JP2000188802A - Charge control apparatus of hybrid vehicle - Google Patents

Charge control apparatus of hybrid vehicle

Info

Publication number
JP2000188802A
JP2000188802A JP10364465A JP36446598A JP2000188802A JP 2000188802 A JP2000188802 A JP 2000188802A JP 10364465 A JP10364465 A JP 10364465A JP 36446598 A JP36446598 A JP 36446598A JP 2000188802 A JP2000188802 A JP 2000188802A
Authority
JP
Japan
Prior art keywords
engine
power
charging
battery
motor generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10364465A
Other languages
Japanese (ja)
Other versions
JP3931457B2 (en
Inventor
Atsushi Tabata
淳 田端
Takatsugu Ibaraki
隆次 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP36446598A priority Critical patent/JP3931457B2/en
Publication of JP2000188802A publication Critical patent/JP2000188802A/en
Application granted granted Critical
Publication of JP3931457B2 publication Critical patent/JP3931457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PROBLEM TO BE SOLVED: To change a charge control method according to the running state of a vehicle, in a hybrid vehicle which has an engine and a motor generator linked with the engine, generates power by driving the motor generator with the engine, and charges a battery. SOLUTION: This charge control equipment is provided with a navigation system 9 and an ECU 8, which analyzes traffic information concerning the running route in navigation running and estimates power which a battery 6 consumes and regenerative power to the battery 6. On the basis of the estimation, quick charging, in which power is generated with a motor generator 2 by controlling an engine 1 or effective charging which controls the engine 1 and the motor generator 2 and charging is performed effectively, is selected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車両
の充電制御装置、特に車両走行中におけるエンジン出力
によるバッテリ充電の制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control device for a hybrid vehicle, and more particularly, to control of battery charge by engine output during vehicle running.

【0002】[0002]

【従来の技術】近年、エンジンを駆動させるための石油
燃料の節約と、エンジンの騒音の低減、さらに石油燃料
の燃焼により発生する排気ガスの低減を目的として、エ
ンジン以外の異なる動力源として、モータジェネレータ
を搭載した車両が提案されている。
2. Description of the Related Art In recent years, a motor other than an engine has been used as a power source other than an engine for the purpose of saving petroleum fuel for driving the engine, reducing noise of the engine, and reducing exhaust gas generated by combustion of the petroleum fuel. Vehicles equipped with a generator have been proposed.

【0003】この車両に用いられるモータジェネレータ
は、モータとして機能することにより、バッテリからの
電力によりモータトルクを発生させ、車両発進時、加速
時にエンジンのトルクアシストをする。またジェネレー
タとして機能することにより、エンジントルクにより発
電を行い、バッテリを充電する。さらに、車両減速時に
は車輪から変速機を介して入力されるトルクを用いて回
生充電する。
[0003] The motor generator used in this vehicle functions as a motor to generate a motor torque by electric power from a battery, and assists the engine torque during starting and acceleration of the vehicle. Also, by functioning as a generator, it generates power by engine torque and charges the battery. Further, at the time of vehicle deceleration, regenerative charging is performed using torque input from wheels through a transmission.

【0004】例えば、特開平9−209790号公報に
は、変速機の入力軸にエンジンが接続されるとともにモ
ータジェネレータが接続され、車速やアクセル開度、あ
るいはバッテリの充電量に基づいてエンジン及びモータ
ジェネレータを制御する技術が開示されている。
For example, Japanese Patent Application Laid-Open No. 9-209790 discloses that an engine is connected to an input shaft of a transmission, a motor generator is connected, and an engine and a motor are controlled based on a vehicle speed, an accelerator opening, or a charged amount of a battery. Techniques for controlling a generator are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のハイブ
リッド車両の走行中における充電は、迅速に充電するこ
とを目的とするため、エンジン出力を高めモータジェネ
レータで発電を行う急速充電が行われていた。この急速
充電には、下坂路が長く続く場合等にバッテリが満充電
されてしまい、本来利用することのできた回生電力が得
られないことがあり、エネルギ効率上問題があった。一
方、エンジントルク、モータトルク等を制御することに
より充電効率を高めた効率充電は、エネルギ効率の点か
ら望ましいが充電速度が比較的遅いため、渋滞等の電力
を多量に消費する走行条件では、充電が不十分となりモ
ータ走行が十分に行えないおそれもあった。
However, since the conventional hybrid vehicle is charged during traveling while aiming for quick charging, rapid charging for increasing the engine output and generating electric power with a motor generator has been performed. . In this rapid charging, when the downhill road continues for a long time, the battery is fully charged, and the regenerative electric power that can be originally used may not be obtained, and there is a problem in energy efficiency. On the other hand, efficient charging in which charging efficiency is increased by controlling engine torque, motor torque, etc. is desirable from the viewpoint of energy efficiency, but since charging speed is relatively slow, under running conditions that consume a large amount of power such as traffic congestion, There was also a risk that the charging was insufficient and the motor could not run sufficiently.

【0006】本発明は、上記課題に鑑みなされたもので
あり、その目的は、走行条件に合わせて充電モードを切
り替えることで、エネルギ効率及び燃費向上を図ること
のできる充電制御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a charging control device capable of improving energy efficiency and fuel efficiency by switching a charging mode according to running conditions. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、エンジンと、これに連結されたモー
タジェネレータとを有し、エンジンによりモータジェネ
レータを駆動して発電し、バッテリの充電を行うハイブ
リッド車両の充電制御装置であって、走行予定路に関す
る情報を受信する情報受信手段と、前記走行予定路に関
する情報を解析しバッテリが消費する電力及びバッテリ
への回生電力を予測する解析手段とを備え、前記予測し
た消費電力及びバッテリの回生電力に応じて充電方法を
変更することを特徴とする。
In order to achieve the above object, a first aspect of the present invention has an engine and a motor generator connected to the engine. A charging control device for a hybrid vehicle that performs charging of a vehicle, comprising: an information receiving unit that receives information about a planned traveling road; and analyzing information about the planned traveling road to predict power consumed by a battery and regenerative power to the battery. Analyzing means for changing a charging method according to the predicted power consumption and the regenerative power of the battery.

【0008】また、第2の発明は、エンジンと、これに
連結されたモータジェネレータとを有し、エンジンによ
りモータジェネレータを駆動して発電し、バッテリの充
電を行うハイブリッド車両の充電制御装置であって、動
力性能を高めるためモータによりトルクアシストするア
シスト手段と、乗員が動力性能を選択操作できる選択操
作手段又はアクセル操作に基づき乗員の動力性能の要求
を検知する検知手段の少なくともいずれかを備え、動力
性能の要求に応じて充電方法を変更することを特徴とす
る。
A second aspect of the present invention is a charge control device for a hybrid vehicle having an engine and a motor generator connected to the engine, wherein the engine drives the motor generator to generate power and charge a battery. An assist means for torque assisted by a motor to enhance the power performance, and at least one of a selection operation means for enabling the occupant to selectively operate the power performance or a detection means for detecting a demand for the occupant's power performance based on an accelerator operation, It is characterized in that the charging method is changed according to the demand for power performance.

【0009】ここで、動力性能を選択操作する選択操作
手段は、走行時の加速を重視した走行モードの切替手段
であってもよい。なお、アクセル操作に基づく乗員の動
力性能の要求はスロットルの開度の変化率が所定値を越
える頻度で判断するものであってもよい。
Here, the selection operation means for selecting and operating the power performance may be a switching means for a traveling mode in which acceleration during traveling is emphasized. The request for the power performance of the occupant based on the accelerator operation may be determined at a frequency at which the rate of change of the throttle opening exceeds a predetermined value.

【0010】また、第3の発明は、第1又は第2の発明
のハイブリッド車両の充電制御装置であって、エンジン
を制御しモータジェネレータで発電する急速充電手段
と、エンジン及びモータジェネレータを制御することに
より効率よく充電する効率充電手段とを備えたことを特
徴とする。
According to a third aspect of the present invention, there is provided a charge control device for a hybrid vehicle according to the first or second aspect, wherein the quick charge means controls an engine and generates electric power by a motor generator, and controls the engine and the motor generator. And an efficient charging means for efficiently charging the battery.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に従って説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1には、本実施の形態におけるハイブリ
ッド車の構成ブロック図を示す。エンジン1の出力軸
は、モータジェネレータ2に接続されており、モータジ
ェネレータ2の出力軸は、トルクコンバータ3に接続さ
れ、トルクコンバータ3の出力軸は、自動変速機4に接
続されている。すなわちエンジン1の動力とモータジェ
ネレータ2の動力とをトルクコンバータ3を介して自動
変速機4に出力できるように構成されている。上記構成
は例として挙げたものであり他の構成であっても本発明
は適用可能である。
FIG. 1 is a block diagram showing a configuration of a hybrid vehicle according to the present embodiment. The output shaft of the engine 1 is connected to the motor generator 2, the output shaft of the motor generator 2 is connected to the torque converter 3, and the output shaft of the torque converter 3 is connected to the automatic transmission 4. That is, the power of the engine 1 and the power of the motor generator 2 can be output to the automatic transmission 4 via the torque converter 3. The above configuration is given as an example, and the present invention is applicable to other configurations.

【0013】エンジン1は、燃料の燃焼によって動力を
出力する形式の装置であり、ガソリンエンジンやディー
ゼルエンジンの他、液化石油ガスや天然ガス等のガス燃
料を燃焼させるエンジンが含まれる。モータジェネレー
タ2は、電気的エネルギを回転運動等の運動エネルギに
変化して出力するモータ機能と伝達された動力エネルギ
を電気エネルギに変換する発電機能を併せ持つ。トルク
コンバータ3は、駆動部材のトルクを流体により従動部
材に伝達させるもので例えば図示しないがポンプインペ
ラに一体化されたフロントカバーとタービンライナを一
体に取付けたハブと、ロックアップクラッチからなる。
自動変速機4は、歯車変速機部と油圧制御部とからな
り、入力回転数と出力回転数の比(変速比)を自動で適
宜変更することのできる装置であって、有段式の変速機
や変速比を連続式に変化させることのできる無段変速機
等がある。
The engine 1 is a device that outputs power by burning fuel, and includes an engine that burns gas fuel such as liquefied petroleum gas or natural gas in addition to a gasoline engine or a diesel engine. The motor generator 2 has both a motor function of converting electric energy into kinetic energy such as rotational motion and outputting the same, and a power generation function of converting transmitted power energy into electric energy. The torque converter 3 transmits the torque of the driving member to the driven member by fluid, and includes, for example, a hub (not shown) integrated with a front cover integrated with a pump impeller and a turbine liner, and a lock-up clutch.
The automatic transmission 4 is a device that includes a gear transmission unit and a hydraulic control unit and is capable of automatically and appropriately changing the ratio (speed ratio) between the input rotation speed and the output rotation speed. There is a continuously variable transmission and the like that can continuously change the transmission and the gear ratio.

【0014】モータジェネレータ2には図2に示すよう
に、インバータ5を介してバッテリ6が接続されてい
る。インバータ5は、モータジェネレータ2に対する電
流及び周波数を制御し、またモータジェネレータ2で発
電する際の電流を制御するように構成されている。そし
てそれらの制御をおこなうためにコントローラ7が設け
られている。このコントローラ7は、例えば、エンジン
1の始動要求、発進要求及び制動要求に従ってインバー
タ5及びバッテリ6を制御するように構成されている。
A battery 6 is connected to the motor generator 2 via an inverter 5 as shown in FIG. Inverter 5 is configured to control the current and frequency for motor generator 2 and to control the current when power is generated by motor generator 2. A controller 7 is provided to perform these controls. The controller 7 is configured to control the inverter 5 and the battery 6 according to, for example, a start request, a start request, and a braking request of the engine 1.

【0015】車両発進時や低速走行時にはモータジェネ
レータ2をモータとして機能させモータ出力で走行す
る。通常走行時には、エンジン1を始動させてエンジン
出力で走行する。上坂路等高負荷時にはエンジン1に加
えモータジェネレータ2をモータとして機能させ両動力
源より走行する。車両減速時や制動時には、モータジェ
ネレータ2を発電機として機能させ、電力を回生する。
さらにバッテリのSOC(充電状態)が低下した場合に
は、エンジン1の出力を増大させ、エンジン出力をモー
タジェネレータ2で電力に変換してバッテリ6に充電す
る。
When the vehicle starts or travels at a low speed, the motor generator 2 functions as a motor and travels with a motor output. During normal running, the engine 1 is started and running with engine output. When the load is high such as on an uphill road, the motor generator 2 functions as a motor in addition to the engine 1, and the vehicle runs from both power sources. At the time of vehicle deceleration or braking, the motor generator 2 functions as a generator to regenerate electric power.
When the SOC (charge state) of the battery further decreases, the output of the engine 1 is increased, and the engine output is converted into electric power by the motor generator 2 to charge the battery 6.

【0016】また、エンジン1、モータジェネレータ
2、トルクコンバータ3、自動変速機4、バッテリ6等
には、各種センサが設けられており、そのセンサの検出
信号は、ECU8に送られる。ECU8は、マイクロコ
ンピュータで構成され、エンジン1等に制御信号を送
り、車速信号やアクセル開度信号、SOC信号等の検出
信号に基づいてトルクコンバータ3のスリップ率や自動
変速機の変速比等を制御する。
The engine 1, the motor generator 2, the torque converter 3, the automatic transmission 4, the battery 6, etc. are provided with various sensors, and detection signals from the sensors are sent to the ECU 8. The ECU 8 is configured by a microcomputer and sends a control signal to the engine 1 and the like, and determines a slip ratio of the torque converter 3 and a gear ratio of the automatic transmission based on detection signals such as a vehicle speed signal, an accelerator opening signal, and an SOC signal. Control.

【0017】さらにECU8には、走行予定路に関する
情報を受信する情報受信手段であるナビゲーションシス
テム9が接続されている。ここで情報受信手段はナビゲ
ーションシステム9に限定されず、走行予定路に関する
情報を受信できる受信できるものであれば、運転手自ら
が走路予定を入力する入力手段や過去の走行経路の記録
から現在の走行経路を分析する分析手段や、交通情報等
の受信手段であってもよい。ここでいう情報には、走行
予定路の地形情報、交通情報、工事情報等が含まれる。
ナビゲーションシステム9は、例えば、表示装置、入力
装置、通信制御部、経路検索部、地図データベース、走
行データ記録部から構成される。ECU8においてナビ
ゲーションシステム9における前記走行予定路に関する
交通情報等が解析されバッテリが消費する電力及びバッ
テリへの回生電力を予測される。さらに解析結果とSO
Cに基づいて、要求充電速度を演算され、求めた要求充
電速度から充電モードが判定される選択された充電モー
ドに従って、ECU8からエンジン1等に制御指令がな
される。
Further, the ECU 8 is connected to a navigation system 9 which is information receiving means for receiving information on the planned road. Here, the information receiving means is not limited to the navigation system 9 but may be any means capable of receiving information relating to the planned traveling road, such as an input means by which the driver himself / herself inputs a traveling route plan, or a current traveling route recorded from the past traveling route. It may be an analysis means for analyzing the traveling route or a means for receiving traffic information or the like. The information referred to here includes terrain information, traffic information, construction information, and the like of the planned traveling road.
The navigation system 9 includes, for example, a display device, an input device, a communication control unit, a route search unit, a map database, and a travel data recording unit. The ECU 8 analyzes traffic information and the like on the planned traveling road in the navigation system 9 and predicts power consumed by the battery and regenerative power to the battery. Further analysis results and SO
Based on C, the required charging speed is calculated, and a control command is issued from the ECU 8 to the engine 1 or the like in accordance with the selected charging mode in which the charging mode is determined from the determined required charging speed.

【0018】図3に示す本実施形態における充電制御装
置の処理フローチャートを用いて充電制御の原理を説明
する。まず、ECU8は、各種センサ(例えばシフトレ
バー位置センサや車速センサ、アクセル開度センサ等か
らの)入力信号を処理する(S20)。続いてバッテリ
のSOCが所定量L%以下となったかを判定する。この
判定は、コントローラからのSOC検出信号に基づき判
定することができる(S30)。SOCが所定量L%以
下のときは、充電が必要としてステップ40に進む。こ
の時、SOCが所定量L%を越えていれば、充電が必要
でない(S110)として、スタートに戻る(S12
0)。
The principle of charge control will be described with reference to the processing flowchart of the charge control device in this embodiment shown in FIG. First, the ECU 8 processes input signals from various sensors (for example, from a shift lever position sensor, a vehicle speed sensor, an accelerator opening sensor, etc.) (S20). Subsequently, it is determined whether or not the SOC of the battery has reached a predetermined amount L% or less. This determination can be made based on the SOC detection signal from the controller (S30). When the SOC is equal to or less than the predetermined amount L%, it is determined that charging is necessary, and the process proceeds to step 40. At this time, if the SOC exceeds the predetermined amount L%, it is determined that charging is not necessary (S110), and the process returns to the start (S12).
0).

【0019】充電が必用な場合は、続いて現在ナビゲー
ション走行中か否かを判定する(S40)。運転手が目
的地を入力していればGPS等で検出された現在の走行
位置から目的地までの走行予定ルートが計算により求め
られる。ナビゲーション走行中は、運転手がナビゲーシ
ョンにしたがってこの走行予定ルートを走行するものと
考えられるため、以下の演算・設定は走行予定ルートを
走行することを前提に行われる。ナビゲーションシステ
ムの地図データベースに収められた走行予定ルートの地
理的情報、交通情報がECU8に送られる。地理的情報
としては、例えば目的地までの標高データがあり、標高
データから走行予定ルートのうち所定の区間が平坦路、
下坂路又は上坂路のいずれかであるかを計算により求め
る。下坂路が長く続くのであれば、回生制動が多く期待
でき、上坂路であれば、エンジン動力の他にモータによ
るトルクアシストが必要とされ、バッテリの電力消費が
予測される。交通情報データとしては、交差点の数、車
線数、市街地かどうか等があり、交通情報データから停
止せずに走行できる場合、停止回数が多い場合、渋滞で
低速走行する場合等を分析し、バッテリの電力消費、回
生制動を予測する。上記地理的データ及び交通情報デー
タに基づき走行予定ルートにおける予測バッテリ電力消
費量及び予測回生電力量が求められる。
If charging is necessary, it is then determined whether or not the vehicle is currently traveling for navigation (S40). If the driver has input a destination, a scheduled traveling route from the current traveling position detected by GPS or the like to the destination is calculated. During the navigation traveling, it is considered that the driver travels on the planned traveling route according to the navigation. Therefore, the following calculations and settings are performed on the assumption that the vehicle travels on the traveling planned route. The geographical information and traffic information of the planned traveling route stored in the map database of the navigation system are sent to the ECU 8. As the geographic information, for example, there is altitude data to the destination, and a predetermined section of the planned traveling route is a flat road from the altitude data,
It is determined by calculation whether it is a downhill road or an uphill road. If the downhill road continues for a long time, much regenerative braking can be expected. On the uphill road, torque assist by a motor is required in addition to engine power, and power consumption of the battery is predicted. The traffic information data includes the number of intersections, the number of lanes, and whether or not it is in a city area.The traffic information data is used to analyze whether the vehicle can be driven without stopping, when it is stopped frequently, when it travels at low speed due to traffic congestion, etc. Power consumption and regenerative braking. Based on the geographical data and the traffic information data, a predicted battery power consumption and a predicted regenerative power amount on the scheduled traveling route are obtained.

【0020】続いて、ステップ30で検出した現在のS
OCと上記予測バッテリ電力消費量及び予測回生電力量
から、ΔGESOC(要求充電速度)が求められる(S
50)。図4にΔGESOCのマップを示す。縦軸がΔ
GESOC、横軸がSOCを示す。実線101があらか
じめ定めた所定の通常走行条件の場合の各SOCに対す
るΔGESOCの関係を示す。破線102が渋滞予測時
の演算結果、破線103が回生充電期待大時の演算結果
を示す。101、102、103が傾きを持つのは、現
在のSOCの状態に対する余裕度を考慮してである。ま
たSOCがL%より大きいときは、ΔGESOCは0即
ち充電不要である。102、103は、ステップ40で
求めた予測バッテリ電力消費量及び予測回生電力量によ
って変動する。予測回生電力量が小さい場合は、102
となり、同じSOCであっても通常時よりも高いΔGE
SOCとなる。反対に回生充電量が多く期待できる場合
は、103となり、同じSOCであっても通常時よりも
低いΔGESOCとなる。そして現在のSOC(A)%
と、マップからΔGESOCが設定される。
Subsequently, the current S detected in step 30 is
ΔGESOC (requested charging speed) is obtained from the OC and the predicted battery power consumption and the predicted regenerative power (S
50). FIG. 4 shows a map of ΔGESOC. The vertical axis is Δ
GESOC, and the horizontal axis shows SOC. A solid line 101 indicates the relationship of ΔGESOC to each SOC in the case of a predetermined normal driving condition. A broken line 102 indicates a calculation result when congestion is predicted, and a broken line 103 indicates a calculation result when regenerative charging is expected to be large. The reason why 101, 102, and 103 have a slope is to take into consideration the margin for the current SOC state. When the SOC is larger than L%, ΔGESOC is 0, that is, charging is unnecessary. Reference numerals 102 and 103 vary depending on the predicted battery power consumption and the predicted regenerative power obtained in step 40. When the predicted regenerative electric energy is small, 102
ΔGE higher than normal even at the same SOC
SOC. Conversely, when a large amount of regenerative charge can be expected, the value becomes 103, and even if the SOC is the same, ΔGESOC becomes lower than in the normal state. And current SOC (A)%
Then, ΔGESOC is set from the map.

【0021】また、図4では、通常状態の充電開始SO
CをL%としているが、渋滞予測時では、高く設定して
もよい。例えば、通常はSOC40%となった場合に充
電を開始するのを、渋滞が予測される場合は、SOC5
0%で充電を開始する。なお、102と103との間を
もっと細かく分け、その状態にあわせて制御してよい。
In FIG. 4, the charge start SO in the normal state is shown.
Although C is set to L%, it may be set higher at the time of traffic congestion prediction. For example, charging is normally started when the SOC reaches 40%, and SOC5 is set when traffic congestion is predicted.
Start charging at 0%. It should be noted that the area between 102 and 103 may be divided more finely and controlled according to the state.

【0022】なお、運転者が目的地を入力していなくて
も、例えば毎日利用する通勤経路の場合、走行時刻、曜
日、途中の走行経路等から予測してΔGESOCを求め
るようにしてもよい。この場合、通勤経路が過去何日分
かの走行経路データの蓄積か自動的に学習される。さら
に、VICSや道路交通情報案内による走行経路の渋滞
予測もバッテリ電力消費量及び回生電力量を予測する判
断材料に用いてもよい。例えば、通常は高速で走行でき
る道路でも工事等で渋滞が予測されるときは、車両が停
止する機会が多いとして、バッテリ電力消費量が多くな
ると予測する。また、明らかに高速道路を走行中は停止
する機会がなく、バッテリ電力消費量が少なくなると予
測する。
Even if the driver does not input the destination, for example, in the case of a commuting route used every day, ΔGESOC may be obtained by predicting from the traveling time, the day of the week, the traveling route on the way, and the like. In this case, it is automatically learned whether the commuting route has accumulated the traveling route data for the past several days. Further, the prediction of traffic congestion of a traveling route by VICS or road traffic information guidance may be used as a judgment material for estimating battery power consumption and regenerative power. For example, when traffic congestion is predicted due to construction or the like even on a road that can normally travel at high speed, it is predicted that the vehicle will stop frequently and that the battery power consumption will increase. Also, obviously, there is no opportunity to stop while driving on the highway, and it is predicted that the battery power consumption will decrease.

【0023】ステップ40でナビゲーション走行が行わ
れていないと判断した場合は、そのままステップ60に
行く。このときは、ΔGESOCの設定がされていない
ため、現在のSOCと通常時のデータ101を元にΔG
ESOCを設定する。
If it is determined in step 40 that the navigation traveling is not being performed, the process proceeds to step 60 as it is. At this time, since ΔGESOC is not set, ΔGESOC is set based on the current SOC and the normal data 101.
Set the ESOC.

【0024】マップより求めたΔGESOCを通常時の
ものと比較する(S60)。通常時よりも高ければ迅速
に充電する必要があるとして、ΔGESOCで急速充電
が開始される(S100)。通常時以下であればさらに
P(パワー)パターンかどうかを判定する(S70)。
[0024] The ΔGESOC obtained from the map is compared with a normal state (S60). If it is higher than the normal time, it is determined that rapid charging is required, and rapid charging is started at ΔGESOC (S100). If it is less than the normal time, it is further determined whether the pattern is a P (power) pattern (S70).

【0025】本実施の形態では、車両の動力性能の選択
操作としてP(パワー)パターンとN(ノーマル)パタ
ーンの走行モードが設けられている。Pパターンは、運
転者がアクセルを踏み込んだときの加速感を味わいたい
ときに、モータによって加速アシストを行う走行モード
であり、Nパターンは通常の走行モードであり、いずれ
かを運転者が選択し切り替えることができる。すなわ
ち、Pパターンが選択されているときは運転者が高い運
動性能を要求しているとみなすことができる。したがっ
て、通常の走行モードに比べ、バッテリの電力消費量が
多くなることが予測される。Pパターンが選択されてい
る場合は、急速充電が行われる(S100)。この場
合、S50で設定した低いΔGESOCではなく、バッ
テリの電力消費量を見越してΔGESOCを高く設定し
直して急速充電が行われる。
In this embodiment, a driving mode of a P (power) pattern and a driving mode of an N (normal) pattern are provided as an operation for selecting the power performance of the vehicle. The P pattern is a driving mode in which the driver assists the acceleration when the driver wants to feel the acceleration when the driver steps on the accelerator, and the N pattern is the normal driving mode. Can switch. That is, when the P pattern is selected, it can be considered that the driver requires high exercise performance. Therefore, it is expected that the power consumption of the battery will be larger than in the normal traveling mode. When the P pattern is selected, quick charging is performed (S100). In this case, instead of the low ΔGESOC set in S50, quick charging is performed by setting ΔGESOC high again in anticipation of the battery power consumption.

【0026】Nパターンが選択されている場合は、さら
に、運転者のスロットル(アクセル)の開度の変化率
(ΔΘ)が所定値A以上の頻度が多いかを判定する(S
80)。
If the N pattern is selected, it is further determined whether or not the change rate (ΔΘ) of the opening degree of the throttle (accelerator) of the driver frequently exceeds a predetermined value A (S).
80).

【0027】スロットル(アクセル)の開度の変化率
(ΔΘ)を調べることで運転者が加速好きであり頻繁に
加速を要求しているかどうかがわかる。所定値A以上の
アクセル開度が多い場合は、運転者が加速すなわち高い
運動性能を要求しているとみなすことができる。走行モ
ードがNパターンであってもこの場合加速アシストが必
要とされるため、Pパターンのときと同様にバッテリの
電力消費量を見越しΔGESOCを速く設定し直して急
速充電がされる(S100)。
By examining the rate of change (ΔΘ) of the opening of the throttle (accelerator), it can be determined whether the driver likes acceleration and requests acceleration frequently. When the accelerator opening is greater than or equal to the predetermined value A, it can be considered that the driver requires acceleration, that is, high exercise performance. Even in the case of the N pattern, the acceleration assist is required in this case. Therefore, in the same manner as in the case of the P pattern, ΔGESOC is quickly set again in anticipation of the power consumption of the battery and rapid charging is performed (S100).

【0028】いずれの判定も否定の場合に低いΔGES
OCにて最高効率充電が行われる(S90)。
If both judgments are negative, a low ΔGES
The most efficient charging is performed in the OC (S90).

【0029】以上の制御により回生制動で発生したエネ
ルギをバッテリに効率良く溜めることができ、また満充
電でバッテリ充電が不可能であるという事態を減らすこ
とができる。また、渋滞路においては、高速で充電を行
うため、バッテリ不足によるエンジン停止が中止される
という事態を極力減らすことができ、燃費向上を図るこ
とができる。
With the above control, the energy generated by the regenerative braking can be efficiently stored in the battery, and the situation in which the battery cannot be charged when the battery is fully charged can be reduced. In addition, on a congested road, since charging is performed at a high speed, it is possible to minimize a situation in which engine stoppage due to a shortage of the battery is stopped, and to improve fuel efficiency.

【0030】急速充電は、走行速度を維持しながら、モ
ータジェネレータがΔGESOCの速度で発電できるよ
うエンジン出力を高めて急速に充電を行うものである。
In the rapid charging, the engine output is increased to rapidly charge the motor generator so that the motor generator can generate power at the speed of ΔGESOC while maintaining the traveling speed.

【0031】最高効率充電は、エンジントルクとエンジ
ン回転数から求められるエンジンの最高効率運転点と、
モータトルクとモータ回転数から求められるモータジェ
ネレータの最高効率運転点からその走行速度における発
電効率の最も良い最高効率点を計算により求め、この最
高効率点からエンジントルク及びモータトルクを算出
し、エンジン及びモータジェネレータを制御しながら充
電を行うものである。また、このときにトルクコンバー
タも一緒に制御してもよい。
The highest efficiency charge is determined by the highest efficiency operating point of the engine obtained from the engine torque and the engine speed,
From the highest efficiency operating point of the motor generator obtained from the motor torque and the motor speed, the highest efficiency point with the highest power generation efficiency at the traveling speed is obtained by calculation, and the engine torque and motor torque are calculated from this highest efficiency point, and the engine and motor torque are calculated. The charging is performed while controlling the motor generator. At this time, the torque converter may be controlled together.

【0032】さらに、この2つの充電モードのうちいず
れの充電モードで現在充電されているのかを、充電モー
ドのインジケータにより、運転者に知らせるようにして
もよい。
Further, the driver may be informed of which of the two charging modes the charging mode is currently using by using a charging mode indicator.

【0033】[0033]

【発明の効果】このように、本実施形態では、ナビゲー
ションシステムを用いて先の走行経路の道路状況又は地
形状況を分析することにより、バッテリの消費電力量及
び回生充電量が予測できるため、道路状況等に合わせて
充電方法を選択切替することができ、エネルギ効率及び
燃費の向上を図ることが可能となる。
As described above, in this embodiment, the power consumption and the regenerative charge of the battery can be predicted by analyzing the road condition or the topographic condition of the preceding traveling route using the navigation system. The charging method can be selectively switched according to the situation and the like, and it is possible to improve energy efficiency and fuel efficiency.

【0034】また、運転者が加速モード等の動力性能を
選択操作した場合、又はアクセルの踏み込み頻度が多い
場合等に急速充電が選択されるため、動力性能が必要と
される場合にバッテリの充電不足になることなくモータ
の加速アシストがされる。
Also, when the driver selects and operates the power performance such as the acceleration mode, or when the accelerator is frequently depressed, quick charging is selected. Therefore, when the power performance is required, the battery is charged. The motor acceleration assist is performed without running short.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態の制御装置の構成のブロッ
ク図である。
FIG. 1 is a block diagram of a configuration of a control device according to an embodiment of the present invention.

【図2】 本発明の実施形態の駆動装置の構成を原理的
に示すブロック図である。
FIG. 2 is a block diagram illustrating a configuration of a driving device according to an embodiment of the present invention in principle.

【図3】 本発明の実施形態における処理フローチャー
トである。
FIG. 3 is a processing flowchart in the embodiment of the present invention.

【図4】 本発明の実施形態において求められる充電速
度マップである。
FIG. 4 is a charging speed map obtained in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン、2 モータジェネレータ、3 トルクコ
ンバータ、4 自動変速機、5 インバータ、6 バッ
テリ、7 コントローラ、8 ECU、9ナビゲーショ
ンシステム。
1 engine, 2 motor generator, 3 torque converter, 4 automatic transmission, 5 inverter, 6 battery, 7 controller, 8 ECU, 9 navigation system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60L 11/14 F02D 29/06 D F02D 29/06 B60K 9/00 Z Fターム(参考) 3G093 AA05 AA07 AA16 AB00 AB01 DA06 DB00 EB09 FA10 FA11 5H115 PA12 PG04 PI16 PI24 PI29 PO02 PO06 PO09 PO11 PO17 PU08 PU23 PU25 PV09 QI04 QN03 SE04 SE05 SE06 SE08 SL01 SL05 TB01 TE03 TI02 TO21 TO22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B60L 11/14 F02D 29/06 D F02D 29/06 B60K 9/00 Z F term (Reference) 3G093 AA05 AA07 AA16 AB00 AB01 DA06 DB00 EB09 FA10 FA11 5H115 PA12 PG04 PI16 PI24 PI29 PO02 PO06 PO09 PO11 PO17 PU08 PU23 PU25 PV09 QI04 QN03 SE04 SE05 SE06 SE08 SL01 SL05 TB01 TE03 TI02 TO21 TO22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エンジンと、これに連結されたモータジ
ェネレータとを有し、エンジンによりモータジェネレー
タを駆動して発電し、バッテリの充電を行うハイブリッ
ド車両の充電制御装置であって、 走行予定路に関する情報を受信する情報受信手段と、 前記走行予定路に関する情報を解析しバッテリが消費す
る電力及びバッテリへの回生電力を予測する解析手段と
を備え、 前記予測した消費電力及びバッテリの回生電力に応じて
充電方法を変更することを特徴とするハイブリッド車両
の充電制御装置。
1. A charge control device for a hybrid vehicle, comprising: an engine; and a motor generator connected to the engine, wherein the engine drives the motor generator to generate power and charge a battery. Information receiving means for receiving information; andanalyzing means for analyzing information on the planned traveling road and predicting power consumed by the battery and regenerative power to the battery, according to the predicted power consumption and the regenerative power of the battery. A charging control device for a hybrid vehicle, wherein the charging method is changed by a charging method.
【請求項2】 エンジンと、これに連結されたモータジ
ェネレータとを有し、エンジンによりモータジェネレー
タを駆動して発電し、バッテリの充電を行うハイブリッ
ド車両の充電制御装置であって、 動力性能を高めるためモータによりトルクアシストする
アシスト手段と、 乗員が動力性能を選択操作できる選択操作手段又はアク
セル操作に基づき乗員の動力性能の要求を検知する検知
手段の少なくともいずれかを備え、 動力性能の要求に応じて充電方法を変更することを特徴
とするハイブリッド車両の充電制御装置。
2. A charge control device for a hybrid vehicle having an engine and a motor generator connected to the engine, wherein the engine drives the motor generator to generate power and charge a battery, and enhances power performance. Therefore, the vehicle is provided with at least one of an assist means for providing torque assist by a motor, and a selection operation means capable of selectively operating a power performance by an occupant or a detection means for detecting a demand for the power performance of the occupant based on an accelerator operation. A charging control device for a hybrid vehicle, wherein the charging method is changed by changing the charging method.
【請求項3】 エンジンを制御しモータジェネレータで
発電する急速充電手段と、エンジン及びモータジェネレ
ータを制御することにより効率よく充電する効率充電手
段とを備えたことを特徴とする請求項1又は2に記載の
ハイブリッド車両の充電制御装置。
3. The vehicle according to claim 1, further comprising: a rapid charging means for controlling the engine and generating electric power by the motor generator; and an efficient charging means for efficiently charging the electric motor by controlling the engine and the motor generator. A charge control device for a hybrid vehicle according to any one of the preceding claims.
JP36446598A 1998-12-22 1998-12-22 Charge control device for hybrid vehicle Expired - Fee Related JP3931457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36446598A JP3931457B2 (en) 1998-12-22 1998-12-22 Charge control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36446598A JP3931457B2 (en) 1998-12-22 1998-12-22 Charge control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2000188802A true JP2000188802A (en) 2000-07-04
JP3931457B2 JP3931457B2 (en) 2007-06-13

Family

ID=18481881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36446598A Expired - Fee Related JP3931457B2 (en) 1998-12-22 1998-12-22 Charge control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3931457B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211121A2 (en) * 2000-12-04 2002-06-05 Matsushita Electric Industrial Co., Ltd. Apparatus for controlling hybrid electric vehicle
JP2002176705A (en) * 2000-09-22 2002-06-21 Robert Bosch Gmbh Vehicle controlling method and device
JP2002199505A (en) * 2000-12-28 2002-07-12 Denso Corp Power supply unit for vehicle and engine drive regulation support device
EP1270303A2 (en) * 2001-06-11 2003-01-02 Siemens Aktiengesellschaft Method for controlling the power train of a hybrid vehicle
KR100862473B1 (en) * 2006-12-11 2008-10-08 현대자동차주식회사 System and method for control battery charge of HEV
WO2008140359A1 (en) * 2007-05-10 2008-11-20 Volvo Construction Equipment Ab A method and a control system for controlling a work machine
KR100896216B1 (en) * 2007-11-06 2009-05-07 정연종 Battery prediction control algorism for hybrid electric vehicle
JP2009132325A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Control device for vehicle
JP2009137456A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Charge control device
US7923951B2 (en) 2006-07-10 2011-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle power controller
JP2011188728A (en) * 2010-02-15 2011-09-22 Denso Corp Charge controller for plug-in vehicle and navigation system for vehicle
JP2012012149A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Crane control device and crane device
DE102010039675A1 (en) 2010-08-24 2012-03-01 Bayerische Motoren Werke Aktiengesellschaft Method and an apparatus for operating an electrically driven motor vehicle
US8150572B2 (en) 2007-06-20 2012-04-03 Denso Corporation Electric power generation control apparatus for vehicle and electric power generation control system equipped with the apparatus
US8330424B2 (en) 2009-11-17 2012-12-11 Hyundai Motor Company Battery's state-of-charge balancing control method for hybrid vehicle
CN103561997A (en) * 2011-04-28 2014-02-05 帝国创新有限公司 A drive train for a hybrid electric vehicle and a method of operating such a drive train
JP2014114771A (en) * 2012-12-11 2014-06-26 Toyota Motor Corp Electric power control device for vehicle
JP2016065585A (en) * 2014-09-24 2016-04-28 日産自動車株式会社 Line pressure control device of continuously variable transmission
WO2017138225A1 (en) * 2016-02-10 2017-08-17 住友電気工業株式会社 Charge and discharge assist device, computer program, and charge and discharge assist method
KR20190099248A (en) * 2017-01-05 2019-08-26 르노 에스.아.에스. How to optimize energy consumption in hybrid vehicles
JP2021037825A (en) * 2019-09-02 2021-03-11 株式会社デンソーテン Control device and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150133539A (en) 2014-05-20 2015-11-30 현대자동차주식회사 Regenerative braking method for vehicle and apparatus of the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176705A (en) * 2000-09-22 2002-06-21 Robert Bosch Gmbh Vehicle controlling method and device
EP1211121A2 (en) * 2000-12-04 2002-06-05 Matsushita Electric Industrial Co., Ltd. Apparatus for controlling hybrid electric vehicle
EP1211121A3 (en) * 2000-12-04 2003-11-26 Matsushita Electric Industrial Co., Ltd. Apparatus for controlling hybrid electric vehicle
US6856866B2 (en) 2000-12-04 2005-02-15 Matsushita Electric Industrial Co., Ltd. Apparatus for controlling hybrid electric vehicle
JP2002199505A (en) * 2000-12-28 2002-07-12 Denso Corp Power supply unit for vehicle and engine drive regulation support device
US6986398B2 (en) 2000-12-28 2006-01-17 Denso Corporation Vehicular power supply apparatus and engine-drive-regulation supporting apparatus
EP1270303A2 (en) * 2001-06-11 2003-01-02 Siemens Aktiengesellschaft Method for controlling the power train of a hybrid vehicle
EP1270303A3 (en) * 2001-06-11 2006-03-01 Siemens Aktiengesellschaft Method for controlling the power train of a hybrid vehicle
KR101245807B1 (en) * 2006-07-10 2013-03-20 도요타 지도샤(주) Vehicle power control device
US7923951B2 (en) 2006-07-10 2011-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle power controller
KR100862473B1 (en) * 2006-12-11 2008-10-08 현대자동차주식회사 System and method for control battery charge of HEV
WO2008140359A1 (en) * 2007-05-10 2008-11-20 Volvo Construction Equipment Ab A method and a control system for controlling a work machine
US9242633B2 (en) 2007-05-10 2016-01-26 Volvo Construction Equipment Ab Method and a control system for controlling a work machine
US8150572B2 (en) 2007-06-20 2012-04-03 Denso Corporation Electric power generation control apparatus for vehicle and electric power generation control system equipped with the apparatus
KR100896216B1 (en) * 2007-11-06 2009-05-07 정연종 Battery prediction control algorism for hybrid electric vehicle
JP2009132325A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Control device for vehicle
JP2009137456A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Charge control device
US8330424B2 (en) 2009-11-17 2012-12-11 Hyundai Motor Company Battery's state-of-charge balancing control method for hybrid vehicle
JP2011188728A (en) * 2010-02-15 2011-09-22 Denso Corp Charge controller for plug-in vehicle and navigation system for vehicle
JP2011188731A (en) * 2010-02-15 2011-09-22 Denso Corp Charge controller for plug-in vehicle
JP2011188729A (en) * 2010-02-15 2011-09-22 Denso Corp Charge controller for plug-in vehicle and navigation system for vehicle
JP2012012149A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Crane control device and crane device
DE102010039675A1 (en) 2010-08-24 2012-03-01 Bayerische Motoren Werke Aktiengesellschaft Method and an apparatus for operating an electrically driven motor vehicle
US9037325B2 (en) 2010-08-24 2015-05-19 Bayerische Motoren Werke Aktiengesellschaft Method and a device for operating an electrically driven motor vehicle
CN103561997A (en) * 2011-04-28 2014-02-05 帝国创新有限公司 A drive train for a hybrid electric vehicle and a method of operating such a drive train
JP2014114771A (en) * 2012-12-11 2014-06-26 Toyota Motor Corp Electric power control device for vehicle
JP2016065585A (en) * 2014-09-24 2016-04-28 日産自動車株式会社 Line pressure control device of continuously variable transmission
WO2017138225A1 (en) * 2016-02-10 2017-08-17 住友電気工業株式会社 Charge and discharge assist device, computer program, and charge and discharge assist method
KR20190099248A (en) * 2017-01-05 2019-08-26 르노 에스.아.에스. How to optimize energy consumption in hybrid vehicles
KR102213021B1 (en) 2017-01-05 2021-02-08 르노 에스.아.에스. A method for optimizing the energy consumption of hybrid vehicles
JP2021037825A (en) * 2019-09-02 2021-03-11 株式会社デンソーテン Control device and control method

Also Published As

Publication number Publication date
JP3931457B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP3931457B2 (en) Charge control device for hybrid vehicle
EP2928745B1 (en) Hybrid electric vehicle control system and method
JP3596170B2 (en) Auxiliary drive control device for internal combustion engine
JP3094872B2 (en) Control device for hybrid vehicles
JP4858039B2 (en) Vehicle control device
EP2071285B1 (en) Display device for vehicle, method of controlling display device for vehicle, program, and recording medium having program recorded thereon
JP3654048B2 (en) Drive control apparatus for hybrid vehicle
JP3928300B2 (en) Control device for hybrid vehicle
JP3610879B2 (en) Hybrid vehicle
JP3903628B2 (en) Control device for hybrid vehicle
JP2001169408A (en) Controller for hybrid car
JPH11229916A (en) Hybrid vehicle drive control device
JP2003047110A (en) Method of using on-board navigation system for hybrid electric vehicle for vehicle energy management
JP2007126145A (en) Hybrid car controller
EP2808213B1 (en) Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method
JP2001157305A (en) Autocruise control device of hybrid vehicle
JP2000032606A (en) Vehicle
CN109720334A (en) Hybrid vehicle
US8757307B2 (en) Braking strategy for a hybrid drive of a vehicle
JP2006240368A (en) Driving assistance device for vehicle
JP2008094233A (en) Automobile and control method therefor
JP2005168295A (en) Drive control arrangement of hybrid vehicle
JP2003070102A (en) Controller for hybrid vehicle
CN109532560A (en) Control method, equipment, storage medium and the device of hybrid vehicle
US20220281457A1 (en) Driving force control system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees