JP2000173667A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000173667A
JP2000173667A JP10361911A JP36191198A JP2000173667A JP 2000173667 A JP2000173667 A JP 2000173667A JP 10361911 A JP10361911 A JP 10361911A JP 36191198 A JP36191198 A JP 36191198A JP 2000173667 A JP2000173667 A JP 2000173667A
Authority
JP
Japan
Prior art keywords
electrode body
thickness
negative electrode
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10361911A
Other languages
Japanese (ja)
Other versions
JP3291260B2 (en
Inventor
Tetsuya Kusakabe
鉄也 日下部
Atsushi Suzuki
淳 鈴木
Nobuyuki Isshiki
信之 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP36191198A priority Critical patent/JP3291260B2/en
Publication of JP2000173667A publication Critical patent/JP2000173667A/en
Application granted granted Critical
Publication of JP3291260B2 publication Critical patent/JP3291260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a battery thin by setting a coefficient of cubic expansion (the volume ratio of lithium ion storing time to lithium ion release time) of a negative electrode body larger than a positive electrode body, and setting a thickness of the negative electrode body not more than half the thickness of the positive electrode body with discharge time as a reference. SOLUTION: In a lithium secondary battery, while a positive electrode body desirably includes lithium containing oxide of one metal selected from a group composed of cobalt, manganese and nickel, a negative electrode body includes one selected from among a group composed of tin oxide, silicon oxide, lithium transition metal composite nitride and a silicon/carbon complex, and includes a silicon/carbon composite baking body obtained by heat-treating silicon or the compound in the presence of an organic material or a carbon material, and the negative electrode body is a sintered body having a thickness of 20 to 500 μm or a paint film body which has a thickness of 20 to 150 μm. Thus, storing/releasing quantity of a lithium ion and a superior cycle characteristic in the same as the conventional cases can be obtained, while thinning the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄型リチウム二次電
池の改良に関する。
The present invention relates to an improvement in a thin lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は、現存する二次電池
の中で最も高いエネルギー密度を達成可能であるため、
携帯用電子機器の小型軽量化に伴う二次電池高エネルギ
ー密度化の要望を満たすものとして最も期待されてお
り、薄型化が進められている。
2. Description of the Related Art Since a lithium secondary battery can achieve the highest energy density among existing secondary batteries,
It is most expected to satisfy the demand for a higher energy density of a secondary battery accompanying the reduction in size and weight of portable electronic devices, and the reduction in thickness has been promoted.

【0003】リチウム二次電池の負極体材料としては、
現在、リチウムイオンの吸蔵・放出可能な黒鉛等の炭素
材料が最も広く用いられている。一方、正極材料として
は、リチウムイオンを吸蔵・放出可能なリチウム含有遷
移金属酸化物が一般に使用されており、中でも電池とし
た際の起電力が大きく、高エネルギー密度化可能なコバ
ルト酸リチウムが最も広く用いられている。負極体であ
る炭素材料と、正極体であるリチウム含有遷移金属酸化
物は、単位体積当たりに吸蔵・放出するリチウムイオン
量がほぼ同等であるため、従来のリチウム二次電池にお
いては、負極体と正極体の厚みはほぼ同等であった。
As a negative electrode material of a lithium secondary battery,
At present, carbon materials such as graphite capable of occluding and releasing lithium ions are most widely used. On the other hand, as a positive electrode material, a lithium-containing transition metal oxide capable of occluding and releasing lithium ions is generally used. Among them, lithium cobalt oxide, which has a large electromotive force and a high energy density in a battery, is most preferable. Widely used. In the conventional lithium secondary battery, the carbon material as the negative electrode body and the lithium-containing transition metal oxide as the positive electrode body have almost the same amount of lithium ions inserted and extracted per unit volume. The thickness of the positive electrode body was almost equal.

【0004】[0004]

【発明が解決しようとする課題】リチウム二次電池の厚
みの大部分は正極体及び負極体により占められている。
したがって、リチウム二次電池薄型化のためには、電極
体の厚みを減少する事が最も効果的であるが、そのため
には電極体単位体積当たりのリチウムイオン吸蔵・放出
量を増加する必要がある。しかし従来正極体に用いるリ
チウム含有遷移金属酸化物は、結晶中に吸蔵し得るリチ
ウムイオンの量が理論的に一定であるため、リチウムイ
オン吸蔵量の大巾増加は困難であった。また負極体とし
て用いられる炭素材料も、結晶性の黒鉛系炭素材料にお
いてはリチウムイオン吸蔵量に理論的に限界があり、ア
モルファス化したピッチ系炭素材料においても電流密度
の高い領域ではリチウムイオン吸蔵量の増加が困難であ
った。即ち、上記従来のリチウムイオン二次電池におい
ては、薄型化に一定の限界があった。
Most of the thickness of a lithium secondary battery is occupied by a positive electrode body and a negative electrode body.
Therefore, to reduce the thickness of the lithium secondary battery, it is most effective to reduce the thickness of the electrode body, but for that purpose, it is necessary to increase the amount of lithium ions absorbed and released per unit volume of the electrode body. . However, it has been difficult for lithium-containing transition metal oxides conventionally used for the positive electrode body to greatly increase the amount of lithium ions absorbed because the amount of lithium ions that can be absorbed in the crystal is theoretically constant. The carbon material used as the negative electrode body also has a theoretical limit on the amount of lithium ion occlusion in a crystalline graphite-based carbon material, and the amount of lithium ion occlusion in a region where the current density is high even in an amorphous pitch-based carbon material. Was difficult to increase. That is, in the above-described conventional lithium ion secondary battery, there is a certain limit to the reduction in thickness.

【0005】しかしながら、種々検討の結果、負極体に
ついては、炭素材料に代え、体積膨張率が正極体よりも
大きな材料に変更することにより、リチウムイオン吸蔵
・放出量を大巾増加し、電極体の厚み減少が可能である
ことがわかった。こうした材料として例えば、スズ酸化
物(特開平07−263028号公報)、ケイ素酸化物
(特開平06−325765号公報)、リチウム遷移金
属複合窒化物(特開平09−102311号公報)、ケ
イ素/炭素複合物(WO98/24135号)等が報告
されており、これらはいずれも正極の2倍以上のリチウ
ムイオン吸蔵・放出が可能である。
However, as a result of various investigations, the negative electrode body was replaced with a material having a larger volume expansion coefficient than that of the positive electrode body instead of the carbon material, thereby greatly increasing the amount of lithium ion occlusion and release, and thus the electrode body. It was found that the thickness could be reduced. Examples of such materials include tin oxide (JP-A-07-263028), silicon oxide (JP-A-06-325765), lithium transition metal composite nitride (JP-A-09-102311), and silicon / carbon. Composites (WO98 / 24135) and the like have been reported, and all of them can occlude and release lithium ions more than twice as much as the positive electrode.

【0006】[0006]

【課題を解決するための手段】本発明においては、リチ
ウム二次電池において、負極体の体積膨張率(リチウム
イオン吸蔵時とリチウムイオン放出時との体積比)が正
極体よりも大きく、かつ負極体の厚みを、放電時を基準
として正極体の厚みの半分以下とすることにより、リチ
ウム二次電池の薄型化が可能であることを見出した。
According to the present invention, in a lithium secondary battery, the negative electrode body has a larger volume expansion coefficient (volume ratio between lithium ion occlusion and lithium ion release) than the positive electrode body, and It has been found that the thickness of the lithium secondary battery can be reduced by setting the thickness of the body to half or less of the thickness of the positive electrode body on the basis of discharge.

【0007】[0007]

【発明の実施の形態】本発明は、正極体材料に比較して
体積膨張率の大きな材料を負極体とし、かつ放電時を基
準として正極体の半分以下の厚さとする。この負極体と
正極体をイオン伝導層を介して配置し、これを積層し又
は巻回して容器中に密閉して薄型のリチウム二次電池を
提供するものである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a material having a larger volume expansion coefficient than a material of a positive electrode body is used as a negative electrode body, and has a thickness not more than half the thickness of the positive electrode body on the basis of discharge. The negative electrode body and the positive electrode body are arranged via an ion conductive layer, and are laminated or wound and sealed in a container to provide a thin lithium secondary battery.

【0008】本発明の正極体材料には、一般的なリチウ
ムイオン吸蔵・放出材料が使用でき、例えば遷移金属の
リチウム含有酸化物、好ましくはコバルト、ニッケル又
はマンガンを金属元素とする金属酸リチウムが使用でき
る。
As the positive electrode material of the present invention, a general lithium ion occlusion / release material can be used. For example, a lithium-containing oxide of a transition metal, preferably lithium metal oxide containing cobalt, nickel or manganese as a metal element is used. Can be used.

【0009】一方、負極体材料は、正極体に比較して体
積膨張率の高い材料が使用でき、例えば、スズ酸化物、
ケイ素酸化物、リチウム遷移金属複合窒化物、ケイ素/
炭素複合物等が使用できる。体積膨張率とは、リチウム
イオン充電時と放電時との体積比である。これらの負極
体材料は、正極体よりも大きな体積膨張率を示す。例え
ば、最も一般的な正極体であるコバルト酸リチウムの体
積膨張率が約103%であるのに対し、スズ酸化物、ケ
イ素酸化物、リチウム遷移金属複合窒化物、ケイ素/炭
素複合物等は約140〜200%の体積膨張率を示す。
On the other hand, as the negative electrode body material, a material having a higher volume expansion coefficient than the positive electrode body can be used.
Silicon oxide, lithium transition metal composite nitride, silicon /
Carbon composites and the like can be used. The volume expansion rate is a volume ratio between lithium ion charging and discharging. These negative electrode materials show a larger volume expansion coefficient than the positive electrode material. For example, while the volume expansion coefficient of lithium cobalt oxide, which is the most common cathode body, is about 103%, tin oxide, silicon oxide, lithium transition metal composite nitride, silicon / carbon composite, etc. It shows a volume expansion coefficient of 140 to 200%.

【0010】リチウムイオン充放電に伴う体積膨張率が
大きな材料を用いることにより、負極体の単位体積当た
りのリチウムイオン吸蔵・放出量を増加して負極の薄型
化を行うことが可能となる。上記負極体材料は、いずれ
も正極体材料に比べて単位体積当たり2倍以上のリチウ
ムイオンを吸蔵・放出可能である。
By using a material having a large volume expansion rate due to lithium ion charging / discharging, the amount of lithium ions absorbed and released per unit volume of the negative electrode body can be increased, and the negative electrode can be made thinner. Each of the above-mentioned negative electrode materials can occlude and release twice or more lithium ions per unit volume as compared with the positive electrode material.

【0011】したがって、本発明のリチウム二次電池
は、従来正極体と同等であった負極体の厚みその半分以
下とすることにより電池を薄型化しながら、従来の電池
と同等の容量、即ち従来同等のリチウムイオンの吸蔵・
放出量を保ち得る。
Therefore, the lithium secondary battery of the present invention has a capacity equal to that of the conventional battery, that is, a capacity equivalent to that of the conventional battery, while being reduced in thickness by making the thickness of the negative electrode body equal to or less than half the thickness of the conventional positive electrode body. Occlusion of lithium ions
Can maintain release.

【0012】尚、負極体の厚みを正極体の半分以下とす
ることは、電池薄型化と同時に、良好なサイクル特性を
得る観点においても重要な意味を持つ。リチウムイオン
吸蔵・放出時の正極体及び負極体の体積膨張・収縮に起
因して電池全体の厚みが変化するが、電池全体厚みの変
化は、サイクル特性劣化の原因となり得る。例えば、リ
チウム二次電池は、一般に正極集電体、正極体、非水電
解液を含有するセパレータ若しくは高分子電解質、負極
体、負極集電体の積層体から成り、この積層体が複数枚
重ねられ若しくは巻き回されて外装缶等の容器中に密封
されるが、この積層体各層間の電気的接触は外装缶から
の圧力によって維持されている場合が多い。したがっ
て、電極体の膨張により電池の厚みが増した場合、上記
積層体には外装缶からの大きな圧力がかかり、正極体−
負極体間の短絡を招くおそれがある。一方、電極体の収
縮により電池の厚みが減少した場合は、上記積層体にか
かる圧力が減少し、積層体各層間の電気的接触が不十分
となるため、電池内部抵抗の増加によるサイクル特性の
劣化を招くおそれがある。よって、負極体の体積膨張率
が正極体に比べて大きな場合、負極体の厚みの正極体厚
みに対する比率が高いほど電池全体の厚み変化が増大
し、サイクル特性が劣化する。即ち、本発明において、
負極体の厚みを正極体の半分以下とすることは、電池を
薄型化すると同時に電池サイクル特性の劣化を抑制する
効果を持つ。
It is important to make the thickness of the negative electrode body less than half the thickness of the positive electrode body from the viewpoint of obtaining good cycle characteristics while reducing the thickness of the battery. The thickness of the entire battery changes due to volume expansion and contraction of the positive electrode body and the negative electrode body at the time of lithium ion occlusion and release, and the change in the overall battery thickness may cause deterioration of cycle characteristics. For example, a lithium secondary battery generally includes a positive electrode current collector, a positive electrode body, a separator or a polymer electrolyte containing a non-aqueous electrolyte, a negative electrode body, and a negative electrode current collector. The laminate is wound or wound and sealed in a container such as an outer can, but the electrical contact between the layers of the laminate is often maintained by the pressure from the outer can. Therefore, when the thickness of the battery increases due to the expansion of the electrode body, a large pressure is applied to the laminate from the outer can, and the positive electrode
There is a possibility that a short circuit may occur between the negative electrode bodies. On the other hand, when the thickness of the battery decreases due to contraction of the electrode body, the pressure applied to the laminate decreases, and electrical contact between the layers of the laminate becomes insufficient. Deterioration may be caused. Therefore, when the volume expansion coefficient of the negative electrode body is larger than that of the positive electrode body, as the ratio of the thickness of the negative electrode body to the thickness of the positive electrode body increases, the change in the thickness of the entire battery increases, and the cycle characteristics deteriorate. That is, in the present invention,
Making the thickness of the negative electrode body less than half the thickness of the positive electrode body has the effect of reducing the thickness of the battery and at the same time suppressing the deterioration of the battery cycle characteristics.

【0013】また、負極体は、電池容量を維持しながら
電池を薄型化するためには正極体よりも高い体積膨張率
を有することが必要であるが、一方サイクル特性の観点
からはできるだけ低い体積膨張率を有することが好まし
い。上述の負極体材料中、ケイ素/炭素複合物、特にこ
れを高温焼成したケイ素/炭素複合焼成物は、他の材料
と同等のリチウムイオンを吸蔵・放出可能でありなが
ら、体積膨張率が低いため最も好ましい材料である。ス
ズ酸化物、ケイ素酸化物、リチウム遷移金属複合窒化物
がいずれも200%近い体積膨張率を示すのに対し、ケ
イ素/炭素複合焼成物の体積膨張率は約140%にとど
まる。
Further, the negative electrode body needs to have a higher volume expansion coefficient than the positive electrode body in order to make the battery thinner while maintaining the battery capacity. On the other hand, from the viewpoint of cycle characteristics, the negative electrode body has a volume as low as possible. It preferably has an expansion coefficient. Among the above-mentioned negative electrode materials, the silicon / carbon composite, especially the fired silicon / carbon composite obtained by sintering the silicon / carbon composite at a high temperature, can absorb and release lithium ions equivalent to other materials, but has a low volume expansion coefficient. It is the most preferred material. Tin oxide, silicon oxide, and lithium transition metal composite nitride all exhibit a volume expansion coefficient of nearly 200%, while the silicon / carbon composite fired product has a volume expansion coefficient of only about 140%.

【0014】また、ケイ素/炭素複合焼成物は、スズ酸
化物及びケイ素酸化物に比して約1.5倍の初回充放電
効率を示し、空気及び水と容易に反応するリチウム遷移
金属複合窒化物に比して電池製造工程における取り扱い
が容易である。即ち、ケイ素/炭素複合焼成物は、充放
電効率及び電池製造時の取り扱い容易の観点からも好ま
しい負極体材料であると言える。
[0014] The fired silicon / carbon composite exhibits an initial charge / discharge efficiency of about 1.5 times that of tin oxide and silicon oxide, and easily reacts with air and water. It is easier to handle in a battery manufacturing process than a product. That is, it can be said that the silicon / carbon composite fired product is a preferable negative electrode material from the viewpoint of charge / discharge efficiency and easy handling during battery production.

【0015】ケイ素/炭素複合焼成物は、ケイ素材料を
有機材料又は炭素材料の共存下で、非酸化雰囲気中にお
いて熱処理することにより得られる。ケイ素材料には、
ケイ素単体の使用が望ましいが、焼成によりケイ素に変
化し得るケイ素化合物を用いても良く、例えば、酸化ケ
イ素などの無機ケイ素化合物や、シリコーン樹脂、有機
ケイ素化合物等の材料を用いることができる。有機材料
は熱処理により炭化する材料であれば良く、特に限定さ
れないが、例えばウレタン樹脂、フェノール樹脂、ポリ
フッ化ビニリデン等が挙げられる。炭素材料には、黒
鉛、ピッチ等の易黒鉛化性炭素、ガラス状炭素等の難黒
鉛化性炭素のいずれも使用可能である。ケイ素/炭素複
合焼成物は、炭化が十分に進行し、二酸化ケイ素や炭化
ケイ素を実質的に含まないことが望ましく、そのために
は、熱処理を、窒素雰囲気等の非酸化性雰囲気下、40
0〜1500℃で行うことが好ましい。400℃未満の
処理では炭化が不十分であり、1500℃を超える熱処
理では炭化ケイ素が生成するからである。
The fired silicon / carbon composite can be obtained by heat-treating a silicon material in the presence of an organic material or a carbon material in a non-oxidizing atmosphere. Silicon materials include:
Although it is preferable to use silicon alone, a silicon compound that can be converted into silicon by firing may be used. For example, materials such as an inorganic silicon compound such as silicon oxide, a silicone resin, and an organic silicon compound can be used. The organic material may be any material that can be carbonized by heat treatment, and is not particularly limited. Examples thereof include a urethane resin, a phenol resin, and polyvinylidene fluoride. As the carbon material, any of graphitizable carbon such as graphite and pitch, and non-graphitizable carbon such as glassy carbon can be used. It is desirable that the silicon / carbon composite fired product is sufficiently carbonized and substantially free of silicon dioxide and silicon carbide. For that purpose, heat treatment is performed under a non-oxidizing atmosphere such as a nitrogen atmosphere under a non-oxidizing atmosphere.
It is preferably performed at 0 to 1500 ° C. This is because carbonization is insufficient at a temperature lower than 400 ° C., and silicon carbide is generated at a temperature higher than 1500 ° C.

【0016】ところで、上述の負極体及び正極体材料
は、いずれも粉体であるため、これらを一体成形して電
極体を形成する必要がある。電極体形成法は、大きく塗
膜法と燒結法とに分類される。塗膜法は、電極体材料、
バインダー及び導電材等の混合物を溶媒分散させたスラ
リーを調整し、これを集電体となる金属箔に塗布し、溶
媒揮発させて塗膜体に形成する方法である。燒結法は、
電極体材料を導電材等と共にペレット状に加圧成形後、
高温燒結させて燒結体に形成する方法である。燒結法に
は、塗膜法により形成した塗膜体を加圧成形し、高温燒
結させて燒結体とする方法もある。一般に、燒結法は、
塗膜法に比して同じ電気容量に対して約20−40%薄
い電極を形成可能である。本発明の負極体及び正極体の
形成には、塗膜法及び燒結法のいずれを用いても良く、
異種の方法の組み合わせでも良い。
Since the above-mentioned negative electrode body and positive electrode body material are both powders, it is necessary to integrally form them to form an electrode body. Electrode body forming methods are broadly classified into a coating method and a sintering method. The coating method uses electrode material,
In this method, a slurry in which a mixture of a binder, a conductive material, and the like is dispersed in a solvent is prepared, the slurry is applied to a metal foil serving as a current collector, and the solvent is volatilized to form a coated body. The sintering method is
After pressure molding the electrode material together with the conductive material into a pellet,
This is a method of sintering at a high temperature to form a sintered body. As a sintering method, there is also a method in which a coated body formed by the coating method is pressure-formed and sintered at a high temperature to obtain a sintered body. Generally, the sintering method is
It is possible to form an electrode which is about 20-40% thinner for the same electric capacity as compared with the coating method. For the formation of the negative electrode body and the positive electrode body of the present invention, any of a coating method and a sintering method may be used,
A combination of different methods may be used.

【0017】負極体及び正極体を燒結法で形成する場
合、正極体厚みは40〜1000μm、好ましくは20
0〜400μmとすることが望ましく、負極体厚みは2
0〜500μm、好ましくは50〜150μmとするこ
とが望ましい。電極体厚みの好適値上限は高電流密度に
おける容量の低下抑制の観点に基づくものであり、厚み
好適値下限は充放電に寄与しない構成部材の体積比率を
抑制する観点に基づくものである。
When the negative electrode body and the positive electrode body are formed by a sintering method, the thickness of the positive electrode body is 40 to 1000 μm, preferably 20 to 1000 μm.
The thickness of the negative electrode body is desirably 2 to 400 μm.
It is desirable that the thickness be 0 to 500 μm, preferably 50 to 150 μm. The upper limit of the preferable thickness of the electrode body is based on the viewpoint of suppressing a decrease in capacity at a high current density, and the lower limit of the preferable thickness is based on the viewpoint of suppressing the volume ratio of a component that does not contribute to charging and discharging.

【0018】一方、負極体及び正極体を塗膜法により形
成する場合、燒結法と同様の理由から、正極体厚みを4
0〜300μmとし、負極体厚みを20〜150μmと
することが望ましい。
On the other hand, when the negative electrode body and the positive electrode body are formed by a coating method, the thickness of the positive electrode body is set to 4 for the same reason as in the sintering method.
It is desirable that the thickness be 0 to 300 μm and the thickness of the negative electrode body be 20 to 150 μm.

【0019】尚、本発明のリチウム二次電池に使用する
電解質には、有機溶媒にリチウム化合物を溶解させた非
水電解液、又はリチウム化合物を固溶あるいはリチウム
化合物を溶解させた有機溶媒を保持させた高分子固体電
解質を用いることができる。上記有機溶媒やリチウム化
合物はこの種の電池に用いられるものであればいずれも
使用可能である。
The electrolyte used in the lithium secondary battery of the present invention contains a nonaqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a solid solution of a lithium compound or an organic solvent in which a lithium compound is dissolved. The solid polymer electrolyte thus formed can be used. Any of the above organic solvents and lithium compounds can be used as long as they are used in this type of battery.

【0020】[0020]

【実施例】実施例1 (正極体の作製)炭酸リチウム粉末と炭酸コバルト粉末
をモル比1:1となるよう混合し、大気雰囲気中800
℃にて1時間仮焼成した。次いでこれを粉砕し、平均粒
径5μmの球状ポリメチルメタクリレート粒子を混合し
て加圧成形し、大気雰囲気中800℃で10時間焼成し
直径19mm、厚さ0.5mmの正極体を得た。
EXAMPLE 1 (Preparation of positive electrode body) Lithium carbonate powder and cobalt carbonate powder were mixed at a molar ratio of 1: 1 and 800
Calcination was performed for 1 hour at ℃. Next, this was pulverized, mixed with spherical polymethyl methacrylate particles having an average particle size of 5 μm, pressed, and fired at 800 ° C. for 10 hours in an air atmosphere to obtain a positive electrode body having a diameter of 19 mm and a thickness of 0.5 mm.

【0021】(負極体の作製)純度99.9%、平均粒
径1μmの結晶質ケイ素粉末(高純度化学(株)製)8
0重量部とグラファイト/ピッチ混合物(グラファイト
90重量部とピッチ10重量部の混合物、商品名グラフ
ィトン、大阪化成(株)製)20重量部とを窒素雰囲気
下1100℃3時間焼成した後、粉砕して原料粉末を得
た。原料粉末90重量部とポリフッ化ビニリデンのn−
メチル−2−ピロリドン溶液(14重量%)70重量部
とを混合してペースト状とし、その一部をポリエチレン
テレフタレート製シートに塗布後、100g/m2の圧
力で圧着して乾燥させた。これを直径19mmの円板形
に切り出し、窒素雰囲気下800℃で3時間焼成して厚
さ0.2mmの負極体を得た。
(Preparation of Negative Electrode Body) Crystalline silicon powder having a purity of 99.9% and an average particle diameter of 1 μm (manufactured by Kojundo Chemical Co., Ltd.) 8
0 parts by weight and 20 parts by weight of a graphite / pitch mixture (a mixture of 90 parts by weight of graphite and 10 parts by weight of pitch, trade name: Grafton, manufactured by Osaka Kasei Co., Ltd.) are fired at 1100 ° C. for 3 hours in a nitrogen atmosphere, and then pulverized. Thus, a raw material powder was obtained. 90 parts by weight of raw material powder and n-polyvinylidene fluoride
It was mixed with 70 parts by weight of a methyl-2-pyrrolidone solution (14% by weight) to form a paste. A part of the paste was applied to a polyethylene terephthalate sheet, and then pressed and dried under a pressure of 100 g / m 2 . This was cut into a disk shape having a diameter of 19 mm and fired at 800 ° C. for 3 hours in a nitrogen atmosphere to obtain a negative electrode body having a thickness of 0.2 mm.

【0022】(コイン型電池の作製)得られた正極体、
負極体各2枚を、正極集電体であるアルミニウム箔、負
極集電体である銅箔及びセパレーターとともに電気的並
列接続となるよう積層し、ステンレス製外装缶に収納し
て厚さ1.8mmのコイン型電池を作製した。尚、電解
液にはエチレンカーボネートとジメチルカーボネートの
混合溶媒(体積比1:1)に六フッ化リンリチウムを1
mol/l溶解したものを用いた。
(Preparation of coin type battery)
Two pieces of the negative electrode body are laminated together with an aluminum foil as a positive electrode current collector, a copper foil as a negative electrode current collector and a separator so as to be electrically connected in parallel, and housed in a stainless steel outer can to have a thickness of 1.8 mm. Was manufactured. The electrolyte was prepared by mixing lithium phosphate hexafluoride in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1).
The solution dissolved in mol / l was used.

【0023】(コイン型電池の評価)4.1V−2.5
v間において繰り返し充放電を行い、充放電に伴う電池
厚みの変化量及び放電容量を測定した。電池厚みの変化
量とは、充放電時の厚み変化量の放電終了時厚みに対す
る比率であり、初め10サイクルの平均値とした。電池
厚みの変化量は約5%であり、30サイクル後の放電容
量は初回放電容量の約85%であった。
(Evaluation of coin-type battery) 4.1 V-2.5
The battery was repeatedly charged and discharged during v, and the change in battery thickness and the discharge capacity due to the charge and discharge were measured. The amount of change in the battery thickness is a ratio of the amount of change in the thickness during charge / discharge to the thickness at the end of discharge, and was initially an average value of 10 cycles. The change in battery thickness was about 5%, and the discharge capacity after 30 cycles was about 85% of the initial discharge capacity.

【0024】実施例2 正極体及び負極体の厚み、積層枚数を除いては、実施例
1と同様の方法によりコイン型電池を作製した。正極体
の厚みを0.3mm、負極体の厚みを0.1mmとし、
正極体及び負極体各4枚を積層して厚さ3mmのコイン
型電池を作製した。電池厚みの変化量は約7%であり、
30サイクル後の放電容量は初回放電容量の約90%で
あった。
Example 2 A coin-type battery was manufactured in the same manner as in Example 1 except for the thickness of the positive electrode body and the negative electrode body and the number of laminated layers. The thickness of the positive electrode body is 0.3 mm, the thickness of the negative electrode body is 0.1 mm,
Four positive electrode bodies and four negative electrode bodies were laminated to prepare a coin-type battery having a thickness of 3 mm. The change in battery thickness is about 7%,
The discharge capacity after 30 cycles was about 90% of the initial discharge capacity.

【0025】比較例 正極体及び負極体の厚み、積層枚数を除いては、実施例
1と同様の方法によりコイン型電池を作製した。正極体
の厚みを0.2mm、負極体の厚みを0.2mmとし、
正極体及び負極体各4枚を積層して厚さ3mmのコイン
型電池を作製した。電池厚みの変化量は約14%であ
り、30サイクル後の放電容量は初回放電容量の約70
%であった。
Comparative Example A coin-type battery was manufactured in the same manner as in Example 1 except for the thickness of the positive electrode body and the negative electrode body and the number of stacked layers. The thickness of the positive electrode body is 0.2 mm, the thickness of the negative electrode body is 0.2 mm,
Four positive electrode bodies and four negative electrode bodies were laminated to prepare a coin-type battery having a thickness of 3 mm. The change in battery thickness was about 14%, and the discharge capacity after 30 cycles was about 70% of the initial discharge capacity.
%Met.

【0026】実施例1、2は、負極体の厚みを正極体の
厚みの半分以下として薄型電池を作製したものであり、
比較的良好なサイクル特性を示している。一方、比較例
は、負極体の厚みを正極体の厚み同等として薄型電池を
作製しており、実施例1及び2に対し、サイクル特性が
劣っている。比較例は電池厚みの変化量が実施例1及び
2の2倍以上であったことより、充放電に伴う電池の厚
み変化に起因する集電体−電極体間の接触抵抗の増加の
ためサイクル特性が劣化したものと考えられる。
In Examples 1 and 2, a thin battery was manufactured by setting the thickness of the negative electrode body to half or less of the thickness of the positive electrode body.
It shows relatively good cycle characteristics. On the other hand, in the comparative example, a thin battery was manufactured with the thickness of the negative electrode body equal to the thickness of the positive electrode body, and the cycle characteristics were inferior to those of Examples 1 and 2. In the comparative example, the amount of change in the battery thickness was more than twice that in Examples 1 and 2, and the cycle was increased due to the increase in the contact resistance between the current collector and the electrode body due to the change in the thickness of the battery due to charging and discharging. It is considered that the characteristics were deteriorated.

【0027】[0027]

【発明の効果】本発明は以上説明したように構成されて
いるため、電気容量を確保しながらリチウム二次電池の
薄型化を可能とする。
As described above, the present invention is configured as described above, so that the thickness of the lithium secondary battery can be reduced while securing the electric capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一色 信之 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 Fターム(参考) 5H003 AA02 AA04 BA01 BA03 BB01 BB04 BB05 BD00 BD02 5H014 AA02 AA06 BB01 BB06 CC01 EE08 EE10 HH00 HH06 5H029 AJ00 AJ03 AJ05 AK03 AL01 AL02 AL06 AL18 AM03 AM05 AM07 BJ02 BJ03 BJ12 BJ14 CJ01 CJ02 CJ22 DJ02 DJ04 DJ11 HJ00 HJ04  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Nobuyuki Isshiki 1334 Minato, Wakayama-shi, Wakayama Prefecture F-term in Kao Corporation Research Laboratories (Reference) 5H003 AA02 AA04 BA01 BA03 BB01 BB04 BB05 BD00 BD02 5H014 AA02 AA06 BB01 BB06 CC01 EE08 EE10 EE10 HH00 HH06 5H029 AJ00 AJ03 AJ05 AK03 AL01 AL02 AL06 AL18 AM03 AM05 AM07 BJ02 BJ03 BJ12 BJ14 CJ01 CJ02 CJ22 DJ02 DJ04 DJ11 HJ00 HJ04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】負極体と正極体をイオン伝導層を介して配
置し、これを積層し又は巻回して容器中に密封してなる
リチウム二次電池において、 前記負極体の体積膨張率(リチウムイオン吸蔵時とリチ
ウムイオン放出時との体積比)が前記正極体よりも大き
く、かつ該負極体の厚みを、放電時を基準として該正極
体の厚みの半分以下としたことを特徴とするリチウム二
次電池。
1. A lithium secondary battery in which a negative electrode body and a positive electrode body are arranged via an ion conductive layer, and are laminated or wound and sealed in a container. The volume ratio between the time of occlusion of ions and the time of release of lithium ions) is greater than that of the positive electrode body, and the thickness of the negative electrode body is set to be equal to or less than half the thickness of the positive electrode body based on discharge. Rechargeable battery.
【請求項2】前記正極体が、コバルト、マンガン、ニッ
ケルから成る群より選択された1つの金属のリチウム含
有酸化物を含む一方、前記負極体が、ズズ酸化物、ケイ
素酸化物、リチウム遷移金属複合窒化物、ケイ素/炭素
複合物から成る群より選択された1つを含む請求項1記
載のリチウム二次電池。
2. The positive electrode body includes a lithium-containing oxide of one metal selected from the group consisting of cobalt, manganese, and nickel, while the negative electrode body includes a tin oxide, a silicon oxide, and a lithium transition metal. 2. The lithium secondary battery according to claim 1, comprising one selected from the group consisting of a composite nitride and a silicon / carbon composite.
【請求項3】前記負極体が、ケイ素またはその化合物を
有機材料又は炭素材料の存在下において熱処理して得ら
れるケイ素/炭素複合焼成物を含む請求項2記載のリチ
ウム二次電池。
3. The lithium secondary battery according to claim 2, wherein the negative electrode body includes a silicon / carbon composite fired product obtained by heat-treating silicon or a compound thereof in the presence of an organic material or a carbon material.
【請求項4】前記負極体が、厚み20〜500μmの燒
結体、または厚み20〜150μmの塗膜体である請求
項1記載のリチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein the negative electrode body is a sintered body having a thickness of 20 to 500 μm or a coated body having a thickness of 20 to 150 μm.
JP36191198A 1998-12-03 1998-12-03 Lithium secondary battery Expired - Fee Related JP3291260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36191198A JP3291260B2 (en) 1998-12-03 1998-12-03 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36191198A JP3291260B2 (en) 1998-12-03 1998-12-03 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000173667A true JP2000173667A (en) 2000-06-23
JP3291260B2 JP3291260B2 (en) 2002-06-10

Family

ID=18475271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36191198A Expired - Fee Related JP3291260B2 (en) 1998-12-03 1998-12-03 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3291260B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027825A1 (en) * 2000-09-28 2002-04-04 Hitachi Maxell, Ltd. Composite electrode material and method for producing the same, and electrochemical element using the same
JP2005166530A (en) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
US7525927B2 (en) 2002-01-17 2009-04-28 Panasonic Corporation Unicast-to-multicast converting apparatus, method, and computer program product, and monitoring system comprising the same
JP2015144141A (en) * 2010-01-18 2015-08-06 エネヴェート・コーポレーション composite materials for electrochemical storage
US9941509B2 (en) 2010-01-18 2018-04-10 Enevate Corporation Silicon particles for battery electrodes
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP4883323B2 (en) 2008-08-26 2012-02-22 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, Si-O-Al composite manufacturing method, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5666378B2 (en) 2010-05-24 2015-02-12 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
JP6010279B2 (en) 2011-04-08 2016-10-19 信越化学工業株式会社 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP5542780B2 (en) 2011-11-01 2014-07-09 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5801775B2 (en) 2012-08-03 2015-10-28 信越化学工業株式会社 Silicon-containing particles, negative electrode material for non-aqueous electrolyte secondary battery using the same, non-aqueous electrolyte secondary battery, and method for producing silicon-containing particles
JP6010429B2 (en) 2012-11-08 2016-10-19 信越化学工業株式会社 Method for producing silicon-containing particles for negative electrode active material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP6006662B2 (en) 2013-03-05 2016-10-12 信越化学工業株式会社 Method for producing silicon-containing particles, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP5967024B2 (en) 2013-06-20 2016-08-10 信越化学工業株式会社 Non-aqueous electrolyte secondary battery active material, negative electrode molded body, and non-aqueous electrolyte secondary battery
EP3480875B1 (en) 2013-12-25 2021-05-12 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027825A1 (en) * 2000-09-28 2002-04-04 Hitachi Maxell, Ltd. Composite electrode material and method for producing the same, and electrochemical element using the same
US6989218B2 (en) 2000-09-28 2006-01-24 Hitachi Maxell, Ltd. Composite electrode material and method for producing the same, and electrochemical element using the same
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7525927B2 (en) 2002-01-17 2009-04-28 Panasonic Corporation Unicast-to-multicast converting apparatus, method, and computer program product, and monitoring system comprising the same
JP2005166530A (en) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP4497904B2 (en) * 2003-12-04 2010-07-07 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11728476B2 (en) 2010-01-18 2023-08-15 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
JP2015144141A (en) * 2010-01-18 2015-08-06 エネヴェート・コーポレーション composite materials for electrochemical storage
US10622620B2 (en) 2010-01-18 2020-04-14 Enevate Corporation Methods of forming composite material films
US9941509B2 (en) 2010-01-18 2018-04-10 Enevate Corporation Silicon particles for battery electrodes
US11955623B2 (en) 2010-01-18 2024-04-09 Enevate Corporation Silicon particles for battery electrodes
US11196037B2 (en) 2010-01-18 2021-12-07 Enevate Corporation Silicon particles for battery electrodes
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11901500B2 (en) 2017-12-07 2024-02-13 Enevate Corporation Sandwich electrodes
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Also Published As

Publication number Publication date
JP3291260B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JP3291260B2 (en) Lithium secondary battery
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP2008177346A (en) Energy storage device
JP2003178759A (en) Positive electrode active material for lithium secondary battery, manufacturing method of the same, and the battery
KR101319380B1 (en) Solid electrolyte, rechargeable lithium battery comprising the same, method for preparing solid electrolyte particles and solid electrolyte particles
JP2021518044A (en) Negative electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP2001345101A (en) Secondary battery
US20170098820A1 (en) Anode compositions for rechargeable batteries and methods of making same
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP2000173596A (en) Nonaqueous secondary battery
JP4016438B2 (en) Nonaqueous electrolyte secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP2006278124A (en) Nonaqueous electrolyte secondary battery
WO2013129150A1 (en) Electrode active material, electrode using electrode active material, and secondary battery
JP2002358965A (en) Positive electrode active substance and non-aqueous electrolyte secondary battery
JP6273707B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2000340216A (en) Manufacture of negative electrode for secondary battery
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
JP3427577B2 (en) Non-aqueous electrolyte secondary battery
JP5828754B2 (en) Positive electrode material and lithium ion secondary battery
JP3179434B2 (en) Non-aqueous secondary battery
TW201208187A (en) Lithium battery and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees