JP2000157832A - Treatment of waste activated carbon and treatment of activated coke - Google Patents

Treatment of waste activated carbon and treatment of activated coke

Info

Publication number
JP2000157832A
JP2000157832A JP10338608A JP33860898A JP2000157832A JP 2000157832 A JP2000157832 A JP 2000157832A JP 10338608 A JP10338608 A JP 10338608A JP 33860898 A JP33860898 A JP 33860898A JP 2000157832 A JP2000157832 A JP 2000157832A
Authority
JP
Japan
Prior art keywords
activated carbon
waste activated
exhaust gas
treatment
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10338608A
Other languages
Japanese (ja)
Inventor
Ichiro Ueno
一郎 上野
Toshihiko Okada
敏彦 岡田
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10338608A priority Critical patent/JP2000157832A/en
Publication of JP2000157832A publication Critical patent/JP2000157832A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for further using waste activated carbon as an adsorbing material and a method for treating waste activated carbon without using a special incinerator. SOLUTION: Waste activated carbon is blown in exhaust gas of a process of every kind and a dry distillate having adsorbed a harmful substance in exhaust gas is recovered by a dust collector to purify the exhaust gas. At this time, waste activated carbon is preliminarily subjected to regeneration treatment or dry distillation treatment to be enhanced in the adsorbing efficiency of a harmful substance. Further, if recovered waste activated carbon is utilized as a raw material for a sintering machine in an iron manufacturing process, it can effectively be put to practical use as a heat source and an ash component can be converted to slag (detoxified) finally in a blast furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃活性炭の処理方法
に関するものである。
[0001] The present invention relates to a method for treating waste activated carbon.

【0002】[0002]

【従来の技術】活性炭は大気汚染や水質汚濁、悪臭等の
環境分野のみでなく、化学工業の急速な発展にともなっ
て分離プロセス、精製、触媒、溶剤回収等の産業用とし
ても利用されている。また、最近では家庭用浄水器など
にも広く普及している。このような活性炭は石炭、やし
殻等を原料として、蒸し焼き、さらには賦活処理により
製造されるのが普通であり、形状も粉末状、顆粒状、ブ
リケット状、繊維状等様々である。このような活性炭
は、使用により表面あるいは細孔内に各種物質が吸着し
て徐々に性能が悪くなる。そのため、通常は再生処理、
乾留処理により付着物質を除去して再生利用できるもの
の、再生利用の繰り返しにより、やがて性能が低下し、
目標となる吸着性能を達成できなくなる。このような活
性炭(これを廃活性炭と定義する)は焼却処理や埋め立
て処理されている。
2. Description of the Related Art Activated carbon is used not only in the environmental fields such as air pollution, water pollution and odor, but also in industrial applications such as separation processes, purification, catalysts and solvent recovery with the rapid development of the chemical industry. . Recently, it has been widely used in household water purifiers and the like. Such activated carbon is usually produced from coal, coconut husk, or the like as a raw material by steaming and then activating, and has various shapes such as powder, granule, briquette, and fiber. Such activated carbon gradually deteriorates in performance as various substances are adsorbed on the surface or in the pores by use. Because of that, usually the playback processing,
Although it is possible to recycle by removing the adhered substances by carbonization, the performance will eventually decrease due to repeated recycling.
The target adsorption performance cannot be achieved. Such activated carbon (defined as waste activated carbon) has been incinerated or landfilled.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、廃活性
炭には塩素、灰分、重金属等をはじめダイオキシン、P
CB等が吸着されているケースもある。そのような活性
炭を焼却処理する場合、焼却排ガスを処理する設備を持
っている焼却炉を使用する必要がある。また、ダストや
灰処理等も必要となる。
However, waste activated carbon includes chlorine, ash, heavy metal, dioxin, P
In some cases, CB or the like is adsorbed. When incinerating such activated carbon, it is necessary to use an incinerator having a facility for treating incineration exhaust gas. Also, dust and ash treatment are required.

【0004】本発明はこのような問題点を解決するため
になされたもので、廃活性炭をさらに吸着材として使用
する方法、及び特別な焼却炉を用いることなく、廃活性
炭を処理する方法を提供することを課題とする。
The present invention has been made to solve such problems, and provides a method of further using waste activated carbon as an adsorbent and a method of treating waste activated carbon without using a special incinerator. The task is to

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、廃活性炭を各種プロセスの排ガス中に
吹込み、排ガス中の有害物質を吸着した廃活性炭を集塵
装置により回収して排ガスを浄化することを特徴とする
廃活性炭の処理方法(請求項1)である。
The first means for solving the above problems is to inject waste activated carbon into exhaust gas of various processes and collect waste activated carbon adsorbing harmful substances in the exhaust gas by a dust collector. The method for treating waste activated carbon (claim 1) is characterized by purifying the exhaust gas.

【0006】廃活性炭は、水処理、排ガス処理等で性能
は低下しているものの、充分利用可能な吸着性能は有す
る。そのため、各種プロセスの排ガス中に吹き込むこと
により、排ガス中の有害物質を吸着して、排ガス中から
除去することができる。有害物質を吸着した廃活性炭
は、各種プロセスに設けられた集塵装置により集塵さ
れ、廃棄物として処理される。
[0006] Waste activated carbon has reduced adsorption performance in water treatment, exhaust gas treatment and the like, but has a sufficiently usable adsorption performance. Therefore, by blowing into exhaust gas of various processes, harmful substances in the exhaust gas can be adsorbed and removed from the exhaust gas. Waste activated carbon that has adsorbed harmful substances is collected by dust collectors provided in various processes and is treated as waste.

【0007】前記課題を解決するための第2の手段は、
前記第1の手段であって、廃活性炭をあらかじめ再生処
理、又は乾留処理することを特徴とするもの(請求項
2)である。
[0007] A second means for solving the above-mentioned problems is as follows.
The first means, wherein the waste activated carbon is subjected to a regeneration treatment or a dry distillation treatment in advance (claim 2).

【0008】再生処理、又は乾留処理を行うことによ
り、廃活性炭の吸着性能が向上し、排ガス中に吹き込ん
だとき、十分に有害物質を吸着除去できるようになる。
By performing the regeneration treatment or the dry distillation treatment, the adsorption performance of waste activated carbon is improved, and when blown into exhaust gas, harmful substances can be sufficiently adsorbed and removed.

【0009】前記課題を解決するための第3の手段は、
前記第1の手段又は第2の手段であって、回収した廃活
性炭を製鉄プロセスにおける焼結機用の原料として利用
することを特徴とするものである。
[0009] A third means for solving the above problems is as follows.
The first means or the second means, wherein the recovered waste activated carbon is used as a raw material for a sintering machine in an iron making process.

【0010】本手段においては、廃活性炭を2段階で利
用することにより(これをカスケード利用という)、よ
り有効的な利用を図るとともに、吸着している有害物質
を同時に処理することに特徴がある。すなわち、まず第
1段階では活性炭本来の吸着性能を利用する。次に、有
害物質を吸着した廃活性炭を、製鉄プロセスにおける焼
結機用原料として利用する。焼結機の燃焼温度は、最高
で1400℃程度であり、投入されるダイオキシンやその前
駆物質がほぼ分解する。また、灰成分は最終的に高炉で
スラグ化(無害化)される。また、大量の処理が可能で
ある。よって、焼結機において熱源として使用すれば、
燃料としての有効利用が図れるのみでなく、有害物質の
残存を防ぐことができる。
This means is characterized in that waste activated carbon is used in two stages (this is referred to as cascade use), thereby achieving more effective use and simultaneously treating adsorbed harmful substances. . That is, first, in the first stage, the original adsorption performance of activated carbon is used. Next, the waste activated carbon to which the harmful substances are adsorbed is used as a raw material for a sintering machine in an iron making process. The combustion temperature of the sintering machine is about 1400 ° C at the maximum, and the introduced dioxin and its precursor are almost decomposed. The ash component is finally converted into slag (detoxified) in a blast furnace. Also, a large amount of processing is possible. Therefore, if used as a heat source in a sintering machine,
Not only can it be effectively used as fuel, but also the remaining of harmful substances can be prevented.

【0011】前記課題を解決するための第4の手段は、
前記第1の手段から第3の手段における廃活性炭に代え
て、使用済みの活性コークスを用いることを特徴とする
活性コークスの処理方法(請求項4)である。
[0011] A fourth means for solving the above problems is as follows.
A method of treating activated coke, characterized in that used activated coke is used in place of the waste activated carbon in the first to third means (claim 4).

【0012】廃活性炭の代わり(或いは廃活性炭の一
種)として移動床型の乾式排煙脱硫プロセスで使用する
活性コークスが利用できる。このプロセスは1960年代に
ドイツのBergbau-Forschung社が開発し、ゴミ焼却炉や
焼結炉排ガスの脱硫、脱硝用に広く普及している。その
後、三井鉱山(株)により高強度の活性コークスが開発
されいる。このプロセスでは活性コークスを再生する過
程で表面のカーボンを消耗すると同時に粉化して再生利
用できない活性コークスが常時生成するという問題があ
る。この粉化した活性コークスも本発明の廃活性炭と同
様に利用可能である。この場合、使用する粉化した活性
コークスは再生塔で処理されているので吸着能は十分あ
る。本発明においては粉化した活性コークスを必要に応
じて粉砕後、各種プロセス排ガス中に吹込み、集塵装置
により回収して排ガスを浄化することが可能である。回
収した活性コークスは焼結用熱源として再利用される。
ダスト中に含有する有害成分の大部分は高炉において処
理され、無害化される。
Activated coke used in a moving bed type dry flue gas desulfurization process can be used instead of waste activated carbon (or a type of waste activated carbon). This process was developed by the German company Bergbau-Forschung in the 1960s and is widely used for the desulfurization and denitration of waste gas from incinerators and sintering furnaces. Subsequently, Mitsui Mining Co., Ltd. has developed high-strength activated coke. In this process, there is a problem that carbon on the surface is consumed in the process of regenerating the activated coke, and at the same time, activated coke which is powdered and cannot be recycled is always generated. This powdered activated coke can be used similarly to the waste activated carbon of the present invention. In this case, the powdered activated coke used has been treated in the regeneration tower, and therefore has sufficient adsorption capacity. In the present invention, powdered activated coke can be pulverized as required, then blown into various process exhaust gases, collected by a dust collector, and purified. The recovered activated coke is reused as a heat source for sintering.
Most of the harmful components contained in the dust are treated in the blast furnace and detoxified.

【0013】[0013]

【発明の実施の実態】以下、本発明の実施の形態の例に
ついて説明する。この実施の形態において最も特徴的な
ことは、まず、廃活性炭を有害物質の吸着材として使用
し、続いて、燃料として使用することである。すなわ
ち、廃活性炭は、水処理、排ガス処理等で性能は低下し
ているものの、充分利用可能な吸着性能を有する。よっ
て、第1段階で吸着性能を利用した後、第2段階で始め
て熱源として利用する。補完的役割として、廃活性炭に
第3成分として新規の活性炭を添加してもよい。新規の
活性炭の添加により、吸着剤としての性能の向上が期待
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described. The most characteristic feature of this embodiment is that waste activated carbon is first used as an adsorbent for harmful substances and then used as fuel. That is, the waste activated carbon has adsorption performance that can be sufficiently used, although its performance is deteriorated by water treatment, exhaust gas treatment, and the like. Therefore, after utilizing the adsorption performance in the first stage, it is used as a heat source for the first time in the second stage. As a complementary role, new activated carbon may be added as a third component to the waste activated carbon. Improvement of the performance as an adsorbent can be expected by adding new activated carbon.

【0014】また、廃活性炭の性能を向上させるために
再生処理あるいは乾留処理等の前処理を行うこともでき
る。再生処理は先に示した通常の再生処理法でよい。乾
留処理は不活性雰囲気で行う。酸素が存在しても良い
が、不活性雰囲気で処理することにより炭素質の燃焼を
抑制する。その結果、乾留物の歩留や乾留物中の炭素質
の比率を高くすることができると同時に、ダイオキシン
の生成を抑制することができる。
Further, in order to improve the performance of the waste activated carbon, a pretreatment such as a regeneration treatment or a dry distillation treatment can be performed. The reproduction processing may be the normal reproduction processing method described above. The dry distillation is performed in an inert atmosphere. Oxygen may be present, but by treating in an inert atmosphere, carbonaceous combustion is suppressed. As a result, it is possible to increase the yield of the carbonized material and the ratio of carbonaceous material in the carbonized material, and at the same time, suppress the generation of dioxin.

【0015】また、水蒸気存在下で乾留してもよい。水
蒸気存在下で処理することにより、炭素質の比表面積の
増加、細孔径の拡大が可能である。乾留炉は一般的な工
業炉が利用できる。例えば、ロータリーキルン、流動床
炉、コークス炉などでよい。乾留温度は400℃以上で100
0℃以下、好ましくは600℃以上で800℃以下である。400
℃以下では吸着剤として必要な比表面積、吸着性能が得
られない。また、1000℃以上では吸着剤性能が向上しな
いため、投入熱量の増大に対する効果が得られない。乾
留時間は特に限定されないが、廃活性炭の内部が所定温
度に達していることが必要である。得られた乾留物は、
さらに水蒸気等による賦活処理を施してもよい。この処
理により乾留物の比表面積や細孔径が大きくなることが
期待できる。ただし、乾留物中の灰分含有量が高い場合
は炭素質の消費により逆に比表面積が低下する場合があ
るので注意が必要である。
Further, the carbonization may be carried out in the presence of steam. By treating in the presence of steam, it is possible to increase the specific surface area of carbonaceous material and to increase the pore diameter. As the carbonization furnace, a general industrial furnace can be used. For example, a rotary kiln, a fluidized-bed furnace, a coke oven, or the like may be used. Carbonization temperature is 100 at 400 ℃ or more
The temperature is 0 ° C or lower, preferably 600 ° C or higher and 800 ° C or lower. 400
If the temperature is lower than ℃, the specific surface area and the adsorption performance required as the adsorbent cannot be obtained. On the other hand, at a temperature of 1000 ° C. or higher, the adsorbent performance is not improved, so that the effect of increasing the input heat cannot be obtained. The carbonization time is not particularly limited, but it is necessary that the inside of the waste activated carbon has reached a predetermined temperature. The resulting dry distillate is
Further, activation treatment with steam or the like may be performed. This treatment can be expected to increase the specific surface area and pore size of the carbonized product. However, when the ash content in the carbonized matter is high, attention must be paid to the fact that the specific surface area may be reduced due to the consumption of carbonaceous material.

【0016】廃活性炭はそのまま各種プロセス排ガス中
に吹込んでも良いが、必要に応じて粉砕処理することが
好ましい。粉砕することにより比表面積の増加、排ガス
中への分散性の向上が期待できる。粉砕粒度は5mm以
下、特に1mm以下とすることが好ましい。粉砕処理工程
の特性をを考慮すれば、全量が上記のような粒度を有す
る必要は無く、一般的には上記粒度成分がある比率含有
されていればよい。例えば0.8mm以下の粒度成分を重量
比で80%以上含有する程度の粉砕で良い。さらに、同時
に、あるいは粉砕後に比重分離等により灰分を除去する
ことも可能である。このことにより、重量あたりの廃活
性炭の比表面積増加が期待できる。
Although the waste activated carbon may be directly blown into various process exhaust gases, it is preferable that the activated carbon be pulverized if necessary. By pulverizing, an increase in specific surface area and an improvement in dispersibility in exhaust gas can be expected. The pulverized particle size is preferably 5 mm or less, particularly preferably 1 mm or less. In consideration of the characteristics of the pulverizing process, the whole amount does not need to have the above-mentioned particle size, and generally, it is sufficient that the above-mentioned particle size component is contained in a certain ratio. For example, pulverization may be carried out so as to contain a particle size component of 0.8 mm or less in a weight ratio of 80% or more. Further, it is also possible to remove ash simultaneously or after crushing by specific gravity separation or the like. Thus, an increase in the specific surface area of the waste activated carbon per weight can be expected.

【0017】廃活性炭を吹き込む対象となるプロセス排
ガスは、例えばごみ焼却炉、発電プラント、製鋼用電気
炉、スクラップ溶解炉、製鉄プロセスにおける焼結機等
からのものである。廃活性炭の吹込みは、主に排ガス中
に含有されるダイオキシンを除去するために行われる。
吹き込みは集塵機手前の排ガス中で行う。吹き込みは、
一般的な固体吹き込みノズルで良く、空気や窒素等の気
流により搬送して吹き込む。廃活性炭の吹き込み量は排
ガスの種類にもよるが、一般的には排ガス1Nm 3当たり
の吸着剤中の炭素質量換算における吹き込み量で0.01か
ら0.5g/Nm3程度であり、0.1から0.3g/Nm3とすることが
特に好ましい。ここで言う炭素質量とは、廃活性炭中の
灰分を除いた値である。ここで言う灰分はJIS M 8812
で測定した値を指す。
The process waste to which the waste activated carbon is blown is
Gases are used, for example, for waste incinerators, power plants,
Furnace, scrap melting furnace, sintering machine in iron making process, etc.
From. The injection of waste activated carbon is mainly in exhaust gas.
This is performed in order to remove dioxins contained in the water.
The blowing is performed in the exhaust gas before the dust collector. The blow is
A general solid injection nozzle may be used.
Conveyed by a stream and blown. The amount of waste activated carbon blown is
In general, depending on the type of gas, exhaust gas 1Nm ThreeHit
Of the blowing amount in terms of mass of carbon in the adsorbent
0.5g / NmThreeAbout 0.1 to 0.3 g / NmThreeCan be
Particularly preferred. The carbon mass here means the amount of waste activated carbon
This value excludes ash. The ash here is JIS M 8812
Refers to the value measured in.

【0018】使用する集塵装置はバグフィルターあるい
は電気集塵機でよい。集塵するときの排ガス温度は200
℃以下、好ましくは150℃以下が好ましい。これは、200
℃以上だとダイオキシンの除去効果が著しく低下し、場
合によってはダイオキシンが再合成して増加する場合が
あるためである。
The dust collector used may be a bag filter or an electric dust collector. Exhaust gas temperature for dust collection is 200
C. or lower, preferably 150 C. or lower. This is 200
If the temperature is higher than ℃, the effect of removing dioxin is significantly reduced, and in some cases, dioxin may be resynthesized and increased.

【0019】集塵装置で回収した廃活性炭はそのまま埋
め立て処理しても良いが、固体燃料として再利用するこ
とが好ましく、本実施の形態においてはそのようにして
有効利用を図っている。廃活性炭は、例えば発電用燃
料、セメント用原燃料、ボイラ用燃料として利用でき
る。その際、廃活性炭に、もともと吸着している有害物
質に注意する必要がある。例えば、燃焼利用する際はダ
イオキシン生成の可能性がある。
Although the waste activated carbon collected by the dust collector may be landfilled as it is, it is preferable to reuse it as a solid fuel, and in the present embodiment, such effective utilization is achieved. Waste activated carbon can be used, for example, as a fuel for power generation, a raw fuel for cement, and a fuel for boilers. At that time, it is necessary to pay attention to harmful substances originally adsorbed on the waste activated carbon. For example, when used for combustion, there is a possibility of dioxin generation.

【0020】廃活性炭が、あらかじめ乾留処理してあれ
ば揮発性の不純物である油分や塩素は大部分除去されて
いるので例えば、セメント用原燃料への利用も可能であ
る。
If the waste activated carbon has been subjected to dry distillation in advance, most of the volatile impurities such as oil and chlorine have been removed, so that it can be used, for example, as a raw fuel for cement.

【0021】固体燃料として使用する場合には、特に、
製鉄プロセスにおける焼結機用熱源としての利用が有効
である。これは、燃焼温度が最高で1400℃程度であり、
投入されるダイオキシンやその前駆物質がほぼ分解する
こと、灰成分は最終的に高炉でスラグ化(無害化)され
ること、大量の処理が可能であること等による。
When used as a solid fuel,
Use as a heat source for a sintering machine in an iron making process is effective. This is because the combustion temperature is about 1400 ℃ at the maximum,
This is due to the fact that the dioxin and its precursors to be introduced are almost decomposed, the ash component is finally converted into slag (detoxification) in a blast furnace, and a large amount of processing is possible.

【0022】以上のように、本実施の形態は、従来技術
における不純物の問題を解決し、廃活性炭を吸着剤や固
体燃料として有効に利用できるシステムである。
As described above, this embodiment solves the problem of impurities in the prior art, and is a system that can effectively use waste activated carbon as an adsorbent or a solid fuel.

【0023】[0023]

【実施例】以下、本発明について実施例により具体的に
図面に従って説明する。 (実施例1)廃活性炭の有害物質吸着性能を図1に示す
評価装置で評価した。図1において、1は焼結機の排ガ
ス煙道、2は焼結機ガスの流れ方向、3は熱交換器、4
は吸着剤ホッパー、5は吸着剤吹き込み口、6は電気集
塵機、8、9は排ガスサンプル採取口である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. (Example 1) The harmful substance adsorption performance of waste activated carbon was evaluated by an evaluation device shown in FIG. In FIG. 1, 1 is an exhaust gas flue of a sintering machine, 2 is a flow direction of a sintering machine gas, 3 is a heat exchanger,
Is an adsorbent hopper, 5 is an adsorbent blowing port, 6 is an electric dust collector, and 8 and 9 are exhaust gas sampling ports.

【0024】使用した廃活性炭A(再生処理、粉砕後)
の性状値を表1に示す。この廃活性炭Aの性能を図1に
示す試験装置で評価した。製鉄プロセスにおける焼結機
の排ガス煙道1から実排ガスをとり、熱交換器3により
排ガス温度を200℃に設定した。廃活性炭Aはホッパー
4に貯蔵され、吹き込み口5より定量的に切り出して排
ガス量1Nm3当たりの吸着剤量で約0.3g/Nm3を吹き込ん
だ。もともと排ガス中に存在したダストおよび吹き込ん
だ廃活性炭Aは電気集塵機6で回収した。電気集塵機の
操業温度は130℃であった。排ガスサンプル採取口7お
よび8から採取した排ガス中のダイオキシンを2回測定
して平均した。その結果、採取口7から採取した排ガス
中のダイオキシン濃度を100としたとき、採取口9から
採取した排ガス中のダイオキシン濃度は15であった。な
お、ここで言うダイオキシンとは、Poly chloro dibenz
o-p-dioxin、Poly chloro dibenzo-furanの総称を指
し、またダイオキシン濃度とは毒性換算値ではなく実濃
度を意味する。
Used waste activated carbon A (after regeneration treatment and pulverization)
Table 1 shows the property values of. The performance of the waste activated carbon A was evaluated by a test device shown in FIG. Actual exhaust gas was taken from the exhaust gas flue 1 of the sintering machine in the iron making process, and the temperature of the exhaust gas was set to 200 ° C. by the heat exchanger 3. Spent activated carbon A is stored in the hopper 4, was blown about 0.3 g / Nm 3 in the adsorbent per quantity of exhaust gas 1 Nm 3 is cut out from the blowing port 5 quantitatively. The dust originally present in the exhaust gas and the waste activated carbon A blown were collected by the electric dust collector 6. The operating temperature of the electric dust collector was 130 ° C. The dioxin in the exhaust gas collected from the exhaust gas sampling ports 7 and 8 was measured twice and averaged. As a result, when the dioxin concentration in the exhaust gas collected from the collection port 7 was set to 100, the dioxin concentration in the exhaust gas collected from the collection port 9 was 15. The term dioxin here means Poly chloro dibenz
Op-dioxin and polychlorodibenzo-furan are collectively referred to, and dioxin concentration means actual concentration, not toxic equivalent.

【0025】次に、電気集塵機6で回収したダストおよ
び廃活性炭Aが、焼結機における熱源である粉コークス
と代替して使用できるかを、図2に示す焼結試験装置で
評価した。図2において、10は点火炉、11は点火バ
ーナー、12は鍋、13は風箱、14はブロワーであ
る。鍋12に粉鉱と共に入れたダストおよび廃活性炭A
に、点火炉10の点火バーナー11で点火し、ブロワー
14によって、風箱13を介して、鍋12の上方の空気
を鍋12中に吸引し、鍋12から風箱13に燃焼排ガス
を吸引する。このようにして、焼結鉱を製造する。
Next, whether the dust and waste activated carbon A collected by the electric dust collector 6 could be used in place of coke breeze as a heat source in the sintering machine was evaluated by a sintering test apparatus shown in FIG. In FIG. 2, 10 is an ignition furnace, 11 is an ignition burner, 12 is a pan, 13 is a wind box, and 14 is a blower. Dust and waste activated carbon A put together with ore in pot 12
Then, the air is ignited by the ignition burner 11 of the ignition furnace 10, the air above the pan 12 is sucked into the pan 12 through the wind box 13 by the blower 14, and the combustion exhaust gas is sucked from the pan 12 into the wind box 13. . Thus, a sintered ore is produced.

【0026】回収した廃活性炭Aは、焼結用粉コークス
と熱量等価量で置換して使用した。その結果、焼結用コ
ークスを廃活性炭でほぼ100%置換した場合でも、得ら
れた焼結鉱の製品特性は遜色のないものであった。
The recovered waste activated carbon A was used in place of the coke powder for sintering with a calorific equivalent amount. As a result, even when almost 100% of the coke for sintering was replaced with waste activated carbon, the product properties of the obtained sinter were comparable.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施例2)表1に示す廃活性炭B(乾留
処理、粉砕後)を、図1に示す装置を使用して、実施例
1と全く同じ方法で評価した。その結果、採取口9から
採取した排ガス中のダイオキシン濃度を100としたと
き、採取口9から採取した排ガス中のダイオキシン濃度
は7であった。また、回収した廃活性炭Bを、図2に示
す装置を用い、実施例1と同じように、焼結用粉コーク
スと熱量等価量で置換して使用した。その結果、焼結用
コークスを廃活性炭でほぼ100%置換した場合でも、得
られた焼結鉱の製品特性は遜色のないものであった。
(Example 2) Waste activated carbon B (after dry distillation and pulverization) shown in Table 1 was evaluated in exactly the same manner as in Example 1 using the apparatus shown in FIG. As a result, when the dioxin concentration in the exhaust gas collected from the collection port 9 was set to 100, the dioxin concentration in the exhaust gas collected from the collection port 9 was 7. Further, the recovered waste activated carbon B was used in the same manner as in Example 1, except that the waste activated carbon B was replaced with the coke powder for sintering using a calorific value equivalent amount. As a result, even when almost 100% of the coke for sintering was replaced with waste activated carbon, the product properties of the obtained sinter were comparable.

【0029】(実施例3)ゴミ焼却排ガス脱硫用充填式
活性コークス塔から回収した粉化した活性コークスC
(性状を表1に示す)を、図1に示す装置を使用し、実
施例1と全く同じ方法で評価した。その結果、採取口8
から採取した排ガス中のダイオキシン濃度を100とした
とき、採取口9から採取した排ガス中のダイオキシン濃
度は18であった。また、回収した活性コークスCを、図
2に示す装置を用い、実施例1と同じように、焼結用粉
コークスと熱量等価量で置換して使用した。その結果、
焼結用コークスを活性コークスCでほぼ100%置換した
場合でも、得られた焼結鉱の製品特性は遜色のないもの
であった。
Example 3 Powdered activated coke C recovered from a packed activated coke tower for desulfurization of refuse incineration exhaust gas
(The properties are shown in Table 1) were evaluated in the same manner as in Example 1 using the apparatus shown in FIG. As a result, sampling port 8
The dioxin concentration in the exhaust gas collected from the sampling port 9 was 18, assuming that the dioxin concentration in the exhaust gas collected from the sample was 100. In addition, the recovered activated coke C was replaced with the powdered coke for sintering by using a device shown in FIG. as a result,
Even when activated coke C was substituted for almost 100% of the coke for sintering, the product properties of the obtained sinter were comparable.

【0030】(比較例1)実施例1と同じ評価を、電気
集塵機の操業温度を210℃として行った。その結果、採
取口8から採取した排ガス中のダイオキシン濃度を100
としたとき、採取口7から採取した排ガス中のダイオキ
シン濃度は118であった。また、回収した廃活性炭A
を、図2に示す装置を用い、実施例1と同じように、焼
結用粉コークスと熱量等価量で置換して使用した。その
結果、焼結用コークスを廃活性炭でほぼ100%置換した
場合でも、得られた焼結鉱の製品特性は遜色のないもの
であった。
Comparative Example 1 The same evaluation as in Example 1 was performed except that the operating temperature of the electrostatic precipitator was 210 ° C. As a result, the dioxin concentration in the exhaust gas collected from
The dioxin concentration in the exhaust gas collected from the collection port 7 was 118. In addition, the recovered waste activated carbon A
Was used in the same manner as in Example 1 with the use of the apparatus shown in FIG. As a result, even when almost 100% of the coke for sintering was replaced with waste activated carbon, the product properties of the obtained sinter were comparable.

【0031】[0031]

【発明の効果】以上説明したように、本発明のうち請求
項1に係る発明によれば、今まで廃棄処理されていた廃
活性炭を、各種プロセスにおける排ガス中の有害成分の
吸着剤として有効活用することができる。
As described above, according to the first aspect of the present invention, waste activated carbon which has been disposed of until now can be effectively used as an adsorbent for harmful components in exhaust gas in various processes. can do.

【0032】請求項2に係る発明においては、再生処
理、又は乾留処理を行うことにより、廃活性炭の吸着性
能が向上し、排ガス中に吹き込んだとき、十分に有害物
質を吸着除去できるようになる。
According to the second aspect of the present invention, by performing the regeneration treatment or the dry distillation treatment, the adsorption performance of waste activated carbon is improved, and when blown into exhaust gas, harmful substances can be sufficiently adsorbed and removed. .

【0033】請求項3に係る発明においては、回収した
廃活性炭は排ガス浄化用として有効利用できるばかりで
なく、製鉄プロセスにおける焼結機用の熱源として再利
用することができ、含有する重金属等の有害成分は高炉
スラグとして固定化、無害化できる。
According to the third aspect of the invention, the recovered waste activated carbon can not only be effectively used for purifying exhaust gas, but also can be reused as a heat source for a sintering machine in an iron making process. Harmful components can be fixed and made harmless as blast furnace slag.

【0034】請求項4に係る発明においては、廃活性炭
の代わりに使用済みの活性コークスを用いているので、
請求項1から請求項3に係る発明と同様の効果が得られ
る。
In the invention according to claim 4, since used activated coke is used instead of waste activated carbon,
The same effect as the invention according to claims 1 to 3 can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製鉄プロセスにおける焼結機排ガスを使用した
吸着剤性能評価試験装置の概要を示す図である。
FIG. 1 is a diagram showing an outline of an adsorbent performance evaluation test apparatus using sintering machine exhaust gas in an iron making process.

【図2】焼結機における吸着剤の粉コークス代替性能を
評価するための試験装置の概要を示す図である。
FIG. 2 is a view showing an outline of a test apparatus for evaluating the adsorbent substitute performance of adsorbent in a sintering machine.

【符号の説明】[Explanation of symbols]

1…焼結機の排ガス煙道 2…焼結機ガスの流れ方向 3…熱交換器 4…吸着剤ホッパー 5…吸着剤吹き込み口 6…電気集塵機 8、9…排ガスサンプル採取口 10…点火炉 11…点火バーナー 12…鍋 13…風箱 14…ブロワー DESCRIPTION OF SYMBOLS 1 ... Exhaust gas flue of sintering machine 2 ... Flow direction of sintering machine gas 3 ... Heat exchanger 4 ... Adsorbent hopper 5 ... Adsorbent blowing port 6 ... Electric precipitator 8, 9 ... Exhaust gas sampling port 10 ... Ignition furnace 11 ... Ignition burner 12 ... Pot 13 ... Wind box 14 ... Blower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09B 3/00 B01D 53/34 134E 5/00 B09B 3/00 303A C10L 5/46 5/00 M 5/48 (72)発明者 有山 達郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D002 AA21 AC01 AC02 AC04 AC10 BA04 BA05 BA14 CA11 CA13 DA41 EA02 EA06 GA01 GA02 GB02 GB03 GB06 GB08 HA08 4D004 AA16 AB07 AC04 BA03 BA10 CA24 CA30 CA47 CB01 CC11 4D012 CA12 CC20 CD02 CG01 CH01 CH10 CK10 4G066 AA05B AA14D AA75B BA26 CA33 DA02 GA01 GA06 4H015 AA01 AA02 AA08 AA14 AB01 CB01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B09B 3/00 B01D 53/34 134E 5/00 B09B 3/00 303A C10L 5/46 5/00 M 5 / 48 (72) Inventor Tatsuro Ariyama 1-2-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) in Nihon Kokan Co., Ltd. 4D002 AA21 AC01 AC02 AC04 AC10 BA04 BA05 BA14 CA11 CA13 DA41 EA02 EA06 GA01 GA02 GB02 GB03 GB06 GB08 HA08 4D004 AA16 AB07 AC04 BA03 BA10 CA24 CA30 CA47 CB01 CC11 4D012 CA12 CC20 CD02 CG01 CH01 CH10 CK10 4G066 AA05B AA14D AA75B BA26 CA33 DA02 GA01 GA06 4H015 AA01 AA02 AA08 AA14 AB01 CB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 廃活性炭を各種プロセスの排ガス中に吹
込み、排ガス中の有害物質を吸着した廃活性炭を集塵装
置により回収して排ガスを浄化することを特徴とする廃
活性炭の処理方法。
1. A method for treating waste activated carbon, comprising: injecting waste activated carbon into exhaust gas of various processes, purifying the exhaust gas by collecting the waste activated carbon adsorbing harmful substances in the exhaust gas by a dust collector, and purifying the exhaust gas.
【請求項2】 廃活性炭をあらかじめ再生処理、又は乾
留処理することを特徴とする請求項1記載の廃活性炭の
処理方法。
2. The method for treating waste activated carbon according to claim 1, wherein the waste activated carbon is previously subjected to a regeneration treatment or a dry distillation treatment.
【請求項3】 回収した廃活性炭を製鉄プロセスにおけ
る焼結機用の原料として利用することを特徴とする請求
項1又は請求項2に記載の廃活性炭の処理方法。
3. The method for treating waste activated carbon according to claim 1, wherein the recovered waste activated carbon is used as a raw material for a sintering machine in an iron making process.
【請求項4】 請求項1から請求項4に記載の廃活性炭
に代えて、使用済みの活性コークスを用いることを特徴
とする活性コークスの処理方法。
4. A method for treating activated coke, wherein a used activated coke is used in place of the waste activated carbon according to claim 1.
JP10338608A 1998-11-30 1998-11-30 Treatment of waste activated carbon and treatment of activated coke Pending JP2000157832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338608A JP2000157832A (en) 1998-11-30 1998-11-30 Treatment of waste activated carbon and treatment of activated coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338608A JP2000157832A (en) 1998-11-30 1998-11-30 Treatment of waste activated carbon and treatment of activated coke

Publications (1)

Publication Number Publication Date
JP2000157832A true JP2000157832A (en) 2000-06-13

Family

ID=18319785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338608A Pending JP2000157832A (en) 1998-11-30 1998-11-30 Treatment of waste activated carbon and treatment of activated coke

Country Status (1)

Country Link
JP (1) JP2000157832A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024918A (en) * 2001-07-13 2003-01-28 Uni Charm Corp Disposal of used sanitary article
WO2006135047A1 (en) * 2005-06-16 2006-12-21 Mitsubishi Materials Corporation Method for reduction of organic chlorinated compound in cement manufacture plant, and cement manufacture plant
WO2007004564A1 (en) * 2005-06-30 2007-01-11 Mitsubishi Materials Corporation Method of diminishing organochlorine compound in cement production equipment and cement production equipment
JP2007008767A (en) * 2005-06-30 2007-01-18 Mitsubishi Materials Corp Method of reducing organic chlorine compound in waste gas in cement production equipment and cement production equipment
JP2007045648A (en) * 2005-08-08 2007-02-22 Mitsubishi Materials Corp Method for reducing organochlorine compound in exhaust gas in cement manufacturing equipment
JP2007063027A (en) * 2005-07-14 2007-03-15 Mitsubishi Materials Corp Method for reducing organic chlorinated compound in exhaust gas of cement manufacture plant
CN101193831B (en) * 2005-06-16 2012-09-05 三菱麻铁里亚尔株式会社 Method for reduction of organic chlorinated compound in cement manufacture plant, and cement manufacture plant
JP2015520671A (en) * 2012-05-07 2015-07-23 バイオジェニック レゲント ベンチャーズ エルエルシー Biogenic activated carbon and methods of making and using it
JP2017519633A (en) * 2014-05-09 2017-07-20 サイペム エスピーアー System and method for purifying a gas stream from a urea plant coagulation unit
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024918A (en) * 2001-07-13 2003-01-28 Uni Charm Corp Disposal of used sanitary article
CN101193831B (en) * 2005-06-16 2012-09-05 三菱麻铁里亚尔株式会社 Method for reduction of organic chlorinated compound in cement manufacture plant, and cement manufacture plant
WO2006135047A1 (en) * 2005-06-16 2006-12-21 Mitsubishi Materials Corporation Method for reduction of organic chlorinated compound in cement manufacture plant, and cement manufacture plant
EP1905747A4 (en) * 2005-06-16 2013-05-01 Mitsubishi Materials Corp Method for reduction of organic chlorinated compound in cement manufacture plant, and cement manufacture plant
EP1905747A1 (en) * 2005-06-16 2008-04-02 Mitsubishi Materials Corporation Method for reduction of organic chlorinated compound in cement manufacture plant, and cement manufacture plant
US8075686B2 (en) 2005-06-16 2011-12-13 Mitsubishi Materials Corporation Method for reducing organic chlorine compounds in cement production facility, and cement production facility
WO2007004564A1 (en) * 2005-06-30 2007-01-11 Mitsubishi Materials Corporation Method of diminishing organochlorine compound in cement production equipment and cement production equipment
JP2007008767A (en) * 2005-06-30 2007-01-18 Mitsubishi Materials Corp Method of reducing organic chlorine compound in waste gas in cement production equipment and cement production equipment
US7955417B2 (en) 2005-06-30 2011-06-07 Mitsubishi Materials Corporation Method for reducing organic chlorine compounds in cement production facility, and cement production facility
JP2007063027A (en) * 2005-07-14 2007-03-15 Mitsubishi Materials Corp Method for reducing organic chlorinated compound in exhaust gas of cement manufacture plant
JP2007045648A (en) * 2005-08-08 2007-02-22 Mitsubishi Materials Corp Method for reducing organochlorine compound in exhaust gas in cement manufacturing equipment
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11891582B2 (en) 2011-04-15 2024-02-06 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11965139B2 (en) 2011-04-15 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
JP2015520671A (en) * 2012-05-07 2015-07-23 バイオジェニック レゲント ベンチャーズ エルエルシー Biogenic activated carbon and methods of making and using it
JP2020054998A (en) * 2012-05-07 2020-04-09 カーボン テクノロジー ホールディングス, エルエルシー Biogenic activated carbon and methods of making and using same
JP7392012B2 (en) 2012-05-07 2023-12-05 カーボン テクノロジー ホールディングス, エルエルシー Biogenic activated carbon and methods of making and using it
JP2017519633A (en) * 2014-05-09 2017-07-20 サイペム エスピーアー System and method for purifying a gas stream from a urea plant coagulation unit
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom

Similar Documents

Publication Publication Date Title
JP2000157832A (en) Treatment of waste activated carbon and treatment of activated coke
CN107961770B (en) Regeneration system and regeneration method of adsorbent in coke oven flue gas purification
CN101112669A (en) Multilevel purifier for disacidifying using dry and wet method and for removing dust by using cloth bag
CN101357290A (en) Method and system of controlling dioxin discharge in flue gas by duty-cycle operation of sulphur-containing inhibitor
CN111911934B (en) Method for treating hazardous waste by using oxygen carrier to assist combustion of rotary kiln
WO2005030641A1 (en) Highly activated coke powder and process for producing the same
JP2010116283A (en) Apparatus and method for processing exhaust gas of cement kiln
CN106482120A (en) The method and apparatus for organic solid waste process being carried out using recirculating fluidized bed
JP3545266B2 (en) Dry exhaust gas treatment method and apparatus
CN114674160A (en) Electric furnace flue gas treatment method
CN112577053A (en) Resourceful treatment system and method for urban household garbage
JP2000237528A (en) Method for using coal, coal dry distillation product and its production
JPH0952079A (en) Apparatus for treating shredder dust for reuse
JP2001311515A (en) Exhaust gas treatment method for ash melting furnace and system for the same
TWM539991U (en) Waste disposal and reuse system
JP2005195228A (en) Waste material melting treatment system
JP3702424B2 (en) Waste treatment method and treatment system
CN2544191Y (en) Incinerator treatment system for industrial dangerous waste
JP2002205044A (en) Waste treatment plant
CN217875853U (en) Resource disposal device for hazardous waste
CN211839505U (en) Garbage disposal equipment based on combined microwave regeneration of triboelectric separation
JP3950448B2 (en) Method and apparatus for producing carbide from waste
CN109675910B (en) Treatment method for heavy metals such as dioxin, mercury and the like in fly ash
KR100383799B1 (en) Device of reducing dust and dioxide from an incinerator
CN106477811A (en) The technique of coke powder Treatment of Wastewater in Coking parallel connection producing steam