JP2000182677A - Secondary battery charging device - Google Patents

Secondary battery charging device

Info

Publication number
JP2000182677A
JP2000182677A JP10352462A JP35246298A JP2000182677A JP 2000182677 A JP2000182677 A JP 2000182677A JP 10352462 A JP10352462 A JP 10352462A JP 35246298 A JP35246298 A JP 35246298A JP 2000182677 A JP2000182677 A JP 2000182677A
Authority
JP
Japan
Prior art keywords
voltage
battery pack
battery
charging
pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10352462A
Other languages
Japanese (ja)
Inventor
Koji Hakamata
浩司 袴田
Takaaki Narashima
高明 楢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10352462A priority Critical patent/JP2000182677A/en
Publication of JP2000182677A publication Critical patent/JP2000182677A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery charging device to charge a secondary battery such as lithium ion battery pack capable of charging lithium ion secondary battery using the-ΔV sensing system. SOLUTION: A lithium ion battery pack 1 includes a protection circuit 12 connected in series to a battery cell 11 for protecting it, and a battery charging device is composed of a power supply part 2 to charge the battery pack, a pack voltage sensing means 6 to sense the voltage of the pack, a cell voltage sensing means 7 to sense the voltage of the battery cell in the pack, a current sensing means 9 to sense the charging current of the pack, and a charging control means 10 to control charging of the pack, wherein the charging control means monitors the cell voltage and performs the constant-current, constant voltage charging of the pack with the output of the power supply part and stops charging upon sensing that the pack voltage has lowered -ΔV from the max. value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池パックなどの二次電池を充電する二次電池充電装置に
関し、とくに−ΔV検出方式を用いてリチウムイオン電
池パックを充電する二次電池充電装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery charger for charging a secondary battery such as a lithium ion battery pack, and more particularly to a secondary battery charger for charging a lithium ion battery pack using a -.DELTA.V detection method. It is about.

【0002】[0002]

【従来の技術】近年、小型軽量化が急速に進んでいる携
帯機器の電源として、小型で軽量かつ高エネルギー密度
のリチウムイオン電池の開発が盛んに行われ、様々な機
器に利用されている。
2. Description of the Related Art In recent years, as a power source for a portable device whose size and weight have been rapidly reduced, a lithium ion battery having a small size, a light weight and a high energy density has been actively developed and used for various devices.

【0003】図3は、リチウムイオン電池パックの一例
を示すブロック構成図である。この電池パック1は電池
セル11、電池セル11のプラス端子Aおよびマイナス
端子B、電池セル11の性能劣化や破壊を防止する保護
回路12を備えている。
FIG. 3 is a block diagram showing an example of a lithium ion battery pack. The battery pack 1 includes a battery cell 11, a positive terminal A and a negative terminal B of the battery cell 11, and a protection circuit 12 for preventing performance degradation and destruction of the battery cell 11.

【0004】リチウムイオン二次電池は高エネルギー密
度を有する。そのため、過度の使用(過電圧充電、端子
短絡および過放電等)による著しい性能劣化を起こす可
能性があり、それを防止し且つ安全性確保のためから保
護回路12を設ける必要がある。保護回路12は一般に
電池セル11の負極とマイナス端子B間に接続されたオ
ン抵抗Rxを有する保護スイッチ12aと、過放電・過
電圧充電・端子短絡等を検出し、保護スイッチ12aを
オフするための制御回路12bとによって構成されてい
る。制御回路12bは高インピーダンスであるため充電
および放電における影響は無視できる。
[0004] A lithium ion secondary battery has a high energy density. Therefore, there is a possibility that remarkable performance degradation may occur due to excessive use (overvoltage charging, terminal short-circuiting, overdischarging, etc.), and it is necessary to provide a protection circuit 12 to prevent the degradation and ensure safety. The protection circuit 12 generally has a protection switch 12a having an on-resistance Rx connected between the negative electrode of the battery cell 11 and the minus terminal B, and an overdischarge / overvoltage charge / terminal short circuit, etc., for turning off the protection switch 12a. And a control circuit 12b. Since the control circuit 12b has a high impedance, the influence on charging and discharging can be ignored.

【0005】従って、保護回路12は電池セル11に直
列接続された抵抗Rxとみなすことができる。なお、こ
の例では電池セル11が2セル直列の例を示している
が、その他の組み合わせ、例えば1セルや3セル直列の
場合も接続方法や機能は同様である。
Therefore, the protection circuit 12 can be regarded as a resistor Rx connected in series to the battery cell 11. Although this example shows an example in which the battery cells 11 are in series of two cells, the connection methods and functions are the same for other combinations, for example, in the case of one or three cells in series.

【0006】電池パック1の充電方法としては、1セル
当り4.1Vあるいは4.2Vの定電流定電圧充電方法
が用いられている。この従来の充電方法を用いたリチウ
ムイオン二次電池の充電特性を図4に示す。
As a method for charging the battery pack 1, a constant current / constant voltage charging method of 4.1V or 4.2V per cell is used. FIG. 4 shows the charging characteristics of a lithium ion secondary battery using this conventional charging method.

【0007】同図において、充電開始時は電池セル内部
のインピーダンスが低いため定電流充電を行う。この充
電に伴ってセル電圧が上昇する。セル電圧が1セル当り
4.1Vまたは4.2Vになる時刻T3以降は、過電圧
充電による電池性能劣化防止のため1セル当り4.1V
または4.2Vの定電圧充電を行う。定電圧充電が進行
するにしたがい、充電電流が減少していき、規定の充電
電流まで減少した時刻T4で満充電と判定し、充電完了
および充電停止制御を行う。
In FIG. 1, at the start of charging, constant current charging is performed because the impedance inside the battery cell is low. The cell voltage increases with this charging. After time T3 when the cell voltage becomes 4.1 V or 4.2 V per cell, 4.1 V per cell is used to prevent battery performance deterioration due to overvoltage charging.
Alternatively, 4.2 V constant-voltage charging is performed. As the constant voltage charging progresses, the charging current decreases, and at time T4 when the charging current has decreased to the specified charging current, it is determined that the battery is fully charged, and charging completion and charging stop control are performed.

【0008】図5は、ニカドおよびニッケル水素などの
ニカド系の二次電池の急速充電方法として広く一般に利
用されている−ΔV制御方式による充電特性の一例を示
す図である。ニカドおよびニッケル水素二次電池は、充
電開始から定電流充電を続けると、時刻T5で満充電と
なり、パック電圧は最大となる。
FIG. 5 is a diagram showing an example of a charging characteristic by a -ΔV control method which is widely and generally used as a method for rapidly charging a nickel-cadmium type secondary battery such as a nickel-cadmium or nickel-metal hydride battery. When the nickel-cadmium and nickel-metal hydride secondary batteries continue to be charged at a constant current from the start of charging, they are fully charged at time T5, and the pack voltage is maximized.

【0009】さらに充電を続けると過充電となり、電池
セル11の内部でガスが発生する。しかし、このガスは
電池セル11の内部で吸収され、その際の化学反応によ
りパック電圧は低下する。この電圧低下は−ΔV特性と
呼ばれ、パック電圧の最大点から規定された分(−Δ
V)だけ電圧低下した時点で充電を停止する。一般に−
ΔV検出電圧は10〜15mV/セルで実施されてい
る。
If the charging is further continued, the battery is overcharged and gas is generated inside the battery cell 11. However, this gas is absorbed inside the battery cell 11, and the pack voltage is reduced by a chemical reaction at that time. This voltage drop is called a -ΔV characteristic and is defined by the maximum value of the pack voltage (−ΔV).
When the voltage drops by V), charging is stopped. Generally-
The ΔV detection voltage is implemented at 10 to 15 mV / cell.

【0010】[0010]

【発明が解決しようとする課題】従来のリチウムイオン
二次電池の充電は、充電電流の変化を検出し、規定値ま
で充電電流が低下した時点で充電完了および充電停止の
制御を行っている。このため、ニカドおよびニッケル水
素二次電池の急速充電方法として広く普及している−Δ
V検出方式を用いることができず、リチウムイオン二次
電池専用の充電装置を開発するか、各電池の種類毎に別
々の充電制御機能を装備する必要があり、コスト高と開
発期間の増大とを招いていた。
In the conventional lithium ion secondary battery charging, a change in the charging current is detected, and when the charging current has decreased to a specified value, the charging is completed and the charging is stopped. For this reason, it is widely used as a rapid charging method for nickel-cadmium and nickel-metal hydride secondary batteries.
It is not possible to use the V detection method, and it is necessary to develop a dedicated charging device for lithium ion secondary batteries or to provide a separate charging control function for each type of battery, which increases costs and increases the development period. Was invited.

【0011】本発明は、このような従来の課題を解決す
るためになされたもので、リチウムイオン二次電池の充
電制御方式として−ΔV検出方式を用いた二次電池充電
装置を提供することを目的とする。
The present invention has been made to solve such a conventional problem, and it is an object of the present invention to provide a secondary battery charging apparatus using a -ΔV detection method as a charge control method for a lithium ion secondary battery. Aim.

【0012】[0012]

【課題を解決するための手段】本発明の請求項1に記載
の発明は、電池セルを保護するための保護回路が電池セ
ルと直列に接続されたリチウムイオン電池パックと、電
池パックを充電する電源部と、電池パックの電圧を検出
するパック電圧検出手段と、電池パック内の電池セルの
電圧を検出するセル電圧検出手段と、電池パックの充電
電流を検出する電流検出手段と、電池パックの充電を制
御する充電制御手段とを備え、充電制御手段はセル電圧
を監視しながら電源部の出力によって電池パックの定電
流定電圧充電を行い、パック電圧を監視して最大値から
−ΔV低下を検出した時点で充電停止するものである。
According to a first aspect of the present invention, there is provided a lithium ion battery pack having a protection circuit for protecting a battery cell connected in series with the battery cell, and charging the battery pack. A power supply unit, a pack voltage detecting means for detecting a voltage of the battery pack, a cell voltage detecting means for detecting a voltage of a battery cell in the battery pack, a current detecting means for detecting a charging current of the battery pack, Charge control means for controlling charging, wherein the charge control means performs constant-current constant-voltage charging of the battery pack by the output of the power supply unit while monitoring the cell voltage, and monitors the pack voltage to reduce -ΔV from the maximum value. The charging is stopped at the time of detection.

【0013】本発明によれば、リチウムイオン二次電池
の充電制御方式として−ΔV検出方式を用いた二次電池
充電装置が得られる。
According to the present invention, there is provided a secondary battery charger using a -ΔV detection method as a charge control method for a lithium ion secondary battery.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、電池セルを保護するための保護回路が電池セルと直
列に接続されたリチウムイオン電池パックと、電池パッ
クを充電する電源部と、電池パックの電圧を検出するパ
ック電圧検出手段と、電池パック内の電池セルの電圧を
検出するセル電圧検出手段と、電池パックの充電電流を
検出する電流検出手段と、電池パックの充電を制御する
充電制御手段とを備え、充電制御手段はセル電圧を監視
しながら電源部の出力によって電池パックの定電流定電
圧充電を行い、パック電圧が最大値から−ΔV低下した
ことを検出した時点で充電停止する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a lithium ion battery pack in which a protection circuit for protecting a battery cell is connected in series with the battery cell, and a power supply unit for charging the battery pack. A pack voltage detecting means for detecting a voltage of the battery pack; a cell voltage detecting means for detecting a voltage of a battery cell in the battery pack; a current detecting means for detecting a charging current of the battery pack; A charging control unit for controlling the cell voltage while monitoring the cell voltage, performing a constant current and constant voltage charging of the battery pack by an output of the power supply unit, and detecting that the pack voltage has dropped from the maximum value by −ΔV. To stop charging.

【0015】本発明によれば、定電流充電終了時点から
満充電までの間は、セル電圧は一定であるが、パック電
圧は徐々に低下する特性となるので、パック電圧の−Δ
V低下を検出した時点で充電を停止することでリチウム
イオン二次電池の充電を制御するという作用を有する。
According to the present invention, the cell voltage is constant from the end of the constant current charging to the full charge, but the pack voltage has a characteristic of gradually decreasing.
Stopping the charging when the V drop is detected has the effect of controlling the charging of the lithium ion secondary battery.

【0016】請求項2に記載の発明は、電源部からの直
流電源で充電される電池パックと、電池パックの電圧を
検出するパック電圧検出手段と、電池パック内の電池セ
ルの電圧を検出するセル電圧検出手段と、電池パックの
充電電流を検出する電流検出手段と、電池パックの充電
を制御する充電制御手段とを備え、充電制御手段は電池
パックの種類を識別し、電池パックの種類に適した−Δ
V検出電圧を設定し、セル電圧を監視しながら電源部の
出力によって電池パックの充電を行い、パック電圧が最
大値から−ΔV低下したことを検出した時点で充電停止
する。
According to a second aspect of the present invention, a battery pack charged by a DC power supply from a power supply unit, a pack voltage detecting means for detecting a voltage of the battery pack, and a voltage of a battery cell in the battery pack are detected. A cell voltage detection unit, a current detection unit that detects a charging current of the battery pack, and a charge control unit that controls charging of the battery pack. The charge control unit identifies a type of the battery pack, and determines a type of the battery pack. Suitable -Δ
The battery pack is charged by the output of the power supply unit while setting the V detection voltage and monitoring the cell voltage, and the charging is stopped when it is detected that the pack voltage has decreased by -ΔV from the maximum value.

【0017】本発明によれば、電池パックの種類に適し
た−ΔV検出電圧を設定し、パック電圧が最大値から−
ΔV低下した時点で充電を停止することで二次電池の充
電を制御するという作用を有する。
According to the present invention, the -ΔV detection voltage suitable for the type of the battery pack is set, and the pack voltage is increased from the maximum value.
Stopping the charging at the point of time when ΔV decreases has the effect of controlling the charging of the secondary battery.

【0018】請求項3に記載の発明は、請求項2に記載
の発明において、充電制御手段が識別する電池パックの
種類は、ニカド系またはリチウムイオン系の電池であ
り、ニカド系の−ΔV検出電圧とリチウムイオン系の−
ΔV検出電圧とをそれぞれ異なる値に設定するものであ
る。
According to a third aspect of the present invention, in the second aspect of the invention, the type of the battery pack identified by the charge control means is a nickel-cadmium or lithium ion battery, and the nickel-cadmium -ΔV detection is performed. Voltage and lithium ion-
ΔV detection voltages are set to different values.

【0019】本発明によれば、ニカド系の電池とリチウ
ムイオン系の電池とで異なる−ΔV検出電圧を設定し、
各電池のパック電圧が最大値から−ΔV低下した時点で
充電を停止することで二次電池の充電を制御するという
作用を有する。
According to the present invention, a different -ΔV detection voltage is set between a nickel-cadmium battery and a lithium-ion battery.
Stopping the charging when the pack voltage of each battery drops by -ΔV from the maximum value has the effect of controlling the charging of the secondary battery.

【0020】請求項4に記載の発明は、請求項2または
3に記載の発明において、充電制御手段はパック電圧と
セル電圧とを比較し、異なる場合は内部に保護回路を有
するリチウムイオン系の電池パックと識別し、パック電
圧とセル電圧とが同一の場合は内部に保護回路を有さな
いニカド系の電池パックと識別するものである。
According to a fourth aspect of the present invention, in the second or third aspect, the charge control means compares the pack voltage with the cell voltage. The battery pack is identified as a battery pack, and when the pack voltage and the cell voltage are the same, the battery pack is identified as a nickel-cadmium battery pack having no protection circuit inside.

【0021】本発明によれば、リチウムイオン系の電池
パックは保護回路を内蔵しており、ニカド系の電池パッ
クは保護回路を内蔵していないことから、保護回路の有
無によって生じるパック電圧とセル電圧との差の有無か
ら電池パックの種類を識別するという作用を有する。
According to the present invention, the lithium ion battery pack has a built-in protection circuit, and the nickel-cadmium battery pack does not have a protection circuit. It has the effect of identifying the type of battery pack from the presence or absence of a difference from the voltage.

【0022】以下、本発明の実施の形態について、図1
〜図2を用いて説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0023】(実施の形態1)図1は、本発明の実施の
形態1における二次電池充電装置を示すブロック構成図
で、前述した従来例と同一構成部分には同一符号を付し
詳細説明は省略する。同図において、電池パック1は電
池セル11、保護回路12、プラス端子Aおよびマイナ
ス端子Bを備えている。また、電池セル11の負極と保
護回路12との接続中点である電池セル端子Cと、電池
セル11の負極電位検出用端子Sとの間には電池保護用
抵抗13が接続されている。
(Embodiment 1) FIG. 1 is a block diagram showing a secondary battery charging apparatus according to Embodiment 1 of the present invention. Is omitted. In FIG. 1, a battery pack 1 includes a battery cell 11, a protection circuit 12, a plus terminal A and a minus terminal B. A battery protection resistor 13 is connected between a battery cell terminal C, which is a connection point between the negative electrode of the battery cell 11 and the protection circuit 12, and a negative electrode potential detection terminal S of the battery cell 11.

【0024】また、この二次電池充電装置は電池パック
1に直流電源を供給する電源部2を備え、この電源部2
の一端は逆流防止ダイオード3および出力制御用トラン
ジスタ4の直列回路を介して電池パック1のプラス端子
Aに接続され、他端は電流検出抵抗5を介して電池パッ
ク1のマイナス端子Bに接続されている。
The rechargeable battery charger includes a power supply 2 for supplying DC power to the battery pack 1.
Is connected to the plus terminal A of the battery pack 1 via a series circuit of the backflow prevention diode 3 and the output control transistor 4, and the other end is connected to the minus terminal B of the battery pack 1 via the current detection resistor 5. ing.

【0025】また、電池パック1のプラス端子Aはパッ
ク電圧検出部6、セル電圧検出部7に接続され、マイナ
ス端子Bはパック電圧検出部6、セル電圧検出部7、電
池識別部8、電流検出部9に接続され、負極電位検出用
端子Sはセル電圧検出部7、電池識別部8に接続されて
いる。
The plus terminal A of the battery pack 1 is connected to the pack voltage detector 6 and the cell voltage detector 7, and the minus terminal B is connected to the pack voltage detector 6, the cell voltage detector 7, the battery identification unit 8, The negative electrode potential detection terminal S is connected to the cell voltage detection unit 7 and the battery identification unit 8.

【0026】また、出力制御用トランジスタ4のベース
端子と電源部2の他端との間には充電制御部10が接続
されている。また、この充電制御部10はパック電圧検
出部6、セル電圧検出部7、電池識別部8、電流検出部
9の各出力端子に接続されている。
A charge control unit 10 is connected between the base terminal of the output control transistor 4 and the other end of the power supply unit 2. The charge control unit 10 is connected to output terminals of the pack voltage detection unit 6, the cell voltage detection unit 7, the battery identification unit 8, and the current detection unit 9.

【0027】パック電圧検出部6は電池パック1の端子
A−B間のパック電圧を検出し、セル電圧検出部7は電
池パック1の端子A−C間のセル電圧を検出し、電池識
別部8は電池パック1の端子S−B間の電圧を検出し、
電流検出部9は電流検出抵抗5の電圧降下から充電電流
を検出する。これらの検出部の各検出信号は充電制御部
10に入力される。
The pack voltage detecting section 6 detects a pack voltage between the terminals A and B of the battery pack 1, the cell voltage detecting section 7 detects a cell voltage between the terminals A and C of the battery pack 1, and a battery identifying section. 8 detects the voltage between the terminals S and B of the battery pack 1,
The current detector 9 detects a charging current from a voltage drop of the current detection resistor 5. Each detection signal of these detection units is input to the charge control unit 10.

【0028】この構成において、充電制御部10は電池
識別部8から出力される信号によって電池の接続を判定
後、充電開始制御を行ない、パック電圧、セル電圧およ
び充電電流を常に監視し、出力制御用トランジスタ4を
制御して定電流定電圧充電を行う。
In this configuration, the charge control unit 10 determines the connection of the battery based on the signal output from the battery identification unit 8, and then performs charge start control, constantly monitors the pack voltage, the cell voltage, and the charge current, and performs output control. The constant current constant voltage charging is performed by controlling the transistor 4 for use.

【0029】次に、電池パック1としてリチウムイオン
二次電池パックを充電する場合の動作について、図2に
示す充電特性図を用いて説明する。
Next, the operation when charging a lithium ion secondary battery pack as the battery pack 1 will be described with reference to a charging characteristic diagram shown in FIG.

【0030】まず、充電開始から電池セル11が規定の
電圧になる時刻T1まで定電流Iaで定電流充電する。
電池セル11が規定の電圧に達した後の時刻T1以後の
定電圧充電期間においては、電池セル11に規定充電電
圧が印加されるように、電池パック1の端子A−B間に
保護回路12での電圧降下分を充電電流の減少に応じて
補正した充電電圧を印加する。
First, constant-current charging is performed with a constant current Ia from the start of charging until time T1 when the battery cell 11 reaches a specified voltage.
In the constant voltage charging period after time T1 after the battery cell 11 reaches the specified voltage, the protection circuit 12 is connected between the terminals A and B of the battery pack 1 so that the specified charging voltage is applied to the battery cell 11. A charge voltage is applied in which the voltage drop at the step is corrected in accordance with the decrease in the charge current.

【0031】パック電圧は時刻T1で最大となり、それ
以後は緩やかに低下する。−ΔV検出電圧は時刻T1に
おけるパック電圧から満充電となる時刻T2におけるパ
ック電圧を減じた値である。
The pack voltage becomes maximum at time T1, and thereafter gradually decreases. The −ΔV detection voltage is a value obtained by subtracting the pack voltage at time T2 when the battery is fully charged from the pack voltage at time T1.

【0032】リチウムイオン二次電池の−ΔV検出電圧
はセル数に依存せずに充電電流と保護回路12のインピ
ーダンスRxに依存し、次式で算出することができる。
The -ΔV detection voltage of the lithium ion secondary battery depends on the charging current and the impedance Rx of the protection circuit 12 without depending on the number of cells, and can be calculated by the following equation.

【0033】−ΔV検出電圧=Rx×(Ia−Ib) 充電制御部10はこの−ΔV低下を検出することで、充
電電流がIbまで減少する時刻T2で満充電と判定し、
リチウムイオン二次電池の充電完了および充電停止制御
を行う。ニカドおよびニッケル水素二次電池の場合は前
述した図5に示す通りである。
-ΔV detection voltage = Rx × (Ia−Ib) The charge control unit 10 detects this −ΔV decrease, and determines that the battery is fully charged at time T2 when the charge current decreases to Ib.
The charge completion and the charge stop control of the lithium ion secondary battery are performed. The case of the nickel-cadmium and nickel-metal hydride secondary batteries is as shown in FIG.

【0034】(実施の形態2)次に、本発明の実施の形
態2における二次電池充電装置について説明する。本実
施の形態は、図1に示す充電制御部10に電池識別部8
の出力信号で電池パック1がニカドおよびニッケル水素
二次電池か、リチウムイオン二次電池かを識別する機能
を追加した二次電池充電装置である。
(Second Embodiment) Next, a secondary battery charger according to a second embodiment of the present invention will be described. In the present embodiment, the charging control unit 10 shown in FIG.
Is a secondary battery charging device having a function of identifying whether the battery pack 1 is a nickel-cadmium or nickel-metal hydride secondary battery or a lithium-ion secondary battery based on the output signal of.

【0035】充電制御部10は充電開始前に電池識別部
8の出力から電池パック1の二次電池の種類を識別す
る。通常、ニカド系の二次電池は電池パック1内に保護
回路を備えていないため、パック電圧とセル電圧とが等
しく、端子Sと端子Bとの電圧が等しくなる。
The charge control unit 10 identifies the type of the secondary battery of the battery pack 1 from the output of the battery identification unit 8 before starting charging. Normally, a nickel-cadmium secondary battery does not have a protection circuit in the battery pack 1, so that the pack voltage is equal to the cell voltage, and the voltage at the terminal S is equal to the voltage at the terminal B.

【0036】これに対してリチウムイオン系の二次電池
は電池パック1内に保護回路12を備えているため、パ
ック電圧とセル電圧とが異なり、端子Sと端子Bとの電
圧が異なる。従って、電池識別部8は端子S−B間の電
圧を監視することで、電池パック1の二次電池の種類を
識別することができる。
On the other hand, since the lithium ion secondary battery has the protection circuit 12 in the battery pack 1, the pack voltage and the cell voltage are different, and the voltages of the terminal S and the terminal B are different. Therefore, the battery identification unit 8 can identify the type of the secondary battery of the battery pack 1 by monitoring the voltage between the terminals SB.

【0037】充電制御部10は識別した電池パック1の
種類に応じて適切な−ΔV検出電圧を設定し充電を開始
する。なお、リチウムイオン二次電池を充電する場合は
充電中の電池セルの電圧の上限を4.1V/セルまたは
4.2V/セルに制限する必要があるが、ニカドおよび
ニッケル水素二次電池の場合はその必要がない。
The charge control unit 10 sets an appropriate -ΔV detection voltage according to the type of the battery pack 1 thus identified, and starts charging. Note that when charging a lithium ion secondary battery, it is necessary to limit the upper limit of the voltage of the battery cell being charged to 4.1 V / cell or 4.2 V / cell. Is not necessary.

【0038】なお、この二次電池充電装置は単体として
構成することができるほか、電池パックが内蔵できる電
気機器内に設置し、この内蔵した電池パックを充電する
ように構成することができる。
The rechargeable battery charger can be configured as a single unit, or can be installed in an electric device that can incorporate a battery pack, and can be configured to charge the built-in battery pack.

【0039】[0039]

【発明の効果】本発明によれば、ニカド系の二次電池で
用いている−ΔV検出方式を用いてリチウムイオン系の
二次電池を充電制御できるという有利な効果が得られ
る。
According to the present invention, there is obtained an advantageous effect that the charging of a lithium ion secondary battery can be controlled by using the -.DELTA.V detection method used for a nickel-cadmium secondary battery.

【0040】また、ニカド系の電池パックとリチウムイ
オン系の電池パックとを自動的に識別し、共通の充電装
置でニカド系とリチウムイオン系の電池パックを−ΔV
検出方式を用いて充電することができるという有利な効
果が得られる。
Further, the battery pack of the nickel-cadmium type and the battery pack of the lithium-ion type are automatically identified, and the battery pack of the nickel-cadmium type and the lithium-ion battery pack are -ΔV
The advantageous effect of being able to charge using the detection method is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による二次電池充電装置を示すブロック
FIG. 1 is a block diagram showing a secondary battery charging device according to the present invention.

【図2】本発明によるリチウムイオン二次電池の充電特
性の一例を示す図
FIG. 2 is a diagram showing an example of charging characteristics of a lithium ion secondary battery according to the present invention.

【図3】リチウムイオン電池パックの構成を示すブロッ
ク図
FIG. 3 is a block diagram showing a configuration of a lithium ion battery pack.

【図4】従来の充電方法によるリチウムイオン二次電池
の充電特性の一例を示す図
FIG. 4 is a diagram showing an example of a charging characteristic of a lithium ion secondary battery according to a conventional charging method.

【図5】−ΔV検出方式によるニカドおよびニッケル水
素二次電池の充電特性の一例を示す図
FIG. 5 is a diagram showing an example of charging characteristics of a nickel-cadmium and nickel-metal hydride secondary battery according to a −ΔV detection method.

【符号の説明】[Explanation of symbols]

1 電池パック 2 電源部 3 逆流防止ダイオード 4 出力制御用トランジスタ 5 電流検出抵抗 6 パック電圧検出部 7 セル電圧検出部 8 電池識別部 9 電流検出部 10 充電制御部 11 電池セル 12 保護回路 12a 保護スイッチ 12b 制御回路 13 電池保護用抵抗 A プラス端子 B マイナス端子 C 電池セル端子 S 負極電位検出用端子 DESCRIPTION OF SYMBOLS 1 Battery pack 2 Power supply part 3 Backflow prevention diode 4 Output control transistor 5 Current detection resistor 6 Pack voltage detection part 7 Cell voltage detection part 8 Battery identification part 9 Current detection part 10 Charge control part 11 Battery cell 12 Protection circuit 12a Protection switch 12b Control circuit 13 Battery protection resistor A Positive terminal B Minus terminal C Battery cell terminal S Terminal for detecting negative electrode potential

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/10 H02J 7/10 B Fターム(参考) 5G003 AA01 BA01 CA03 CA17 EA09 FA04 FA07 5G053 AA02 AA09 BA01 BA04 CA01 EC01 FA07 5H029 AJ12 AK00 AL00 AM01 BJ27 5H030 AA03 AA10 AS06 AS18 BB04 FF42 FF43 FF51 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/10 H02J 7/10 BF Term (Reference) 5G003 AA01 BA01 CA03 CA17 EA09 FA04 FA07 5G053 AA02 AA09 BA01 BA04 CA01 EC01 FA07 5H029 AJ12 AK00 AL00 AM01 BJ27 5H030 AA03 AA10 AS06 AS18 BB04 FF42 FF43 FF51

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池セルを保護するための保護回路が電
池セルと直列に接続されたリチウムイオン電池パック
と、 前記電池パックを充電する電源部と、 前記電池パックの電圧を検出するパック電圧検出手段
と、 前記電池パック内の前記電池セルの電圧を検出するセル
電圧検出手段と、 前記電池パックの充電電流を検出する電流検出手段と、 前記電池パックの充電を制御する充電制御手段とを備
え、 前記充電制御手段は前記セル電圧を監視しながら前記電
源部の出力によって前記電池パックの定電流定電圧充電
を行い、前記パック電圧が最大値から−ΔV低下したこ
とを検出して充電停止することを特徴とする二次電池充
電装置。
1. A lithium ion battery pack having a protection circuit for protecting a battery cell connected in series with a battery cell, a power supply unit for charging the battery pack, and a pack voltage detection for detecting a voltage of the battery pack. Means, a cell voltage detecting means for detecting a voltage of the battery cell in the battery pack, a current detecting means for detecting a charging current of the battery pack, and a charge control means for controlling charging of the battery pack. The charge control means performs constant current and constant voltage charge of the battery pack based on the output of the power supply unit while monitoring the cell voltage, and stops charging by detecting that the pack voltage has decreased by -ΔV from a maximum value. A secondary battery charger characterized by the above-mentioned.
【請求項2】 電源部からの直流電源で充電される電池
パックと、 前記電池パックの電圧を検出するパック電圧検出手段
と、 前記電池パック内の前記電池セルの電圧を検出するセル
電圧検出手段と、 前記電池パックの充電電流を検出する電流検出手段と、 前記電池パックの充電を制御する充電制御手段とを備
え、 前記充電制御手段は前記電池パックの種類を識別し、前
記電池パックの種類に適した−ΔV検出電圧を設定し、
前記セル電圧を監視しながら前記電源部の出力によって
前記電池パックの充電を行い、前記パック電圧が最大値
から−ΔV低下したことを検出して充電停止することを
特徴とする二次電池充電装置。
2. A battery pack charged by a DC power supply from a power supply unit, a pack voltage detecting unit detecting a voltage of the battery pack, and a cell voltage detecting unit detecting a voltage of the battery cells in the battery pack. Current detection means for detecting a charging current of the battery pack; and charge control means for controlling charging of the battery pack. The charge control means identifies a type of the battery pack, and a type of the battery pack. -ΔV detection voltage suitable for
A secondary battery charging device for charging the battery pack by the output of the power supply unit while monitoring the cell voltage, and detecting that the pack voltage has decreased by -ΔV from a maximum value and stopping the charging. .
【請求項3】 充電制御手段が識別する電池パックの種
類は、ニカド系またはリチウムイオン系の電池パックで
あり、ニカド系の電池パックの−ΔV検出電圧とリチウ
ムイオン系の電池パックの−ΔV検出電圧とをそれぞれ
異なる値に設定することを特徴とする請求項2に記載の
二次電池充電装置。
3. The type of battery pack identified by the charge control means is a nickel-cadmium or lithium-ion battery pack, and a -ΔV detection voltage of a nickel-cadmium battery pack and a -ΔV detection voltage of a lithium-ion battery pack. The rechargeable battery charger according to claim 2, wherein the voltage and the voltage are set to different values.
【請求項4】 充電制御手段はパック電圧とセル電圧と
を比較し、異なる場合は内部に保護回路を有するリチウ
ムイオン系の電池パックと識別し、同一の場合は内部に
保護回路を有さないニカド系の電池パックと識別するこ
とを特徴とする請求項2または3に記載の二次電池充電
装置。
4. The charge control means compares the pack voltage with the cell voltage, and if different, identifies the battery pack as a lithium ion battery pack having a protection circuit inside, and if not the same, does not have a protection circuit inside. The secondary battery charger according to claim 2, wherein the secondary battery charger is identified as a nickel-cadmium battery pack.
JP10352462A 1998-12-11 1998-12-11 Secondary battery charging device Withdrawn JP2000182677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352462A JP2000182677A (en) 1998-12-11 1998-12-11 Secondary battery charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352462A JP2000182677A (en) 1998-12-11 1998-12-11 Secondary battery charging device

Publications (1)

Publication Number Publication Date
JP2000182677A true JP2000182677A (en) 2000-06-30

Family

ID=18424243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352462A Withdrawn JP2000182677A (en) 1998-12-11 1998-12-11 Secondary battery charging device

Country Status (1)

Country Link
JP (1) JP2000182677A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346912A (en) * 2001-05-18 2002-12-04 Nippon Sheet Glass Co Ltd Glass substrate for information recording medium and manufacturing method therefor
WO2006068430A1 (en) * 2004-12-24 2006-06-29 Lg Chem, Ltd. System for controlling voltage balancing in a plurality of litium-ion cell battery packs and method thereof
WO2006068429A1 (en) * 2004-12-24 2006-06-29 Lg Chem, Ltd. System for controlling voltage balancing in a plurality of litium-ion cell battery packs and method thereof
US7705563B2 (en) 2006-02-17 2010-04-27 Ricoh Company, Ltd. Charging control semiconductor integrated circuit and secondary battery charging apparatus using the same
CN102110976A (en) * 2009-12-29 2011-06-29 三星Sdi株式会社 Protection circuit for battery pack
CN106299484A (en) * 2016-10-18 2017-01-04 江苏正品新能源科技有限公司 A kind of lithium ion battery series connection is remained silent formation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346912A (en) * 2001-05-18 2002-12-04 Nippon Sheet Glass Co Ltd Glass substrate for information recording medium and manufacturing method therefor
WO2006068430A1 (en) * 2004-12-24 2006-06-29 Lg Chem, Ltd. System for controlling voltage balancing in a plurality of litium-ion cell battery packs and method thereof
WO2006068429A1 (en) * 2004-12-24 2006-06-29 Lg Chem, Ltd. System for controlling voltage balancing in a plurality of litium-ion cell battery packs and method thereof
US7638973B2 (en) 2004-12-24 2009-12-29 Lg Chem, Ltd. System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
US7663341B2 (en) 2004-12-24 2010-02-16 Lg Chem, Ltd. System for controlling voltage balancing in a plurality of lithium-ion cell battery packs and method thereof
CN101741117B (en) * 2004-12-24 2014-01-01 Lg化学株式会社 System for battery balancing and method thereof
US7705563B2 (en) 2006-02-17 2010-04-27 Ricoh Company, Ltd. Charging control semiconductor integrated circuit and secondary battery charging apparatus using the same
CN102110976A (en) * 2009-12-29 2011-06-29 三星Sdi株式会社 Protection circuit for battery pack
CN106299484A (en) * 2016-10-18 2017-01-04 江苏正品新能源科技有限公司 A kind of lithium ion battery series connection is remained silent formation device

Similar Documents

Publication Publication Date Title
EP0440756B1 (en) Battery assembly and charging system
US5744937A (en) Dual battery charging device for charging nickel metal-hydride and lithium-ion batteries
EP2068420B1 (en) Secondary battery charging method and device
US6850041B2 (en) Battery pack used as power source for portable device
JPH04183232A (en) Charging method of secondary battery
KR200189819Y1 (en) Battery pack capable of balanced charging cell
JP4479910B2 (en) Charger
US20050052159A1 (en) Method and apparatus for overcharge protection using analog overvoltage detection
JP2000182677A (en) Secondary battery charging device
JPH11187585A (en) Charger and charging method for lithium ion secondary battery
KR100694062B1 (en) Apparatus and control method for charging multi-battery
JP3177405B2 (en) Secondary battery charge / discharge control method and device
JP3583926B2 (en) Rechargeable battery charging method
JPH05219655A (en) Battery charger
JPH0638392A (en) Battery charger
JP3642105B2 (en) Battery pack
JP3402757B2 (en) Secondary battery charging method and secondary battery charging device
JP2003143770A (en) Charge control method of secondary battery and electrical apparatus employing the same
JPH07123602A (en) Method for charging secondary battery
JP3917046B2 (en) Charging circuit, charging method, and portable terminal equipped with the charging circuit
JP2677072B2 (en) Rechargeable battery charging circuit
JPH11187588A (en) Lithium ion secondary battery charging system and charger
JP3555989B2 (en) Rechargeable battery charging method
JPH08126220A (en) Charging circuit for secondary battery
JPH1066278A (en) Charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070912