JP2000131060A - Surveying apparatus and surveying method - Google Patents

Surveying apparatus and surveying method

Info

Publication number
JP2000131060A
JP2000131060A JP10308092A JP30809298A JP2000131060A JP 2000131060 A JP2000131060 A JP 2000131060A JP 10308092 A JP10308092 A JP 10308092A JP 30809298 A JP30809298 A JP 30809298A JP 2000131060 A JP2000131060 A JP 2000131060A
Authority
JP
Japan
Prior art keywords
surveying
sphere
survey
cameras
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10308092A
Other languages
Japanese (ja)
Inventor
Masataka Sakaguchi
正孝 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10308092A priority Critical patent/JP2000131060A/en
Publication of JP2000131060A publication Critical patent/JP2000131060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an all-azimuth automatic survey to be performed without moving survey machines by computing the distance, direction and elevation of a survey sphere from the image of the sphere which two vertically and horizontally rotatable cameras disposed at both ends of a base line follow up and photograph. SOLUTION: An elevation, direction and distance computing/controller 8 vertically and horizontally revolves monitoring cameras 3 and 4 so that the cameras 3 and 4 follow up a survey sphere 1 disposed at the top end of a survey rod 2. The contour line of the sphere 1 is extracted from the images to take the motion of camera images following up the sphere 1 as a circle. The cameras are revolved to approach the circle on the image to the center of a screen and superpose it on this center. The controller 8 computes and records the distance and the direction from the angles between the cameras 3, 4 and camera arms 7 and arm lengths. According to the output of the controller 8 the cameras 3, 4 automatically follow up the sphere 1 so as to record only measured data when a measuring point 10 stands at the same point for 10 sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、2台以上のカメ
ラを使い、カメラの角度とアーム長から距離と方向を求
める三角測量装置及びその測量方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triangulation apparatus and a surveying method using two or more cameras to determine the distance and direction from the angles and arm lengths of the cameras.

【0002】[0002]

【従来の技術】特開平9−159449号公報に示され
た従来の測量方法を図9から図11により説明する。図
9には、光学測量機械および測量棒を含む、三角測量の
方法概念が、また、図10には、その光学測量機械側の
詳細が、更に、図11には、同じくその測量棒側の詳細
がそれぞれ示されているが、その方法を概念的に説明す
れば以下のようである。
2. Description of the Related Art A conventional surveying method disclosed in JP-A-9-159449 will be described with reference to FIGS. FIG. 9 shows a triangulation method concept including an optical surveying machine and a surveying rod, FIG. 10 shows details of the optical surveying machine side, and FIG. Although the details are shown, the method is conceptually described as follows.

【0003】即ち、光学測量機械21における視準用接
眼部には、アダプタを介し、例えばCCDカメラ22が
取付け可とされているが、そのCCDカメラ22により
取り込まれた測量画像は、画像認識・位置ずれ計算回路
23で画像処理されることによって、基準点24に対す
る測量棒25のずれの量と方向がディジタルデータとし
て検出可とされているものである。
A collimating eyepiece of the optical surveying machine 21 can be provided with a CCD camera 22 via an adapter, for example. The amount and direction of the displacement of the survey rod 25 with respect to the reference point 24 can be detected as digital data by the image processing performed by the displacement calculating circuit 23.

【0004】このようにして検出されたずれの量と方向
は、無線ディジタルデータ送受信回路26を介しアンテ
ナ27より測量棒25側に送信されるが、測量棒25側
では、それらずれの量と方向はアンテナ28を介し無線
ディジタルデータ送受信回路29で受信された上、画像
表示回路30上に表示可とされているものである。した
がって、そのずれ表示にもとづき測量棒25が移動せし
められた上で三角測量が行なわれる場合には、光学測量
機械21側での専門作業者不要として、速やかに、しか
も容易に三角測量が行なわれ得るものである。
The amount and direction of the displacement detected in this way are transmitted from the antenna 27 to the survey rod 25 via the wireless digital data transmission / reception circuit 26. Is received by the wireless digital data transmission / reception circuit 29 via the antenna 28, and can be displayed on the image display circuit 30. Therefore, when the surveying bar 25 is moved based on the displacement display and the triangulation is performed, the triangulation is quickly and easily performed without the need for a specialized worker on the optical surveying machine 21 side. What you get.

【0005】三角測量は基本的に以上のようにして実施
され得るが、その際に、測量棒25側からの電波による
遠隔監視制御下に、光学測量機械21での取込み画像の
拡大率や、方向検出/駆動回路31による画像取込み方
向が更新可として積極的に制御されるようにしてもよい
ものである。また、測量棒25側においては、光学測量
機械21より予め電波により送信されている測量点付近
の画像が背景として、その背景上に、受信されたずれの
量と方向にもとづき測量棒25、基準点24各々の位置
がアニメーション化された状態として南北情報とともに
合成表示されつつ、測量棒25が移動せしめられるよう
にしてもよいものである。
[0005] The triangulation can be basically performed as described above. At this time, under the remote monitoring control by radio waves from the surveying rod 25 side, the enlargement ratio of the image captured by the optical surveying machine 21 and the like. The image capturing direction by the direction detecting / driving circuit 31 may be positively controlled such that the image can be updated. On the side of the survey rod 25, an image near the survey point transmitted in advance by radio waves from the optical surveying machine 21 is used as a background, and on the background, based on the amount and direction of the received deviation, The surveying bar 25 may be moved while the position of each point 24 is synthesized and displayed together with the north-south information as an animated state.

【0006】[0006]

【発明が解決しようとする課題】従来の光学測量機械を
利用した三角測量は以上のようになされているので、図
12(a)に示すような一般的な測量の場合は問題はない
が、図12(b),(c),(d)に示すような、柱の裏や溝
及び構造物上部などを計測するには、光学測量機械を移
動しなければならず、測量後のデータを編集してひとつ
のデータとすることが必要である。また、仰角の計測を
行なっていないため、立体的な計測ができないなどの問
題点があった。
Since triangulation using a conventional optical surveying machine is performed as described above, there is no problem in the case of general surveying as shown in FIG. As shown in FIGS. 12 (b), (c), and (d), in order to measure the back of a column, a groove, and the upper part of a structure, an optical surveying machine must be moved. It is necessary to edit it into one data. In addition, there is a problem that three-dimensional measurement cannot be performed because the elevation angle is not measured.

【0007】この発明は上記のような課題を解決するた
めになされたものであり、光学測量機械を移動せずに全
方位を立体的に自動測量できるとともに、屋外の強い光
の中でも測量できる測量装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and can perform three-dimensional automatic surveying in all directions without moving an optical surveying machine, and can perform surveying even under strong outdoor light. The aim is to obtain a device.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1に係
る測量装置は、基線の両端にそれぞれ設けられると共に
垂直及び水平方向に旋回可能な2台の監視カメラと、監
視カメラに追跡される測量棒先端に取付けられた測量用
球体と、監視カメラが捕らえた映像により測量用球体の
距離、方向、仰角を演算する演算・制御装置とを設けた
ものである。
According to a first aspect of the present invention, there is provided a surveying apparatus provided at both ends of a base line and capable of turning vertically and horizontally, and being tracked by the monitoring cameras. A survey sphere attached to the tip of a survey rod, and a calculation / control device for calculating the distance, direction, and elevation angle of the survey sphere based on images captured by a monitoring camera are provided.

【0009】この発明の請求項2に係る測量装置は、一
方の監視カメラをカメラアームに対し直角方向に固定す
ると共に、他方の監視カメラを水平回転可能に設置し、
更にカメラアームを水平並びに垂直方向へ回転可能に設
置したものである。
In a surveying device according to a second aspect of the present invention, one surveillance camera is fixed in a direction perpendicular to a camera arm, and the other surveillance camera is installed to be horizontally rotatable.
Further, the camera arm is installed so as to be rotatable horizontally and vertically.

【0010】この発明の請求項3に係る測量装置は、測
量棒に円盤を取り付けたものである。
According to a third aspect of the present invention, there is provided a surveying instrument wherein a disc is attached to a surveying rod.

【0011】この発明の請求項4に係る測量装置は、測
量棒に大きさの異なる2枚以上の円盤を取り付けたもの
である。
According to a fourth aspect of the present invention, there is provided a surveying instrument wherein two or more disks having different sizes are attached to a surveying rod.

【0012】この発明の請求項5に係る測量装置は、測
量棒の背後に測量用球体または円盤と異なる色を有する
板を設けたものである。
According to a fifth aspect of the present invention, a surveying sphere or a plate having a color different from that of a disk is provided behind a surveying bar.

【0013】この発明の請求項6に係る測量装置は、監
視カメラとしてデジタルカメラを使用したものである。
A surveying apparatus according to a sixth aspect of the present invention uses a digital camera as a monitoring camera.

【0014】この発明の請求項7に係る測量方法は、2
台の監視カメラで捕らえた測量用球体の映像がそれぞれ
の画面の中心にきたときの監視カメラの角度と基線長か
ら距離と方向を演算するものである。
According to a seventh aspect of the present invention, there is provided a surveying method comprising:
The distance and direction are calculated from the angle and the base line length of the surveillance camera when the image of the survey sphere captured by the surveillance cameras comes to the center of each screen.

【0015】[0015]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図1に基づいて説明する。図1におい
て、先端に測量用球体1をつけた測量棒2と、この測量
棒2を写す2台の監視カメラ3,4と、監視カメラ3,
4を取付けたカメラ回転台5,6と、上記2台のカメラ
3,4を止めるカメラアーム7と、監視カメラ3,4の
制御とカメラの映像出力により距離と方向を演算する機
能を有する仰角・方向・距離演算/制御装置8と、カメ
ラアーム7の回転台9とにより測量装置は構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. In FIG. 1, a surveying rod 2 having a surveying sphere 1 attached to a tip thereof, two monitoring cameras 3 and 4 for photographing the surveying rod 2,
A camera rotating table 5 and 6 to which the camera 4 is attached; a camera arm 7 for stopping the two cameras 3 and 4; and an elevation angle having a function of controlling the surveillance cameras 3 and 4 and calculating a distance and a direction based on video output of the camera. The direction / distance calculation / control device 8 and the turntable 9 of the camera arm 7 constitute a surveying device.

【0016】次に動作について説明する。仰角・方向・
距離演算/制御装置8は、測量棒2の先端に設けられた
測量用球体1を監視カメラ3,4が追従するように、監
視カメラ3,4を垂直および水平方向に旋回させる。測
量用球体1を追跡するカメラ映像の動きを図2に示す
が、ステップ1では、映像から測量用球体1の輪郭線を
抜き出し、円として捕らえる。カメラを旋回させること
により、ステップ2、ステップ3のように映像上の円が
画面の中央に近づく。そしてステップ4では、測量用球
体1を示す円の中心が画面上の中心と重なる。この時の
監視カメラ3,4とカメラアーム7の角度α,βと基線
となるアーム長Lにより、三角測量を適用して、距離と
方向を演算する。計測された距離、方向、監視カメラの
仰角は、仰角・方向・距離演算/制御装置8上にデータ
として記録される。
Next, the operation will be described. Elevation angle, direction,
The distance calculation / control device 8 turns the monitoring cameras 3 and 4 in the vertical and horizontal directions so that the monitoring cameras 3 and 4 follow the survey sphere 1 provided at the tip of the survey rod 2. FIG. 2 shows the movement of the camera image tracking the survey sphere 1. In step 1, the contour of the survey sphere 1 is extracted from the image and captured as a circle. By rotating the camera, the circle on the image approaches the center of the screen as in steps 2 and 3. Then, in step 4, the center of the circle indicating the survey sphere 1 overlaps the center on the screen. Based on the angles α and β of the monitoring cameras 3 and 4 and the camera arm 7 at this time and the arm length L serving as a base line, triangulation is applied to calculate the distance and direction. The measured distance, direction, and elevation angle of the monitoring camera are recorded on the elevation angle / direction / distance calculation / control device 8 as data.

【0017】なお、仰角・方向・距離演算/制御装置8
の出力により、監視カメラ3,4は測量用球体1を自動
追跡するが、仰角・方向・距離演算/制御装置8には計
測が正常に行なわれているか否か、ランプ、音もしくは
無線により外部に知らせるための外部端子が設定され、
10秒間(設定により変更可能)同一地点に測量点10
が止まった場合の計測データにのみ記録するようにした
ので、測量棒2を持った作業者のみによる連続計測が可
能となった。
The elevation / direction / distance calculation / control device 8
The surveillance cameras 3 and 4 automatically follow the surveying sphere 1 by the output of, but the elevation / direction / distance calculation / control unit 8 determines whether or not the measurement is performed normally, by means of a lamp, sound or wirelessly. An external terminal is set to notify
10 seconds (changeable by setting)
Since the measurement is recorded only in the measurement data when the measurement stops, continuous measurement can be performed only by the operator holding the surveying rod 2.

【0018】実施の形態2.上記実施の形態1では、図
3に示す2台の監視カメラ3,4を結ぶカメラアーム7
を固定し、2台の監視カメラ3,4を水平方向に回転す
る場合について述べたが、一方の監視カメラの映像が他
方の監視カメラの陰となり、測量用球体1を捕らえられ
ない死角があった。そこで、本実施形態においては、図
4に示すように、監視カメラ4をカメラアーム7に直角
をなすように固定し、監視カメラ3を水平方向に、カメ
ラアーム7を水平垂直方向に回転するようにしたので、
水平方向360°と垂直方向90°の半球全方位の計測
をすることができる。
Embodiment 2 FIG. In the first embodiment, the camera arm 7 connecting the two monitoring cameras 3 and 4 shown in FIG.
Is described, and the two surveillance cameras 3 and 4 are rotated in the horizontal direction. However, the image of one surveillance camera is shaded by the other surveillance camera, and there is a blind spot where the survey sphere 1 cannot be caught. Was. Therefore, in the present embodiment, as shown in FIG. 4, the monitoring camera 4 is fixed at a right angle to the camera arm 7, and the monitoring camera 3 is rotated in the horizontal direction and the camera arm 7 is rotated in the horizontal and vertical directions. Because it was
It is possible to measure 360 ° in the horizontal direction and 90 ° in the vertical direction in all directions of the hemisphere.

【0019】実施の形態3.上記実施の形態1,2で
は、測量棒2の最上端に測量用球体1を取り付けて測距
する場合について述べたが、本実施形態においては、図
5に示すように、測量棒2の先端の測量用球体1の他に
円盤11を設け、この円盤11の傾きにより、視覚に訴
える形状が変わることを利用して、測量棒2の傾きを計
算するようにしたので、測量棒2が傾斜しても、正確に
測量棒2の最下端の位置を計測できるようになった。こ
こで、傾きの前後を判別するため、円盤11の上面と下
面の色を変えている。
Embodiment 3 In the first and second embodiments, the case where the measuring sphere 1 is attached to the uppermost end of the survey rod 2 to measure the distance has been described. However, in the present embodiment, as shown in FIG. In addition to the survey sphere 1, a disk 11 is provided, and the inclination of the disk 11 is used to calculate the inclination of the survey rod 2 by utilizing the fact that the shape appealing to the eye is changed. Even so, the position of the lowermost end of the survey rod 2 can be accurately measured. Here, in order to determine before and after the inclination, the colors of the upper surface and the lower surface of the disk 11 are changed.

【0020】実施の形態4.上記実施の形態3では、測
量棒2に円盤11を取り付けることにより、測量棒2の
傾きを計算する場合について述べたが、本実施形態にお
いては、図6に示すように、大小幾つかの円盤11,1
2を並べて取り付けることにより、測量棒の区分を判別
できるようにしたので、測定場所により長さの違う測量
棒2を使用した場合でも、測量棒2の最下端の位置を計
測できるようになった。このように、測量棒2の円盤の
大きさを変えることにより、仰角・方向・距離演算/制
御装置8の演算パラメータとしての測量棒2の長さを自
動修正することができる。
Embodiment 4 In the third embodiment, the case where the inclination of the surveying bar 2 is calculated by attaching the disk 11 to the surveying bar 2 has been described. However, in the present embodiment, as shown in FIG. 11,1
By arranging 2 side by side, it became possible to determine the division of the surveying bar, so that even when using a surveying bar 2 having a different length depending on the measurement location, the position of the lowermost end of the surveying bar 2 can be measured. . As described above, by changing the size of the disk of the surveying bar 2, the length of the surveying bar 2 as a calculation parameter of the elevation / direction / distance calculation / control device 8 can be automatically corrected.

【0021】実施の形態5.上記実施の形態3,4で
は、測量棒2に測量用球体1と円盤11,12とを取り
付けることにより測量する場合について述べたが、本実
施形態においては、図7に示すように、測量棒2の測量
用球体1と円盤11,12の背後に測量用球体1および
円盤11,12と異なる色の板13を設け、測量用球体
1と円盤11,12とを背景と切り放すようにしたの
で、監視カメラ3,4が屋外でも測量棒2を見失うこと
がないようにすることができる。
Embodiment 5 In the above-described third and fourth embodiments, the case where the surveying is performed by attaching the surveying sphere 1 and the disks 11 and 12 to the surveying rod 2 has been described. In the present embodiment, as shown in FIG. The surveying sphere 1 and the disks 11 and 12 are provided with plates 13 of different colors behind the surveying sphere 1 and the disks 11 and 12 so that the surveying sphere 1 and the disks 11 and 12 are separated from the background. Therefore, it is possible to prevent the surveillance cameras 3 and 4 from losing sight of the survey rod 2 even outdoors.

【0022】実施の形態6.上記実施の形態1,2で
は、監視カメラ3,4により測量棒2の先端に設けられ
た測量用球体1を追尾する場合について述べたが、本実
施形態においては、図8に示すように、オートフォーカ
スおよび映像出力端子付のデジタルカメラ14,15を
使用することにより、構造を簡略化し、測量装置を小
型、軽量化することができる。又、上記実施の形態で
は、構造物の測量の場合について説明したが、機械の位
置合わせや、他の測距の場合に適用してもよく、上記実
施の形態と同様の効果を奏する。
Embodiment 6 FIG. In the first and second embodiments, the case where the surveillance cameras 3 and 4 track the survey sphere 1 provided at the tip of the survey rod 2 has been described. In the present embodiment, as shown in FIG. By using the digital cameras 14 and 15 having an auto focus and a video output terminal, the structure can be simplified, and the size and weight of the surveying device can be reduced. Further, in the above embodiment, the case of surveying a structure has been described. However, the present invention may be applied to alignment of a machine or other distance measurement, and the same effects as those of the above embodiment can be obtained.

【0023】[0023]

【発明の効果】この発明の請求項1に係る測量装置によ
れば、基線の両端にそれぞれ設けられると共に垂直及び
水平方向に旋回可能な2台の監視カメラと、監視カメラ
に追跡される測量棒先端に取付けられた測量用球体と、
監視カメラが捕らえた映像により測量用球体の距離、方
向、仰角を演算する演算・制御装置とを設けたので、光
学測量機械を移動せずに全方位を立体的に自動測量する
ことができる。
According to the surveying apparatus according to the first aspect of the present invention, two surveillance cameras provided at both ends of the base line and capable of turning vertically and horizontally, and a surveying rod tracked by the surveillance cameras are provided. A sphere for surveying attached to the tip,
Since a calculation / control device for calculating the distance, direction, and elevation angle of the survey sphere based on the video captured by the surveillance camera is provided, it is possible to perform three-dimensional automatic surveying in all directions without moving the optical surveying machine.

【0024】この発明の請求項2に係る測量装置によれ
ば、一方の監視カメラをカメラアームに対し直角方向に
固定すると共に、他方の監視カメラを水平回転可能に設
置し、更にカメラアームを水平並びに垂直方向へ回転可
能に設置したので、水平方向360°と垂直方向90°
の半球全方位の計測をすることができる。
According to the surveying device of the second aspect of the present invention, one surveillance camera is fixed in a direction perpendicular to the camera arm, and the other surveillance camera is installed so as to be horizontally rotatable. In addition, because it was installed to be rotatable in the vertical direction, 360 degrees horizontally and 90 degrees vertically
Can be measured in all directions of the hemisphere.

【0025】この発明の請求項3に係る測量装置によれ
ば、測量棒に円盤を取り付けたので、測量棒が傾斜して
も正確に測量棒の最下端の位置を計測することができ
る。
According to the surveying device of the third aspect of the present invention, since the disk is attached to the surveying bar, the position of the lowermost end of the surveying bar can be accurately measured even if the surveying bar is inclined.

【0026】この発明の請求項4に係る測量装置によれ
ば、測量棒に大きさの異なる2枚以上の円盤を取り付け
たので、測定場所により長さの違う測量棒を使用した場
合でも、測量棒の最下端の位置を計測することができ
る。
According to the surveying apparatus according to the fourth aspect of the present invention, since two or more disks having different sizes are attached to the surveying rod, even if the surveying rods having different lengths are used depending on the measuring place, the surveying is performed. The position of the lowermost end of the bar can be measured.

【0027】この発明の請求項5に係る測量装置によれ
ば、測量棒の背後に測量用球体または円盤と異なる色を
有する板を設けたので、測量用球体と円盤を背景と切り
放し、監視カメラが屋外でも測量棒を見失うことがない
ようにすることができる。
According to the fifth aspect of the present invention, since a plate having a color different from that of the surveying sphere or the disk is provided behind the surveying bar, the surveying sphere and the disk are separated from the background, and the surveillance camera is provided. However, it is possible to prevent the survey rod from being lost even outdoors.

【0028】この発明の請求項6に係る測量装置によれ
ば、監視カメラとしてデジタルカメラを使用したので、
構造を簡略化し、測量装置を小型、軽量化することがで
きる。
According to the surveying device of the present invention, a digital camera is used as a monitoring camera.
The structure can be simplified, and the size and weight of the surveying device can be reduced.

【0029】この発明の請求項7に係る測量方法によれ
ば、2台の監視カメラで捕らえた測量用球体の映像がそ
れぞれの画面の中心にきたときの監視カメラの角度と基
線長から距離と方向を演算するようにしたので、全方位
を立体的に自動測量することができる。
According to the surveying method according to claim 7 of the present invention, when the image of the surveying sphere captured by the two monitoring cameras comes to the center of each screen, the angle of the monitoring camera and the distance from the base line length and Since the direction is calculated, all directions can be automatically measured three-dimensionally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による測量装置を示
す斜視図である。
FIG. 1 is a perspective view showing a surveying apparatus according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1によるウインドウの
設定方法を示す正面図である。
FIG. 2 is a front view showing a window setting method according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1による測定装置を示
す平面図である。
FIG. 3 is a plan view showing a measuring device according to the first embodiment of the present invention.

【図4】 この発明の実施の形態2による測定装置を示
す平面図である。
FIG. 4 is a plan view showing a measuring device according to a second embodiment of the present invention.

【図5】 この発明の実施の形態3による測量棒を示す
斜視図である。
FIG. 5 is a perspective view showing a survey rod according to Embodiment 3 of the present invention.

【図6】 この発明の実施の形態4による測量棒を示す
斜視図である。
FIG. 6 is a perspective view showing a survey rod according to Embodiment 4 of the present invention.

【図7】 この発明の実施の形態5による測量棒を示す
斜視図である。
FIG. 7 is a perspective view showing a survey rod according to Embodiment 5 of the present invention.

【図8】 この発明の実施の形態6による測量装置を示
す斜視図である。
FIG. 8 is a perspective view showing a surveying apparatus according to Embodiment 6 of the present invention.

【図9】 従来の三角測量の方法概念を示す側面図であ
る。
FIG. 9 is a side view showing a conventional triangulation method concept.

【図10】 従来の光学測量機械側を示す側面図であ
る。
FIG. 10 is a side view showing a conventional optical surveying machine side.

【図11】 従来の測量棒側を示す正面図である。FIG. 11 is a front view showing a conventional survey rod side.

【図12】 従来の測量棒の使い方の例を示す概念図で
ある。
FIG. 12 is a conceptual diagram showing an example of how to use a conventional survey rod.

【符号の説明】[Explanation of symbols]

1 測量用球体、2 測量棒、3,4 監視カメラ、7
カメラアーム、8仰角・方向・距離演算/制御装置、
11,12 円盤、13 板、14,15デジタルカメ
ラ。
1 sphere for surveying, 2 surveying rod, 3, 4 surveillance camera, 7
Camera arm, 8 elevation / direction / distance calculation / control device,
11,12 disks, 13 plates, 14,15 digital cameras.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基線の両端にそれぞれ設けられると共に
垂直及び水平方向に旋回可能な2台の監視カメラと、上
記監視カメラに追跡される測量棒先端に取付けられた測
量用球体と、上記監視カメラが捕らえた映像により上記
測量用球体の距離、方向、仰角を演算する演算・制御装
置とを設けたことを特徴とする測量装置。
1. Two surveillance cameras provided at both ends of a base line and capable of turning vertically and horizontally, a survey sphere attached to a tip of a survey rod tracked by the surveillance camera, and the surveillance camera A surveying device comprising: a calculating and controlling device for calculating a distance, a direction, and an elevation angle of the surveying sphere based on an image captured by the device.
【請求項2】 一方の監視カメラをカメラアームに対し
直角方向に固定すると共に、他方の監視カメラを水平回
転可能に設置し、更に上記カメラアームを水平並びに垂
直方向へ回転可能に設置したことを特徴とする請求項1
記載の測量装置。
2. The method according to claim 1, wherein one surveillance camera is fixed in a direction perpendicular to the camera arm, the other surveillance camera is installed so as to be horizontally rotatable, and the camera arm is installed so as to be horizontally and vertically rotatable. Claim 1.
Surveying device as described.
【請求項3】 測量棒に円盤を取り付けたことを特徴と
する請求項1又は請求項2記載の測量装置。
3. The surveying device according to claim 1, wherein a disk is attached to the surveying rod.
【請求項4】 測量棒に大きさの異なる2枚以上の円盤
を取り付けたことを特徴とする請求項1から請求項3の
いずれか1項に記載の測量装置。
4. The surveying instrument according to claim 1, wherein two or more discs having different sizes are attached to the surveying rod.
【請求項5】 測量棒の背後に測量用球体または円盤と
異なる色を有する板を設けたことを特徴とする請求項1
から請求項4のいずれか1項に記載の測量装置。
5. A plate having a color different from that of a survey sphere or a disc is provided behind the survey bar.
The surveying device according to any one of claims 1 to 4.
【請求項6】 監視カメラとしてデジタルカメラを使用
したことを特徴とする請求項1から請求項5のいずれか
1項に記載の測量装置。
6. The surveying device according to claim 1, wherein a digital camera is used as the surveillance camera.
【請求項7】 請求項1から請求項6のいずれか1項に
記載の測量装置による測量方法であって、2台の監視カ
メラで捕らえた測量用球体の映像がそれぞれの画面の中
心にきたときの上記監視カメラの角度と基線長から距離
と方向を演算することを特徴とする測量方法。
7. A surveying method using the surveying device according to any one of claims 1 to 6, wherein an image of a surveying sphere captured by two monitoring cameras comes to the center of each screen. A distance and a direction are calculated from the angle and the base line length of the surveillance camera at the time.
JP10308092A 1998-10-29 1998-10-29 Surveying apparatus and surveying method Pending JP2000131060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308092A JP2000131060A (en) 1998-10-29 1998-10-29 Surveying apparatus and surveying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308092A JP2000131060A (en) 1998-10-29 1998-10-29 Surveying apparatus and surveying method

Publications (1)

Publication Number Publication Date
JP2000131060A true JP2000131060A (en) 2000-05-12

Family

ID=17976779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308092A Pending JP2000131060A (en) 1998-10-29 1998-10-29 Surveying apparatus and surveying method

Country Status (1)

Country Link
JP (1) JP2000131060A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205413A (en) * 2002-12-26 2004-07-22 Kansai Koji Sokuryo Kk Surveying target
EP1555508A1 (en) * 2004-01-16 2005-07-20 Fanuc Ltd Measuring system
JP2007093479A (en) * 2005-09-29 2007-04-12 Tokyo Institute Of Technology Three-dimensional coordinate measuring method
WO2009100728A1 (en) * 2008-02-12 2009-08-20 Trimble Ab Determining coordinates of a target in relation to a survey instruments having a camera
WO2009106141A1 (en) * 2008-02-29 2009-09-03 Trimble Ab Determining coordinates of a target in relation to a survey instrument having at least two cameras
US8345928B2 (en) 2008-02-12 2013-01-01 Trimble Ab Localizing a surveying instrument in relation to a ground mark
US8897482B2 (en) 2008-02-29 2014-11-25 Trimble Ab Stereo photogrammetry from a single station using a surveying instrument with an eccentric camera

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205413A (en) * 2002-12-26 2004-07-22 Kansai Koji Sokuryo Kk Surveying target
EP1555508A1 (en) * 2004-01-16 2005-07-20 Fanuc Ltd Measuring system
US7532949B2 (en) 2004-01-16 2009-05-12 Fanuc Ltd Measuring system
JP2007093479A (en) * 2005-09-29 2007-04-12 Tokyo Institute Of Technology Three-dimensional coordinate measuring method
WO2009100728A1 (en) * 2008-02-12 2009-08-20 Trimble Ab Determining coordinates of a target in relation to a survey instruments having a camera
US8345928B2 (en) 2008-02-12 2013-01-01 Trimble Ab Localizing a surveying instrument in relation to a ground mark
US8625086B2 (en) 2008-02-12 2014-01-07 Trimble Ab Determining coordinates of a target in relation to a survey instrument having a camera
US8629905B2 (en) 2008-02-12 2014-01-14 Trimble Ab Localization of a surveying instrument in relation to a ground mark
WO2009106141A1 (en) * 2008-02-29 2009-09-03 Trimble Ab Determining coordinates of a target in relation to a survey instrument having at least two cameras
US8897482B2 (en) 2008-02-29 2014-11-25 Trimble Ab Stereo photogrammetry from a single station using a surveying instrument with an eccentric camera
US9189858B2 (en) 2008-02-29 2015-11-17 Trimble Ab Determining coordinates of a target in relation to a survey instrument having at least two cameras
US9322652B2 (en) 2008-02-29 2016-04-26 Trimble Ab Stereo photogrammetry from a single station using a surveying instrument with an eccentric camera

Similar Documents

Publication Publication Date Title
US4724480A (en) Method for optical alignment of one object with respect to another
CN104067111B (en) For following the tracks of the automated systems and methods with the difference on monitoring objective object
JP4188394B2 (en) Surveillance camera device and surveillance camera system
JP4971344B2 (en) Surveying method and surveying device
US20050168568A1 (en) Displaying a wide field of view video image
JP2004172878A (en) Image processing system using turnable monitoring camera
JP2005167517A (en) Image processor, calibration method thereof, and image processing program
JPS61275912A (en) Total direction visual system for controlling mobile machine
JP2006262030A (en) Angle of view adjusting apparatus, camera system, and angle of view adjusting method
CN104967827A (en) Camera device and control method thereof
CN110986770B (en) Camera used in 3D acquisition system and camera selection method
JP2022171677A (en) Device and method to locate measurement point with image capture device
JP2018527575A5 (en)
JP2000131060A (en) Surveying apparatus and surveying method
JP3271900B2 (en) Automatic tracking lighting system
JP4649192B2 (en) Stereo image creation method and three-dimensional data creation apparatus
JP2001326833A (en) Device and method for photographing image for three- dimensional image display
CN110749311A (en) Positioning method, positioning device and storage medium
KR101118926B1 (en) System for observation moving objects
KR102108450B1 (en) System for drawing digital map
KR102098016B1 (en) Air shooting system for processing image with photograph and edit shooting image
JP5277600B2 (en) Overhead radiography system and method
CN116309881A (en) Tripod head camera external parameter measuring and calculating method, device, equipment and medium
WO1994010604A1 (en) Automated stereoscopic image acquisition and storage system
WO2001086957A1 (en) Image data creating device and image display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees