JP2000151971A - Picture processor - Google Patents

Picture processor

Info

Publication number
JP2000151971A
JP2000151971A JP10318669A JP31866998A JP2000151971A JP 2000151971 A JP2000151971 A JP 2000151971A JP 10318669 A JP10318669 A JP 10318669A JP 31866998 A JP31866998 A JP 31866998A JP 2000151971 A JP2000151971 A JP 2000151971A
Authority
JP
Japan
Prior art keywords
picture
coordinates
image
distortion
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10318669A
Other languages
Japanese (ja)
Inventor
Sadao Umezawa
貞夫 梅沢
Wataru Tazoe
亘 田添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10318669A priority Critical patent/JP2000151971A/en
Publication of JP2000151971A publication Critical patent/JP2000151971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly precisely correct a distorted picture by assuming a quadrangle surrounding an original picture and correcting/outputting the picture distortion with coordinates of the eight reference points of the four apexes and four midpoints of sides and shape functions corresponding to the eight points. SOLUTION: A photographing object image 1 is taken on a solid-state coupling element CCD array 3 through a lens 2 and it is picture-processed by a picture processing processor 4. A right-angle coordinate system being a reference is made to correspond to the CCD array 3 and respective picture elements on a picture are made correspond to coordinate values on a reference orthogonal coordinate system. The picture of eight reference points are recognized by a binarization processing, and their coordinates are obtained. The whole picture is scanned and an operation is executed from the coordinates of the respective picture elements and the coordinates of the eight reference points and the corrected coordinates are decided. When the correction of all the picture elements is completed by the picture processing processor 4, a picture 5 is outputted after correction. Thus, correction in spite of the character of a distortion is highly precisely executed whether the distortion of the picture is geometric or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリモートセンシング
で撮影された地形画像や、イメージスキャナで読み込ま
れた一般的画像などが、何らかの不規則な原因で歪んで
いる場合に、それを修正して元の画像に復元する機能を
もつ画像処理装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention corrects a terrain image photographed by remote sensing or a general image read by an image scanner when the terrain image is distorted for some irregular reason. The present invention relates to an improvement of an image processing apparatus having a function of restoring an image.

【0002】[0002]

【従来の技術】平面図形の歪みを修正する技術は産業上
の多様な場面で必要とされるが、基本的な技術は幾何学
的な歪みを座標変換によって修正するものである。歪み
が拡大,縮小,平行移動あるいは回転によると推測され
る場合は、ヘルマート変換式が用いられている。その変
形にスキュー歪み(せん断歪み)が含まれている場合
は、アフィン変換式が用いられる。
2. Description of the Related Art A technique for correcting a distortion of a plane figure is required in various industrial fields, but a basic technique is to correct a geometric distortion by coordinate transformation. When it is estimated that the distortion is caused by enlargement, reduction, translation, or rotation, the Helmert transformation formula is used. When the deformation includes a skew distortion (shear distortion), an affine transformation formula is used.

【0003】そのほか歪みの性質によって擬似アフィン
変換式,2次等角変換式,2次射影変換式などが用いら
れている。歪みが幾何学的なものでない場合は高次多項
式が用いられている。
In addition, a pseudo-affine transformation formula, a quadratic conformal transformation formula, a secondary projection transformation formula, and the like are used depending on the nature of distortion. If the distortion is not geometric, a higher order polynomial is used.

【0004】これらの従来技術については、大林著;実
務者のためのリモートセンシング;(1995)フジ・
テクノシステム発行;p83や、高木,下田著;画像解
析ハンドブック;(1991)東大出版会発行;p42
3に述べられている。
[0004] For these conventional techniques, see Obayashi; Remote sensing for practitioners;
Published by Techno System; p83, Takagi, Shimoda; Image Analysis Handbook; (1991) Published by The University of Tokyo Press; p42
3

【0005】[0005]

【発明が解決しようとする課題】従来知られている上記
の幾何学的変換式による歪みの修正は、歪みの性質が分
かっている場合にはそれに対応する変換式を適用するこ
とができる。しかし、例えば分厚い書籍に印刷されてい
る画像を複写機で複写した時、ぴったり平面で押し当て
ることができないために生じるような複写後の画像の歪
みは、その性質が幾何学的なものでないことが多い。そ
のような場合にどの変換式を適用すれば修正が精度良く
できるのか決定することができない。一方、高次多項式
を変換式として用いる方法は、適当に選択した複数の基
準点で修正誤差が最小になるようにするだけで、基準点
の選び方に依存するところが大きい。
The correction of the distortion by the above-mentioned known geometric transformation formula can be applied by a corresponding transformation formula if the nature of the distortion is known. However, for example, when an image printed on a thick book is copied by a copier, the distortion of the image after copying, which is caused by the fact that the image cannot be pressed on a flat surface, is not geometric in nature. There are many. In such a case, it is not possible to determine which conversion formula is to be applied to correct the correction with high accuracy. On the other hand, the method of using a higher-order polynomial as a conversion equation largely depends on how to select a reference point only by minimizing a correction error at a plurality of appropriately selected reference points.

【0006】[0006]

【課題を解決するための手段】歪んだ画像と歪む前の画
像を比べた時、歪む前の画像の任意の矩形領域(四辺形
領域)が、歪んだ後の画像の歪んだ四辺形領域と対応
し、その領域内では画像の歪みが歪んだ四辺形の辺の形
状によって特徴付けられるような、四辺形領域を選ぶこ
とができる。
When a distorted image is compared with an image before being distorted, an arbitrary rectangular area (quadrilateral area) of the image before being distorted is replaced with a distorted quadrilateral area of the image after being distorted. Correspondingly, a quadrilateral region can be chosen in which the image distortion is characterized by the shape of the distorted quadrilateral sides.

【0007】そのような四辺形領域の各頂点及び辺の中
点の座標と、四辺形領域内の任意の点の座標とを対応付
ける関係として、形状関数と呼ばれる関数が知られてい
る。本発明においては前記課題を解決する手段としてこ
の形状関数を用いる点に特徴がある。
[0007] A function called a shape function is known as a relationship that associates the coordinates of the midpoint of each vertex and side of such a quadrilateral area with the coordinates of an arbitrary point in the quadrilateral area. The present invention is characterized in that this shape function is used as means for solving the above problem.

【0008】形状関数とは図1に示すξ,η直交座標系
上に辺の長さが2の正方形を想定した時、 P1(−1,−1),P2(1,−1),P3(1,
1),P4(−1,1),P5(0,−1),P6(1,
0),P7(0,1),P8(−1,0) の8個の点に関して、一つの点に置いて値が1になりそ
れ以外の7つの点では値が0になるような特別な8個の
関数Fi(ξ,η),(i=1,8)のことである。こ
のような関数は理論的に導くことができず、試行錯誤的
に偶然見つけられたものである。各点に対する形状関数
を式(1)〜(8)に示す。
[0008] The shape function is defined as P 1 (−1, −1), P 2 (1, −1) when a square having a side length of 2 is assumed on the ξ, η orthogonal coordinate system shown in FIG. , P 3 (1,
1), P 4 (−1, 1), P 5 (0, −1), P 6 (1,
0), P 7 (0,1), P 8 (-1,0), so that the value is 1 at one point and the value is 0 at the other seven points. Special eight functions Fi (ξ, η), (i = 1, 8). Such functions cannot be derived theoretically, but are found by accident by trial and error. Equations (1) to (8) show the shape function for each point.

【0009】[0009]

【数1】 F1(ξ,η)=(1−ξ)(1−η)(−1−ξ−η) …(1)F 1 (ξ, η) = (1−ξ) (1−η) (− 1−ξ−η) (1)

【0010】[0010]

【数2】 F2(ξ,η)=(1+ξ)(1−η)(−1+ξ−η) …(2)F 2 (ξ, η) = (1 + ξ) (1−η) (− 1 + ξ−η) (2)

【0011】[0011]

【数3】 F3(ξ,η)=(1+ξ)(1+η)(−1+ξ+η) …(3)F 3 (ξ, η) = (1 + ξ) (1 + η) (− 1 + ξ + η) (3)

【0012】[0012]

【数4】 F4(ξ,η)=(1−ξ)(1+η)(−1−ξ+η) …(4)F 4 (ξ, η) = (1−ξ) (1 + η) (− 1−ξ + η) (4)

【0013】[0013]

【数5】 F5(ξ,η)=(1−ξ2)(1−η) …(5)F 5 (ξ, η) = (1−ξ 2 ) (1−η) (5)

【0014】[0014]

【数6】 F6(ξ,η)=(1+ξ)(1−η2) …(6)F 6 (ξ, η) = (1 + ξ) (1−η 2 ) (6)

【0015】[0015]

【数7】 F7(ξ,η)=(1−ξ2)(1+η) …(7)F 7 (ξ, η) = (1−ξ 2 ) (1 + η) (7)

【0016】[0016]

【数8】 F8(ξ,η)=(1−ξ)(1−η2) …(8) 上記の形状関数を用いると、図2に示すようなu,v座
標上に描かれた、歪んだ四辺形の内部の任意の点R
(u,v)の座標を近似的に求めることができる。四辺
形の頂点及び辺の中点の座標をui,vi(i=1,
8)とすると、u,vは次式で求められることが知られ
ている。
F 8 (ξ, η) = (1 − () (1−η 2 ) (8) Using the above shape function, it is drawn on the u and v coordinates as shown in FIG. , Any point R inside the distorted quadrilateral
The coordinates of (u, v) can be approximately obtained. The coordinates of the vertex of the quadrilateral and the midpoint of the side are ui, vi (i = 1,
8), u and v are known to be obtained by the following equations.

【0017】[0017]

【数9】 (Equation 9)

【0018】[0018]

【数10】 (Equation 10)

【0019】本発明は形状関数の性質を逆に使って、歪
んだ四辺形の内部の任意の点のu,v座標を、歪む前の
四辺形の対応する点の座標に変換することにより、歪ん
だ画像を修正する機能を持つ画像処理装置を提供するも
のである。具体的にその手順を説明する。
The present invention converts the u, v coordinates of an arbitrary point inside the distorted quadrilateral into the coordinates of the corresponding points of the undistorted quadrilateral by using the properties of the shape function in reverse. An object of the present invention is to provide an image processing apparatus having a function of correcting a distorted image. The procedure will be specifically described.

【0020】(9),(10)式をξとηについて解くと
次の式が得られる。
When the equations (9) and (10) are solved for ξ and η, the following equations are obtained.

【0021】[0021]

【数11】 G(ξ,η)=A1ξ+A2η+A3ξη+A4ξ2+A5η2+A6ξ2η +A7ξη2+A8−4u=0 …(11)Equation 11] G (ξ, η) = A 1 ξ + A 2 η + A 3 ξη + A 4 ξ 2 + A 5 η 2 + A 6 ξ 2 η + A 7 ξη 2 + A 8 -4u = 0 ... (11)

【0022】[0022]

【数12】 H(ξ,η)=B1ξ+B2η+B3ξη+B4ξ2+B5η2+B6ξ2η +B7ξη2+B8−4v=0 …(12) ここで、Equation 12] H (ξ, η) = B 1 ξ + B 2 η + B 3 ξη + B 4 ξ 2 + B 5 η 2 + B 6 ξ 2 η + B 7 ξη 2 + B 8 -4v = 0 ... (12) Here,

【0023】[0023]

【数13】 A1=2(u6−u8) …(13)A 1 = 2 (u 6 −u 8 ) (13)

【0024】[0024]

【数14】 A2=−2(u5−u7) …(14)A 2 = −2 (u 5 −u 7 ) (14)

【0025】[0025]

【数15】 A3=u1−u2+u3−u4 …(15)A 3 = u 1 −u 2 + u 3 −u 4 (15)

【0026】[0026]

【数16】 A4=u1+u2+u3+u4−2(u5+u7) …(16)A 4 = u 1 + u 2 + u 3 + u 4 -2 (u 5 + u 7 ) (16)

【0027】[0027]

【数17】 A5=u1+u2+u3+u4−2(u6+u8) …(17)Equation 17] A 5 = u 1 + u 2 + u 3 + u 4 -2 (u 6 + u 8) ... (17)

【0028】[0028]

【数18】 A6=−u1−u2+u3+u4+2(u5−u7) …(18)A 6 = −u 1 −u 2 + u 3 + u 4 +2 (u 5 −u 7 ) (18)

【0029】[0029]

【数19】 A7=−u1+u2+u3−u4−2(u5−u8) …(19)A 7 = −u 1 + u 2 + u 3 −u 4 −2 (u 5 −u 8 ) (19)

【0030】[0030]

【数20】 A8=−(u1+u2+u3+u4)+2(u5+u6+u7+u8) …(20)A 8 = − (u 1 + u 2 + u 3 + u 4 ) +2 (u 5 + u 6 + u 7 + u 8 ) (20)

【0031】[0031]

【数21】 B1=2(v6−v8) …(21)B 1 = 2 (v 6 −v 8 ) (21)

【0032】[0032]

【数22】 B2=−2(v5−v7) …(22)B 2 = −2 (v 5 −v 7 ) (22)

【0033】[0033]

【数23】 B3=v1−v2+v3−v4 …(23)B 3 = v 1 −v 2 + v 3 −v 4 (23)

【0034】[0034]

【数24】 B4=v1+v2+v3+v4−2(v5+v7) …(24)B 4 = v 1 + v 2 + v 3 + v 4 -2 (v 5 + v 7 ) (24)

【0035】[0035]

【数25】 B5=v1+v2+v3+v4−2(v6+v8) …(25)Equation 25] B 5 = v 1 + v 2 + v 3 + v 4 -2 (v 6 + v 8) ... (25)

【0036】[0036]

【数26】 B6=−v1−v2+v3+v4+2(v5−v7) …(26)B 6 = −v 1 −v 2 + v 3 + v 4 +2 (v 5 −v 7 ) (26)

【0037】[0037]

【数27】 B7=−v1+v2+v3−v4−2(v5−v8) …(27)Equation 27] B 7 = -v 1 + v 2 + v 3 -v 4 -2 (v 5 -v 8) ... (27)

【0038】[0038]

【数28】 B8=−(v1+v2+v3+v4)+2(v5+v6+v7+v8) …(28) Ai,Bi(i=1,8)はui,viで表される係数
で、歪んだ四辺形の頂点と辺の中点の座標を定めれば定
数になる。またu,vは四辺形の内部の点Rの座標を定
めれば定数になる。従って式(11),(12)はξ,η
に関する連立方程式である。
B 8 = − (v 1 + v 2 + v 3 + v 4 ) +2 (v 5 + v 6 + v 7 + v 8 ) (28) Ai, Bi (i = 1, 8) are represented by ui, vi. If the coordinates of the vertex of the distorted quadrilateral and the midpoint of the side are determined by the coefficient, it becomes a constant. U and v are constants if the coordinates of the point R inside the quadrilateral are determined. Therefore, equations (11) and (12) are ξ, η
It is a simultaneous equation regarding.

【0039】この方程式は双1次,双2次,双3次の未
知数を含み、代数的に解くことはできない。しかし非線
形方程式の近似解法を用いれば解くことは可能で、例え
ばNewton−Rapson法を使えば数回の繰り返し演算で真の
解に極めて近い解が得られる。
This equation includes bilinear, biquadratic and bicubic unknowns and cannot be solved algebraically. However, it is possible to solve by using an approximate solution method of a nonlinear equation. For example, by using the Newton-Rapson method, a solution very close to the true solution can be obtained by several repetition operations.

【0040】以上の手順により、元の座標(x,y)上
の四辺形の頂点と辺の中点に対応する、歪んだ座標
(u,v)上の点ui,vi(i=1,8)が分かれ
ば、ui,vi(i=1,8)で囲まれた領域の内部の
任意の点Rの座標(u,v)から、その点に対応する
(ξ,η)の値を求めることができる。(ξ,η)の値
は縦横が±1の正方形に対応するから、元の四辺形の縦
横の寸法から縦横の縮尺(または拡大率)を定めれば元
の座標上の対応する点(x,y)を近似的に決定するこ
とができる。
According to the above procedure, the points ui, vi (i = 1, 2) on the distorted coordinates (u, v) corresponding to the vertices of the quadrilateral on the original coordinates (x, y) and the midpoints of the sides. 8), from the coordinates (u, v) of an arbitrary point R inside the area surrounded by ui, vi (i = 1, 8), the value of (ξ, η) corresponding to that point is calculated. You can ask. Since the value of (ξ, η) corresponds to a square having a height and width of ± 1, if the vertical and horizontal scale (or enlargement ratio) is determined from the vertical and horizontal dimensions of the original quadrilateral, the corresponding point (x , Y) can be determined approximately.

【0041】上記の手段で実際に画像の歪みがどの程度
の精度で修正されるかを、実例によって説明する。図3
に示す画像は半径50の円であり、実線は歪みの無い元
の画像、破線は歪んだ後の画像である。歪んだ後の画像
に対して上記の手段を適用した結果を図4に示す。
The actual accuracy with which the image distortion is corrected by the above-described means will be described with reference to an actual example. FIG.
Is a circle with a radius of 50, the solid line is the original image without distortion, and the dashed line is the image after distortion. FIG. 4 shows the result of applying the above means to the distorted image.

【0042】図4において実線は歪む前の元の画像を表
し、円周上の8個のポイントは図3の破線の円周上の8
点について上記手段により修正して求めたものである。
図4のように修正後の点は元の画像にほぼ完全に一致
し、上記手段が歪んだ画像の修正方法として極めて有効
であることが分かる。
In FIG. 4, the solid line represents the original image before distortion, and the eight points on the circumference correspond to the eight points on the dotted circle in FIG.
The point is obtained by correcting the above-mentioned means.
As shown in FIG. 4, the corrected point almost completely matches the original image, and it can be seen that the above means is extremely effective as a method for correcting a distorted image.

【0043】[0043]

【発明の実施の形態】前項記載の手段によれば、元の画
像を囲む四辺形領域を想定し、その頂点及び辺の中点に
対応する、歪んだ後の画像上の8個の点を指定するだけ
で、歪んだ画像を高精度に修正することができる。
According to the means described in the preceding paragraph, a quadrilateral region surrounding the original image is assumed, and eight points on the distorted image corresponding to the vertices and the midpoint of the side are determined. Just by specifying, the distorted image can be corrected with high accuracy.

【0044】図5はこの手段をソフトエアとして組み込
んだ画像処理装置の一例を示す。撮影対象物1はレンズ
2を経て固体結合素子(CCD)アレイ3上に画像とし
て撮影される。図5の場合は撮影される対象にあらかじ
め基準となる8個の点が存在し、その位置(座標)が分
かっている。
FIG. 5 shows an example of an image processing apparatus incorporating this means as software. An object to be imaged 1 is imaged as an image on a solid-state coupling device (CCD) array 3 via a lens 2. In the case of FIG. 5, there are eight reference points in the object to be photographed in advance, and their positions (coordinates) are known.

【0045】画像のデータは画像処理プロセッサ4に送
られて処理される。CCDアレイ3には基準となる直角
座標系が対応づけられており、画像上の各ピクセル(画
素)は基準座標系上の座標値と対応付けられる。8個の
基準点の画像は2値化処理により認識され、その座標が
求められる。
The image data is sent to the image processor 4 for processing. A rectangular coordinate system serving as a reference is associated with the CCD array 3, and each pixel (pixel) on the image is associated with a coordinate value on the reference coordinate system. The images of the eight reference points are recognized by the binarization processing, and the coordinates are obtained.

【0046】画像全体が走査され各ピクセルの座標R
(u,v)と8個の基準点の座標とから式(11),(1
2)を用いて修正後の座標(x,y)が決定される。全
てのピクセルの修正が完了すると修正後の画像5が出力
される。
The entire image is scanned and the coordinates R of each pixel are
Equations (11) and (1) are obtained from (u, v) and the coordinates of the eight reference points.
The corrected coordinates (x, y) are determined using 2). When the correction of all the pixels is completed, the corrected image 5 is output.

【0047】地形を航空機や人工衛星から撮影する場合
は、緯度と経度の分かっている四辺形上の8点を決める
ことができるから、図5の画像処理装置を用いることに
より画像の歪みを精度良く修正することができる。
When the terrain is photographed from an airplane or an artificial satellite, eight points on a quadrilateral of which latitude and longitude are known can be determined. Can be modified well.

【0048】図5では画像の撮影部にレンズを用いてい
るが、複写機の画像読み取り部のようなイメージスキャ
ナであっても同じである。この場合は読み込まれる原稿
に基準点が記されていることが前提となる。
In FIG. 5, a lens is used for the image capturing section, but the same applies to an image scanner such as an image reading section of a copying machine. In this case, it is assumed that the reference point is written on the read original.

【0049】[0049]

【発明の効果】本発明によれば画像の歪みが幾何学的な
ものであろうと、そうでなかろうと歪みの性質に関係無
く画像の修正が精度良くできると言う効果がある。
According to the present invention, there is an effect that the image can be corrected with high accuracy regardless of the nature of the distortion whether the distortion of the image is geometric or not.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の正方形の形状関数を説明する図。FIG. 1 is a diagram illustrating a square shape function according to the present invention.

【図2】本発明の四辺形の歪んだ画像の模式図。FIG. 2 is a schematic view of a quadrilateral distorted image of the present invention.

【図3】本発明の修正を適用する元の画像。FIG. 3 is an original image to which the correction of the present invention is applied.

【図4】本発明の修正した結果を説明する画像。FIG. 4 is an image illustrating a corrected result of the present invention.

【図5】本発明の実施例を示すブロック図。FIG. 5 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…撮影対象画像、2…レンズ、3…固体結合素子アレ
イ、4…画像処理プロセッサ、5…修正後画像。
DESCRIPTION OF SYMBOLS 1 ... Target image, 2 ... Lens, 3 ... Solid coupling element array, 4 ... Image processor, 5 ... Modified image.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5B057 AA14 BA02 BA23 CA06 CA12 CA16 CB06 CB12 CB16 CC01 CD12 CH01 CH08 DA17 DB02 DB08 DC05 5C076 AA40 BA06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5B057 AA14 BA02 BA23 CA06 CA12 CA16 CB06 CB12 CB16 CC01 CD12 CH01 CH08 DA17 DB02 DB08 DC05 5C076 AA40 BA06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】何らかの原因で歪んだ画像を入力し、その
画像を処理して歪みを修正し、修正された画像を出力す
る、画像処理装置において、入力される画像に四辺形の
頂点と中点に該当する8個の基準点を与えておき、入力
された画像上の前記8個の基準点の座標と、その8点に
対応する形状関数とを用いて画像の歪みを修正して出力
することを特徴とする画像処理装置。
An image processing apparatus for inputting an image distorted for some reason, correcting the distortion by processing the image, and outputting the corrected image. Eight reference points corresponding to the points are given, and the distortion of the image is corrected and output using the coordinates of the eight reference points on the input image and the shape function corresponding to the eight points. An image processing apparatus comprising:
JP10318669A 1998-11-10 1998-11-10 Picture processor Pending JP2000151971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10318669A JP2000151971A (en) 1998-11-10 1998-11-10 Picture processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10318669A JP2000151971A (en) 1998-11-10 1998-11-10 Picture processor

Publications (1)

Publication Number Publication Date
JP2000151971A true JP2000151971A (en) 2000-05-30

Family

ID=18101718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10318669A Pending JP2000151971A (en) 1998-11-10 1998-11-10 Picture processor

Country Status (1)

Country Link
JP (1) JP2000151971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1345026A2 (en) * 2002-03-15 2003-09-17 Affymetrix, Inc. System, method, and product for scanning of biological materials
US8233735B2 (en) 1994-02-10 2012-07-31 Affymetrix, Inc. Methods and apparatus for detection of fluorescently labeled materials
US9767342B2 (en) 2009-05-22 2017-09-19 Affymetrix, Inc. Methods and devices for reading microarrays
CN109975832A (en) * 2019-01-30 2019-07-05 上海卫星工程研究所 The description method of satellite-borne microwave remote sensing instrument malformation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233735B2 (en) 1994-02-10 2012-07-31 Affymetrix, Inc. Methods and apparatus for detection of fluorescently labeled materials
US7871812B2 (en) 2002-03-15 2011-01-18 Affymetrix, Inc. System, method, and product for scanning of biological materials
US7689022B2 (en) 2002-03-15 2010-03-30 Affymetrix, Inc. System, method, and product for scanning of biological materials
EP1345026A2 (en) * 2002-03-15 2003-09-17 Affymetrix, Inc. System, method, and product for scanning of biological materials
US7983467B2 (en) 2002-03-15 2011-07-19 Affymetrix, Inc. System, method, and product for scanning of biological materials
US8208710B2 (en) 2002-03-15 2012-06-26 Affymetrix, Inc. System, method, and product for scanning of biological materials
EP1345026A3 (en) * 2002-03-15 2004-03-10 Affymetrix, Inc. System, method, and product for scanning of biological materials
US8391582B2 (en) 2002-03-15 2013-03-05 Affymetrix, Inc. System and method for scanning of probe arrays
US9767342B2 (en) 2009-05-22 2017-09-19 Affymetrix, Inc. Methods and devices for reading microarrays
US10019620B2 (en) 2009-05-22 2018-07-10 Affymetrix, Inc. Methods and devices for reading microarrays
US10303922B2 (en) 2009-05-22 2019-05-28 Affymetrix, Inc. Methods and devices for reading microarrays
US10586095B2 (en) 2009-05-22 2020-03-10 Affymetrix, Inc. Methods and devices for reading microarrays
US10977478B2 (en) 2009-05-22 2021-04-13 Affymetrix, Inc. Methods and devices for reading microarrays
CN109975832A (en) * 2019-01-30 2019-07-05 上海卫星工程研究所 The description method of satellite-borne microwave remote sensing instrument malformation
CN109975832B (en) * 2019-01-30 2021-08-17 上海卫星工程研究所 Method for describing structural deformation of satellite-borne microwave remote sensing instrument

Similar Documents

Publication Publication Date Title
US7313289B2 (en) Image processing method and apparatus and computer-readable storage medium using improved distortion correction
JP4341629B2 (en) Imaging apparatus, image processing method, and program
US7268803B1 (en) Image processing method and apparatus, digital camera, image processing system and computer readable medium
JP4556813B2 (en) Image processing apparatus and program
US6535650B1 (en) Creating high resolution images
US7379619B2 (en) System and method for two-dimensional keystone correction for aerial imaging
KR100723653B1 (en) Image processing apparatus, image shooting apparatus, image processing method for correcting distortion of image and recording medium for recording related program
EP1145568B1 (en) Software correction of image distortion in digital cameras
JP4363151B2 (en) Imaging apparatus, image processing method thereof, and program
US20050111110A1 (en) System and method for correcting aberration of lenses through which images are projected
JP2004040395A (en) Image distortion correction apparatus, method, and program
US20070053586A1 (en) Image processing apparatus and image processing method
CN114549666A (en) AGV-based panoramic image splicing calibration method
JP3002923B2 (en) Image alignment device and method of using the same
JP3175250B2 (en) Document reading device
JP2000151971A (en) Picture processor
JPS60120473A (en) Correcting and processing system of satellite picture
JP2005151317A (en) Distortion aberration changeable photographing apparatus
JP4238749B2 (en) Image processing apparatus, image projection apparatus, image processing method, and program
JP4363154B2 (en) Imaging apparatus, image processing method thereof, and program
Pollard et al. Building cameras for capturing documents
JPH05101221A (en) Image distortion corrector
CN112997217A (en) Document detection from video images
JP3348898B2 (en) Degraded image restoration device, degraded image restoration system, and degraded image restoration method
JPS5923670A (en) Correcting method of inclination during digital picture input