JP2000147083A - Method and apparatus for measuring arrival angle - Google Patents

Method and apparatus for measuring arrival angle

Info

Publication number
JP2000147083A
JP2000147083A JP10316358A JP31635898A JP2000147083A JP 2000147083 A JP2000147083 A JP 2000147083A JP 10316358 A JP10316358 A JP 10316358A JP 31635898 A JP31635898 A JP 31635898A JP 2000147083 A JP2000147083 A JP 2000147083A
Authority
JP
Japan
Prior art keywords
signal
arrival
angle
antenna
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10316358A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukawa
和彦 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Mobile Communications Networks Inc filed Critical NTT Mobile Communications Networks Inc
Priority to JP10316358A priority Critical patent/JP2000147083A/en
Publication of JP2000147083A publication Critical patent/JP2000147083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for measuring the arrival angle, wherein the downsizing and a low power consumption can be realized and there is no need to eliminate the influence of the mutual coupling between antennas. SOLUTION: An antenna 20, a baseband signal generator 21, a reverse modulator circuit 22, a serial-parallel converter 23 and an arrival angle estimating circuit 24 are provided, the antenna is moved at a fixed velocity v at a fixed angle with respect to arrival wave, a signal received by the antenna 20 for every prescribed time Ts is converted (21) into a baseband signal, oppositely modulated (22), and converted (23) into a parallel signal, the parallel signal received every time Ts is regarded as a signal received by a plurality of antennas disposed with fixed spacings d and the direction of the arrival wave, is measured in the arrival angle estimating circuit 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、到来角測定方法及
び到来角測定器に係り、特に、ディジタル移動通信等に
おける到来波の到来角を測定する到来角測定方法及び到
来角測定器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angle-of-arrival measuring method and an angle-of-arrival measuring device, and more particularly to an angle-of-arrival measuring method and an angle-of-arrival measuring device for measuring the angle of arrival of an incoming wave in digital mobile communication or the like. is there.

【0002】[0002]

【従来の技術】ディジタル移動通信においては、急増す
る需要に応えるため、周波数有効利用を図り周波数チャ
ネルを増やすことが重要な課題となっている。セルラー
方式において空間的に周波数有効利用を図るためには、
周波数の繰り返し距離を短くする必要があるが、周波数
の繰り返し距離を短くすると同一チャネル干渉の電力が
増大し伝送特性が大幅に劣化する原因となる。
2. Description of the Related Art In digital mobile communications, it is important to increase the number of frequency channels by effectively utilizing frequencies in order to meet rapidly increasing demand. In order to spatially use frequency effectively in the cellular system,
It is necessary to shorten the frequency repetition distance. However, when the frequency repetition distance is shortened, the power of co-channel interference increases, which causes a significant deterioration in transmission characteristics.

【0003】従って、同一チャネル干渉対策が重要とな
っており、近年、同一チャネル干渉対策として、干渉キ
ャンセラの一種であるアダプティブアレイを導入するこ
とが検討されている。アダプティブアレイは、アンテナ
の指向性を適応的に制御して干渉波を除去するものであ
る。このアダプティブアレイを有効に動作させるために
は、実際の移動伝搬路に則したパラメータ設計を行う必
要がある。特に到来波の到来角に関する情報が設計上重
要であり、そのために到来角を測定する必要がある。
Therefore, co-channel interference countermeasures have become important. In recent years, introduction of an adaptive array, which is a type of interference canceller, has been studied as co-channel interference countermeasures. The adaptive array removes interference waves by adaptively controlling the directivity of the antenna. In order to operate this adaptive array effectively, it is necessary to design parameters according to an actual moving propagation path. In particular, information on the angle of arrival of the arriving wave is important in design, and it is necessary to measure the angle of arrival.

【0004】この測定には、MUSIC(Multiple
Signal Classification)アルゴリズム等の固有展開法
(Subspace−Based 法)か、MVDR(Minimum Va
riance Distortionless Response )アルゴリズム等の
ビームフォーミング法を推定アルゴリズムに用いること
が考えられている。ここでは、演算量は多いが推定精度
の優れた固有展開法、特にMUSICアルゴリズムにつ
いて述べる。
For this measurement, MUSIC (Multiple
Signal Classification) algorithm (Subspace-Based method) or MVDR (Minimum Vacuum
It has been considered to use a beamforming method such as a riance distortionless response (Algorithm) algorithm for the estimation algorithm. Here, the eigen-expansion method, which requires a large amount of computation but has excellent estimation accuracy, particularly the MUSIC algorithm will be described.

【0005】MUSICアルゴリズムを用いた従来の到
来角測定器を図1に示し、その動作を説明する。なお、
ここでアンテナ数はL(Lは2以上の自然数)とした。
まず、アンテナ#1から受信した受信波は入力端子Rin
1を経てベースバンド信号発生器#1に入力され、RF
周波数帯からベースバンドに変換されて受信ベースバン
ド信号として出力端子Bout1から出力される。他のアン
テナから受信した受信信号についても同様で、対応する
ベースバンド信号発生器に入力され、ベースバンドに変
換されて受信べースバンド信号として出力される。
FIG. 1 shows a conventional angle-of-arrival measuring device using the MUSIC algorithm, and its operation will be described. In addition,
Here, the number of antennas is L (L is a natural number of 2 or more).
First, the received wave received from the antenna # 1 is input to the input terminal Rin
1 and input to the baseband signal generator # 1.
The signal is converted from the frequency band to the baseband and output from the output terminal Bout1 as a received baseband signal. Similarly, a received signal received from another antenna is input to a corresponding baseband signal generator, converted into a baseband, and output as a received baseband signal.

【0006】到来角推定回路5は、これらの受信ベース
バンド信号を入力として電波の到来角を推定し、到来角
の推定値を出力端子へと出力する。次に、図1のベース
バンド信号発生器の構成を図2に示し、その動作を説明
する。まず、第n(1≦n≦L)番目のアンテナから受
信した受信波は入力端子Rin から入力し、低雑音アンプ
10で増幅された後にハイブリッド11で分岐される。
一方の信号は、キャリア信号発生器15が出力するキャ
リア信号を乗算器12で乗算された後に低域通過フィル
タ16へ入力される。そして、A/D変換器18でサン
プリング周期Tsごとにサンプリングされディジタル信
号に変換される。ハイブリッド11で分岐された他方の
信号は、移相器14で90度位相回転したキャリア信号
を乗算器13で乗算され、低域通過フィルタ17へ入力
された後にA/D変換器19でサンプリングされ、ディ
ジタル信号に変換される。A/D変換器18及び19の
出力は合成されて、出力端子Boutから出力される。
図2における操作は準同期検波(周波数は同一である
が、位相は異なる検波)であり、A/D変換器18及び
19の出力は準同期検波信号の同相成分及び直交成分に
相当し、二つを合わせて受信ベースバンド信号xn (i)
とする。以後、ベースバンド信号は全て同相成分を実
部、直交成分は虚部とする複素表示で表わし、iは時刻
iTsを意味し、i番目のサンプリング点を示す整数と
する。また、特に断らない限り、サンプリング周期Ts
は送信変調波のシンボル周期Tに等しいとする。
The angle-of-arrival estimating circuit 5 estimates the angle of arrival of a radio wave with these received baseband signals as inputs, and outputs an estimated value of the angle of arrival to an output terminal. Next, the configuration of the baseband signal generator of FIG. 1 is shown in FIG. 2 and its operation will be described. First, a received wave received from the n-th (1 ≦ n ≦ L) antenna is input from the input terminal Rin, is amplified by the low noise amplifier 10, and is branched by the hybrid 11.
One signal is input to the low-pass filter 16 after being multiplied by the multiplier 12 by the carrier signal output by the carrier signal generator 15. Then, the signal is sampled by the A / D converter 18 every sampling period Ts and converted into a digital signal. The other signal branched by the hybrid 11 is multiplied by the multiplier 13 with the carrier signal rotated by 90 degrees in the phase shifter 14, input to the low-pass filter 17, and then sampled by the A / D converter 19. , Are converted to digital signals. The outputs of the A / D converters 18 and 19 are combined and output from the output terminal Bout.
The operation in FIG. 2 is quasi-synchronous detection (detection of the same frequency but different phases), and the outputs of the A / D converters 18 and 19 correspond to the in-phase and quadrature components of the quasi-synchronous detection signal. And the received baseband signal x n (i)
And Hereinafter, all the baseband signals are represented by a complex representation in which the in-phase component is the real part and the quadrature component is the imaginary part, and i means time iTs and is an integer indicating the i-th sampling point. Also, unless otherwise specified, the sampling period Ts
Is equal to the symbol period T of the transmission modulation wave.

【0007】次に、図1の到来角推定回路5の動作につ
いて説明する。まず、受信ベースバンド信号x1(i)〜x
L (i) が到来角推定回路5に入力される。この受信ベー
スバンド信号を要素とするL次元受信信号ベクトルX
(i) を以下のように定める。
Next, the operation of the angle-of-arrival estimation circuit 5 of FIG. 1 will be described. First, the received baseband signals x 1 (i) to x
L (i) is input to the arrival angle estimation circuit 5. An L-dimensional received signal vector X having the received baseband signal as an element
(i) is defined as follows.

【0008】[0008]

【数1】 (Equation 1)

【0009】この受信信号ベクトルX(i) の共分散行列
R(i) を、次式のように時間平均を基に求める。
A covariance matrix R (i) of the received signal vector X (i) is obtained based on a time average as in the following equation.

【0010】[0010]

【数2】 (Equation 2)

【0011】ここでは指数重み付け時間平均を行い、忘
却係数λc (0<λc ≦1)を導入した。βi は規格化
定数であり、式(3)に示すように実質的な観測時間の
逆数となっている。この共分散行列R(i) を固有展開
し、その固有ベクトルを{e1 、e2 、...、eL }、
その対応する固有値を{α1 、α2 、... 、αL }とす
る。R(i) はエルミート行列であり、固有ベクトルは互
いに直交するベクトルである。また、固有値は全て正の
実数であり、大きい順に番号が振られているものとす
る。この固有値には以下の性質がある。
Here, exponential weighting time averaging is performed, and a forgetting coefficient λ c (0 <λ c ≦ 1) is introduced. β i is a normalization constant, which is a reciprocal of the actual observation time as shown in Expression (3). This covariance matrix R (i) is eigen-expanded, and its eigenvectors are expressed as {e 1 , e 2 ,..., E L },
Let the corresponding eigenvalues be {α 1 , α 2 ,..., Α L }. R (i) is a Hermitian matrix, and the eigenvectors are vectors orthogonal to each other. In addition, the eigenvalues are all positive real numbers, and numbers are assigned in descending order. This eigenvalue has the following properties.

【0012】 α1 >…>αD >>αD+1 =…=αL =σn 2 (4) ここで、Dは到来波の数、σn 2 は雑音信号の平均電力
である。D番目までの固有値の大きさは到来波の信号電
力程度であり、D+1番目以降の固有値は雑音信号の平
均電力に等しくなる。ここで、D番目までの固有値に対
応する固有ベクトルを信号空間の固有ベクトル、D+1
番目以降の固有値に対応する固有ベクトルを雑音空間の
固有ベクトルと呼ぶことにする。この雑音空間の固有ベ
クトルは、到来波のアレイ・レスポンスベクトルにほぼ
直交することが知られている(Simon Haykin著、Pren
tice−Hall出版、Adaptive Filter Theory 第2版、
第12章 参照)。
Α 1 >> α D >> α D + 1 =... Α L = σ n 2 (4) where D is the number of arriving waves and σ n 2 is the average power of the noise signal. The magnitudes of the eigenvalues up to the Dth are about the signal power of the arriving wave, and the eigenvalues after the (D + 1) th are equal to the average power of the noise signal. Here, the eigenvectors corresponding to the eigenvalues up to the D-th are represented by the eigenvectors in the signal space, D + 1
The eigenvectors corresponding to the eigenvalues after the th are referred to as eigenvectors in the noise space. It is known that the eigenvectors of this noise space are almost orthogonal to the array response vector of the arriving wave (Simon Haykin, Pren
tice-Hall Publishing, Adaptive Filter Theory 2nd edition,
(See Chapter 12).

【0013】このアレイ・レスポンスベクトルについ
て、図3に示すアンテナ間隔dのリニアアレイを例に説
明する。この図において、到来角φの平面波が到来して
いるものとする。アンテナ#2の到来波は、アンテナ#
1の到来波に対して行路差dcosφで2πd cosφ
/λ(λ:電波の波長)位相が進んでいる。以下では、
この行路差に起因する遅延時間が、送信変調波のシンボ
ル周期Tに較べて無視できるものとする。従って、アン
テナ#1とアンテナ#2の受信波の相違は前記の行路差
に起因する位相差だけとなる。同様に第n(1≦n≦
L)番目のアンテナ#nの到来波は、アンテナ#1の到
来波に対して2π(n−1)dcosφ/λだけ、位相
が進んでおり、アンテナ#1とアンテナ#nの受信波の
相違はこの位相差だけとなる。これらの相対位相差を要
素とするベクトルがアレイ・レスポンスベクトルA
(φ)であり
The array response vector will be described by taking a linear array having an antenna interval d shown in FIG. 3 as an example. In this figure, it is assumed that a plane wave having an arrival angle φ has arrived. The arriving wave of antenna # 2 is antenna #
2πd cosφ with the path difference dcosφ for the incoming wave of 1
The / λ (λ: wavelength of radio wave) phase is advanced. Below,
It is assumed that the delay time caused by the path difference is negligible as compared with the symbol period T of the transmission modulation wave. Therefore, the difference between the received waves of the antenna # 1 and the antenna # 2 is only the phase difference caused by the path difference. Similarly, the n-th (1 ≦ n ≦
The arriving wave of the (L) th antenna #n has a phase advance of 2π (n-1) dcosφ / λ with respect to the arriving wave of antenna # 1, and the difference between the received waves of antenna # 1 and antenna #n Is only this phase difference. A vector having these relative phase differences as elements is an array response vector A
(Φ)

【0014】[0014]

【数3】 (Equation 3)

【0015】となる。ここでjは虚数単位である。な
お、到来角推定を良好に動作させるためには、アンテナ
間隔dはλ/2以下にする必要がある。雑音空間の固有
ベクトルは、到来波のアレイ・レスポンスベクトルにほ
ぼ直交するので、次式を満足する到来角侯補φを求めれ
ば、到来波の到来角を推定することができる。
## EQU1 ## Here, j is an imaginary unit. In order to make the arrival angle estimation work well, the antenna interval d needs to be λ / 2 or less. Since the eigenvector in the noise space is almost orthogonal to the array response vector of the arriving wave, the arrival angle of the arriving wave can be estimated by finding the angle of arrival φ satisfying the following equation.

【0016】[0016]

【数4】 (Equation 4)

【0017】従って、MUSICアルゴリズムは次式で
定めるS(φ)がピークとなる到来角侯補φを求めて、
到来角の推定値としている。
Therefore, the MUSIC algorithm obtains the angle of arrival φ at which S (φ) defined by the following equation becomes a peak,
This is an estimated value of the angle of arrival.

【0018】[0018]

【数5】 (Equation 5)

【0019】なお、式(8)の分母は略0であるが、実
際に解を求めると発散することなく、解を求めることが
できる。また、式(8)から明らかであるが。このアル
ゴリズムにおいてはD<Lでなくてはならず、推定可能
な到来波数はアンテナ数−1(図3のものでは、L−
1)である。
Although the denominator of equation (8) is substantially zero, a solution can be obtained without actually diverging when the solution is actually obtained. Also, it is clear from equation (8). In this algorithm, D <L must be satisfied, and the number of arriving waves that can be estimated is the number of antennas minus one (in FIG.
1).

【0020】[0020]

【発明が解決しようとする課題】ところで、以上説明し
てきた従来の到来角測定器ではアンテナが複数必要で、
そのため受信系、即ちベースバンド信号発生器が複数必
要となってくる。ベースバンド信号発生器はアナログ回
路であり、ディジタル回路と異なり省電力化、小型化が
難しく、測定器の消費電力及び容積が膨大なものとなっ
てしまう。推定可能な到来波数及び到来角の推定精度を
上げるためにはアンテナ数をさらに増やさなくてはなら
ず、ますます消費電力及び容積が増大する。加えて、ア
ンテナ間で信号の漏れ込み、即ち相互結合の影響があ
り、この影響を除去する機能が必要となってくる。
The conventional angle-of-arrival measuring instrument described above requires a plurality of antennas.
Therefore, a plurality of receiving systems, that is, a plurality of baseband signal generators are required. The baseband signal generator is an analog circuit, and unlike a digital circuit, it is difficult to save power and reduce the size, and the power consumption and volume of the measuring device become enormous. In order to increase the estimation accuracy of the number of arriving waves and the angle of arrival that can be estimated, the number of antennas must be further increased, and the power consumption and the volume are further increased. In addition, there is a signal leakage between the antennas, that is, an effect of mutual coupling, and a function for eliminating this effect is required.

【0021】以上の通り、従来の到来角測定器は、アン
テナが複数必要であって、受信機の消費電力及び容積が
膨大となり、また、アンテナ間相互結合の影響を除去し
なくてはならないという問題があった。本発明は、上記
問題に鑑みなされたものであり、小型化及び低消費電力
化が図れ、かつアンテナ間相互結合の影響を除去する必
要がない到来角測定方法及び到来角測定器を提供するこ
とを目的とするものである。
As described above, the conventional angle-of-arrival measuring apparatus requires a plurality of antennas, the power consumption and volume of the receiver become enormous, and the influence of mutual coupling between antennas must be eliminated. There was a problem. The present invention has been made in view of the above problems, and provides an angle of arrival measuring method and an angle of arrival measuring device that can be reduced in size and power consumption and that does not need to eliminate the influence of mutual coupling between antennas. It is intended for.

【0022】[0022]

【課題を解決するための手段】請求項1に記載された発
明は、一つのアンテナ20及び該アンテナに接続された
一つの信号を受信する受信手段21並びに信号の到来方
向を推定する到来角推定手段24を用いて、到来波の方
向を測定する到来角測定方法であって、到来波に対して
一定の角度を有して、一定の速度で、前記アンテナを移
動させ、前記アンテナ及び前記受信手段で受信された所
定時間毎のシリアル受信信号を、パラレル信号に変換
し、該パラレル受信信号を、一定の間隔に設けられた複
数のアンテナで受信した受信信号とみなして、前記到来
角推定手段により、到来波の方向を測定することを特徴
とする到来角測定方法である。
According to the first aspect of the present invention, there is provided an antenna, a receiving means for receiving a signal connected to the antenna, and an arrival angle estimation for estimating a signal arrival direction. An arrival angle measuring method for measuring the direction of an arriving wave using the means 24, comprising: moving the antenna at a constant speed with a constant angle with respect to the arriving wave; Means for converting a serial reception signal received every predetermined time into a parallel signal, the parallel reception signal is regarded as a reception signal received by a plurality of antennas provided at regular intervals, and the arrival angle estimation means Is a method for measuring the direction of an incoming wave.

【0023】請求項1記載の発明によれば、アンテナ及
び前記受信手段で受信された所定時間毎のシリアル受信
信号を、パラレル信号に変換し、該パラレル受信信号
を、一定の間隔に設けられた複数のアンテナで受信した
受信信号とみなして、到来波の方向を測定することによ
り、小型化及び低消費電力化が図れ、かつアンテナ間相
互結合の影響を除去する必要がない到来角測定方法を提
供することができる。
According to the first aspect of the present invention, the serial reception signal received by the antenna and the reception means at predetermined time intervals is converted into a parallel signal, and the parallel reception signal is provided at regular intervals. By measuring the direction of the arriving wave assuming that it is a received signal received by a plurality of antennas, it is possible to reduce the size and power consumption, and to achieve a method of measuring the angle of arrival that does not require removing the influence of mutual coupling between antennas. Can be provided.

【0024】請求項2に記載された発明は、固有展開法
又はビームフォーミング法に基づいて到来波の方向を測
定する到来角測定方法において、一つのアンテナ20及
び該アンテナに接続された一つの受信手段21を設け、
到来波に対して一定の角度を有して、一定の速度で、前
記アンテナを移動させ、前記アンテナ及び前記受信手段
で受信された所定時間Ts毎のシリアル受信信号を、パ
ラレル信号に変換し、該パラレル受信信号を、一定の間
隔dで設けられた複数のアンテナで受信した受信信号と
みなして、固有展開法又はビームフォーミング法に基づ
いて到来波の方向を測定することを特徴とする。
According to a second aspect of the present invention, there is provided an arrival angle measuring method for measuring a direction of an incoming wave based on an eigen-expansion method or a beam forming method, wherein one antenna 20 and one reception apparatus connected to the antenna are provided. Means 21 are provided,
Having a certain angle with respect to the incoming wave, moving the antenna at a certain speed, and converting a serial reception signal for each predetermined time Ts received by the antenna and the receiving means into a parallel signal, The method is characterized in that the parallel received signals are regarded as received signals received by a plurality of antennas provided at a fixed interval d, and the direction of the incoming wave is measured based on the eigen expansion method or the beam forming method.

【0025】請求項2記載の発明によれば、アンテナを
移動させ、アンテナで受信された所定時間Ts毎のシリ
アル受信信号を、パラレル信号に変換し、該パラレル受
信信号を、一定の間隔dで設けられた複数のアンテナで
受信した受信信号とみなして、固有展開法又はビームフ
ォーミング法に基づいて到来波の方向を測定することに
より、小型化及び低消費電力化が図れ、かつアンテナ間
相互結合の影響を除去する必要がない到来角測定方法を
提供することができる。
According to the second aspect of the present invention, the antenna is moved, the serial reception signal received by the antenna for every predetermined time Ts is converted into a parallel signal, and the parallel reception signal is converted at a constant interval d. By measuring the direction of the arriving wave based on the eigen expansion method or the beam forming method assuming that the signals are received by a plurality of provided antennas, miniaturization and low power consumption can be achieved, and mutual coupling between antennas can be achieved. It is possible to provide a method of measuring the angle of arrival that does not need to eliminate the effect of the angle of arrival.

【0026】請求項3に記載された発明は、請求項1又
は2記載の到来角測定方法において、前記所定時間をT
sとし、アンテナの移動速度をv、電波の波長をλとし
たとき、vTs/λ≦0.5であることを特徴とする。
請求項3記載の発明によれば、vTs/λ≦0.5とし
たことにより、到来角の推定を良好に行うことができ
る。
According to a third aspect of the present invention, in the arrival angle measuring method according to the first or second aspect, the predetermined time is set to T.
where s, v is the moving speed of the antenna, and λ is the wavelength of the radio wave, vTs / λ ≦ 0.5.
According to the third aspect of the invention, by setting vTs / λ ≦ 0.5, the arrival angle can be estimated well.

【0027】請求項4に記載された発明は、移動体に設
けた到来角測定器において、一つのアンテナ20からの
受信信号をベースバンド帯に変換し受信ベースバンド信
号を出力する受信手段21と、前記受信ベースバンド信
号を既知の信号系列を用いて逆変調し、逆変調信号を出
力する逆変調手段22と、前記逆変調信号を入力として
シリアル・パラレル変換を行い、逆変調パラレル信号を
出力するシリアル・パラレル変換手段23と、移動体の
速度を測定し出力する車速測定手段25と、前記逆変調
パラレル信号と前記移動体の速度を入力として、電波の
到来角を推定し出力する到来角推定手段24から構成さ
れることを特徴とする。
According to a fourth aspect of the present invention, there is provided an angle-of-arrival measuring device provided on a mobile body, comprising: a receiving unit 21 for converting a received signal from one antenna 20 into a baseband and outputting a received baseband signal; An inverse modulation unit 22 that inversely modulates the received baseband signal using a known signal sequence and outputs an inversely modulated signal, performs serial / parallel conversion using the inversely modulated signal as an input, and outputs an inversely modulated parallel signal. Serial / parallel conversion means 23, vehicle speed measurement means 25 for measuring and outputting the speed of a moving object, and arrival angle for estimating and outputting the angle of arrival of a radio wave by using the inversely modulated parallel signal and the speed of the moving object as inputs. It is characterized by comprising estimating means 24.

【0028】請求項5に記載された発明は、移動体に設
けた到来角測定器において、一つのアンテナ20からの
受信信号をベースバンド帯に変換し受信ベースバンド信
号を出力する受信手段21と、前記受信ベースバンド信
号を入力としてシリアル・パラレル変換を行い、受信ベ
ースバンド・パラレル信号を出力するシリアル・パラレ
ル変換手段23と、移動体の速度を測定し出力する車速
測定手段25と、前記受信ベースバンド・パラレル信号
と前記移動体の速度を入力として、電波の到来角を推定
し出力する到来角推定手段24から構成されることを特
徴とする。
According to a fifth aspect of the present invention, there is provided an angle-of-arrival measuring device provided on a mobile body, comprising a receiving means 21 for converting a received signal from one antenna 20 into a baseband and outputting a received baseband signal. A serial-to-parallel conversion unit 23 that performs serial-parallel conversion using the reception baseband signal as an input and outputs a reception baseband parallel signal, a vehicle speed measurement unit 25 that measures and outputs the speed of a moving object, It is characterized by comprising an angle-of-arrival estimating means 24 for estimating and outputting an angle of arrival of a radio wave by using a baseband parallel signal and the speed of the moving object as inputs.

【0029】請求項6に記載された発明は、請求項4又
は5記載の到来角測定器において、前記到来角推定手段
は、固有展開法又はビームフォーミング法に基づいて、
到来角推定を行うことを特徴とする。請求項4〜6記載
の発明は、請求項1〜3記載の到来角測定方法によっ
て、到来角の測定を行うことができる到来角測定器であ
る。
According to a sixth aspect of the present invention, in the angle-of-arrival measuring apparatus according to the fourth or fifth aspect, the angle-of-arrival estimating means is based on an eigenexpansion method or a beamforming method.
It is characterized in that arrival angle estimation is performed. The invention according to claims 4 to 6 is an arrival angle measurement device capable of measuring an arrival angle by the arrival angle measurement method according to claims 1 to 3.

【0030】[0030]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。 [第1の実施の形態]本発明の第1の実施の形態の構成
を図4に示す。一つのアンテナ20からの受信波がベー
スバンド信号発生器21に入力される。ここで、このベ
ースバンド信号発生器(受信手段)21は図2に示した
ものと同一のものである。ベースバンド信号発生器21
から出力される受信ベースバンド信号x(i)は、逆変調回
路(逆変調手段)22に入力される。送信信号系列は受
信機側で既知であり、この既知の信号系列b(i)を用いて
x(i)は逆変調され変調成分が除去された後、逆変調信号
y(i)として出力される。なお、この逆変調操作はx(i)を
b(i)で割り算することと等価である。この逆変調信号y
(i)は、シリアルパラレル変換回路(シリアルパラレル
変換手段)23に入力され、L個のパラレル信号が出力
される。このパラレル信号を要素とするL次元ベクトル
Y(i) を以下のように定める。
Next, embodiments of the present invention will be described with reference to the drawings. [First Embodiment] FIG. 4 shows the configuration of the first embodiment of the present invention. A received wave from one antenna 20 is input to a baseband signal generator 21. Here, the baseband signal generator (receiving means) 21 is the same as that shown in FIG. Baseband signal generator 21
The received baseband signal x (i) output from is input to an inverse modulation circuit (inverse modulation means) 22. The transmission signal sequence is known on the receiver side, and using this known signal sequence b (i),
x (i) is inversely modulated and the modulated component is removed, and then the inversely modulated signal
Output as y (i). Note that this inverse modulation operation is equivalent to x (i)
This is equivalent to dividing by b (i). This inverse modulation signal y
(i) is input to a serial / parallel conversion circuit (serial / parallel conversion means) 23, and L parallel signals are output. An L-dimensional vector Y (i) having the parallel signal as an element is determined as follows.

【0031】[0031]

【数6】 (Equation 6)

【0032】到来角推定回路(到来角推定手段)24
は、この逆変調パラレル信号を入力とするが、式(1)
で定めたL次元受信信号ベクトルX(i) をY(i) で置き
換えれば、従来技術で説明したMUSICアルゴリズム
を用いて到来波の到来角を推定できる。これを図5を用
いて説明する。同図において、上記第1の実施の形態の
構成を搭載した移動体が速度vで移動し、速度方向に対
して到来角φの平面波が到来しているものとする。A地
点にいた移動体がTs秒後にB地点に到達したとする。
このときの受信波は、A地点での受信波に較べて進んで
いる。行路差vTscosφであるから、2πvTsc
osφ/λ位相が進んでいる。Tsの時間差による受信
波の変化がなくなるように逆変調操作で補正すれば、こ
の状況は図3に示した状況と等価となる。従って、X
(i) をY(i) で置き換え、アンテナ間隔dをvTsで置
き換えれば、従来技術で説明したMUSICアルゴリズ
ムを用いて到来波の到来角を推定できる。なお、到来角
推定を良好に動作させるためにはアンテナ間隔dをλ/
2以下にする必要があるためvTs/λは0.5以下で
なくてはならない。
Arrival angle estimation circuit (arrival angle estimation means) 24
Receives the inverse-modulated parallel signal as an input.
By substituting the L-dimensional received signal vector X (i) determined by the above with Y (i), the arrival angle of the incoming wave can be estimated using the MUSIC algorithm described in the related art. This will be described with reference to FIG. In the figure, it is assumed that a moving body equipped with the configuration of the first embodiment moves at a speed v, and a plane wave having an arrival angle φ with respect to the speed direction has arrived. It is assumed that the moving body at the point A reaches the point B after Ts seconds.
The reception wave at this time is advanced as compared with the reception wave at the point A. Since the path difference is vTscosφ, 2πvTsc
The osφ / λ phase is advanced. This situation is equivalent to the situation shown in FIG. 3 if the correction is performed by the inverse modulation operation so that the change of the received wave due to the time difference of Ts is eliminated. Therefore, X
If (i) is replaced by Y (i) and the antenna interval d is replaced by vTs, the arrival angle of the incoming wave can be estimated using the MUSIC algorithm described in the related art. In order to make the arrival angle estimation work well, the antenna interval d is set to λ /
Since vTs / λ needs to be 2 or less, vTs / λ must be 0.5 or less.

【0033】このように図4の到来角推定回路24は、
逆変調パラレル信号と、車速測定回路25が出力する移
動体の速度を入力として、到来波の到来角を推定し、そ
の推定値を出力端子へと出力する。本実施の形態の特性
を調べるために、計算機シミュレーションを行った。そ
の結果を図6に示す。ここで、送信信号はQPSK変調
であり、CNRは30dB、vTs/λは0.5、式
(9)のLは7とした。到来波は3波とし、到来角は移
動体の速度方向に対して45度、90度、135度とし
た。ケース1はこれらの到来波の遅延時間が0で全て等
しい場合であり、ケース2は、マルチパス等の影響によ
り135度の到来波だけが1T遅延する場合、ケース3
は、同じく、45度、90度、135度の到来波が0、
1T、2Tと遅延する場合である。同図は横軸が到来角
候補φであり、縦軸が式(8)で定めたS(φ)であ
る。ケース1の場合、45度、90度、135度でピー
クとなっているが、ケース2及びケース3では異なる場
所でピークとなっている。これは、マルチパス等の影響
により遅延時間の異なる到来波が到来する場合、逆変調
操作による受信波の補正が完全にできないからである。 [第2の実施の形態]この問題を解決するためには、サ
ンプリング周期Tsごとの受信信号が時間変動しないよ
うに送信信号を送信すれば良い。例えば、送信信号系列
を一定値(例えば、「111・・・1」)にすれば良
い。このような送信信号の場合、逆変調操作による受信
波の補正が不要になる。この場合の実施の形態を図7に
示す。ここで図4の第1の実施の形態と異なる点は、逆
変調回路がなく、受信ベースバンド信号発生器21の出
力信号が直接シリアルパラレル変換回路23に入力され
て、到来角推定回路24に受信ベースバンド・パラレル
信号が供給されている点である。
As described above, the arrival angle estimation circuit 24 in FIG.
With the inverse-modulated parallel signal and the speed of the moving object output from the vehicle speed measurement circuit 25 as inputs, the arrival angle of an incoming wave is estimated, and the estimated value is output to an output terminal. Computer simulation was performed to examine the characteristics of the present embodiment. FIG. 6 shows the result. Here, the transmission signal is QPSK modulation, CNR is 30 dB, vTs / λ is 0.5, and L in equation (9) is 7. The incoming waves were three waves, and the angles of arrival were 45, 90, and 135 degrees with respect to the speed direction of the moving body. Case 1 is a case where the delay times of these arriving waves are 0 and all are equal. Case 2 is a case where only the 135 ° arriving wave is delayed by 1T due to the influence of multipath or the like.
Indicates that the incoming waves at 45, 90, and 135 degrees are 0,
This is the case where the delay is 1T and 2T. In the figure, the horizontal axis is the arrival angle candidate φ, and the vertical axis is S (φ) determined by Expression (8). In case 1, peaks occur at 45, 90, and 135 degrees, but in case 2 and case 3, peaks occur at different locations. This is because when incoming waves having different delay times arrive due to the influence of multipath or the like, the correction of the received wave by the inverse modulation operation cannot be completely performed. [Second Embodiment] In order to solve this problem, a transmission signal may be transmitted such that a reception signal for each sampling period Ts does not fluctuate with time. For example, the transmission signal sequence may be set to a constant value (for example, “111... 1”). In the case of such a transmission signal, the correction of the received wave by the inverse modulation operation becomes unnecessary. An embodiment in this case is shown in FIG. Here, the point different from the first embodiment of FIG. 4 is that there is no inverse modulation circuit, and the output signal of the reception baseband signal generator 21 is directly input to the serial / parallel conversion circuit 23 and the arrival angle estimation circuit 24 The point is that a reception baseband parallel signal is supplied.

【0034】この第2の実施の形態の計算機シミュレー
ション結果を図8に示す。シミュレーション条件は図6
と同じであり、第1の実施の形態で劣化していたケース
3でも良好な結果が得られている。なお、ここでは到来
角推定アルゴリズムとしてMUSICアルゴリズムを例
に説明したが、ESPRIT(Estimation of Signal
Parameters Via Rotational Invariance Techniqu
es)やMVDR等のアルゴリズムも適用できる。また、
サンプリング周期Tsは、vTs/λが0.5以下とい
う条件の範囲で、変調のシンボル周期T以外の値をとる
こともできる。
FIG. 8 shows a computer simulation result of the second embodiment. Simulation conditions are shown in FIG.
This is the same as in the first embodiment, and good results are obtained in case 3 which has deteriorated in the first embodiment. Although the MUSIC algorithm has been described as an example of the angle-of-arrival estimation algorithm here, ESPRIT (Estimation of Signal
Parameters Via Rotational Invariance Techniqu
es) and algorithms such as MVDR can also be applied. Also,
The sampling period Ts can take a value other than the modulation symbol period T in a range where vTs / λ is 0.5 or less.

【0035】以上説明したように、一つのアンテナから
の受信信号と移動体の速度を基に到来波の到来角を推定
できるので、複数のアンテナ及び受信機が不要となり、
受信機の消費電力及び容積を抑えることができ、また、
アンテナが一つであるのでアンテナ間相互の結合が無
く、アンテナ間相互結合の影響を除去する操作が不要と
なる。
As described above, the angle of arrival of the arriving wave can be estimated based on the signal received from one antenna and the speed of the moving body, so that a plurality of antennas and receivers are not required.
The power consumption and volume of the receiver can be reduced,
Since there is only one antenna, there is no mutual coupling between antennas, and an operation for removing the influence of mutual coupling between antennas is not required.

【0036】特に、同一チャネル干渉が無視できない無
線システムに利用すると効果的である。
In particular, it is effective to use the present invention in a radio system in which co-channel interference cannot be ignored.

【0037】[0037]

【発明の効果】上述の如く本発明によれば、次に述べる
種々の効果を実現することができる。請求項1〜3記載
の発明によれば、アンテナを移動させ、アンテナで受信
された所定時間Ts毎のシリアル受信信号を、パラレル
信号に変換し、該パラレル受信信号を、一定の間隔dで
設けられた複数のアンテナで受信した受信信号とみなし
て、固有展開法又はビームフォーミング法等のアルゴリ
ズムに基づいて到来波の方向を測定することにより、小
型化及び低消費電力化が図れ、かつアンテナ間相互結合
の影響を除去する必要がない到来角測定方法を提供する
ことができる。
According to the present invention as described above, the following various effects can be realized. According to the first to third aspects of the present invention, the antenna is moved, the serial reception signal received by the antenna for each predetermined time Ts is converted into a parallel signal, and the parallel reception signal is provided at a constant interval d. By measuring the direction of the arriving wave based on an algorithm such as the eigen-expansion method or the beamforming method assuming that the signals are received by a plurality of antennas received, the size and power consumption can be reduced, and An arrival angle measurement method that does not need to eliminate the influence of mutual coupling can be provided.

【0038】特に、請求項3記載の発明によれば、vT
s/λ≦0.5としたことにより、到来角の推定を良好
に行うことができる。請求項4〜6記載の発明によれ
ば、アンテナを移動させ、アンテナで受信された所定時
間Ts毎のシリアル受信信号を、パラレル信号に変換
し、該パラレル受信信号を、一定の間隔dで設けられた
複数のアンテナで受信した受信信号とみなして、固有展
開法又はビームフォーミング法等のアルゴリズムに基づ
いて到来波の方向を測定することにより、小型化及び低
消費電力化が図れ、かつアンテナ間相互結合の影響を除
去する必要がない到来角測定器を提供することができ
る。
In particular, according to the third aspect of the present invention, vT
By setting s / λ ≦ 0.5, it is possible to satisfactorily estimate the angle of arrival. According to the invention described in claims 4 to 6, the antenna is moved, the serial reception signal received by the antenna for each predetermined time Ts is converted into a parallel signal, and the parallel reception signal is provided at a constant interval d. By measuring the direction of the arriving wave based on an algorithm such as the eigen-expansion method or the beamforming method assuming that the signals are received by a plurality of antennas received, the size and power consumption can be reduced, and It is possible to provide an angle-of-arrival measuring instrument that does not need to eliminate the influence of mutual coupling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の到来角測定器の構成を示す図である。FIG. 1 is a diagram showing a configuration of a conventional angle of arrival measuring device.

【図2】図1のベースバンド信号発生器の構成を説明す
るための図である。
FIG. 2 is a diagram for explaining a configuration of a baseband signal generator of FIG. 1;

【図3】リニアアレイと平面波の関係を示す図である。FIG. 3 is a diagram showing a relationship between a linear array and a plane wave.

【図4】本発明の第1の実施の形態の構成図を示す図で
ある。
FIG. 4 is a diagram showing a configuration diagram of a first embodiment of the present invention.

【図5】移動体と平面波の関係を示す図である。FIG. 5 is a diagram illustrating a relationship between a moving object and a plane wave.

【図6】本発明の第1の実施の形態の計算機シミュレー
ション結果を示す図である。。
FIG. 6 is a diagram illustrating a computer simulation result according to the first embodiment of this invention. .

【図7】本発明の第2の実施の形態の構成図を示す図で
ある。
FIG. 7 is a diagram showing a configuration diagram of a second embodiment of the present invention.

【図8】本発明の第2の実施の形態の計算機シミュレー
ション結果を示す図である。
FIG. 8 is a diagram illustrating a computer simulation result according to the second embodiment of this invention.

【符号の説明】[Explanation of symbols]

1、2、20 アンテナ 3、4、21 ベースバンド信号発生器 5、24 到来角推定回路 25 車速測定回路 1, 2, 20 Antenna 3, 4, 21 Baseband signal generator 5, 24 Arrival angle estimation circuit 25 Vehicle speed measurement circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一つのアンテナ及び該アンテナに接続さ
れた一つの信号を受信する受信手段並びに信号の到来方
向を推定する到来角推定手段を用いて、到来波の方向を
測定する到来角測定方法であって、 到来波に対して一定の角度を有して、一定の速度で、前
記アンテナを移動させ、 前記アンテナ及び前記受信手段で受信された所定時間毎
のシリアル受信信号を、パラレル信号に変換し、 該パラレル受信信号を、一定の間隔に設けられた複数の
アンテナで受信した受信信号とみなして、前記到来角推
定手段により、到来波の方向を測定することを特徴とす
る到来角測定方法。
1. An arrival angle measuring method for measuring a direction of an incoming wave using one antenna, a receiving unit connected to the antenna for receiving one signal, and an arrival angle estimating unit for estimating an arrival direction of the signal. Having a certain angle with respect to the arriving wave, moving the antenna at a certain speed, and converting the serial reception signal received by the antenna and the receiving means for each predetermined time into a parallel signal. Converting the parallel received signal as a received signal received by a plurality of antennas provided at regular intervals, and measuring the direction of the incoming wave by the angle of arrival estimating means. Method.
【請求項2】 固有展開法又はビームフォーミング法に
基づいて到来波の方向を測定する到来角測定方法におい
て、 一つのアンテナ及び該アンテナに接続された一つの受信
手段を設け、 到来波に対して一定の角度を有して、一定の速度で、前
記アンテナを移動させ、 前記アンテナ及び前記受信手段で受信された所定時間毎
のシリアル受信信号を、パラレル信号に変換し、 該パラレル受信信号を、一定の間隔に設けられた複数の
アンテナで受信した受信信号とみなして、固有展開法又
はビームフォーミング法に基づいて到来波の方向を測定
することを特徴とする到来角測定方法。
2. An arrival angle measuring method for measuring a direction of an incoming wave based on an eigen expansion method or a beam forming method, comprising: providing one antenna and one receiving means connected to the antenna; Having a certain angle, moving the antenna at a certain speed, converting the serial reception signal received by the antenna and the receiving means at every predetermined time into a parallel signal, An arrival angle measuring method characterized in that a direction of an incoming wave is measured based on an eigen-expansion method or a beam-forming method, assuming that received signals are received by a plurality of antennas provided at predetermined intervals.
【請求項3】 請求項1又は2記載の到来角測定方法に
おいて、 前記所定時間をTsとし、アンテナの移動速度をv、電
波の波長をλとしたとき、vTs/λ≦0.5であるこ
とを特徴とする請求項1又は2記載の到来角測定方法。
3. The arrival angle measurement method according to claim 1, wherein vTs / λ ≦ 0.5, where Ts is the predetermined time, v is the moving speed of the antenna, and λ is the wavelength of the radio wave. 3. The arrival angle measuring method according to claim 1 or 2, wherein:
【請求項4】 移動体に設けた到来角測定器において、 一つのアンテナからの受信信号をベースバンド帯に変換
し受信ベースバンド信号を出力する受信手段と、 前記受信ベースバンド信号を既知の信号系列を用いて逆
変調し、逆変調信号を出力する逆変調手段と、 前記逆変調信号を入力としてシリアル・パラレル変換を
行い、逆変調パラレル信号を出力するシリアル・パラレ
ル変換手段と、 移動体の速度を測定し出力する車速測定手段と、 前記逆変調パラレル信号と前記移動体の速度を入力とし
て、電波の到来角を推定し出力する到来角推定手段から
構成されることを特徴とする到来角測定器。
4. An angle-of-arrival measuring device provided on a moving object, a receiving means for converting a received signal from one antenna into a baseband band and outputting a received baseband signal, and converting the received baseband signal into a known signal. Reverse modulation means for performing reverse modulation using a sequence and outputting a reverse modulation signal; serial / parallel conversion means for performing serial / parallel conversion using the reverse modulation signal as input and outputting a reverse modulation parallel signal; Vehicle speed measuring means for measuring and outputting a speed; arrival angle estimating means for estimating and outputting an angle of arrival of a radio wave with the inversely modulated parallel signal and the speed of the moving object as inputs. Measuring instrument.
【請求項5】 移動体に設けた到来角測定器において、 一つのアンテナからの受信信号をベースバンド帯に変換
し受信ベースバンド信号を出力する受信手段と、 前記受信ベースバンド信号を入力としてシリアル・パラ
レル変換を行い、受信ベースバンド・パラレル信号を出
力するシリアル・パラレル変換手段と、 移動体の速度を測定し出力する車速測定手段と、 前記受信ベースバンド・パラレル信号と前記移動体の速
度を入力として、電波の到来角を推定し出力する到来角
推定手段から構成されることを特徴とする到来角測定
器。
5. An angle-of-arrival measuring device provided on a moving body, comprising: receiving means for converting a received signal from one antenna into a baseband and outputting a received baseband signal; and serially receiving the received baseband signal as an input. Serial / parallel conversion means for performing parallel conversion and outputting a reception baseband / parallel signal; vehicle speed measurement means for measuring and outputting the speed of a moving object; and measuring the reception baseband / parallel signal and the speed of the moving object. An arrival angle measuring device comprising an arrival angle estimating means for estimating and outputting an arrival angle of a radio wave as an input.
【請求項6】 前記到来角推定手段は、固有展開法又は
ビームフォーミング法に基づいて、到来角推定を行うこ
とを特徴とする請求項4又は5記載の到来角測定器。
6. The angle-of-arrival measuring device according to claim 4, wherein the angle-of-arrival estimation means estimates the angle of arrival based on an eigenexpansion method or a beamforming method.
JP10316358A 1998-11-06 1998-11-06 Method and apparatus for measuring arrival angle Pending JP2000147083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316358A JP2000147083A (en) 1998-11-06 1998-11-06 Method and apparatus for measuring arrival angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316358A JP2000147083A (en) 1998-11-06 1998-11-06 Method and apparatus for measuring arrival angle

Publications (1)

Publication Number Publication Date
JP2000147083A true JP2000147083A (en) 2000-05-26

Family

ID=18076220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316358A Pending JP2000147083A (en) 1998-11-06 1998-11-06 Method and apparatus for measuring arrival angle

Country Status (1)

Country Link
JP (1) JP2000147083A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021723A1 (en) * 2000-09-08 2002-03-14 Matsushita Electric Industrial Co., Ltd. Base station device and arrival direction deducing method
WO2004088347A1 (en) * 2003-03-31 2004-10-14 Da Tang Mobile Communications Equipment Co., Ltd. Method for estimating the direction of arrival of fixation beam in space
JP2007040806A (en) * 2005-08-02 2007-02-15 Denso Corp Radar system
JP2008271222A (en) * 2007-04-20 2008-11-06 Nippon Hoso Kyokai <Nhk> Multipath incoming direction measuring device
JP2008286571A (en) * 2007-05-16 2008-11-27 Taisei Corp Radio wave source specifying system and template
JP2010019581A (en) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp Azimuth detection device
JP2011239358A (en) * 2010-05-11 2011-11-24 Industrial Technology Research Inst Signal arrival angle estimation apparatus, estimation method thereof, and communication system using the same
JP2011252852A (en) * 2010-06-03 2011-12-15 Toyota Motor Corp Sound source direction estimation device
JP2014173942A (en) * 2013-03-07 2014-09-22 Toshiba Corp Radio wave emission source detector and radio wave emission source detection method
JP2019041232A (en) * 2017-08-25 2019-03-14 沖電気工業株式会社 Signal processing apparatus and signal processing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021723A1 (en) * 2000-09-08 2002-03-14 Matsushita Electric Industrial Co., Ltd. Base station device and arrival direction deducing method
US7095984B2 (en) 2000-09-08 2006-08-22 Matsushita Electric Industrial Co., Ltd. Base station apparatus and direction-of-arrival estimating method
WO2004088347A1 (en) * 2003-03-31 2004-10-14 Da Tang Mobile Communications Equipment Co., Ltd. Method for estimating the direction of arrival of fixation beam in space
JP2007040806A (en) * 2005-08-02 2007-02-15 Denso Corp Radar system
JP2008271222A (en) * 2007-04-20 2008-11-06 Nippon Hoso Kyokai <Nhk> Multipath incoming direction measuring device
JP2008286571A (en) * 2007-05-16 2008-11-27 Taisei Corp Radio wave source specifying system and template
JP2010019581A (en) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp Azimuth detection device
JP2011239358A (en) * 2010-05-11 2011-11-24 Industrial Technology Research Inst Signal arrival angle estimation apparatus, estimation method thereof, and communication system using the same
TWI408917B (en) * 2010-05-11 2013-09-11 Ind Tech Res Inst Estimation device and method for the direction of arrival and the communication system using the same
JP2011252852A (en) * 2010-06-03 2011-12-15 Toyota Motor Corp Sound source direction estimation device
JP2014173942A (en) * 2013-03-07 2014-09-22 Toshiba Corp Radio wave emission source detector and radio wave emission source detection method
JP2019041232A (en) * 2017-08-25 2019-03-14 沖電気工業株式会社 Signal processing apparatus and signal processing method
JP7013726B2 (en) 2017-08-25 2022-02-01 沖電気工業株式会社 Signal processing device and signal processing method

Similar Documents

Publication Publication Date Title
EP0992813B1 (en) Radio wave arrival direction estimating antenna apparatus
US6897807B2 (en) Radio-wave arrival-direction estimating apparatus and directional variable transceiver
JP3738705B2 (en) Adaptive antenna device
US20030228887A1 (en) Path search circuit, radio receiver and radio transmitter, utilizing a directional beam
US6459409B1 (en) Method and device for using array antenna to estimate location of source in near field
Rong Simulation of adaptive array algorithms for CDMA systems
JP3600459B2 (en) Method and apparatus for estimating direction of arrival of radio wave
JP2000147083A (en) Method and apparatus for measuring arrival angle
Gupta et al. Angle of arrival detection by ESPRIT method
US9444558B1 (en) Synthetic robust adaptive beamforming
Zhang et al. Mobile millimeter wave channel acquisition, tracking, and abrupt change detection
JP2002048853A (en) Radio wave arrival direction estimator and directivity variable transmitter-receiver
JP2006041562A (en) Base station device and radio receiving method
KR101737802B1 (en) Apparatus for determining weight value in time-space in array antenna for GPS anti-jamming and method therefor
Li et al. A Comparative Study of Subspace-based Superresolution Path Delay Estimation Techniques
JP4673869B2 (en) Transceiver and communication method thereof
Al-Sadoon et al. A Minimum Variance Noise Algorithm for 2D and 3D Direction Estimation in MIMO Wireless Communication Systems
Ichige et al. An explicit high-resolution DOA estimation formula for two wave sources
JP2000091844A (en) Multiplex radio communication equipment
JP3550288B2 (en) Arrival angle delay time measuring instrument
Xie et al. Iterative sparse recovery based passive localization in perceptive mobile networks
KR20020041558A (en) Apparatus and Method for forming beam using direction of arrival estimation in a mobile communication system
JP4576742B2 (en) Transmission / reception frequency division multiplexing radio equipment
Pote et al. Novel sensing methodology for initial alignment using mmwave phased arrays
Gerlach et al. A novel approach to shared-spectrum multistatic radar