supply pressure P, a fuel rack amount F and an engine speed R are selected as parameters for obtaining an engine output L. 1a is provided with a torque sensor 15 and a rotation speed sensor 17, an air supply pressure sensor 16 in an air supply pipe 2, a rack scale sensor 18 in a fuel rack, and the fuel flow transmitter 14 in a fuel supply pipe 9, respectively. The detection signals from these sensors are all input to the computer 7.

【0014】上記コンピュータ7は、加水率記憶手段と
して、排気中の窒素酸化物濃度を低減するために燃料油
に加えるべき水量の率である加水率Y'を、このディー
ゼル機関について試験運転で予め得られた軸トルクT,
燃料流量Q,給気圧力P,燃料ラック量Fおよび機関回転
数Rの関数データY'=f(T,Q,P,F,R)として記憶
する。なお、上記各変数T,Q,P,F,Rは、機関出力L
を求めるパラメータであるから、加水率Y'は、機関出
力Lを介して上記各変数の関数で表わされることにな
る。また、コンピュータ7は、加水量制御手段として、
機関運転中に各センサ15,14,16,18,17からの
検出信号が夫々表わす軸トルクTm,燃料流量Qm,給気圧
力Pm,燃料ラック量Fmおよび機関回転数Rmに基づき、
記憶した上記加水率Y'=f(T,Q,P,F,R)のデータ
を参照して加水量Yを算出し、算出した加水量Yを表わ
す信号を乳化装置の一部をなす可変容量ポンプ13に出
力する。
The computer 7 stores, as a water storage rate storage means, a water storage rate Y ′, which is a rate of the amount of water to be added to the fuel oil in order to reduce the nitrogen oxide concentration in the exhaust gas, in advance in a test operation of this diesel engine. The obtained shaft torque T,
The function data Y ′ = f (T, Q, P, F, R) of the fuel flow rate Q, the supply pressure P, the fuel rack amount F, and the engine speed R is stored. The variables T, Q, P, F, and R are the engine output L
Therefore, the water addition rate Y ′ is represented by a function of each of the above variables via the engine output L. In addition, the computer 7 includes
During the operation of the engine, based on the shaft torque Tm, the fuel flow rate Qm, the supply pressure Pm, the fuel rack amount Fm, and the engine speed Rm represented by the detection signals from the sensors 15, 14, 16, 18, 17 respectively.
The water addition amount Y is calculated with reference to the stored data of the water addition ratio Y ′ = f (T, Q, P, F, R), and a signal representing the calculated water addition Y is a variable that forms a part of the emulsifying apparatus. Output to the displacement pump 13.

【0015】図2〜図4は、コンピュータ7に記憶され
た加水率Y'を模式的に示している。図2は、運転時の
機関回転数が一定の発電機用等のディーゼル機関におけ
る加水率Y'と、軸トルクT,燃料流量Q,給気圧力P,燃
料ラック量F、つまり機関出力との関係を示しており、
加水率Y'は、曲線C1で示すように機関出力Lが増える
に伴って上限値に向かって直線的に漸増する。これは、
機関出力Lが、上記各変数および一定値をとる変数であ
る機関回転数Rcの単調増加関数として、L=g(T,Q,
P,F,Rc)として表わされ、排気中の窒素酸化物濃度を
抑えるには、機関出力Lが大きいほど加水率Y'を大き
くしなければならないからである。
FIGS. 2 to 4 schematically show the water content Y ′ stored in the computer 7. FIG. 2 shows the relationship between the water addition rate Y ′ and the shaft torque T, the fuel flow rate Q, the supply pressure P, and the fuel rack quantity F, that is, the engine output, in a diesel engine such as a generator with a constant engine speed during operation. Shows the relationship,
Hydrolysis rate Y 'are linearly gradually increases toward the upper limit value in accordance with the engine output L as shown by curve C 1 is increased. this is,
Engine output L is, as a monotonically increasing function of the engine speed R c is variable which takes the respective variable and constant value, L = g (T, Q,
P, F, R c ), because the higher the engine output L, the higher the water addition rate Y ′ in order to suppress the nitrogen oxide concentration in the exhaust gas.

【0016】図3は、運転時の機関回転数が変化する船
舶用等のディーゼル機関における加水率Y'iを示してお
り、この図では、上記各変数を夫々特定値に固定したと
きの機関回転数R(横軸)とそのときの機関出力L(縦軸)
の関係を、特性曲線Ljとして記憶するとともに、縦軸
上方へ行くほど加水率値が増える複数の等加水率曲線
Y'iを記憶している。これは、機関出力Lが、上記各変
数を夫々特定値に固定したとき機関回転数Rの単調増加
関数として、L=g(Tc1,Qc2,Pc3,Fc4,R)=Ljと
して表わされ、排気中の窒素酸化物濃度を抑えるには、
機関出力Lが大きいほど加水率Y'を大きくすべくより
縦軸上方の等加水率曲線Y'iを選ばなければならないか
らである。上記特性曲線Ljは、各変数を様々に変えて
多数求められているので、コンピュータ7は、運転時に
実測された各変数値Tm,Qm,Pm,Fmに対応する特性曲
線Ljを参照して、実測された機関回転数Rm(横軸)との
交点である機関出力L(縦軸)を求め、この交点に最も近
い等加水率曲線Yi'の示す加水率値から燃料油に加える
べき加水量を算出する。
FIG. 3 shows the water addition rate Y′i in a marine diesel engine or the like in which the engine speed changes during operation. In this figure, the engine speed when each of the above variables is fixed to a specific value is shown. Rotational speed R (horizontal axis) and engine output L at that time (vertical axis)
Is stored as a characteristic curve Lj, and a plurality of equal water content curves Y′i whose water content values increase as going upward in the vertical axis are stored. This is because L = g ( Tc1 , Qc2 , Pc3 , Fc4 , R) = Lj when the engine output L is a monotonically increasing function of the engine speed R when each of the above variables is fixed to a specific value. In order to reduce the concentration of nitrogen oxides in the exhaust,
This is because the greater the engine output L, the greater the water addition rate Y ', the more the water content on the vertical axis must be selected. Since a large number of the characteristic curves Lj are obtained by variously changing the variables, the computer 7 refers to the characteristic curves Lj corresponding to the variable values Tm, Qm, Pm, and Fm actually measured during operation. The engine output L (vertical axis), which is the intersection with the actually measured engine speed Rm (horizontal axis), is obtained, and the amount of water to be added to the fuel oil is determined from the water addition value indicated by the isohydration curve Yi ′ closest to this intersection Is calculated.

【0017】図4は、コンピュータ7に記憶され、運転
時の機関回転数Rが一定および変化するディーゼル機関
の双方に適用できる加水率Y'を示しており、この図で
は、横軸に機関回転数Rも変数に含む機関出力L=g
(T,Q,P,F,R)をとり、縦軸に加水率Y'をとってい
る。加水率Y'は、段状直線C2で示すように、機関出力
Lが閾値Lsを超えると排気中の窒素酸化物濃度を抑え
るべくステップ状に増加する。図5は、コンピュータ7
が上記加水率Y'から算出した加水量Yと、この加水量
を表わす信号を受けて駆動される可変容量ポンプ13の
回転数Rwの関係を示しており、図から明らかなように
回転数Rwは加水量Yに比例する。
FIG. 4 shows the water addition rate Y ′ stored in the computer 7 and applicable to both diesel engines in which the engine speed R during operation is constant and changes. In this figure, the horizontal axis indicates the engine speed. Engine output L = g including number R as a variable
(T, Q, P, F, R) is taken, and the vertical axis represents the water addition rate Y ′. Hydrolysis rate Y ', as indicated by the stepped straight C 2, the engine output L is increased stepwise to keep the nitrogen oxides concentration in the exhaust exceeds a threshold value Ls. FIG.
Shows the relationship between the water addition amount Y calculated from the water addition ratio Y ′ and the rotation speed Rw of the variable displacement pump 13 driven by receiving a signal representing the water addition amount. As is apparent from FIG. Is proportional to the amount of water Y.

【0018】上記構成のディーゼル機関の動作は、次の
とおりである。ディーゼル機関の機関回転数が一定の場
合、コンピュータ7は、機関運転中に各センサ15,1
4,16,18から入力される検出信号が表わす軸トルク
Tm,燃料流量Qm,給気圧力Pm,燃料ラック量Fm、つまり
機関出力Lに基づき、図2または図4の加水率Y'を求
め、求めた加水率Y'から燃料油に加えるべき加水量を
算出し、算出した加水量Yを表わす信号を可変容量ポン
プ13に出力する。水タンク12から可変容量ポンプ1
3を介して上記加水量Yで吐出される水は、混合ミキサ
10により燃料油に混合されて乳化燃料油となってエン
ジン本体1に供給される。従って、機関出力Lが増加し
て燃料流量が増え、燃焼温度が上昇しようとすると、よ
り高率で燃料油に水が加えられて燃焼温度の上昇を抑え
るから、排気中の窒素酸化物濃度の増加が抑えられる。
また、機関出力が減り、燃料流量が減少すると、より低
率で燃料油に適量の水が加えられるから、燃焼悪化が生
じず、良好に機関が運転される。
The operation of the diesel engine having the above configuration is as follows. When the engine speed of the diesel engine is constant, the computer 7 controls each of the sensors 15 and 1 during operation of the engine.
Based on the shaft torque Tm, the fuel flow rate Qm, the supply pressure Pm, and the fuel rack amount Fm represented by the detection signals input from 4, 16, and 18, that is, the fuel rack amount Fm, that is, the water addition rate Y 'in FIG. The amount of water to be added to the fuel oil is calculated from the obtained water addition rate Y ′, and a signal representing the calculated water addition Y is output to the variable displacement pump 13. Variable capacity pump 1 from water tank 12
3 is mixed with fuel oil by the mixing mixer 10 to become emulsified fuel oil and supplied to the engine body 1. Therefore, when the engine output L increases, the fuel flow rate increases, and the combustion temperature attempts to increase, water is added to the fuel oil at a higher rate to suppress the increase in the combustion temperature. The increase is suppressed.
Further, when the engine output is reduced and the fuel flow rate is reduced, an appropriate amount of water is added to the fuel oil at a lower rate, so that combustion does not deteriorate and the engine operates properly.

【0019】ディーゼル機関の機関回転数が変化する場
合、コンピュータ7は、機関運転中に各センサ15,1
4,16,18から入力される各検出値Tm,Qm,Pm,Fm
に対応する図3の特性曲線Ljを参照して、回転数セン
サ17からの検出値である機関回転数Rm(横軸)との交
点である機関出力L(縦軸)を求め、この交点に最も近い
等加水率曲線Yi'の示す加水率値から燃料油に加えるべ
き加水量Yを算出し、算出した加水量を表わす信号を可
変容量ポンプ13に出力する。従って、既に述べたと同
様に、機関出力Lが増加して燃料流量が増え、燃焼温度
が上昇しようとすると、燃料油により高率で水が加えら
れて燃焼温度の上昇を抑えるから、排気中の窒素酸化物
濃度の増加が抑えられる。また、機関出力が減り、燃料
流量が減少すると、燃料油により低率で適量の水が加え
られるから、燃焼悪化が生じず、良好に機関が運転され
る。
When the engine speed of the diesel engine changes, the computer 7 controls each of the sensors 15, 1 during the operation of the engine.
Detection values Tm, Qm, Pm, Fm input from 4, 16, and 18
3, an engine output L (vertical axis) which is an intersection with an engine speed Rm (horizontal axis) which is a detection value from the engine speed sensor 17 is obtained. The amount of water to be added Y to the fuel oil is calculated from the value of the water content indicated by the closest equal water content curve Yi ', and a signal representing the calculated water content is output to the variable displacement pump 13. Therefore, as described above, when the engine output L increases, the fuel flow rate increases, and the combustion temperature rises, water is added at a high rate by the fuel oil to suppress the rise in the combustion temperature. An increase in the nitrogen oxide concentration is suppressed. In addition, when the engine output decreases and the fuel flow rate decreases, an appropriate amount of water is added at a low rate by the fuel oil, so that combustion does not deteriorate and the engine operates satisfactorily.

【0020】図6は、本発明の請求項2に記載のディー
ゼル機関の一例を示す概略図である。このディーゼル機
関は、図1の燃料送油配管9に添加装置を追加し、図1
のコンピュータ7に添加率記憶手段と添加量制御手段を
追加して新たなコンピュータ27とした点を除いて、図
1で述べたディーゼル機関と同じなので、同じ部材には
同一番号を付して説明を省略する。上記添加装置は、燃
料送油管9の混合ミキサ10よりも燃料タンク8側に送
液管21を介して接続される液タンク22と、上記送液
管21に介設され,コンピュータ27からの信号により
吐出量が制御される可変容量ポンプ23からなり、上記
液タンク22には、燃料油と水の分離および機関摺動箇
所の損傷を防ぐ添加剤としての界面活性剤が蓄えられ
る。
FIG. 6 is a schematic diagram showing an example of the diesel engine according to the second aspect of the present invention. In this diesel engine, an addition device is added to the fuel oil supply pipe 9 of FIG.
1 is the same as the diesel engine described with reference to FIG. 1 except that the addition rate storage means and the addition amount control means are added to the computer 7 to form a new computer 27. Is omitted. The addition device includes a liquid tank 22 connected to the fuel tank 8 closer to the fuel tank 8 than the mixing mixer 10 of the fuel oil supply pipe 9 via a liquid supply pipe 21, and a signal from a computer 27. The liquid tank 22 stores a surfactant as an additive that prevents separation of fuel oil and water and damage to sliding parts of the engine.

【0021】上記コンピュータ27は、添加率記憶手段
として、燃料油に加えるべき上記添加剤量の率である添
加率Z'を、このディーゼル機関について予め試験運転
で得られた軸トルクT,燃料流量Q,給気圧力P,燃料ラ
ック量Fおよび機関回転数Rの関数データZ'=h(T,
Q,P,F,R)として記憶する。なお、上記各変数T,Q,
P,F,Rは、機関出力Lを求めるパラメータであるか
ら、添加率Z'は、機関出力Lを介して上記各変数の関
数で表わされることになる。また、コンピュータ27
は、添加量制御手段として、機関運転中に各センサ1
5,14,16,18,17からの検出信号が夫々表わす軸
トルクTm,燃料流量Qm,給気圧力Pm,燃料ラック量Fm
および機関回転数Rmに基づき、記憶した上記添加率Z'
=h(T,Q,P,F,R)のデータを参照して添加量Zを算
出し、算出した添加量Zを表わす信号を添加装置の一部
をなす可変容量ポンプ23に出力する。
The computer 27 stores, as an addition rate storage means, an addition rate Z 'which is a rate of the amount of the additive to be added to the fuel oil, a shaft torque T and a fuel flow rate previously obtained by a test operation of the diesel engine. Q, supply pressure P, fuel rack amount F and engine speed R function data Z ′ = h (T,
Q, P, F, R). Note that the above variables T, Q,
Since P, F, and R are parameters for obtaining the engine output L, the addition rate Z ′ is represented by a function of each of the above variables via the engine output L. In addition, the computer 27
Is a sensor for controlling the amount of each sensor 1 during engine operation.
The shaft torque Tm, the fuel flow rate Qm, the supply pressure Pm, and the fuel rack amount Fm represented by the detection signals from 5, 14, 16, 18, and 17, respectively.
And the stored addition rate Z ′ based on the engine speed Rm and
= H (T, Q, P, F, R), the addition amount Z is calculated, and a signal representing the calculated addition amount Z is output to the variable displacement pump 23 which is a part of the addition device.

【0022】図7〜図9は、コンピュータ27に記憶さ
れた添加率Z'を模式的に示しており、参考のため既述
の加水率Y'を破線で併記している。加水率の曲線C1,
Y'i,C2の形から判るように、図7が機関回転数が一定
の場合の機関出力L(横軸)と添加率Z'(縦軸)の関係
を、図8が機関回転数が変化する場合の機関回転数R
(横軸)と添加率Z',機関出力Lj,等加水率曲線Y'i(縦
軸)との関係を、図9が機関回転数が一定および変化す
る場合の機関出力L(横軸)と添加率Z'(縦軸)の関係を
夫々示している。図7,図9では、添加率Z'は、機関出
力Lが増えるに伴って増加する加水率Y'に応じて、乳
化燃料油からの水の分離および機関摺動箇所の損傷を防
ぐべくより高率で添加剤を加える必要があるため、右上
がりの直線D1,D2で示すように漸増する。
7 to 9 schematically show the addition rate Z 'stored in the computer 27, and the above-mentioned water addition rate Y' is also indicated by broken lines for reference. The water content curve C 1 ,
Y'i, as can be seen from the shape of the C 2, relationship, engine speed 8 of the engine output when 7 the rotational speed is constant engine L (horizontal axis) and addition ratio Z '(vertical axis) Changes in the engine speed R
FIG. 9 shows the relationship between the (horizontal axis), the addition rate Z ′, the engine output Lj, and the isohydration curve Y′i (vertical axis). FIG. 9 shows the engine output L (horizontal axis) when the engine speed is constant and changes. And the addition ratio Z ′ (vertical axis). In FIGS. 7 and 9, the addition rate Z ′ is set so as to prevent separation of water from the emulsified fuel oil and damage to sliding parts of the engine in accordance with the water addition rate Y ′ that increases as the engine output L increases. Since it is necessary to add the additive at a high rate, it gradually increases as shown by straight lines D 1 and D 2 rising to the right.

【0023】図8では、コンピュータ27に、軸トルク
T,燃料流量Q,給気圧力P,燃料ラック量Fの各変数を
特定値に固定したときの機関回転数とそのときの機関出
力および添加率の関係が、夫々特性曲線Ljおよび曲線
Z'jとして記憶され、既述の複数の等加水率曲線Y'iが
記憶されている。添加率の曲線Z'jが特性曲線Ljと略
平行に延びているのは、機関出力Lが増えるほど上方の
等加水率曲線Y'iが選ばれて加水率が高くなるので、乳
化燃料油からの水の分離および機関摺動箇所の損傷を防
ぐべくより高率で添加剤を加える必要があるからであ
る。上記曲線Z'jは、各変数を様々に変えて特性曲線L
jに対応して多数求められているので、コンピュータ2
7は、運転時に実測された各変数値Tm,Qm,Pm,Fmに
対応する特性曲線Ljを参照して、実測された機関回転
数Rm(横軸)との交点である機関出力と、この交点に最
も近い等加水率曲線Y'iが示す加水率値を求めるととも
に、上記交点を図中の矢印で示すように真上に延ばして
曲線Z'jとの交点で添加率Z'を求め、求めた添加率
Z'から燃料油に加えるべき添加剤量Zを算出する。図
10は、コンピュータ27が上記添加率Z'から算出し
た添加剤量Zと、この添加剤量を表わす信号を受けて駆
動される可変容量ポンプ23の回転数Raの関係を示し
ており、図から明らかなように回転数Raは添加剤量Z
に比例する。
In FIG. 8, the computer 27 controls the engine speed when the variables of the shaft torque T, the fuel flow rate Q, the supply pressure P, and the fuel rack amount F are fixed to specific values, and the engine output and addition at that time. The relationship between the rates is stored as a characteristic curve Lj and a curve Z′j, respectively, and the above-described plurality of equal water content curves Y′i are stored. The reason why the addition rate curve Z′j extends substantially parallel to the characteristic curve Lj is that the higher the engine output L, the higher the equal water content curve Y′i and the higher the water content, so that the emulsified fuel oil This is because it is necessary to add the additive at a higher rate in order to prevent separation of water from the water and damage to sliding parts of the engine. The above-mentioned curve Z′j is obtained by changing the respective variables in various ways,
Computer 2
Reference numeral 7 denotes an engine output that is an intersection with an actually measured engine speed Rm (horizontal axis) with reference to a characteristic curve Lj corresponding to each of the variable values Tm, Qm, Pm, and Fm actually measured during operation. In addition to finding the water content value indicated by the equal water content curve Y′i closest to the intersection, the above intersection is extended just above as shown by the arrow in the figure, and the addition rate Z ′ is obtained at the intersection with the curve Z′j. From the calculated addition rate Z ', the amount Z of the additive to be added to the fuel oil is calculated. FIG. 10 shows the relationship between the additive amount Z calculated by the computer 27 from the above-described additive rate Z ′ and the rotation speed Ra of the variable displacement pump 23 driven by receiving a signal indicating the additive amount. As is clear from FIG.
Is proportional to

【0024】上記構成のディーゼル機関は、図1〜図5
で述べた加水量制御に加えて、上述の如く燃料油に添加
剤をその量を制御しつつ加える。従って、機関出力が増
加して燃料流量が増え、燃焼温度上昇とこれに伴う排気
中の窒素酸化物濃度の増加を抑えるべくより高率で燃料
油に水が加えられると、より高率で添加剤が加えられて
乳化燃料油からの水の分離および機関摺動箇所の損傷が
抑えられ、また、機関出力が減り、燃料流量が減少し、
燃焼悪化を防ぐべくより低率で燃料油に最小限の添加剤
が加えられて乳化燃料油からの水の分離および機関摺動
箇所の損傷が経済的に抑えられる。
FIGS. 1 to 5 show a diesel engine having the above configuration.
In addition to the control of the amount of water described above, the additive is added to the fuel oil while controlling the amount as described above. Therefore, when water is added to the fuel oil at a higher rate to suppress the increase in combustion temperature and the accompanying increase in the concentration of nitrogen oxides in the exhaust gas due to an increase in the engine output and an increase in the fuel flow rate, the water is added at a higher rate. The addition of an agent suppresses the separation of water from the emulsified fuel oil and damage to the sliding parts of the engine, and also reduces the engine output, reduces the fuel flow rate,
Minimal additives are added to the fuel oil at a lower rate to prevent combustion deterioration, so that the separation of water from the emulsified fuel oil and the damage to sliding parts of the engine are economically suppressed.

【0025】上記実施の形態では、コンピュータ7,2
7により、センサ14〜18が検出する軸トルク,燃料
流量,給気圧力,燃料ラック量,機関回転数の5つのパラ
メータの関数としての機関出力を介して加水率や添加率
を算出するようにしているので、より正確な加水率や添
加率を求めることができ、燃焼悪化を生じさせることな
く機関を良好に運転しつつ、排気中の窒素酸化物濃度の
増加をより確実に抑えることができるという利点があ
る。なお、本発明では、上記実施の形態と異なり、加水
率や添加率を軸トルク,燃料流量,給気圧力,燃料ラック
量の少なくとも1つと機関回転数の関数データとして記
憶させて、同様の作用効果を得ることもできる。また、
本発明の加水率記憶手段,加水量記憶手段と添加率記憶
手段,添加量制御手段は、上記実施の形態と異なり別々
のコンピュータとすることも可能である。
In the above embodiment, the computers 7, 2
7 to calculate the water addition rate and the addition rate via the engine output as a function of the five parameters of the shaft torque, fuel flow rate, supply pressure, fuel rack quantity, and engine speed detected by the sensors 14 to 18. Therefore, it is possible to obtain a more accurate water addition rate and addition rate, and it is possible to more reliably suppress the increase in the concentration of nitrogen oxides in the exhaust while operating the engine well without causing deterioration in combustion. There is an advantage. Note that, in the present invention, unlike the above-described embodiment, at least one of the shaft torque, the fuel flow rate, the supply pressure, the fuel rack amount and the function data of the engine speed are stored as the function data of the engine speed. You can also get the effect. Also,
The water storage rate storage means, the water storage rate storage means, the addition rate storage means, and the addition rate control means of the present invention may be different computers, unlike the above embodiment.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明の
請求項1の燃料油に所定量の水を加える乳化装置を有す
るディーゼル機関は、加水率記憶手段に、軸トルク,燃
料流量,給気圧力,燃料ラック量の少なくとも1つおよび
機関回転数の関数データとして加水率を記憶させ、機関
運転中に検出される軸トルク,燃料流量,給気圧力,燃料
ラック量の少なくとも1つおよび機関回転数に基づい
て、加水制御装置によって、上記加水率記憶手段に記憶
された加水率を参照して加水量を算出し、算出した加水
量を表わす信号を上記乳化装置に出力するようにしてい
るので、機関出力の増加に応じて高率で燃料油に水を加
えて、燃焼温度の上昇を抑えるとともに燃焼悪化を防止
できるから、機関を良好に運転しつつ排気中の窒素酸化
物濃度の増加を抑えることができる。
As is apparent from the above description, the diesel engine having the emulsifying apparatus for adding a predetermined amount of water to the fuel oil according to the first aspect of the present invention has the following characteristics. At least one of the supply pressure, the fuel rack amount and the water addition rate are stored as function data of the engine speed, and at least one of the shaft torque, the fuel flow rate, the supply pressure, the fuel rack amount detected during the operation of the engine and Based on the engine speed, by the water control device, by referring to the water content stored in the water content storage means to calculate the water content, to output a signal representing the calculated water content to the emulsifier. Therefore, water can be added to fuel oil at a high rate in response to an increase in engine output to suppress the increase in combustion temperature and prevent combustion deterioration, so that while operating the engine well, the concentration of nitrogen oxides in exhaust gas can be reduced. To limit the increase Can.

【0027】本発明の請求項2のディーゼル機関は、請
求項1の構成に加えて、乳化燃料油に水の分離および機
関摺動箇所の損傷を防ぐ添加剤を加える添加装置を備
え、添加率記憶手段に、軸トルク,燃料流量,給気圧力,
燃料ラック量の少なくとも1つおよび機関回転数の関数
データとして添加率を記憶させ、機関運転中に検出され
る軸トルク,燃料流量,給気圧力,燃料ラック量の少なく
とも1つおよび機関回転数に基づいて、添加量制御手段
によって、上記添加率記憶手段に記憶された添加率を参
照して添加剤量を算出し、算出した添加剤量を表わす信
号を上記添加装置に出力するようにしているので、燃料
油に加えられる水の加水率に応じた率で燃料油に添加剤
が加えられるから、添加剤を浪費することなく乳化燃料
油からの水の分離および機関摺動箇所の損傷を抑えるこ
とができて、ディーゼル機関を良好に運転することがで
きる。
The diesel engine according to a second aspect of the present invention is provided with an addition device for adding an additive to the emulsified fuel oil for preventing separation of water and damage to a sliding portion of the engine in addition to the configuration of the first aspect. In the storage means, shaft torque, fuel flow rate, supply pressure,
The addition rate is stored as function data of at least one of the fuel rack amount and the engine speed, and at least one of the shaft torque, the fuel flow rate, the supply pressure, the fuel rack amount and the engine speed detected during the operation of the engine is stored in the storage unit. Based on the addition amount control means, the additive amount is calculated with reference to the addition rate stored in the addition rate storage means, and a signal representing the calculated additive amount is output to the addition device. Since the additive is added to the fuel oil at a rate corresponding to the water addition rate of the fuel oil, separation of water from the emulsified fuel oil and damage to sliding parts of the engine can be suppressed without wasting the additive. Can operate the diesel engine well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の請求項1に記載のディーゼル機関の
一例を示す概略図である。
FIG. 1 is a schematic view showing an example of a diesel engine according to claim 1 of the present invention.

【図2】 図1のコンピュータに記憶される機関回転数
が一定の場合の機関出力と加水率の関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between an engine output and a water addition rate when the engine speed stored in the computer of FIG. 1 is constant.

【図3】 図1のコンピュータに記憶される機関回転数
が変化する場合の機関回転数と機関出力および加水率の
関係を示す図である。
FIG. 3 is a diagram showing the relationship between the engine speed, the engine output, and the water content when the engine speed stored in the computer of FIG. 1 changes.

【図4】 図1のコンピュータに記憶される機関回転数
が一定および変動する場合の機関出力と加水率の関係を
示す図である。
FIG. 4 is a diagram showing the relationship between engine output and water content when the engine speed stored in the computer of FIG. 1 is constant and fluctuates.

【図5】 図1の可変容量ポンプの回転数と加水量の関
係を示す図である。
5 is a diagram showing a relationship between the number of rotations and the amount of water of the variable displacement pump of FIG. 1.

【図6】 本発明の請求項2に記載のディーゼル機関の
一例を示す概略図である。
FIG. 6 is a schematic view showing an example of the diesel engine according to the second aspect of the present invention.

【図7】 図6のコンピュータに記憶される機関回転数
が一定の場合の機関出力と添加率の関係を示す図であ
る。
FIG. 7 is a diagram showing the relationship between the engine output and the addition rate when the engine speed stored in the computer of FIG. 6 is constant.

【図8】 図6のコンピュータに記憶される機関回転数
が変化する場合の機関回転数と機関出力および添加率の
関係を示す図である。
8 is a diagram showing the relationship between the engine speed, the engine output, and the addition rate when the engine speed stored in the computer of FIG. 6 changes.

【図9】 図6のコンピュータに記憶される機関回転数
が一定および変動する場合の機関出力と添加率の関係を
示す図である。
9 is a diagram showing the relationship between the engine output and the addition rate when the engine speed stored in the computer of FIG. 6 is constant and fluctuates.

【図10】 図6の添加剤用の可変容量ポンプの回転数
と添加剤量の関係を示す図である。
10 is a diagram showing the relationship between the number of rotations of the additive variable displacement pump of FIG. 6 and the amount of additive.

【符号の説明】[Explanation of symbols]

1…エンジン本体、2…給気管、3…排気管、4…燃料
供給系、5…過給機、7,27…コンピュータ、8…燃
料タンク、9…燃料送油配管、10…混合ミキサ、11
…送水管、12…水タンク、13…可変容量ポンプ、1
4…燃料流量発信器、15…トルクセンサ、16…給気
圧力センサ、17…回転数センサ、18…ラック目盛セ
ンサ、21…送液管、22…液タンク、23…添加剤用
可変容量ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Engine main body, 2 ... Air supply pipe, 3 ... Exhaust pipe, 4 ... Fuel supply system, 5 ... Supercharger, 7, 27 ... Computer, 8 ... Fuel tank, 9 ... Fuel oil supply pipe, 10 ... Mixing mixer, 11
... water pipe, 12 ... water tank, 13 ... variable capacity pump, 1
4 ... Fuel flow transmitter, 15 ... Torque sensor, 16 ... Air supply pressure sensor, 17 ... Rotation speed sensor, 18 ... Rack scale sensor, 21 ... Liquid supply pipe, 22 ... Liquid tank, 23 ... Variable displacement pump for additive .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排気中の窒素酸化物濃度を低減できるデ
ィーゼル機関において、 上記ディーゼル機関の燃料油管系に設けられ、燃料油に
所定量の水を加えて乳化燃料油とする乳化装置と、 上記燃料油に加えるべき水量の率である加水率を、軸ト
ルク,燃料流量,給気圧力,燃料ラック量の少なくとも1
つおよび機関回転数の関数データとして記憶する加水率
記憶手段と、 機関運転中に検出される軸トルク,燃料流量,給気圧力,
燃料ラック量の少なくとも1つおよび機関回転数に基づ
き、上記加水率記憶手段に記憶された加水率を参照して
加水量を算出し、算出した加水量を表わす信号を上記乳
化装置に出力する加水量制御手段を備えたことを特徴と
するディーゼル機関。
1. A diesel engine capable of reducing the concentration of nitrogen oxides in exhaust gas, comprising: an emulsifying device provided in a fuel oil pipe system of the diesel engine to add a predetermined amount of water to the fuel oil to obtain an emulsified fuel oil; The water addition rate, which is the rate of the amount of water to be added to the fuel oil, should be at least one of the following: shaft torque, fuel flow rate, supply pressure, and fuel rack quantity
And a function of storing the water addition rate as function data of the engine speed, and the shaft torque, fuel flow rate, supply pressure,
Based on at least one of the fuel rack amount and the engine speed, the amount of water is calculated by referring to the water content stored in the water content storage means, and a signal representing the calculated water content is output to the emulsifying device. A diesel engine comprising water amount control means.
【請求項2】 請求項1に記載のディーゼル機関におい
て、 上記ディーゼル機関の燃料油管系に設けられ、燃料油と
水の分離および機関摺動箇所の損傷を防止すべく所定量
の添加剤を上記燃料油に加える添加装置と、 上記燃料油に加えるべき添加剤量の率である添加率を、
軸トルク,燃料流量,給気圧力,燃料ラック量の少なくと
も1つおよび機関回転数の関数データとして記憶する添
加率記憶手段と、 機関運転中に検出される軸トルク,燃料流量,給気圧力,
燃料ラック量の少なくとも1つおよび機関回転数に基づ
き、上記添加率記憶手段に記憶された添加率を参照して
添加剤量を算出し、算出した添加剤量を表わす信号を上
記添加装置に出力する添加量制御手段をさらに備えたこ
とを特徴とするディーゼル機関。
2. The diesel engine according to claim 1, wherein a predetermined amount of an additive is provided in a fuel oil pipe system of the diesel engine so as to prevent separation of fuel oil and water and damage to sliding parts of the engine. An addition device to be added to the fuel oil;
Means for storing at least one of a shaft torque, a fuel flow rate, a supply pressure, a fuel rack amount and a function data of an engine speed; and an addition rate storage means for detecting a shaft torque, a fuel flow rate, a supply pressure, and the like detected during operation of the engine.
An additive amount is calculated based on at least one of the fuel rack amount and the engine speed with reference to the addition ratio stored in the addition ratio storage means, and a signal representing the calculated additive amount is output to the addition device. A diesel engine further provided with an addition amount control means.
JP11010365A 1999-01-19 1999-01-19 Diesel engine Pending JP2000205051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11010365A JP2000205051A (en) 1999-01-19 1999-01-19 Diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11010365A JP2000205051A (en) 1999-01-19 1999-01-19 Diesel engine

Publications (1)

Publication Number Publication Date
JP2000205051A true JP2000205051A (en) 2000-07-25

Family

ID=11748149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11010365A Pending JP2000205051A (en) 1999-01-19 1999-01-19 Diesel engine

Country Status (1)

Country Link
JP (1) JP2000205051A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115741A (en) * 2006-11-02 2008-05-22 Nabtesco Corp Control device for engine provided with water filling device
WO2011037248A1 (en) * 2009-09-28 2011-03-31 ナブテスコ株式会社 Emulsion fuel feeding device
KR102180985B1 (en) * 2019-10-14 2020-11-19 이경은 Apparatus and method for controling fuel additive injector for automotive
KR102180987B1 (en) * 2019-10-14 2020-11-19 이경은 System and appratus for automatic injection of fuel additive for ship

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115741A (en) * 2006-11-02 2008-05-22 Nabtesco Corp Control device for engine provided with water filling device
WO2011037248A1 (en) * 2009-09-28 2011-03-31 ナブテスコ株式会社 Emulsion fuel feeding device
JP2011069319A (en) * 2009-09-28 2011-04-07 Nabtesco Corp Emulsion fuel system
CN102449295A (en) * 2009-09-28 2012-05-09 纳博特斯克株式会社 Emulsion fuel feeding device
KR102180985B1 (en) * 2019-10-14 2020-11-19 이경은 Apparatus and method for controling fuel additive injector for automotive
KR102180987B1 (en) * 2019-10-14 2020-11-19 이경은 System and appratus for automatic injection of fuel additive for ship

Similar Documents

Publication Publication Date Title
US6305160B1 (en) Emission control system
US6532736B2 (en) Emission control system with a catalyst
CN101336340B (en) Method of engine control and engine control system
US5908022A (en) Fuel-injection control device for a diesel engine
US6877479B2 (en) Apparatus and a method for controlling an internal combustion engine
WO2019214821A1 (en) An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine
JP3868926B2 (en) Diesel engine exhaust gas recirculation control device
US7293556B2 (en) Method of controlling the injection begin of a fuel injection valve of an internal combustion engine
US20160103110A1 (en) Engine nox model
JP2000205051A (en) Diesel engine
CN103423036B (en) The exhaust gas recirculation device of motor
EP1422409A1 (en) Method of controlling operation of internal combustion engine
JP4946904B2 (en) Internal combustion engine control system
JP6488113B2 (en) Control device for internal combustion engine
CN107614859A (en) Engine system
JPH0893572A (en) Control method for egr quantity of gas engine and its device
JP2004076585A (en) Method and device for controlling supply of vapor-liquid fuel mixture for internal combustion engine
JPH0544526A (en) Fuel control device for engine
JP2893681B2 (en) Fuel injection amount control device for internal combustion engine
JP3711530B2 (en) Diesel engine stop control device
Lack et al. Upstream NO x estimation
JPH0510761U (en) Automotive engine
JPH0361662A (en) Fuel flow rate controller for alcohol engine
JPH01208544A (en) Electronically controlled fuel injection device for internal combustion engine
JPS58119944A (en) Idle control device for alcohol/reformed gas engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706