JP2000205049A - Indirect injection gas engine with fuel cooler - Google Patents

Indirect injection gas engine with fuel cooler

Info

Publication number
JP2000205049A
JP2000205049A JP11003667A JP366799A JP2000205049A JP 2000205049 A JP2000205049 A JP 2000205049A JP 11003667 A JP11003667 A JP 11003667A JP 366799 A JP366799 A JP 366799A JP 2000205049 A JP2000205049 A JP 2000205049A
Authority
JP
Japan
Prior art keywords
chamber
fuel
sub
gas
gas fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11003667A
Other languages
Japanese (ja)
Other versions
JP3663949B2 (en
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP00366799A priority Critical patent/JP3663949B2/en
Publication of JP2000205049A publication Critical patent/JP2000205049A/en
Application granted granted Critical
Publication of JP3663949B2 publication Critical patent/JP3663949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the durability of fuel injectors by cooling fuel gas to be supplied to auxiliary chambers with fuel coolers and holding its pressure always constant despite of variations in its flow rate so that a proper fuel-gas flow rate is fed to compression chambers. SOLUTION: The indirect injection gas engine has an auxiliary chamber 2 formed in a piston 15, and a compression chamber 8 formed in a combustion chamber member 10 placed in a cylinder head 3. A fuel injector 5 has nozzle holes 16 adapted to open into the auxiliary chamber 2 in the piston 15 brought near the top dead center. Fuel gas compressed by a fuel pump 28 is cooled by a fuel cooler 47, regulated in temperature depending on variations in its flow rate and kept at a prescribed pressure before fed into the compression chamber 8, wherein it is boosted up by a compression piston 21 before injected into the auxiliary chamber 2 via the nozzle holes 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は,ガス燃料を圧縮
冷却するガス燃料供給装置からのガス燃料をピストンに
設けた副室に供給して着火燃焼させる燃料冷却装置を備
えた副室式ガスエンジンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sub-chamber gas engine provided with a fuel cooling device for supplying gas fuel from a gas fuel supply device for compressing and cooling gas fuel to a sub-chamber provided on a piston for igniting and burning. About.

【0002】[0002]

【従来の技術】従来,天然ガス等を燃料として用いるガ
スエンジンでは,天然ガスをディーゼル燃焼させて高効
率を確保するために,天然ガスを高圧力に圧縮して燃焼
室内に噴射させて燃焼させる方法が一般的である。しか
しながら,このようなガスエンジンでは,天然ガスを高
圧力に圧縮させるため,大きな動力を要し,ディーゼル
サイクルでの高効率で得られた仕事量を天然ガスを高圧
力に圧縮するのに消費され,必ずしも満足できるシステ
ムではない。
2. Description of the Related Art Conventionally, in a gas engine using natural gas or the like as fuel, natural gas is compressed to a high pressure and injected into a combustion chamber to burn natural gas in order to ensure high efficiency by diesel combustion. The method is general. However, such a gas engine requires a large amount of power to compress natural gas to a high pressure, and is consumed to compress the natural gas to a high pressure using the work obtained with high efficiency in a diesel cycle. , Not always a satisfactory system.

【0003】そこで,本発明者は,シリンダヘッドに副
室を設け,副室を連絡孔を通じて主室に連通すると共
に,連絡孔に制御弁を設けた副室式ガスエンジンを開発
した(特開平6−33784号公報参照)。該副室式ガ
スエンジンは,ピストンが吸気弁を通じて空気を主室に
吸入している間は制御弁が連絡孔を閉鎖し,副室にガス
燃料供給弁を開放して副室にガス燃料を供給し,圧縮行
程の後半になって制御弁が連絡孔を開放し,主室内の圧
縮空気を連絡孔を通じて副室に侵入させ,副室内で空気
とガス燃料とを混合して着火燃焼させ,次いで,副室内
の火炎,未燃混合気等のガスを主室に噴出させ,主室で
二次燃焼を行なわせている。
Accordingly, the present inventor has developed a sub-chamber gas engine in which a sub-chamber is provided in a cylinder head, the sub-chamber is communicated with the main chamber through a communication hole, and a control valve is provided in the communication hole (Japanese Patent Laid-Open Publication No. HEI 9-163568). 6-33784). In the sub-chamber gas engine, the control valve closes the communication hole while the piston sucks air into the main chamber through the intake valve, opens the gas fuel supply valve to the sub chamber, and supplies gas fuel to the sub chamber. In the latter half of the compression stroke, the control valve opens the communication hole, allows the compressed air in the main chamber to enter the sub-chamber through the communication hole, mixes air and gaseous fuel in the sub-chamber and ignites, Next, gases such as flames and unburned air-fuel mixture in the sub-chamber are injected into the main chamber, and secondary combustion is performed in the main chamber.

【0004】また,従来の副室式ガスエンジンとして
は,天然ガス等のガス燃料を副室に導入し,主室で吸入
空気のみを圧縮して圧縮比を高めると共に,副室内の筒
内圧を圧電素子等のセンサで検出し,その情報を基にし
て燃料供給弁を作動させて負荷と回転数とに見合った適
正な燃料供給量を制御し,主室内の空気を高温に上昇さ
せた状態で連絡孔の連絡孔弁を開放して主室の高圧縮空
気を副室に流入させ,副室内のガス燃料と高圧縮空気と
を一気に混合させることで短期間に着火燃焼させるもの
が知られている(特開平7−310550号公報参
照)。
In a conventional sub-chamber type gas engine, gas fuel such as natural gas is introduced into the sub-chamber, and only the intake air is compressed in the main chamber to increase the compression ratio and to reduce the in-cylinder pressure in the sub-chamber. A state in which the air in the main room is raised to a high temperature by detecting a sensor with a piezoelectric element or the like and operating the fuel supply valve based on the information to control the appropriate amount of fuel supply according to the load and the number of revolutions. It is known that the communication hole valve of the communication hole is opened to allow the highly compressed air in the main chamber to flow into the sub chamber, and the gas fuel and the high compressed air in the sub chamber are mixed at once to ignite and burn in a short time. (See JP-A-7-310550).

【0005】[0005]

【発明が解決しようとする課題】しかしながら,副室式
ガスエンジンは,副室に低圧力の天然ガスが燃料として
供給され,制御弁が連絡孔を開放することによって高圧
で分子量が大きい空気を主室から副室に供給するので,
天然ガスと空気とは比重が異なり混合し難く,副室内に
未燃ガス燃料を押し付けて残存させる原因になり,その
ため燃焼状態が悪化し,良好な燃焼を行わせることがで
きず,熱効率の低下と,HCの発生を増加させる原因と
なる。また,天然ガスが燃焼するには,天然ガス量が1
に対して9〜9.5倍の空気量が必要となるので,天然
ガスの外側に多量の空気が存在する状態で燃焼させるこ
とが望ましいが,従来の副室式ガスエンジンでは,空気
中へのガス燃料を分散させ過ぎ,燃焼が連続的に起こら
ないという問題があった。
However, in the sub-chamber gas engine, low-pressure natural gas is supplied as fuel to the sub-chamber, and the control valve opens the communication hole to supply high-pressure, high-molecular-weight air. Because it supplies from the room to the sub-room,
Natural gas and air have different specific gravities and are difficult to mix, causing unburned gas fuel to remain in the sub-chamber, causing the combustion state to deteriorate, making it impossible to perform good combustion and lowering thermal efficiency. This causes the generation of HC to increase. In order for natural gas to burn, the amount of natural gas must be one.
Therefore, it is desirable to burn in a state where a large amount of air exists outside the natural gas. However, in the conventional sub-chamber gas engine, the air amount is required to be increased to 9 to 9.5 times. There is a problem that the gas fuel is excessively dispersed and the combustion does not occur continuously.

【0006】そこで,本発明者は,圧縮された多量の空
気中に,ガス燃料を噴射して着火燃焼させることによっ
て圧縮空気とガス燃料とを副室内で均一に混合させ,副
室内のガス燃料を副室内に残存させることなく,主室へ
と噴き出させ,副室での着火燃焼による火炎,未燃混合
気等のガスを燃焼初期において短期に主室へ噴き出し,
熱効率を向上させると共に,HC等の発生を低減するこ
とができる副室式ガスエンジンを開発した(特願平10
−193376号)。
Accordingly, the present inventor has proposed that the compressed air and the gas fuel are uniformly mixed in the sub-chamber by injecting the gas fuel into a large amount of compressed air and igniting and burning the gas fuel. Without leaving the sub-chamber in the sub-chamber, the gas from the sub-chamber ignited and combusted, such as flame and unburned mixture, is spouted into the main chamber in a short period of time at the beginning of combustion.
We have developed a sub-chamber gas engine that can improve thermal efficiency and reduce the generation of HC etc.
193376).

【0007】[0007]

【課題を解決するための手段】この発明の目的は,上記
の問題を解決することであり,ピストンに副室を設け,
燃料噴射装置によってガス燃料を副室に噴射して前記副
室内で着火燃焼させ,この時,エンジンの負荷に応じる
ガス燃料供給量の変化に対応して圧縮されたガス燃料の
圧力を一定に保つため,部分負荷時は高圧で,また,全
負荷の燃料の多い時は圧縮された燃料を冷却することに
よって,ガス燃料流量が負荷に応じて変化しても圧縮ピ
ストンを適正に作動させ,常に副室に供給するガス燃料
の圧力を所定の値に保持し,HC,NOX ,スート等の
発生を防止して熱効率即ち燃費を向上させる燃料冷却装
置を備えた副室式ガスエンジンを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a sub chamber in a piston,
Gas fuel is injected into the sub-chamber by the fuel injection device and ignites and burns in the sub-chamber. At this time, the pressure of the compressed gas fuel is kept constant according to the change in the gas fuel supply amount according to the load of the engine. Therefore, the compression piston is operated properly even when the gas fuel flow rate changes according to the load by cooling the compressed fuel at a high pressure during the partial load and cooling the compressed fuel when the full load fuel is large. the pressure of the gas fuel supplied to the auxiliary chamber and held at a predetermined value, HC, NO X, provides a sub-chamber type gas engine with and prevent the occurrence of soot such as a fuel cooling system for improving the thermal efficiency i.e. fuel consumption That is.

【0008】この発明は,シリンダヘッドに配置され且
つ吸気弁が配置された吸気ポートが形成された主室を構
成する燃焼室部材,前記主室に連通する副室及び該副室
と前記主室とを連通する連絡孔が形成されたシリンダ内
を往復移動するピストン,前記副室内にガス燃料を噴射
するための噴孔を開閉作動する針弁と前記副室に噴射さ
れる前記ガス燃料を収容する圧縮室を備えている燃料噴
射装置,及び前記燃料噴射装置に前記ガス燃料を前記圧
縮室に供給するガス燃料供給装置を有し,前記ガス燃料
供給装置は,ガス燃料供給源からの前記ガス燃料を圧縮
する燃料ポンプ,前記燃料ポンプの下流に設けられ且つ
圧縮された前記ガス燃料を冷却してガス燃料圧を降圧さ
せる燃料冷却装置及び前記燃料冷却装置の下流に設けら
れ且つ前記ガス燃料を前記圧縮室へ供給するため作動さ
れるガス燃料弁から構成されていることから成る副室式
ガスエンジンに関する。
According to the present invention, there is provided a combustion chamber member constituting a main chamber having an intake port in which an intake valve is disposed and which is disposed in a cylinder head, a sub-chamber communicating with the main chamber, and the sub-chamber and the main chamber. A piston that reciprocates in a cylinder having a communication hole communicating therewith, a needle valve that opens and closes an injection hole for injecting gas fuel into the sub-chamber, and contains the gas fuel injected into the sub-chamber. A fuel injection device having a compression chamber that performs compression, and a gas fuel supply device that supplies the gas fuel to the compression chamber to the fuel injection device. A fuel pump for compressing fuel, a fuel cooling device provided downstream of the fuel pump and cooling the compressed gas fuel to reduce the gas fuel pressure, and a gas cooling device provided downstream of the fuel cooling device and provided About pre-combustion chamber gas engine consists configured from a gas fuel valve is actuated to be supplied to the compression chamber.

【0009】前記燃料冷却装置は,前記燃料ポンプで圧
縮された前記ガス燃料から熱を伝熱する伝熱通路を形成
する伝熱部材,前記伝熱部材の外側に配置され且つ前記
伝熱部材の熱を吸収放熱する放熱通路を形成する外側放
熱部材,及び前記放熱通路に冷却流体を送り込む冷却ポ
ンプから構成されている。
The fuel cooling device includes a heat transfer member for forming a heat transfer passage for transferring heat from the gas fuel compressed by the fuel pump, and a heat transfer member disposed outside the heat transfer member. It comprises an outer heat radiating member forming a heat radiating passage for absorbing and radiating heat, and a cooling pump for feeding a cooling fluid into the heat radiating passage.

【0010】前記副室に供給するガス燃料流量を制御す
るコントローラは,部分負荷時に前記燃料冷却装置の前
記放熱通路からの熱の放熱を低減させるため前記冷却ポ
ンプの作動状態を弱くし,高負荷時には前記放熱通路か
らの熱の放熱を増大させるため前記冷却ポンプの作動状
態を強める制御を行ってエンジン負荷に応じて所定のガ
ス燃料圧に保持しつつガス燃料流量を変化させる制御を
行う。
The controller for controlling the flow rate of gas fuel supplied to the sub-chamber reduces the operating state of the cooling pump to reduce the heat radiation from the heat radiation passage of the fuel cooling device at the time of partial load, and increases the load of the fuel pump. In some cases, control is performed to increase the operation state of the cooling pump in order to increase the heat radiation from the heat radiation passage, and to control the gas fuel flow rate while maintaining a predetermined gas fuel pressure according to the engine load.

【0011】前記主室へ導入される吸気中に前記ガス燃
料を噴射する吸気燃料ノズルを設けると共に,前記コン
トローラは,部分負荷時に前記燃料噴射装置から前記副
室内に前記ガス燃料を噴射し,高負荷時には前記燃料噴
射装置から前記副室内に前記ガス燃料を噴射すると共に
前記吸気燃料ノズルから前記吸気中に前記ガス燃料を噴
射する制御を行う。
An intake fuel nozzle for injecting the gaseous fuel during the intake air introduced into the main chamber is provided, and the controller injects the gaseous fuel from the fuel injection device into the sub-chamber at a partial load, At the time of load, control is performed to inject the gas fuel into the sub-chamber from the fuel injection device and to inject the gas fuel into the intake air from the intake fuel nozzle.

【0012】前記燃料噴射装置は,前記噴孔及び前記圧
縮室が形成されたノズル本体,前記圧縮室内の前記ガス
燃料を圧縮するため駆動装置によって作動される圧縮ピ
ストン,及び前記圧縮室に前記ガス燃料を供給するため
前記圧縮ピストンを復帰させるリターンスプリングを有
し,前記圧縮ピストン内にスプリングを介して配置され
た前記針弁は前記ノズル本体内で往復移動して前記噴孔
を開閉する。
The fuel injection device includes a nozzle body in which the injection hole and the compression chamber are formed, a compression piston operated by a driving device to compress the gas fuel in the compression chamber, and the gas in the compression chamber. A return spring for returning the compression piston to supply fuel is provided, and the needle valve disposed in the compression piston via a spring reciprocates in the nozzle body to open and close the injection hole.

【0013】前記圧縮ピストンには,前記ガス燃料供給
装置から供給される前記ガス燃料を前記圧縮室へ導入す
るため逆止弁が配置されたガス燃料通孔と,前記噴孔を
開閉する前記針弁が摺動移動する中空穴とが形成されて
いる。
The compression piston has a gas fuel through-hole in which a check valve is disposed for introducing the gas fuel supplied from the gas fuel supply device into the compression chamber, and the needle for opening and closing the injection hole. A hollow hole through which the valve slides is formed.

【0014】前記針弁は,前記圧縮ピストンの中空穴内
を摺動移動する摺動用端部,前記ノズル本体に形成され
た弁シートに着座して前記圧縮室と前記噴孔とを遮断す
る弁フェース,前記圧縮室内のガス燃料圧を受ける受圧
面,及び前記ノズル本体の前記小径筒部に形成された中
空孔を摺動移動して前記噴孔を開閉させる遮断用端部を
備えている。
[0014] The needle valve has a sliding end slidably moving within a hollow hole of the compression piston, and a valve face seated on a valve seat formed in the nozzle body to shut off the compression chamber and the injection hole. A pressure receiving surface for receiving gaseous fuel pressure in the compression chamber; and a shut-off end for slidingly moving a hollow hole formed in the small-diameter cylindrical portion of the nozzle body to open and close the injection hole.

【0015】前記針弁は,前記圧縮室内の所定以上のガ
ス燃料圧を前記針弁の前記受圧面で受けて,前記圧縮ピ
ストンの前記中空穴に配置されたスプリングのばね力に
抗してリフトされ,前記圧縮室と前記噴孔とを連通させ
る。
The needle valve receives a gas fuel pressure of a predetermined value or more in the compression chamber on the pressure receiving surface of the needle valve and lifts the gas fuel against a spring force of a spring disposed in the hollow hole of the compression piston. Then, the compression chamber and the injection hole are communicated with each other.

【0016】前記針弁の前記遮断用端部の端面は前記副
室に露出して前記副室内のガス圧を受ける受圧面を構成
しており,前記副室内の所定以上のガス圧に応じて前記
針弁はリフトして前記遮断用端部が前記噴孔を閉鎖す
る。
The end surface of the shutoff end of the needle valve constitutes a pressure receiving surface exposed to the sub-chamber and receiving the gas pressure in the sub-chamber, and in accordance with a predetermined gas pressure in the sub-chamber. The needle valve lifts and the blocking end closes the orifice.

【0017】この副室式ガスエンジンは,上記のよう
に,ガス燃料供給装置に燃料冷却装置を設けたので,エ
ンジン負荷に伴って変化する副室に供給するガス燃料流
量に応じてガス燃料を冷却して常に一定のガス燃料圧を
維持しつつ,該ガス燃料を燃料噴射装置の圧縮室へ供給
し,それによって圧縮室のガス燃料を昇圧する圧縮ピス
トンを常に適正に作動させ,副室での着火燃焼を良好に
し,HC,NOX ,スート等の発生を防止して燃費を向
上させる。即ち,副室に供給されるガス燃料は,燃料噴
射装置における圧縮室の容積及び圧縮ピストンのストロ
ークで決定されるが,副室に供給するガス燃料を冷却す
ることによって,ガス燃料の圧力を小さくして所定のガ
ス燃料流量を確保し,ガス燃料を常に所定の圧力に制御
し,カム,圧縮ピストン等の強度についての耐久性を保
証することができる。
In this sub-chamber type gas engine, as described above, the fuel cooling device is provided in the gas fuel supply device, so that the gas fuel is supplied in accordance with the gas fuel flow rate supplied to the sub-chamber, which varies according to the engine load. While cooling and maintaining a constant gas fuel pressure, the gas fuel is supplied to the compression chamber of the fuel injection device, whereby the compression piston which pressurizes the gas fuel in the compression chamber is always properly operated, and is operated in the sub chamber. To improve the fuel efficiency by preventing the generation of HC, NO X , soot and the like. That is, the gas fuel supplied to the sub chamber is determined by the volume of the compression chamber and the stroke of the compression piston in the fuel injection device. By cooling the gas fuel supplied to the sub chamber, the pressure of the gas fuel is reduced. As a result, a predetermined gas fuel flow rate can be secured, the gas fuel can be constantly controlled to a predetermined pressure, and the durability of the cam, the compression piston and the like can be guaranteed.

【0018】ガス燃料を圧縮するには,ピストン式であ
れば,大きなストロークを要する。従って,ガス燃料を
一段で高圧,例えば,10Mpaに圧縮するためには,
圧縮比を27以上にしなければならない。ガス燃料の圧
縮比を27以上にするには,ピストンのストロークが極
めて大きくなる。そこで,例えば,第一段目のガス燃料
供給装置の燃料ポンプでガス燃料圧を0.7Mpa程度
に上げておき,燃料噴射装置の圧縮ピストンで加圧すれ
ば,圧縮比が7程度で10Mpaに加圧できる。このガ
ス燃料圧の条件は,エンジンが全負荷で運転する時の条
件であるが,ガス燃料温度が高いと,燃料噴射装置での
圧縮室の容積を大きくしなければならないので,その容
積を小さくするためには,燃料ポンプから供給されるガ
ス燃料の温度を燃料冷却装置で下げる必要がある。一
方,部分負荷の時は,ガス燃料流量が少ないので,燃料
冷却装置でガス燃料を冷却し過ぎるとガス燃料圧が小さ
くなり,副室へガス燃料を噴射できない状態になる。そ
の場合には,燃料冷却装置の作動状態を冷却ポンプの送
風量を低減して冷却効果を低減し,ガス燃料圧を所定の
高圧に保持し,圧縮室から副室へ噴射されるガス燃料の
圧力を維持する。一時的な変化状態即ちトランジェント
の時は,燃料ポンプの回転を調整して圧力とガス燃料流
量の制御を行う。
In the case of a piston type, a large stroke is required to compress gas fuel. Therefore, in order to compress the gaseous fuel in one step to a high pressure, for example, 10 MPa,
The compression ratio must be 27 or higher. In order to make the gas fuel compression ratio 27 or more, the stroke of the piston becomes extremely large. Therefore, for example, if the gas fuel pressure is increased to about 0.7 Mpa by the fuel pump of the first-stage gas fuel supply device and pressurized by the compression piston of the fuel injection device, the compression ratio becomes about 7 to 10 Mpa. Can be pressurized. This gas fuel pressure condition is a condition when the engine is operated at full load. However, if the gas fuel temperature is high, the volume of the compression chamber in the fuel injection device must be increased. To do so, it is necessary to lower the temperature of the gas fuel supplied from the fuel pump with a fuel cooling device. On the other hand, at the time of partial load, since the gas fuel flow rate is small, if the gas fuel is excessively cooled by the fuel cooling device, the gas fuel pressure becomes small, and the gas fuel cannot be injected into the sub chamber. In such a case, the operating state of the fuel cooling device is reduced by reducing the amount of air blown from the cooling pump to reduce the cooling effect, maintaining the gas fuel pressure at a predetermined high pressure, and controlling the gas fuel injected from the compression chamber into the sub-chamber. Maintain pressure. In the case of a temporary change state, ie, a transient, the rotation of the fuel pump is adjusted to control the pressure and the gas fuel flow rate.

【0019】また,この副室式ガスエンジンは,部分負
荷時には全てのガス燃料流量をピストンに設けた副室に
噴射させ,全負荷時等の高負荷時には自己着火しない程
度のガス燃料の一部を吸気に混合させ,適正な流量を確
保し,良好な燃費効率を確保する。ガス燃料の一部を吸
気に混合させることによって,高負荷時に適正な全量の
ガス燃料流量を副室内へ噴射する必要がないので,副室
は勿論のことガス燃料を圧縮する圧縮室の容積を小さく
構成でき,燃料噴射装置のノズル本体内に設けた圧縮ピ
ストンの圧縮に必要なストロークを確保することがで
き,全負荷時にも吸気にガス燃料を供給した予混合燃料
と副室への噴射燃料が半々に設定されているので,ガス
燃料の着火後に速やかに燃焼を進展させることができ
る。
This sub-chamber type gas engine injects all the gas fuel flow rate into the sub-chamber provided at the piston at a partial load, and a part of the gas fuel which does not self-ignite under a high load such as a full load. Is mixed with the intake air to ensure an appropriate flow rate and good fuel efficiency. By mixing a part of the gas fuel with the intake air, it is not necessary to inject a proper amount of the gas fuel flow into the sub-chamber at a high load, so that the volume of the compression chamber for compressing the gas fuel as well as the sub-chamber is reduced. It can be made small and can secure the stroke necessary for compression of the compression piston provided in the nozzle body of the fuel injection device. Even at full load, premixed fuel that supplies gas fuel to the intake air and fuel injected to the sub chamber Is set in half, so that combustion can proceed promptly after ignition of the gaseous fuel.

【0020】通常,天然ガスは,燃焼始めの着火温度が
極めて高く,例えば,800℃で着火燃焼が起こるが,
一旦燃焼すると,燃焼速度が速い特性を有しているた
め,部分負荷時に,燃料を予め吸入空気中に混合して燃
焼させた場合に,混合気が余り希薄になり過ぎ,ピスト
ンとシリンダとの隙間に入り込む等により良好な燃焼を
確保できない現象が発生する。しかしながら,この副室
式ガスエンジンは,上記のように構成したので,上記の
ような好ましくない現象は発生しない。
Normally, natural gas has an extremely high ignition temperature at the start of combustion, for example, ignition combustion occurs at 800 ° C.
Once the fuel is burned, the combustion speed is high, so if the fuel is mixed with the intake air in advance and burned at partial load, the mixture becomes too lean and the piston A phenomenon occurs in which good combustion cannot be ensured due to penetration into a gap or the like. However, since the sub-chamber gas engine is configured as described above, the above-described undesired phenomenon does not occur.

【0021】この副室式ガスエンジンは,部分負荷時に
は副室へのガス燃料の噴射のみであるので,副室から噴
出した火炎,未燃混合気等のガス燃料が主室内の空気と
混合し,燃焼するが,ピストンに設けられた副室内は閉
鎖空間的であるので,燃料は均一に混合されて良好な混
合状態になる。ガス燃料は,例えば,約1/2負荷まで
は負荷に応じたガス燃料流量が副室に噴射され,約1/
2負荷より大きい高負荷になると,残りのガス燃料流量
が吸気に混合されて主室で希薄な予混合気となり,ま
た,全負荷時には,ガス燃料流量の1/2が副室内へ噴
射され,残りのガス燃料流量の1/2が吸気に噴射され
る。
In this sub-chamber type gas engine, only gas fuel is injected into the sub-chamber at the time of partial load, so that gas fuel such as flame and unburned mixture injected from the sub-chamber mixes with air in the main chamber. Although the fuel burns, the sub-chamber provided in the piston is a closed space, so that the fuel is uniformly mixed and is in a good mixing state. For gas fuel, for example, up to about 1/2 load, a gas fuel flow rate according to the load is injected into the sub-chamber, and
When the load becomes higher than two loads, the remaining gas fuel flow is mixed with the intake air to become a lean premixed gas in the main chamber, and at full load, half of the gas fuel flow is injected into the sub-chamber, One half of the remaining gas fuel flow is injected into the intake.

【0022】通常のディーゼルタイプのガスエンジン
は,燃料噴射ノズルから所定量のガス燃料を燃焼室に供
給するため,燃焼室内の圧縮空気圧が40〜50bar
程度であるので,それよりも高い圧力のガス燃料に昇
圧,例えば,少なくとも50〜70barにまで圧縮す
る必要がある。しかしながら,通常,ガス燃料供給源か
ら送られてくる天然ガスのガス燃料は5bar程である
ので,このような圧力のガス燃料を高圧にするには大き
な動力が必要となる。この副室式ガスエンジンは,燃料
ポンプで20〜30bar程度に圧縮したガス燃料を使
用し,その圧縮されたガス燃料をエンジンに設けた圧縮
室に封入し,カムによって作動される圧縮ピストンの押
圧力によってガス燃料を加圧し,ガス燃料の圧力を10
0〜150barまで高くするものであり,ガス燃料を
副室に良好に供給できる。
A normal diesel type gas engine supplies a predetermined amount of gas fuel from a fuel injection nozzle to a combustion chamber, so that the compressed air pressure in the combustion chamber is 40 to 50 bar.
Therefore, it is necessary to increase the pressure to a gas fuel having a higher pressure, for example, to compress the gas fuel to at least 50 to 70 bar. However, since the gas fuel of natural gas sent from the gas fuel supply source is usually about 5 bar, a large power is required to increase the gas fuel at such a pressure to a high pressure. This sub-chamber type gas engine uses gas fuel compressed by a fuel pump to about 20 to 30 bar, fills the compressed gas fuel into a compression chamber provided in the engine, and pushes a compression piston operated by a cam. The gas fuel is pressurized by the pressure, and the pressure of the gas fuel is increased by 10
The gas fuel can be satisfactorily supplied to the sub-chamber.

【0023】この副室式ガスエンジンは,高圧縮された
ガス燃料を燃料噴射装置を用いて副室内の圧縮空気中に
噴射させると,多量な空気中でガス燃料が均一に分散す
ることができ,混合気が着火燃焼し,副室の燃焼によっ
てNOX の発生を抑制でき,次いで,火炎,未燃混合気
等のガスが連絡孔を通じて前記副室から前記主室へ噴き
出され,副室にガス燃料が滞留することが防止され,噴
き出された火炎と未燃ガス燃料とが主室に存在する新気
との混合を促進し,主室での二次燃焼スピードをアップ
し,短期に燃焼を完結し,HC,NOX 等の発生を抑制
し,熱効率を向上させることができる。
In this sub-chamber gas engine, when highly compressed gas fuel is injected into the compressed air in the sub-chamber using the fuel injection device, the gas fuel can be uniformly dispersed in a large amount of air. air mixture is ignited and burned by the combustion of the auxiliary chamber can suppress the generation of NO X, then the flame, is blown from the secondary chamber gas such as unburnt fuel-air mixture through the communication hole into the main chamber, the auxiliary chamber Gas fuel is prevented from accumulating in the main chamber, the mixture of the emitted flame and the unburned gas fuel with fresh air existing in the main chamber is promoted, the secondary combustion speed in the main chamber is increased, and the the combustion completion in, HC, to suppress the generation of NO X, thereby improving the thermal efficiency.

【0024】[0024]

【発明の実施の形態】以下,図面を参照して,この発明
による副室式ガスエンジンの実施例を説明する。この副
室式ガスエンジンは,コージェネレーションシステム或
いは自動車用エンジン等のエンジンに適用できる。図1
はこの発明による副室式ガスエンジンの一実施例を示す
断面図,図2は図1の燃料噴射装置を示す拡大断面図,
図3は図2の燃料噴射装置の開放時の作動状態を示す拡
大断面図,図4は図2の燃料噴射装置の閉鎖時の作動状
態を示す拡大断面図,図5は負荷に対応する燃料噴射装
置と吸気燃料ノズルとの供給流量の関係を示すグラフ,
及び図6は図1のガス燃料供給装置を示す拡大断面図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a sub-chamber gas engine according to the present invention will be described below with reference to the drawings. This sub-chamber gas engine can be applied to an engine such as a cogeneration system or an automobile engine. FIG.
1 is a sectional view showing an embodiment of the sub-chamber gas engine according to the present invention, FIG. 2 is an enlarged sectional view showing the fuel injection device of FIG.
3 is an enlarged sectional view showing the operating state of the fuel injector of FIG. 2 when it is opened, FIG. 4 is an enlarged sectional view showing the operating state of the fuel injector of FIG. 2 when it is closed, and FIG. 5 is a fuel corresponding to the load. A graph showing the relationship between the supply flow rate of the injector and the intake fuel nozzle,
6 is an enlarged sectional view showing the gas fuel supply device of FIG.

【0025】この副室式ガスエンジンは,シリンダブロ
ック54,シリンダブロック54にガスケット63を介
在して固定されたシリンダヘッド3,シリンダブロック
54に形成した孔部23に嵌合したシリンダ14を構成
するシリンダライナ22,シリンダヘッド3に形成され
たキャビティ12に配置された燃焼室部材を構成するヘ
ッドライナ10,及びシリンダライナ22に形成したシ
リンダ14内を往復運動するピストン15を有してい
る。ヘッドライナ10は,ヘッド下部26とそれと一体
構造のライナ上部27から構成されている。ヘッドライ
ナ10とピストン15とで囲まれる領域には,主室1が
形成されている。
This sub-chamber type gas engine comprises a cylinder block 54, a cylinder head 3 fixed to the cylinder block 54 via a gasket 63, and a cylinder 14 fitted in a hole 23 formed in the cylinder block 54. It has a cylinder liner 22, a head liner 10 constituting a combustion chamber member arranged in a cavity 12 formed in the cylinder head 3, and a piston 15 reciprocating in a cylinder 14 formed in the cylinder liner 22. The head liner 10 includes a head lower portion 26 and a liner upper portion 27 integrally formed therewith. The main chamber 1 is formed in a region surrounded by the headliner 10 and the piston 15.

【0026】ヘッドライナ10は,Si3 4 等のセラ
ミックスや耐熱合金の耐熱材から形成され,シリンダヘ
ッド3のキャビティ12にガスケット13を介して遮熱
空気層31が形成される状態で配置され,主室1が遮熱
構造に構成されている。ヘッドライナ10のヘッド下部
26には,吸気弁56が配置された弁シートを備えた吸
気ポート18と,図示していないが,排気弁が配置され
た弁シートを備えた排気ポートとが形成されている。シ
リンダヘッド3には,ヘッドライナ10に形成された吸
気ポート18と排気ポートがそれぞれ互いに連通する吸
気ポート65と排気ポートが形成されている。
The headliner 10 is formed of a heat-resistant material such as a ceramic such as Si 3 N 4 or a heat-resistant alloy, and is disposed in the cavity 12 of the cylinder head 3 with a heat shielding air layer 31 formed through a gasket 13. , The main chamber 1 has a heat shielding structure. In the lower part 26 of the head liner 10, an intake port 18 having a valve seat in which an intake valve 56 is arranged and an exhaust port (not shown) having a valve seat in which an exhaust valve is arranged are formed. ing. An intake port 65 and an exhaust port are formed in the cylinder head 3 so that the intake port 18 and the exhaust port formed in the headliner 10 communicate with each other.

【0027】ピストン15は,Si3 4 等のセラミッ
クスや耐熱合金の耐熱材から形成されたピストンヘッド
20と,ピストンヘッド20にガスケット53を介して
結合リング46で固定されたAl合金等の金属材から形
成されたピストンスカート36から構成されている。ピ
ストンヘッド20とピストンスカート36との間には,
遮熱空気層55が形成されている。ピストンヘッド20
の中央には,副室2が形成されている。ピストンヘッド
20には,その中央頂部に位置する挿入孔7と挿入孔7
の周囲に位置する連絡孔6が形成されている。燃料噴射
装置5の先端部42は,ピストン上死点付近で挿入孔7
を通って副室2内に侵入できるように,ヘッドライナ1
0のヘッド下部26から主室1へ突出した状態でヘッド
ライナ10に形成された中央貫通孔37に設定されてい
る。また,ピストンヘッド20に形成された連絡孔6
は,挿入孔7を中心に周方向に隔置して複数個形成さ
れ,ピストンヘッド20の中央側からシリンダ周辺へと
延びている。従って,燃料噴射装置5は,ヘッドライナ
10から主室1へ突出した先端部42がピストン上死点
近傍でピストン15に形成された挿入孔7に突入し,先
端部42に形成された噴孔16が副室2内に開口するよ
うになる。
The piston 15 includes a piston head 20 formed of a heat-resistant material such as ceramics such as Si 3 N 4 or a heat-resistant alloy, and a metal such as an Al alloy fixed to the piston head 20 by a coupling ring 46 via a gasket 53. The piston skirt 36 is formed from a material. Between the piston head 20 and the piston skirt 36,
A heat shield air layer 55 is formed. Piston head 20
A sub-chamber 2 is formed in the center of. The piston head 20 has an insertion hole 7 located at the top of the center and an insertion hole 7.
A communication hole 6 is formed at the periphery of the communication hole 6. The tip 42 of the fuel injection device 5 has an insertion hole 7 near the piston top dead center.
Headliner 1 so that it can penetrate into sub-chamber 2
0 is set in a central through hole 37 formed in the head liner 10 so as to protrude from the lower portion 26 of the head to the main chamber 1. In addition, a communication hole 6 formed in the piston head 20 is formed.
Are formed at intervals around the insertion hole 7 in the circumferential direction, and extend from the center of the piston head 20 to the periphery of the cylinder. Therefore, in the fuel injection device 5, the tip end 42 projecting from the head liner 10 into the main chamber 1 enters the insertion hole 7 formed in the piston 15 near the piston top dead center, and the injection hole formed in the tip end portion 42. 16 opens into the sub-chamber 2.

【0028】この副室式ガスエンジンは,特に,燃料噴
射装置5の圧縮室8にガス燃料を供給するガス燃料供給
装置に特徴を有している。ガス燃料供給装置は,ガス燃
料供給源39からガス燃料通路79を通じて供給される
ガス燃料を圧縮する燃料ポンプ28,燃料ポンプ28の
下流に設けられ且つ燃料ポンプ28からのガス燃料をガ
ス燃料通路43を通じて送り込まれる燃料冷却装置47
及び燃料冷却装置47の下流に設けられ且つガス燃料を
圧縮室8へ供給するため作動されるガス燃料弁11から
構成されている。燃料冷却装置47は,熱交換器から構
成され,燃料ポンプ28で圧縮されたガス燃料を冷却し
てガス燃料圧を降圧させる機能を有する。ガス燃料弁1
1は,燃料冷却装置47で適正なガス燃料圧に調整され
たガス燃料をノズル本体19内の中空部35及び圧縮室
8へ供給するため,ガス燃料供給口17を開閉する。
This sub-chamber type gas engine is particularly characterized by a gas fuel supply device that supplies gas fuel to the compression chamber 8 of the fuel injection device 5. The gas fuel supply device is provided with a fuel pump 28 that compresses gas fuel supplied from a gas fuel supply source 39 through a gas fuel passage 79, and is provided downstream of the fuel pump 28 and supplies the gas fuel from the fuel pump 28 to the gas fuel passage 43. Cooling device 47 fed through
And a gas fuel valve 11 provided downstream of the fuel cooling device 47 and operated to supply gas fuel to the compression chamber 8. The fuel cooling device 47 is constituted by a heat exchanger and has a function of cooling the gas fuel compressed by the fuel pump 28 to reduce the gas fuel pressure. Gas fuel valve 1
1 opens and closes the gas fuel supply port 17 in order to supply the gas fuel adjusted to an appropriate gas fuel pressure by the fuel cooling device 47 to the hollow portion 35 in the nozzle body 19 and the compression chamber 8.

【0029】更に,燃料冷却装置47は,燃料ポンプ2
8で圧縮されたガス燃料から熱を伝熱する伝熱通路75
を形成する伝熱部材76,伝熱部材76の外側に配置さ
れ且つ伝熱部材76の熱を吸収放熱する放熱通路77を
形成する放熱部材78,及び放熱通路77に冷却流体を
流体通路74を通じて送り込む冷却ポンプ73から構成
されている。燃料冷却装置47は,冷媒として水又は空
気が使用され,冷媒が流体通路74を流れることによっ
て放熱部材78から熱を奪うように構成されている。伝
熱部材76は,流体が通過できない伝熱材から成るケー
ス86内に収容されている。伝熱部材76は,ガス燃料
を通過させてガス燃料の熱を受熱できる金属やセラミッ
クスから成る多孔質部材やハニカム構造から形成されて
いる。放熱部材78は,流体が通過できない伝熱材から
成るケース85内に収容されている。放熱部材78は,
冷媒流体を通過させて伝熱部材76の熱を受熱できる金
属やセラミックスから成る多孔質部材やハニカム構造か
ら形成されている。従って,伝熱部材76と放熱部材7
8は,極めて熱伝達が良好になり,ガス燃料からの熱を
適正に吸収し,ガス燃料を適正なガス燃料圧に調整する
ことができる。
Further, the fuel cooling device 47 includes the fuel pump 2
Heat transfer passage 75 for transferring heat from the gaseous fuel compressed at 8
, A heat dissipating member 78 disposed outside of the heat transfer member 76 and forming a heat dissipating passage 77 for absorbing and dissipating the heat of the heat transferring member 76, and supplying a cooling fluid to the heat dissipating passage 77 through the fluid passage 74. It is composed of a cooling pump 73 for feeding in. The fuel cooling device 47 is configured such that water or air is used as a refrigerant, and the refrigerant flows through the fluid passage 74 to remove heat from the heat radiation member 78. The heat transfer member 76 is accommodated in a case 86 made of a heat transfer material through which a fluid cannot pass. The heat transfer member 76 is formed of a porous member or a honeycomb structure made of a metal or ceramic capable of passing the gas fuel and receiving the heat of the gas fuel. The heat radiating member 78 is accommodated in a case 85 made of a heat transfer material through which a fluid cannot pass. The heat radiation member 78
It is formed of a porous member or a honeycomb structure made of metal or ceramic capable of receiving the heat of the heat transfer member 76 through the passage of the refrigerant fluid. Therefore, the heat transfer member 76 and the heat dissipation member 7
8, the heat transfer becomes extremely good, the heat from the gaseous fuel is properly absorbed, and the gaseous fuel can be adjusted to an appropriate gaseous fuel pressure.

【0030】ガス燃料弁11は,弁本体30に形成され
たガス燃料通路52のガス燃料供給口17を開放するこ
とによって,燃料噴射装置5のノズル本体19に形成さ
れた中空部35と圧縮室8へガス燃料が供給される。弁
本体30に形成されたガス燃料通路52は,ガス燃料通
路43を通じて燃料冷却装置47に連通している。燃料
ポンプ28は,例えば,ガス燃料供給源39からの5b
ar程度のガス燃料を20〜30bar程度にまで圧縮
することができる。燃料ポンプ28は,回転ベーン式又
は往復動ピストン式の圧縮機に形成されている。例え
ば,回転ベーン式圧縮機は,図6に示すように,ポンプ
ケーシング80内に偏心して配置された回転軸81,回
転軸81に形成された複数の放射方向溝内にスプリング
87でそれぞれ外向きに押圧状態に配置されたベーン8
2,及びベーン82でそれぞれ区画された複数のポンプ
室83から構成されている。
The gas fuel valve 11 opens the gas fuel supply port 17 of the gas fuel passage 52 formed in the valve body 30 so that the hollow portion 35 formed in the nozzle body 19 of the fuel injection device 5 and the compression chamber are opened. 8 is supplied with gaseous fuel. The gas fuel passage 52 formed in the valve body 30 communicates with the fuel cooling device 47 through the gas fuel passage 43. The fuel pump 28 is, for example, 5b from the gas fuel supply source 39.
Ar gaseous fuel can be compressed to about 20 to 30 bar. The fuel pump 28 is formed as a rotary vane type or reciprocating piston type compressor. For example, as shown in FIG. 6, a rotary vane type compressor has a rotating shaft 81 eccentrically arranged in a pump casing 80 and a plurality of radial grooves formed on the rotating shaft 81, each of which is outwardly directed by a spring 87. Vanes 8 placed in a pressed state
2 and a plurality of pump chambers 83 partitioned by vanes 82.

【0031】コントローラ70は,負荷センサ71から
のエンジン負荷の信号を受け,モータ71を駆動すると
共に,冷却ポンプ73を駆動する制御を行う。モータ7
2の駆動によって燃料ポンプ28が作動し,ガス燃料が
ガス燃料供給源39からガス燃料通路79を通じて燃料
ポンプ28に吸い込まれる。燃料ポンプ28のポンプ室
83に吸い込まれたガス燃料は圧縮され,圧縮されたガ
ス燃料はガス燃料通路43を通って燃料冷却装置47に
送りこまれる。燃料冷却装置47では,ガス燃料は多孔
質構造の伝熱部材76で形成された伝熱通路75を通過
してガス燃料の熱を伝熱部材76へ伝達し,次いで,ガ
ス燃料は出口側のガス燃料通路43を通ってガス燃料弁
11へ送り込まれる。一方,冷却ポンプ73が駆動する
と,冷媒の空気(水)は,流体通路74を通って燃料冷
却装置47の多孔質構造の放熱部材78で形成された放
熱通路77にに送り込まれ,空気(水)は放熱部材78
から熱を受熱して出口通路84から外部へ放出される。
従って,圧縮されて昇温したガス燃料は,空気(水)に
よって冷却され,圧縮室8へ供給されるガス燃料圧は低
減され,適正な圧力に制御されることになる。
The controller 70 receives the signal of the engine load from the load sensor 71, and controls the driving of the motor 71 and the driving of the cooling pump 73. Motor 7
2 drives the fuel pump 28 to operate, and gas fuel is sucked into the fuel pump 28 from the gas fuel supply source 39 through the gas fuel passage 79. The gas fuel sucked into the pump chamber 83 of the fuel pump 28 is compressed, and the compressed gas fuel is sent to the fuel cooling device 47 through the gas fuel passage 43. In the fuel cooling device 47, the gaseous fuel passes through a heat transfer passage 75 formed of a heat transfer member 76 having a porous structure to transfer the heat of the gaseous fuel to the heat transfer member 76. The gas is sent to the gas fuel valve 11 through the gas fuel passage 43. On the other hand, when the cooling pump 73 is driven, the air (water) of the refrigerant is sent through the fluid passage 74 into the heat dissipation passage 77 formed by the porous heat dissipation member 78 of the fuel cooling device 47, and the air (water) is discharged. ) Indicates the heat radiation member 78
And is discharged from the outlet passage 84 to the outside.
Therefore, the gas fuel which has been heated by compression is cooled by air (water), and the gas fuel pressure supplied to the compression chamber 8 is reduced, and the pressure is controlled to an appropriate pressure.

【0032】また,この副室式ガスエンジンは,吸気ポ
ート65,18を通じて主室1へ導入される吸気に高負
荷時にガス燃料通路61を通じてガス燃料の一部を噴射
する吸気燃料ノズル33,圧縮室8内のガス燃料を圧縮
するため作動される燃料噴射装置5の圧縮ピストン2
1,圧縮ピストン21を押圧駆動する駆動装置,及び部
分負荷時に燃料噴射装置5から副室2にガス燃料を噴射
し,高負荷時に燃料噴射装置5から副室2に前記ガス燃
料を噴射すると共に吸気燃料ノズル33から吸気にガス
燃料を噴射する制御を行うコントローラ70を有してい
ることに特徴を有している。エンジンの負荷は,ガス燃
料供給量等を検出するセンサ71によって検出される。
圧縮ピストン21を押圧駆動する駆動装置は,動弁機構
のカム軸68に設けたカム29,カム29によって作動
されるピストンロッド25,及びピストンロッド25を
復帰させるリターンスプリング38から構成されてい
る。
The sub-chamber gas engine also includes an intake fuel nozzle 33 for injecting a part of gas fuel through a gas fuel passage 61 at a high load to intake air introduced into the main chamber 1 through the intake ports 65 and 18, The compression piston 2 of the fuel injection device 5 which is operated to compress the gas fuel in the chamber 8
1, a driving device that presses and drives the compression piston 21, and injects gas fuel from the fuel injection device 5 to the sub-chamber 2 at a partial load, and injects the gas fuel from the fuel injection device 5 to the sub-chamber 2 at a high load. It is characterized in that it has a controller 70 for controlling the injection of gaseous fuel from the intake fuel nozzle 33 to the intake air. The engine load is detected by a sensor 71 that detects a gas fuel supply amount and the like.
The driving device for pressing and driving the compression piston 21 includes a cam 29 provided on a cam shaft 68 of a valve operating mechanism, a piston rod 25 operated by the cam 29, and a return spring 38 for returning the piston rod 25.

【0033】ガス燃料弁11は,弁本体30をシリンダ
ヘッド3に形成された取付穴に配置することによって取
り付けられている。ガス燃料弁11は,動弁機構のカム
軸68に設けたカム32で作動されて弁本体30に形成
されたガス燃料通路52のガス燃料供給口17を開放す
る弁体64,及び弁体64をガス燃料供給口17を閉鎖
する方向に復帰させるバルブスプリング48から構成さ
れている。バルブスプリング48は,弁本体30と弁体
64の端部に固定されたバルブスプリングリテーナ59
との間に配置されている。従って,ガス燃料弁11は,
カム32によってガス燃料供給口17の開口時間が調整
される。
The gas fuel valve 11 is mounted by arranging the valve body 30 in a mounting hole formed in the cylinder head 3. The gas fuel valve 11 is operated by a cam 32 provided on a cam shaft 68 of a valve operating mechanism to open a gas fuel supply port 17 of a gas fuel passage 52 formed in the valve main body 30, and a valve body 64. Of the gas fuel supply port 17 is closed. The valve spring 48 includes a valve spring retainer 59 fixed to the ends of the valve body 30 and the valve body 64.
And is located between. Therefore, the gas fuel valve 11 is
The opening time of the gas fuel supply port 17 is adjusted by the cam 32.

【0034】燃料噴射装置5は,ヘッドライナ10の中
央貫通孔37に設定されたノズル本体19,ノズル本体
19内に形成されたシリンダ4内で往復移動して作動さ
れる圧縮ピストン21,ノズル本体19内の圧縮ピスト
ン21の一方の側に形成されたガス燃料を収容して圧縮
する圧縮室8,及びノズル本体19内の圧縮ピストン2
1の背面側に形成された中空部35を備えている。圧縮
ピストン21には,ガス燃料供給装置から供給されるガ
ス燃料を圧縮室8へ導入するため逆止弁41を備えたガ
ス燃料通孔45と噴孔16を開閉する針弁9が摺動移動
する中空穴57とが形成されている。また,燃料噴射装
置5を構成するノズル本体19には,圧縮ピストン21
が摺動移動する圧縮室8を形成する大径筒部と主室1に
突出した先端部42の小径筒部から形成されている。
The fuel injection device 5 includes a nozzle body 19 set in the central through hole 37 of the head liner 10, a compression piston 21 reciprocally operated in a cylinder 4 formed in the nozzle body 19, a nozzle body. A compression chamber 8 formed on one side of a compression piston 21 in a compression chamber 8 for containing and compressing gas fuel, and a compression piston 2 in a nozzle body 19.
1 is provided with a hollow portion 35 formed on the back side. A needle valve 9 for opening and closing a gas fuel through hole 45 provided with a check valve 41 and a nozzle hole 16 for introducing gas fuel supplied from a gas fuel supply device into the compression chamber 8 slides on the compression piston 21. A hollow hole 57 is formed. Further, a compression piston 21 is provided on the nozzle body 19 of the fuel injection device 5.
Are formed from a large-diameter cylindrical portion forming the compression chamber 8 in which the sliding movement is performed, and a small-diameter cylindrical portion of the distal end portion 42 protruding into the main chamber 1.

【0035】針弁9は,圧縮ピストン21の中空部35
内を摺動移動する摺動用端部60,ノズル本体19に形
成された弁シート24に着座して圧縮室8と噴孔16と
を遮断する弁フェース50,圧縮室8内のガス燃料圧を
受けて針弁9をリフトさせる受圧面51,及びノズル本
体19の小径筒部に形成された中空孔62を摺動移動し
て噴孔16を開閉させる遮断用端部34を備えている。
針弁9は,その先端部側は縮径部67に形成され,その
先端に大径部から成る遮断用端部34が形成されてい
る。ノズル本体の先端部42との間に燃料溜まり部49
が形成されている。燃料噴射装置5は,針弁9の弁フェ
ース50がノズル本体19の弁シート24に着座した
時,副室2と圧縮室8との連絡が遮断される(図2参
照)。圧縮ピストン21の中空穴57内には,針弁9の
上端面を針弁9の閉鎖方向に押圧するスプリング40が
配置されている。燃料噴射装置5における針弁9は,圧
縮室8内のガス燃料圧が所定以上の値に応答し,ガス燃
料圧を針弁9の受圧面51で受けてスプリング40のば
ね力に抗してリフトされ,圧縮室8と噴孔16とを連通
させる(図3参照)。針弁9の遮断用端部34の端面6
9は,副室2内に露出しており,副室2内のガス圧を受
ける受圧面が構成されている。従って,燃料噴射装置5
は,副室2内でガス燃料が着火燃焼して副室2内のガス
圧が上昇した時には,針弁9を最大量にリフトさせ,針
弁9の遮断用端部34が噴孔16を閉鎖して副室2と圧
縮室8との連絡を遮断するように構成されている(図4
参照)。
The needle valve 9 has a hollow portion 35 of the compression piston 21.
The sliding end portion 60 that slides in the inside, the valve face 50 that sits on the valve seat 24 formed in the nozzle body 19 and shuts off the compression chamber 8 and the injection hole 16, and the gas fuel pressure in the compression chamber 8 is reduced. A pressure receiving surface 51 for receiving and lifting the needle valve 9, and a blocking end 34 for slidingly moving a hollow hole 62 formed in a small-diameter cylindrical portion of the nozzle body 19 to open and close the injection hole 16 are provided.
The distal end of the needle valve 9 is formed in a reduced diameter portion 67, and a distal end of the needle valve 9 is formed with a blocking end portion 34 having a large diameter portion. The fuel pool 49 between the nozzle body and the tip 42
Are formed. In the fuel injection device 5, when the valve face 50 of the needle valve 9 is seated on the valve seat 24 of the nozzle body 19, the communication between the sub chamber 2 and the compression chamber 8 is cut off (see FIG. 2). A spring 40 that presses the upper end surface of the needle valve 9 in the closing direction of the needle valve 9 is disposed in the hollow hole 57 of the compression piston 21. The needle valve 9 in the fuel injection device 5 responds to the gas fuel pressure in the compression chamber 8 exceeding a predetermined value, receives the gas fuel pressure on the pressure receiving surface 51 of the needle valve 9 and opposes the spring force of the spring 40. It is lifted, and the compression chamber 8 communicates with the injection hole 16 (see FIG. 3). End face 6 of shutoff end 34 of needle valve 9
Reference numeral 9 denotes a pressure receiving surface that is exposed in the sub-chamber 2 and receives the gas pressure in the sub-chamber 2. Therefore, the fuel injection device 5
When the gas fuel in the sub-chamber 2 is ignited and burned in the sub-chamber 2 and the gas pressure in the sub-chamber 2 rises, the needle valve 9 is lifted to the maximum amount, and the shut-off end 34 of the needle valve 9 closes the injection hole 16. It is configured to close and cut off communication between the sub chamber 2 and the compression chamber 8 (FIG. 4).
reference).

【0036】この副室式ガスエンジンは,上記のように
構成されているので,次のようにして作動される。この
副室式ガスエンジンは,例えば,吸入行程,圧縮行程,
膨張行程及び排気行程の4サイクルを繰り返すことによ
って駆動される。この副室式ガスエンジンは,コントロ
ーラ70によってエンジン負荷に応じて燃料噴射装置5
及び吸気燃料ノズル33から供給されるガス燃料流量を
制御すると共に,副室2に供給するガス燃料流量を制御
する場合に,部分負荷時に燃料冷却装置47の放熱通路
77からの熱の放熱を低減させるため冷却ポンプ73の
作動状態を弱くし,高負荷時には放熱通路77からの熱
の放熱を増大させるため冷却ポンプ73の作動状態を強
める制御を行ってエンジン負荷に応じて所定のガス燃料
圧に保持しつつガス燃料流量を変化させる制御を行うこ
とに特徴を有する。
Since the sub-chamber gas engine is constructed as described above, it is operated as follows. This sub-chamber gas engine has, for example, a suction stroke, a compression stroke,
It is driven by repeating four cycles of an expansion stroke and an exhaust stroke. This sub-chamber type gas engine is controlled by the controller 70 in accordance with the engine load.
When controlling the flow rate of gas fuel supplied from the intake fuel nozzle 33 and controlling the flow rate of gas fuel supplied to the sub-chamber 2, the heat radiation from the radiation passage 77 of the fuel cooling device 47 during partial load is reduced. In order to increase the heat radiation from the heat radiating passage 77 at a high load, the operating condition of the cooling pump 73 is strengthened in order to increase the heat radiation from the heat radiation passage 77 so that the gas fuel pressure is adjusted to a predetermined gas fuel pressure according to the engine load. It is characterized in that the control for changing the gas fuel flow rate is performed while maintaining it.

【0037】この副室式ガスエンジンは,負荷センサ7
1からのエンジン負荷の検出信号を受けてコントローラ
70が副室2及び吸気に供給するガス燃料流量を,例え
ば,図5のグラフに示すように,燃料噴射装置5と吸気
燃料ノズル33の作動を制御する。コントローラ70
は,1/2負荷までの部分負荷に応じて燃料噴射装置5
から副室2内に漸次増加する状態でガス燃料を噴射し,
また,1/2負荷以上の高負荷に応じて燃料噴射装置5
から副室2内にガス燃料を噴射すると共に吸気燃料ノズ
ル33から吸気中にガス燃料を噴射する制御を行う。コ
ントローラ70は,高負荷時には,全負荷時の全ガス燃
料流量の1/2流量を,燃料噴射装置5から副室2内へ
噴射する制御を行うように設定されている。
This sub-chamber type gas engine has a load sensor 7
In response to the detection signal of the engine load from the controller 1, the controller 70 determines the flow rate of the gas fuel supplied to the sub-chamber 2 and the intake air, for example, the operation of the fuel injection device 5 and the intake fuel nozzle 33 as shown in the graph of FIG. Control. Controller 70
Is the fuel injection device 5 depending on the partial load up to 1/2 load.
Gas fuel is injected into the sub-chamber 2 from the
In addition, the fuel injection device 5 according to a high load of 1/2 load or more.
Control is performed to inject gas fuel into the sub-chamber 2 and to inject gas fuel from the intake fuel nozzle 33 during intake. The controller 70 is set so as to perform control of injecting a half flow rate of the total gas fuel flow rate at full load from the fuel injection device 5 into the sub-chamber 2 at high load.

【0038】この副室式ガスエンジンは,ピストン15
がシリンダ14内を下降する吸入行程において,吸気弁
56が開放し,排気弁が排気ポートを閉鎖しているの
で,吸入空気がターボチャージャのコンプレッサ等から
吸気ポート65,18を通じて主室1に供給される。こ
の時,1/2負荷までの部分負荷では,吸気燃料ノズル
33からガス燃料が吸気には供給されず,1/2負荷以
上の高負荷では,吸気燃料ノズル33からガス燃料が吸
気に供給される。また,排気行程が終了した時には,カ
ム29によってスプリング38のばね力に抗してピスト
ンロッド25が押し下げられ,圧縮室8内のガス燃料が
噴孔16を通じて副室2に噴射し終わり,図4に示すよ
うに,針弁9の遮断用端部34が噴孔16を閉鎖してガ
ス燃料通路66と噴孔16とは遮断しているが,圧縮ピ
ストン21がノズル本体19のシリンダ4を下降して中
空部35の体積が拡大している状態である。吸入行程で
は,ガス燃料弁11がカム32によって作動されてガス
燃料弁11の弁体64がリフトしてガス燃料供給口17
を開放すると共に,燃料ポンプ28の作動によってガス
燃料供給源39からガス燃料(天然ガスの5bar)が
圧縮される。燃料ポンプ28で圧縮されたガス燃料(2
0〜30bar)は,ガス燃料通路43を通じてガス燃
料弁11のガス燃料通路52に供給され,開放されたガ
ス燃料供給口17から中空部35に供給される。
This sub-chamber gas engine has a piston 15
In the intake stroke in which the air flows down in the cylinder 14, the intake valve 56 is opened and the exhaust valve closes the exhaust port, so that the intake air is supplied from the compressor of the turbocharger or the like to the main chamber 1 through the intake ports 65 and 18. Is done. At this time, the gas fuel is not supplied to the intake from the intake fuel nozzle 33 at a partial load up to the 負荷 load, and the gas fuel is supplied to the intake from the intake fuel nozzle 33 at a high load of 1 / load or more. You. When the exhaust stroke is completed, the cam 29 pushes down the piston rod 25 against the spring force of the spring 38, and the gas fuel in the compression chamber 8 is completely injected into the sub-chamber 2 through the injection hole 16; As shown in the figure, the shut-off end 34 of the needle valve 9 closes the injection hole 16 to shut off the gas fuel passage 66 from the injection hole 16, but the compression piston 21 moves down the cylinder 4 of the nozzle body 19. Thus, the volume of the hollow portion 35 is expanding. In the suction stroke, the gas fuel valve 11 is operated by the cam 32 and the valve body 64 of the gas fuel valve 11 is lifted to lift the gas fuel supply port 17.
And the fuel pump 28 operates to compress the gas fuel (5 bar of natural gas) from the gas fuel supply source 39. Gas fuel (2) compressed by the fuel pump 28
0 to 30 bar) is supplied to the gas fuel passage 52 of the gas fuel valve 11 through the gas fuel passage 43, and is supplied to the hollow portion 35 from the opened gas fuel supply port 17.

【0039】次いで,カム29が回転してピストンロッ
ド25の押圧を解放すると,リターンスプリング38の
作用によって,ピストンロッド25と圧縮ピストン21
とが上昇する。この時,中空部35に収容されているガ
ス燃料は,圧縮ピストン21のガス燃料通孔42を通っ
てスプリング44のばね力に抗して逆止弁41を押し下
げ,中空部35内のガス燃料が圧縮室8に導入される。
この状態では,図1と図2に示すように,針弁9はスプ
リング40によって押し下げられ,針弁9の弁フェース
50はノズル本体19の弁シート24に着座した状態に
なっており,ノズル本体19のガス燃料通路66と噴孔
16とは遮断された状態である。
Next, when the cam 29 rotates to release the pressing of the piston rod 25, the piston rod 25 and the compression piston 21 are actuated by the action of the return spring 38.
And rise. At this time, the gas fuel contained in the hollow portion 35 passes through the gas fuel through hole 42 of the compression piston 21 and pushes down the check valve 41 against the spring force of the spring 44, and the gas fuel in the hollow portion 35 Is introduced into the compression chamber 8.
In this state, as shown in FIGS. 1 and 2, the needle valve 9 is pushed down by the spring 40, and the valve face 50 of the needle valve 9 is seated on the valve seat 24 of the nozzle body 19. The 19 gas fuel passage 66 and the injection hole 16 are in a state of being shut off.

【0040】圧縮行程に移行すると,ピストン15がシ
リンダ14内を上昇し,主室1に供給された吸入空気は
圧縮される。ピストン15がシリンダ14を上昇した圧
縮行程上死点近傍で,燃料噴射装置5の先端部42はピ
ストン15の挿入孔7に突入し,燃料噴射装置5の噴孔
16は,副室2内に位置する状態になる。また,圧縮行
程後半において,カム29がピストンロッド25を押し
下げることによって圧縮ピストン21がシリンダ4を下
降する。この時,圧縮室8に供給されているガス燃料
は,逆止弁41によってガス燃料通孔45が閉鎖される
ので,圧縮ピストン21の下降によって圧縮室8の容積
が低減するのに従って圧力が増大し,例えば,20〜3
0barから50〜70barまで圧縮される。
In the compression stroke, the piston 15 rises in the cylinder 14 and the intake air supplied to the main chamber 1 is compressed. Near the top dead center of the compression stroke in which the piston 15 moves up the cylinder 14, the tip 42 of the fuel injection device 5 enters the insertion hole 7 of the piston 15, and the injection hole 16 of the fuel injection device 5 is inserted into the sub chamber 2. It will be located. In the latter half of the compression stroke, the cam 29 pushes down the piston rod 25, so that the compression piston 21 moves down the cylinder 4. At this time, the pressure of the gas fuel supplied to the compression chamber 8 increases as the volume of the compression chamber 8 decreases due to the lowering of the compression piston 21 because the gas fuel passage 45 is closed by the check valve 41. And, for example, 20-3
It is compressed from 0 bar to 50-70 bar.

【0041】この時,圧縮室8内のガス燃料圧が上昇す
ると,ガス燃料圧が針弁9の受圧面51に作用し,図3
に示すように,針弁9がスプリング40のばね力に抗し
てリフトし,弁フェース50が弁シート24から離れて
ガス燃料通路66が噴孔16と連通して噴孔16が開放
する。噴孔16の開放によって圧縮室8内のガス燃料が
噴孔16から副室2内の圧縮空気中へ噴出され,圧縮室
8のガス燃料は副室2へ噴き出されて殆ど残存しない状
態になると共に,副室2内の圧縮空気中に噴出されたガ
ス燃料が空気と混合を促進して副室2で着火燃焼する。
この時,副室2内の圧力が上昇し,副室2内のガス圧が
針弁9の遮断用端部34の端面69に作用し,図4に示
すように,針弁9の遮断用端部34が噴孔16を閉鎖す
るので,副室2内の火炎,未燃混合気等のガスが副室2
から噴孔16,燃料溜まり部49,ガス燃料通路66を
通って圧縮室8へ逆流することが防止され,副室2内の
火炎,未燃混合気等のガスは連絡孔6を通って主室1に
噴き出され,主室1に存在する新気と混合を促進して拡
散燃焼し燃焼速度を促進し,NOX ,HCの発生を抑制
した状態で燃焼が完結し,ピストン15に仕事をする。
At this time, when the gas fuel pressure in the compression chamber 8 rises, the gas fuel pressure acts on the pressure receiving surface 51 of the needle valve 9, and FIG.
As shown in FIG. 7, the needle valve 9 is lifted against the spring force of the spring 40, the valve face 50 is separated from the valve seat 24, the gas fuel passage 66 communicates with the injection hole 16, and the injection hole 16 is opened. When the injection hole 16 is opened, the gas fuel in the compression chamber 8 is jetted from the injection hole 16 into the compressed air in the sub-chamber 2, and the gas fuel in the compression chamber 8 is jetted into the sub-chamber 2 and hardly remains. At the same time, the gas fuel injected into the compressed air in the sub-chamber 2 promotes mixing with the air and ignites and burns in the sub-chamber 2.
At this time, the pressure in the sub-chamber 2 rises, and the gas pressure in the sub-chamber 2 acts on the end face 69 of the shut-off end 34 of the needle valve 9, as shown in FIG. Since the end 34 closes the injection hole 16, gases such as flames and unburned mixture in the sub-chamber 2
Backflow from the gas through the injection hole 16, the fuel reservoir 49, and the gas fuel passage 66 to the compression chamber 8, and the gas such as the flame and the unburned mixture in the sub-chamber 2 passes through the communication hole 6. is sprayed into the chamber 1, the diffusion combustion and to promote combustion rate and promote mixing with the fresh air existing in the main combustion chamber 1, NO X, combustion while suppressing generation of HC completed, work piston 15 do.

【0042】膨張行程に移行すると,ピストン15が下
降し,ピストン15が下降すると共に副室2内のガスが
主室1に噴出すると,副室2内のガス圧が低下し,針弁
9はスプリング40によって下降し,針弁9の弁フェー
ス50が弁シート24に着座し,圧縮室8と噴孔16と
の連通状態が遮断され,噴孔16が閉鎖される。次い
で,ピストン15が下死点に到達し,排気行程に移行す
る。排気弁が排気ポートを開放し,排気ガスが排気ポー
トを通じて排気管から排気され,排気ガスが有する排気
熱エネルギは,例えば,排気管に組み込まれたターボチ
ャージャやエネルギ回収タービン,熱交換器等で回収さ
れる。
In the expansion stroke, the piston 15 descends, and when the piston 15 descends and the gas in the sub-chamber 2 blows out to the main chamber 1, the gas pressure in the sub-chamber 2 decreases and the needle valve 9 The valve face 50 of the needle valve 9 is seated on the valve seat 24 by the spring 40, the communication between the compression chamber 8 and the injection hole 16 is cut off, and the injection hole 16 is closed. Next, the piston 15 reaches the bottom dead center and shifts to the exhaust stroke. An exhaust valve opens an exhaust port, exhaust gas is exhausted from an exhaust pipe through the exhaust port, and exhaust heat energy of the exhaust gas is, for example, a turbocharger, an energy recovery turbine, a heat exchanger, or the like incorporated in the exhaust pipe. Collected.

【0043】[0043]

【発明の効果】この発明による副室式ガスエンジンは,
上記のように構成されているので,エンジン負荷で供給
するガス燃料流量が変化しても,ガス燃料を燃料冷却装
置で温度制御することによって所定のガス燃料圧を維持
でき,その所定のガス燃料圧で圧縮室で昇圧されるの
で,ガス燃料が常に適正なガス燃料圧で副室へ噴射され
ることになり,NOX ,HC等の発生を低減し,熱効率
を向上させることができる。即ち,燃料ポンプによって
ある程度昇圧されたガス燃料を燃料噴射装置の圧縮室に
導入し,ガス燃料をカム機構で作動する圧縮ピストンに
よって所望の高圧,例えば,50〜70bar,場合に
よっては,100bar〜150barまでにも容易に
昇圧でき,その高圧のガス燃料を燃料噴射装置の噴孔か
ら副室内の圧縮空気中に噴射することができる。また,
高負荷時には,副室に供給するガス燃料を燃料ポンプで
昇圧した後,圧縮されたガス燃料を燃料冷却装置で冷却
するので,ガス燃料の圧力が低下するので,常に圧縮室
からは所定のガス燃料圧で副室へ噴射できる。また,吸
気にガス燃料の一部を供給するので,燃料噴射装置に設
けた圧縮室の体積を余り大きく設計する必要がなく,燃
料噴射装置をコンパクトに構成できると共に,常に負荷
に応じた適正なガス燃料流量を供給でき,副室での一次
燃焼は勿論のこと,二次燃焼を促進して燃焼期間を短縮
し,燃焼を完結でき,NOX ,HC等の発生を低減し,
熱効率を向上させることができる。
The sub-chamber gas engine according to the present invention has the following features.
With the above configuration, even if the flow rate of gas fuel supplied by the engine load changes, a predetermined gas fuel pressure can be maintained by controlling the temperature of the gas fuel by the fuel cooling device, and the predetermined gas fuel pressure can be maintained. since the pressurized in the compression chamber in pressure results in the gaseous fuel is always correct injection gas fuel pressure to the secondary chamber, NO X, and reduce the occurrence of HC and the like, thereby improving the thermal efficiency. That is, gas fuel, which has been pressurized to some extent by a fuel pump, is introduced into a compression chamber of a fuel injection device, and the gas fuel is supplied to a desired high pressure, for example, 50 to 70 bar, for example, 100 to 150 bar by a compression piston operated by a cam mechanism. The pressure can be easily increased by this time, and the high-pressure gas fuel can be injected into the compressed air in the sub-chamber from the injection hole of the fuel injection device. Also,
When the load is high, the gas fuel supplied to the sub-chamber is pressurized by the fuel pump, and then the compressed gas fuel is cooled by the fuel cooling device. Therefore, the pressure of the gas fuel decreases. It can be injected into the sub chamber by fuel pressure. In addition, since a part of the gas fuel is supplied to the intake, the volume of the compression chamber provided in the fuel injection device does not need to be designed so large that the fuel injection device can be made compact, gas fuel flow can be supplied to the sub chamber in the primary combustion, of course, to promote secondary combustion and reduce the combustion period, you can complete combustion, reducing NO X, the generation of HC and the like,
Thermal efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による副室式ガスエンジンの一実施例
を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a sub-chamber gas engine according to the present invention.

【図2】図1の副室式ガスエンジンにおける燃料噴射装
置を示す拡大断面図である。
FIG. 2 is an enlarged sectional view showing a fuel injection device in the sub-chamber gas engine of FIG.

【図3】図2の燃料噴射装置の開放時の作動状態を示す
拡大断面図である。
FIG. 3 is an enlarged sectional view showing an operating state of the fuel injection device of FIG. 2 when it is opened.

【図4】図2の燃料噴射装置の閉鎖時の作動状態を示す
拡大断面図である。
FIG. 4 is an enlarged sectional view showing an operation state of the fuel injection device of FIG. 2 when the fuel injection device is closed.

【図5】燃料噴射装置と吸気燃料ノズルとの負荷に対応
する供給流量の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between supply flow rates corresponding to loads on a fuel injection device and an intake fuel nozzle.

【図6】図1のガス燃料供給装置を示す拡大断面図であ
る。
FIG. 6 is an enlarged sectional view showing the gas fuel supply device of FIG.

【符号の説明】[Explanation of symbols]

1 主室 2 副室 3 シリンダヘッド 5 燃料噴射装置 6 連絡孔 8 圧縮室 9 針弁 10 ヘッドライナ(燃焼室部材) 11 燃料弁 14 シリンダ 15 ピストン 16 噴孔 18,65 吸気ポート 19 ノズル本体 21 圧縮ピストン 24 弁シート 28 燃料ポンプ 33 吸気燃料ノズル 34 遮断用端部 38 リターンスプリング 39 ガス燃料供給源 40 スプリング 41 逆止弁 43,52,61,66 ガス燃料通路 45 ガス燃料通孔 47 燃料冷却装置(熱交換器) 50 弁フェース 51 受圧面 56 吸気弁 57 中空穴 60 摺動用端部 62 中空孔 69 遮断用端部の端面 70 コントローラ 73 冷却ポンプ 74 流体通路 75 伝熱通路 76 伝熱部材 77 放熱通路 78 放熱部材 DESCRIPTION OF SYMBOLS 1 Main chamber 2 Sub chamber 3 Cylinder head 5 Fuel injection device 6 Communication hole 8 Compression chamber 9 Needle valve 10 Headliner (combustion chamber member) 11 Fuel valve 14 Cylinder 15 Piston 16 Injection hole 18, 65 Intake port 19 Nozzle body 21 Compression Piston 24 Valve seat 28 Fuel pump 33 Intake fuel nozzle 34 Shutoff end 38 Return spring 39 Gas fuel supply source 40 Spring 41 Check valve 43, 52, 61, 66 Gas fuel passage 45 Gas fuel passage 47 Fuel cooling device ( Heat exchanger) 50 Valve face 51 Pressure receiving surface 56 Intake valve 57 Hollow hole 60 Sliding end 62 Hollow hole 69 End surface of shutoff end 70 Controller 73 Cooling pump 74 Fluid passage 75 Heat transfer passage 76 Heat transfer member 77 Radiation passage 78 Heat dissipation member

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッドに配置され且つ吸気弁が
配置された吸気ポートが形成された主室を構成する燃焼
室部材,前記主室に連通する副室及び該副室と前記主室
とを連通する連絡孔が形成されたシリンダ内を往復移動
するピストン,前記副室内にガス燃料を噴射するための
噴孔を開閉作動する針弁と前記副室に噴射される前記ガ
ス燃料を収容する圧縮室を備えている燃料噴射装置,及
び前記燃料噴射装置に前記ガス燃料を前記圧縮室に供給
するガス燃料供給装置を有し,前記ガス燃料供給装置
は,ガス燃料供給源からの前記ガス燃料を圧縮する燃料
ポンプ,前記燃料ポンプの下流に設けられ且つ圧縮され
た前記ガス燃料を冷却してガス燃料圧を降圧させる燃料
冷却装置及び前記燃料冷却装置の下流に設けられ且つ前
記ガス燃料を前記圧縮室へ供給するため作動されるガス
燃料弁から構成されていることから成る副室式ガスエン
ジン。
A combustion chamber member that is disposed in a cylinder head and has an intake port in which an intake valve is disposed, the combustion chamber member constituting a main chamber, a sub-chamber communicating with the main chamber, and a sub-chamber and the main chamber. A piston that reciprocates in a cylinder having a communicating hole formed therein, a needle valve that opens and closes an injection hole for injecting gas fuel into the sub-chamber, and a compression that stores the gas fuel injected into the sub-chamber A fuel injection device having a chamber, and a gas fuel supply device for supplying the gas fuel to the compression chamber to the fuel injection device, wherein the gas fuel supply device supplies the gas fuel from a gas fuel supply source. A fuel pump for compression; a fuel cooling device provided downstream of the fuel pump for cooling the compressed gas fuel to reduce the gas fuel pressure; and a fuel cooling device provided downstream of the fuel cooling device for compressing the gas fuel. A sub-chamber gas engine comprising a gas fuel valve operated to supply the chamber.
【請求項2】 前記燃料冷却装置は,前記燃料ポンプで
圧縮された前記ガス燃料から熱を伝熱する伝熱通路を形
成する伝熱部材,前記伝熱部材の外側に配置され且つ前
記伝熱部材の熱を吸収放熱する放熱通路を形成する放熱
部材,及び前記放熱通路に冷却流体を送り込む冷却ポン
プから構成されていることから成る請求項1に記載の副
室式ガスエンジン。
2. The fuel cooling device according to claim 1, further comprising: a heat transfer member that forms a heat transfer passage for transferring heat from the gas fuel compressed by the fuel pump; 2. The sub-chamber gas engine according to claim 1, further comprising a heat radiating member for forming a heat radiating passage for absorbing and radiating heat of the member, and a cooling pump for feeding a cooling fluid to the heat radiating passage.
【請求項3】 前記副室に供給するガス燃料流量を制御
するコントローラは,部分負荷時に前記燃料冷却装置の
前記放熱通路からの熱の放熱を低減させるため前記冷却
ポンプの作動状態を弱くし,高負荷時には前記放熱通路
からの熱の放熱を増大させるため前記冷却ポンプの作動
状態を強める制御を行ってエンジン負荷に応じて所定の
ガス燃料圧に保持しつつガス燃料流量を変化させる制御
を行うことから成る請求項2に記載の副室式ガスエンジ
ン。
3. A controller for controlling a flow rate of gaseous fuel supplied to the sub-chamber weakens an operation state of the cooling pump to reduce heat radiation from the heat radiation passage of the fuel cooling device at a partial load. At high load, control is performed to increase the operation state of the cooling pump in order to increase heat radiation from the heat radiation passage, and control is performed to change the gas fuel flow rate while maintaining a predetermined gas fuel pressure according to the engine load. The sub-chamber type gas engine according to claim 2, comprising:
【請求項4】 前記主室へ導入される吸気中に前記ガス
燃料を噴射する吸気燃料ノズルを設けると共に,前記コ
ントローラは,部分負荷時に前記燃料噴射装置から前記
副室内に前記ガス燃料を噴射し,高負荷時には前記燃料
噴射装置から前記副室内に前記ガス燃料を噴射すると共
に前記吸気燃料ノズルから前記吸気中に前記ガス燃料を
噴射する制御を行うことから成る請求項3に記載の副室
式ガスエンジン。
4. An intake fuel nozzle for injecting the gas fuel during intake air introduced into the main chamber, and the controller injects the gas fuel from the fuel injection device into the sub chamber at a partial load. 4. A sub-chamber system according to claim 3, wherein at the time of a high load, control is performed to inject said gas fuel from said fuel injection device into said sub-chamber and to inject said gas fuel into said sub-chamber from said intake fuel nozzle. Gas engine.
【請求項5】 前記燃料噴射装置は,前記噴孔及び前記
圧縮室が形成されたノズル本体,前記圧縮室内の前記ガ
ス燃料を圧縮するため駆動装置によって作動される圧縮
ピストン,及び前記圧縮室に前記ガス燃料を供給するた
め前記圧縮ピストンを復帰させるリターンスプリングを
有し,前記圧縮ピストン内にスプリングを介して配置さ
れた前記針弁は前記ノズル本体内で往復移動して前記噴
孔を開閉することから成る請求項1に記載の副室式ガス
エンジン。
5. A fuel injection device comprising: a nozzle body having the injection hole and the compression chamber formed therein; a compression piston operated by a driving device for compressing the gas fuel in the compression chamber; A return spring for returning the compression piston to supply the gaseous fuel, wherein the needle valve disposed in the compression piston via a spring reciprocates in the nozzle body to open and close the injection hole; The sub-chamber type gas engine according to claim 1, comprising:
【請求項6】 前記圧縮ピストンには,前記ガス燃料供
給装置から供給される前記ガス燃料を前記圧縮室へ導入
するため逆止弁が配置されたガス燃料通孔と,前記噴孔
を開閉する前記針弁が摺動移動する中空穴とが形成され
ていることから成る請求項5に記載の副室式ガスエンジ
ン。
6. The compression piston opens and closes a gas fuel through hole in which a check valve is arranged for introducing the gas fuel supplied from the gas fuel supply device into the compression chamber, and the injection hole. 6. The sub-chamber gas engine according to claim 5, wherein a hollow hole through which the needle valve slides is formed.
【請求項7】 前記針弁は,前記圧縮ピストンの中空穴
内を摺動移動する摺動用端部,前記ノズル本体に形成さ
れた弁シートに着座して前記圧縮室と前記噴孔とを遮断
する弁フェース,前記圧縮室内のガス燃料圧を受ける受
圧面,及び前記ノズル本体の前記小径筒部に形成された
中空孔を摺動移動して前記噴孔を開閉させる遮断用端部
を備えていることから成る請求項5に記載の副室式ガス
エンジン。
7. The compression valve according to claim 7, wherein the needle valve is seated on a sliding end that slides in a hollow hole of the compression piston and a valve seat formed in the nozzle body to shut off the compression chamber from the injection hole. A valve face, a pressure receiving surface for receiving gas fuel pressure in the compression chamber, and a shutoff end for slidingly moving a hollow hole formed in the small-diameter cylindrical portion of the nozzle body to open and close the injection hole. The sub-chamber gas engine according to claim 5, comprising:
【請求項8】 前記針弁は,前記圧縮室内の所定以上の
ガス燃料圧を前記針弁の前記受圧面で受けて,前記圧縮
ピストンの前記中空穴に配置されたスプリングのばね力
に抗してリフトされ,前記圧縮室と前記噴孔とを連通さ
せることから成る請求項7に記載の副室式ガスエンジ
ン。
8. The needle valve receives a gas fuel pressure greater than or equal to a predetermined value in the compression chamber on the pressure receiving surface of the needle valve and resists a spring force of a spring disposed in the hollow hole of the compression piston. 8. The sub-chamber gas engine according to claim 7, further comprising a lift for communicating the compression chamber with the injection hole.
【請求項9】 前記針弁の前記遮断用端部の端面は前記
副室に露出して前記副室内のガス圧を受ける受圧面を構
成しており,前記副室内の所定以上のガス圧に応じて前
記針弁はリフトして前記遮断用端部が前記噴孔を閉鎖す
ることから成る請求項6に記載の副室式ガスエンジン。
9. An end face of the shutoff end of the needle valve constitutes a pressure receiving surface which is exposed to the sub-chamber and receives gas pressure in the sub-chamber. 7. The sub-chamber gas engine according to claim 6, wherein the needle valve is correspondingly lifted and the shutoff end closes the injection hole.
JP00366799A 1999-01-11 1999-01-11 Sub-chamber gas engine with fuel cooling device Expired - Fee Related JP3663949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00366799A JP3663949B2 (en) 1999-01-11 1999-01-11 Sub-chamber gas engine with fuel cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00366799A JP3663949B2 (en) 1999-01-11 1999-01-11 Sub-chamber gas engine with fuel cooling device

Publications (2)

Publication Number Publication Date
JP2000205049A true JP2000205049A (en) 2000-07-25
JP3663949B2 JP3663949B2 (en) 2005-06-22

Family

ID=11563799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00366799A Expired - Fee Related JP3663949B2 (en) 1999-01-11 1999-01-11 Sub-chamber gas engine with fuel cooling device

Country Status (1)

Country Link
JP (1) JP3663949B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021735A1 (en) * 2014-08-08 2016-02-11 イマジニアリング株式会社 Internal combustion engine
US10208652B2 (en) 2015-12-14 2019-02-19 Caterpillar Energy Solutions Gmbh Pre-chamber of internal combustion engine
CN115217615A (en) * 2022-04-06 2022-10-21 广州汽车集团股份有限公司 Scavenging device and scavenging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021735A1 (en) * 2014-08-08 2016-02-11 イマジニアリング株式会社 Internal combustion engine
US10208652B2 (en) 2015-12-14 2019-02-19 Caterpillar Energy Solutions Gmbh Pre-chamber of internal combustion engine
CN115217615A (en) * 2022-04-06 2022-10-21 广州汽车集团股份有限公司 Scavenging device and scavenging method
CN115217615B (en) * 2022-04-06 2023-08-15 广州汽车集团股份有限公司 Scavenging device and scavenging method

Also Published As

Publication number Publication date
JP3663949B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
US6073605A (en) Gas engine with pre-combustion chamber
JPH09158729A (en) Indirect injection gas engine
JP2000205049A (en) Indirect injection gas engine with fuel cooler
JP3695085B2 (en) Gas engine combustion chamber structure
JP2000073769A (en) Auxiliary chamber type gas engine having gas fuel compression means
JP3695019B2 (en) Sub-chamber variable gas engine
JP2000204988A (en) Divided gas engine having intake fuel nozzle
JP3379177B2 (en) Subchamber gas engine
JP3653964B2 (en) Control valve drive device in engine
JPH11193720A (en) Structure of combustion chamber in gas engine
JP2000136724A (en) Gas engine with main chamber capacity variable means
JP3918361B2 (en) Sub-chamber gas engine
JP3038091B2 (en) Gas engine using ceramic valve
JP2000328974A (en) Diesel engine with egr system
JP2000291455A (en) Gas engine having exhaust gas cooling device for egr
JPH09158733A (en) Gas fuel feed device in indirect injection gas engine
JP2000291495A (en) Gas engine having egr device
JP2004251194A (en) Gas engine
JPH07127530A (en) Gas engine provided with accessory cell
JP2000027648A (en) Divided combustion chamber type gas engine having gas fuel compressing means
JP3379178B2 (en) Gas engine with subchamber
JPH1182025A (en) Indirect injection type gas turbine with communication opening valve
JPH1162590A (en) Gas engine provided with pressure reducing device
JPH08151924A (en) Gas engine having combustion chamber in piston outer periphery
JP2000205024A (en) Indirect injection gas engine having egr device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees