JP2000131043A - Road surface roughness measuring system - Google Patents

Road surface roughness measuring system

Info

Publication number
JP2000131043A
JP2000131043A JP10302077A JP30207798A JP2000131043A JP 2000131043 A JP2000131043 A JP 2000131043A JP 10302077 A JP10302077 A JP 10302077A JP 30207798 A JP30207798 A JP 30207798A JP 2000131043 A JP2000131043 A JP 2000131043A
Authority
JP
Japan
Prior art keywords
road surface
rotary
friction coefficient
dynamic friction
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10302077A
Other languages
Japanese (ja)
Other versions
JP3852893B2 (en
Inventor
Hironari Abe
部 裕 也 安
Toshio Sawa
敏 夫 澤
Atsushi Kasahara
原 篤 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Ltd
Nippo Sangyo Co Ltd
Original Assignee
Nippo Ltd
Nippo Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Ltd, Nippo Sangyo Co Ltd filed Critical Nippo Ltd
Priority to JP30207798A priority Critical patent/JP3852893B2/en
Priority to PCT/JP2000/002586 priority patent/WO2001081861A1/en
Priority to EP00917384A priority patent/EP1203928B1/en
Priority to US09/926,772 priority patent/US6679106B1/en
Priority claimed from PCT/JP2000/002586 external-priority patent/WO2001081861A1/en
Publication of JP2000131043A publication Critical patent/JP2000131043A/en
Application granted granted Critical
Publication of JP3852893B2 publication Critical patent/JP3852893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a road surface roughness measuring system in which a measuring circle on a road surface for measuring the coefficient of kinetic friction is divided into a plurality of sections and roughness is measured in each direction at the same section as the measuring position of the coefficient of kinetic friction. SOLUTION: A frame 32 having a plurality of legs 31 being set on a road surface G is provided and a rotary shaft 45 extending vertically is provided on the frame 32. The rotary shaft 45 is provided with a rotary encoder 44 and a rotary plate 50, respectively, at the upper and lower ends thereof. Furthermore, a geared motor 39 for driving the rotary shaft 45 through gears 41, 41a is provided and a laser displacement gauge 51 is fixed to the rotary plate 50. The laser displacement gauge 51 is disposed to measure the displacement along a coefficient of kinetic friction measurement circle of a rotary coefficient of kinetic friction measuring nit when the rotary plate 50 turns. The measurement circle is divided into a plurality of sections and pavement roughness is calculated for every section based on the signals from the laser displacement gauge 51 and the rotary encoder 44.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転式動摩擦係数
測定器による路面の動摩擦係数測定位置と同一位置の粗
さを測定する路面粗さ測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface roughness measuring apparatus for measuring roughness at the same position as that of a road friction coefficient measured by a rotary dynamic friction coefficient measuring device.

【0002】[0002]

【従来の技術】従来、路面の動摩擦係数を測定する技術
は種々知られており、それらの技術では測定装置をトラ
クタ(牽引車)等で牽引して粗さと動摩擦係数とを別々
に測定していた。しかし、動摩擦係数の測定値は一般に
測定装置によって偏差を生じ易く、これを統一するため
に路面の粗さとの関係を求め、それによってインターナ
ショナル・フリクション・インデックス(IFI)値を
求めることが行われている。
2. Description of the Related Art Conventionally, various techniques for measuring the coefficient of kinetic friction on a road surface are known, and in these techniques, a measuring device is towed by a tractor (towing vehicle) or the like to separately measure roughness and a coefficient of kinetic friction. Was. However, the measured value of the coefficient of kinetic friction is generally liable to be deviated by a measuring device, and in order to unify the deviation, a relationship with a road surface roughness is determined, thereby determining an International Friction Index (IFI) value. I have.

【0003】このためには、路面の同一箇所の粗さと動
摩擦係数とを測定する必要があり、この2値の同一箇所
での測定技術はかなり難しいものであった。
[0003] For this purpose, it is necessary to measure the roughness and the coefficient of dynamic friction at the same location on the road surface, and it is quite difficult to measure these two values at the same location.

【0004】動摩擦係数の測定に関して、本出願人は特
公平3−10062号公報に回転式の動摩擦係数測定装
置に関する技術を開示している。しかし、この技術は円
形状に路面の動摩擦係数を測定するものであって粗さを
測定するものではなく、IFI値を求めるには、さらに
同一位置の粗さを測定する装置を必要とする。したがっ
て、かかる回転式動摩擦係数測定装置の測定円と同一軌
跡でさらに複数箇所に区分して路面粗さを詳細に測定で
きる装置が求められていた。
[0004] Regarding the measurement of the dynamic friction coefficient, the present applicant discloses a technique relating to a rotary type dynamic friction coefficient measuring apparatus in Japanese Patent Publication No. 3-10062. However, this technique measures the dynamic friction coefficient of a road surface in a circular shape, and does not measure the roughness. To determine the IFI value, a device for measuring the roughness at the same position is further required. Therefore, there has been a demand for a device capable of measuring road surface roughness in detail by further dividing into a plurality of locations on the same locus as the measurement circle of the rotary type dynamic friction coefficient measuring device.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
に対処し、回転式動摩擦係数測定装置で動摩擦係数を測
定する路面上の測定円を複数箇所に区分し、動摩擦係数
の測定位置と同一箇所の各方向の粗さを測定する路面粗
さ測定装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention addresses the above problems and divides a measurement circle on a road surface for measuring a dynamic friction coefficient with a rotary type dynamic friction coefficient measuring device into a plurality of points, and determines a measurement position of the dynamic friction coefficient. It is an object of the present invention to provide a road surface roughness measuring device for measuring roughness in the same direction in each direction.

【0006】[0006]

【課題を解決するための手段】本発明によれば、回転式
動摩擦係数測定器と組合わせて使用する路面粗さ測定装
置であって、路面上に設置するための複数の脚を有する
枠体を設け、その枠体上に鉛直方向に延びる回転軸を設
けてその回転軸の上端にはロータリエンコーダを下端に
は回転板をそれぞれ取り付け、その回転軸を歯車を介し
て駆動する減速機付きモータを設け、前記回転板にレー
ザ変位計を取り付け、そのレーザ変位計を前記回転板の
回転によって前記回転式動摩擦係数測定器が動摩擦係数
を測定した測定円に沿って計測するように設置し、その
測定円を複数個に分割して各分割区間毎の路面粗さをレ
ーザ変位計及びロータリエンコーダの信号を基に算出す
る機能を有している。
According to the present invention, there is provided a road surface roughness measuring device used in combination with a rotary dynamic friction coefficient measuring device, the frame having a plurality of legs for installation on a road surface. And a rotary shaft extending in the vertical direction is provided on the frame body, a rotary encoder is mounted on the upper end of the rotary shaft, and a rotary plate is mounted on the lower end, and a motor with a speed reducer that drives the rotary shaft via gears. Provided, a laser displacement gauge is attached to the rotating plate, and the laser displacement meter is installed so that the rotary dynamic friction coefficient measuring device measures the dynamic friction coefficient along a measurement circle by measuring the dynamic friction coefficient by rotation of the rotating plate. It has a function of dividing the measurement circle into a plurality of parts and calculating the road surface roughness of each divided section based on signals from the laser displacement meter and the rotary encoder.

【0007】本発明の路面粗さ測定装置によれば、本装
置を路面上の回転式動摩擦係数測定器による動摩擦係数
測定位置と同一位置に設置し、同じ軌跡で回転して路面
粗さを測定する。その測定は減速機付きモータで回転さ
れる回転板に取り付けたレーザ変位計によって測定円と
の距離をロータリエンコーダのサンプル信号にしたがっ
て計測し、粗さを求める。そして、その測定円を複数個
に分割して各分割区分毎に、例えばMPD値として出力
する。
According to the road surface roughness measuring device of the present invention, the device is installed at the same position as the dynamic friction coefficient measuring position on the road surface by the rotary dynamic friction coefficient measuring device, and is rotated along the same locus to measure the road surface roughness. I do. In the measurement, the distance from the measurement circle is measured by a laser displacement meter attached to a rotary plate rotated by a motor with a speed reducer according to a sample signal of a rotary encoder, and roughness is obtained. Then, the measurement circle is divided into a plurality of circles and output as, for example, MPD values for each of the divided sections.

【0008】したがって、複数方向の粗さデータとそれ
と同一箇所の動摩擦係数とが測定でき、このより詳しい
路面データによって従来以上の解析研究を行うことがで
きる。
Therefore, the roughness data in a plurality of directions and the dynamic friction coefficient at the same location can be measured, and more detailed analysis and research can be performed using the more detailed road surface data.

【0009】なお、本発明の実施に際し、動摩擦係数の
測定を先に行うと、路面にゴム等が付着したり、あるい
は水にぬれることがあるので、粗さ測定を先行するのが
好ましい。
In the practice of the present invention, if the dynamic friction coefficient is measured first, rubber or the like may adhere to the road surface or become wet with water. Therefore, it is preferable to measure roughness first.

【0010】本発明の実施に際して、路面粗さを全周に
渡って測定することもできる。
In the practice of the present invention, the road surface roughness can be measured over the entire circumference.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。図1及び図2において、全体を符
号Aで示す粗さ測定装置は、下部に路面G上に設置する
ため弾性体で構成された複数(図示例では4個)の脚3
1を有する四角形状の枠体32を備え、その枠体32の
上方には支持板34が両端部を支柱33に支持されて掛
け渡され、ねじ35で固着されている。なお、符号Rは
支持板34両縁部に立設されたリブを示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 and 2, a roughness measuring device generally indicated by a reference symbol A is a plurality of (four in the illustrated example) legs 3 made of an elastic body to be installed on a road surface G at a lower portion.
The frame 32 is provided with a square frame 32 having a number 1. The support plate 34 is supported by the columns 33 at both ends of the frame 32 above the frame 32, and is fixed with screws 35. In addition, the reference symbol R indicates a rib provided upright on both edges of the support plate 34.

【0012】この支持板34上には第1支脚36を介し
て第1基板37が取り付けられ、その第1基板37上に
は減速機38付きのモータ39が取り付けられている。
その減速機38は、例えば1/200程度の減速比であ
って、出力軸40には第1歯車41が取り付けられてい
る。
A first substrate 37 is mounted on the support plate 34 via first supporting legs 36, and a motor 39 with a speed reducer 38 is mounted on the first substrate 37.
The speed reducer 38 has a reduction ratio of, for example, about 1/200, and a first gear 41 is attached to the output shaft 40.

【0013】これらに並設されて第2支脚42を介して
第2基板43が取り付けられ、その基板43上にはロー
タリエンコーダ44が取り付けられている。そのロータ
リエンコーダ44の回転軸45には前記第1歯車41と
噛み合う第2歯車41aが取り付けられ、その下方はベ
アリングブラケット46で保持されたベアリング47、
48によって支持されており、さらにその下端にはブラ
ケット49を介して回転板50が固着されている。
A second board 43 is mounted in parallel with these via a second support leg 42, and a rotary encoder 44 is mounted on the board 43. A second gear 41a meshing with the first gear 41 is attached to a rotation shaft 45 of the rotary encoder 44, and a bearing 47 held by a bearing bracket 46 is provided below the second gear 41a.
The rotating plate 50 is fixed to the lower end of the rotating plate 50 via a bracket 49.

【0014】そして、その回転板50にはレーザ変位計
のレーザヘッド51が取り付けられている。このレーザ
ヘッド51はそれ自体は公知のもので、発光素子から照
射されるレーザ光L1が路面Gで反射され、その反射光
の一部L2を受光素子で受け、その受光位置によって路
面Gまでの距離を求めるものである。
A laser head 51 of a laser displacement gauge is attached to the rotating plate 50. The laser head 51 is a known laser head itself. The laser light L1 emitted from the light emitting element is reflected on the road surface G, and a part L2 of the reflected light is received by the light receiving element. This is to find the distance.

【0015】また、回転板50が回転軸45まわりに回
転されてレーザヘッド51が路面上をレーザ光L1で照
射する測定円Pは、回転式の動摩擦係数測定装置の動摩
擦係数測定位置に一致するように設定されている。
The measurement circle P on which the rotating plate 50 is rotated about the rotation axis 45 and the laser head 51 irradiates the road surface with the laser beam L1 coincides with the dynamic friction coefficient measuring position of the rotary dynamic friction coefficient measuring device. It is set as follows.

【0016】一方、電気回路は図3に示すように、レー
ザヘッド51の出力がアンプユニット60を介してA/
D変換器61に接続され、また、ロータリエンコーダ4
4からもA/D変換器61に接続され、さらにA/D変
換器61からパソコン62に接続されている。なお、こ
れらの電源としては自動車用のバッテリ(12V)が用
いられている。
On the other hand, as shown in FIG. 3, the electric circuit outputs the output of the laser head 51 via the amplifier unit 60 to the A / A.
D converter 61 and the rotary encoder 4
4 is also connected to the A / D converter 61, and is further connected to the personal computer 62 from the A / D converter 61. In addition, a battery (12 V) for an automobile is used as these power sources.

【0017】そして、図5に示すように測定円Pの円周
はa〜hの8区間に分割区分され、それぞれの区間毎に
MPD(Mean Profile Depth)が算
出され、例えば、a及びe点の平均から走行方向XのM
PDを、c及びg点の平均から走行方向に直角方向のM
PDを、あるいはb及びf点の平均とd及びh点の平均
とから走行方向に45度方向のMPDをそれぞれ算出す
る機能を有している。勿論、a〜hの区間の平均を取っ
て全体のMPDを算出することもできる。
As shown in FIG. 5, the circumference of the measurement circle P is divided into eight sections a to h, and an MPD (Mean Profile Depth) is calculated for each section. Of running direction X from the average of
PD is calculated from the average of points c and g by M
It has a function of calculating the MPD in the direction of 45 degrees in the running direction from the PD or the average of the points b and f and the average of the points d and h. Of course, it is also possible to calculate the entire MPD by taking the average of the sections a to h.

【0018】本発明の路面粗さ測定装置による粗さ測定
は、動摩擦係数の測定に先行して行う。すなわち、まず
路面粗さ測定装置Aを路面に設置して路面の粗さを測定
し、次いで回転式動摩擦係数測定装置を同一位置に設置
し、両者を同じ軌跡で回転させ、同位置での表面粗さと
動摩擦係数とを測定し、路面の粗さと動摩擦係数との関
係からIFI値を算出する。
The roughness measurement by the road surface roughness measuring apparatus of the present invention is performed prior to the measurement of the dynamic friction coefficient. That is, first, the road surface roughness measuring device A is installed on the road surface to measure the roughness of the road surface, then the rotary dynamic friction coefficient measuring device is installed at the same position, and both are rotated along the same locus, and the surface at the same position is rotated. The roughness and the dynamic friction coefficient are measured, and the IFI value is calculated from the relationship between the road surface roughness and the dynamic friction coefficient.

【0019】各走行方向のMPDの計測は、図6に示す
ように、ステップS1にて回転するレーザヘッド51の
受光素子の信号がアンプユニット60に入力され、路面
との距離に比例した電圧に変換され、そしてA/D変換
器61に入力される。一方、ロータリエンコーダ44か
らのサンプリング信号もA/D変換器61に入力され
(ステップS2)、レーザヘッド51の信号はこのサン
プリング信号によってサンプリングされ、デジタル信号
となって出力されてパソコン62に記憶される(ステッ
プS3)。そして、分割した計測区間毎に集録し(ステ
ップS4)、パソコン62は記憶されたデータから各区
間毎の表面粗さを表すMPDを算出し(ステップS
5)、その結果が出力される。
As shown in FIG. 6, the measurement of the MPD in each running direction is performed by inputting the signal of the light receiving element of the laser head 51 rotating in step S1 to the amplifier unit 60 and converting the signal to a voltage proportional to the distance from the road surface, as shown in FIG. It is converted and input to the A / D converter 61. On the other hand, the sampling signal from the rotary encoder 44 is also input to the A / D converter 61 (step S2), and the signal of the laser head 51 is sampled by this sampling signal, output as a digital signal, and stored in the personal computer 62. (Step S3). Then, recording is performed for each of the divided measurement sections (step S4), and the personal computer 62 calculates the MPD representing the surface roughness of each section from the stored data (step S4).
5), and the result is output.

【0020】図4にこの結果の一例が示されている。図
において、横軸は長さ(軌跡円Pの円弧長さ)を示し、
符号Lはサンプリング長さである。縦軸はレーザヘッド
51からの距離を示し、符号Eはレーザヘッドの測定範
囲Mの上限を示し、Hは路面のレベルを示している。
FIG. 4 shows an example of this result. In the figure, the horizontal axis represents the length (the arc length of the locus circle P),
Symbol L is a sampling length. The vertical axis indicates the distance from the laser head 51, the symbol E indicates the upper limit of the measurement range M of the laser head, and H indicates the road surface level.

【0021】このようにして、パソコン62はサンプリ
ング長さLに対して路面の凹凸状態Fをレーザ変位計で
計測した値から回帰直線H1を算出し、そのH1から最
高山のレベルH2を引いてMPDを算出している。な
お、脚31の位置Hはレーザ変位計のレーザヘッド51
の測定範囲Mの範囲内の全ての凹凸が入るようになって
いる。
In this way, the personal computer 62 calculates the regression line H1 from the value obtained by measuring the road surface unevenness state F with the laser displacement meter with respect to the sampling length L, and subtracts the highest peak level H2 from the H1. MPD is calculated. The position H of the leg 31 is the position of the laser head 51 of the laser displacement meter.
All of the irregularities within the range of the measurement range M are set.

【0022】[0022]

【発明の効果】以上のように本発明によれば、回転式動
摩擦係数測定器と組み合わせ、その測定円と同一位置の
路面粗さを走行方向に対する複数方向について1回の作
業で測定でき、その結果が例えばパソコンで出力され
る。したがって、同一位置の動摩擦係数と粗さの測定値
から路面のIFI値が詳細に求められ、自動車や航空機
等のタイヤのスリップの研究等に有効に利用することが
できる。
As described above, according to the present invention, the road surface roughness at the same position as the measured circle can be measured in a single operation in a plurality of directions with respect to the traveling direction by combining with a rotating dynamic friction coefficient measuring device. The result is output, for example, on a personal computer. Therefore, the IFI value of the road surface can be determined in detail from the measured values of the coefficient of dynamic friction and the roughness at the same position, and can be effectively used for research on tire slippage of automobiles, aircraft, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の路面粗さ測定装置の一実施形態を示す
側面図。
FIG. 1 is a side view showing an embodiment of a road surface roughness measuring device according to the present invention.

【図2】図1の平面図。FIG. 2 is a plan view of FIG. 1;

【図3】本発明の路面粗さ測定装置のブロック図。FIG. 3 is a block diagram of a road surface roughness measuring device according to the present invention.

【図4】本発明で測定した粗さの一例を示す図。FIG. 4 is a diagram showing an example of roughness measured in the present invention.

【図5】測定円の区分を説明する図。FIG. 5 is a diagram for explaining division of a measurement circle.

【図6】各走行方向のMPDを算出するフローチャート
図。
FIG. 6 is a flowchart for calculating an MPD in each traveling direction.

【符号の説明】[Explanation of symbols]

31・・・脚 32・・・枠体 33・・・支柱 34・・・支持板 36・・・第1支脚 37・・・第1基板 38・・・減速機 39・・・モータ 40・・・出力軸 41・・・第1歯車 41a・・・第2歯車 42・・・第2支柱 43・・・第2基板 44・・・ロータリエンコーダ 45・・・回転軸 46・・・ブラケット 47、48・・・ベアリング 49・・・ブラケット 50・・・回転板 51・・・レーザヘッド 31, leg 32, frame 33, column 34, support plate 36, first leg 37, first substrate 38, reducer 39, motor 40,. · Output shaft 41 ··· First gear 41a ··· Second gear 42 ··· Second pillar 43 ··· Second substrate 44 ··· Rotary encoder 45 ··· Rotating shaft 46 ··· Bracket 47 48: Bearing 49: Bracket 50: Rotating plate 51: Laser head

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA03 AA49 AA54 BB26 CC40 DD03 FF66 FF67 GG06 GG12 HH02 HH12 KK01 PP03 PP22 QQ01 QQ03 QQ21 QQ23 QQ27 2F069 AA06 AA60 AA64 BB24 DD15 DD25 GG04 GG07 HH09 HH15 JJ10 KK10 MM04 MM20 MM34 NN08 NN26 PP02 RR12  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2F065 AA03 AA49 AA54 BB26 CC40 DD03 FF66 FF67 GG06 GG12 HH02 HH12 KK01 PP03 PP22 QQ01 QQ03 QQ21 QQ23 QQ27 2F069 AA06 AA60 AA64 BB24 DD15 DD25 GG04 GG07 GG04 GG08 NN26 PP02 RR12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転式動摩擦係数測定器と組合わせて使
用する路面粗さ測定装置であって、路面上に設置するた
めの複数の脚を有する枠体を設け、その枠体上に鉛直方
向に延びる回転軸を設けてその回転軸の上端にはロータ
リエンコーダを下端には回転板をそれぞれ取り付け、そ
の回転軸を歯車を介して駆動する減速機付きモータを設
け、前記回転板にレーザ変位計を取り付け、そのレーザ
変位計を前記回転板の回転によって前記回転式動摩擦係
数測定器が動摩擦係数を測定した測定円に沿って計測す
るように設置し、その測定円を複数個に分割して各分割
区間毎の路面粗さをレーザ変位計及びロータリエンコー
ダの信号を基に算出する機能を有していることを特徴と
する路面粗さ測定装置。
1. A road surface roughness measuring device used in combination with a rotary dynamic friction coefficient measuring device, comprising: a frame having a plurality of legs for installation on a road surface; A rotary encoder is mounted on the upper end of the rotary shaft, and a rotary plate is mounted on the lower end, and a motor with a speed reducer for driving the rotary shaft via gears is provided. The laser displacement gauge is installed so that the rotary dynamic friction coefficient measuring device measures the dynamic friction coefficient along the measurement circle where the dynamic friction coefficient is measured by the rotation of the rotating plate, and the measurement circle is divided into a plurality of pieces. A road surface roughness measuring device having a function of calculating a road surface roughness for each divided section based on signals from a laser displacement meter and a rotary encoder.
JP30207798A 1998-10-23 1998-10-23 Road surface roughness measuring device Expired - Fee Related JP3852893B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30207798A JP3852893B2 (en) 1998-10-23 1998-10-23 Road surface roughness measuring device
PCT/JP2000/002586 WO2001081861A1 (en) 1998-10-23 2000-04-20 Road surface roughness measuring device
EP00917384A EP1203928B1 (en) 1998-10-23 2000-04-20 Road surface roughness measuring device
US09/926,772 US6679106B1 (en) 1998-10-23 2000-04-20 Road surface roughness measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30207798A JP3852893B2 (en) 1998-10-23 1998-10-23 Road surface roughness measuring device
PCT/JP2000/002586 WO2001081861A1 (en) 1998-10-23 2000-04-20 Road surface roughness measuring device

Publications (2)

Publication Number Publication Date
JP2000131043A true JP2000131043A (en) 2000-05-12
JP3852893B2 JP3852893B2 (en) 2006-12-06

Family

ID=17904652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30207798A Expired - Fee Related JP3852893B2 (en) 1998-10-23 1998-10-23 Road surface roughness measuring device

Country Status (1)

Country Link
JP (1) JP3852893B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632606A2 (en) * 2004-09-03 2006-03-08 Seikitokyukogyo Co., Ltd. Road surface state estimating system and road surface state measuring apparatus
JP2006098397A (en) * 2004-09-03 2006-04-13 Seikitokyu Kogyo Co Ltd System and apparatus for measuring road-surface conditions
JP2014010001A (en) * 2012-06-28 2014-01-20 Ohbayashi Corp Surface roughness measurement device and method
EP2881515A1 (en) 2013-12-04 2015-06-10 Dorokogyo Co., Ltd. Texture automatic monitoring system
CN108562249A (en) * 2018-04-18 2018-09-21 洛阳理工学院 A kind of probe in flatness checking device
CN112414327A (en) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 Handheld concrete roughness three-dimensional detection device and method
US20210283973A1 (en) * 2020-03-12 2021-09-16 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
CN113819879A (en) * 2021-09-22 2021-12-21 中国航空工业集团公司北京长城计量测试技术研究所 Dynamic angle measurement method and system based on laser zero meter and high-frequency sampling
CN114166102A (en) * 2021-12-08 2022-03-11 贾月坤 Highway engineering pitch paves flat flattening detection device of back way section
US11678599B2 (en) 2020-03-12 2023-06-20 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
US11684005B2 (en) 2020-03-06 2023-06-27 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement
US11685381B2 (en) 2020-03-13 2023-06-27 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed
US11718304B2 (en) 2020-03-06 2023-08-08 Deere & Comoanv Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement
US11753016B2 (en) 2020-03-13 2023-09-12 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098397A (en) * 2004-09-03 2006-04-13 Seikitokyu Kogyo Co Ltd System and apparatus for measuring road-surface conditions
US7197425B2 (en) 2004-09-03 2007-03-27 Seikitokyukogyo Co. Ltd. Road surface state estimating system and road surface state measuring apparatus
EP1632606A3 (en) * 2004-09-03 2008-05-28 Seikitokyukogyo Co., Ltd. Road surface state estimating system and road surface state measuring apparatus
JP4668736B2 (en) * 2004-09-03 2011-04-13 世紀東急工業株式会社 Road surface condition measurement system
EP1632606A2 (en) * 2004-09-03 2006-03-08 Seikitokyukogyo Co., Ltd. Road surface state estimating system and road surface state measuring apparatus
JP2014010001A (en) * 2012-06-28 2014-01-20 Ohbayashi Corp Surface roughness measurement device and method
EP2881515A1 (en) 2013-12-04 2015-06-10 Dorokogyo Co., Ltd. Texture automatic monitoring system
US9366529B2 (en) 2013-12-04 2016-06-14 Dorokogyo Co., Ltd. Texture automatic monitoring system
CN108562249A (en) * 2018-04-18 2018-09-21 洛阳理工学院 A kind of probe in flatness checking device
US11684005B2 (en) 2020-03-06 2023-06-27 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement
US11718304B2 (en) 2020-03-06 2023-08-08 Deere & Comoanv Method and system for estimating surface roughness of ground for an off-road vehicle to control an implement
US20210283973A1 (en) * 2020-03-12 2021-09-16 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
US11667171B2 (en) 2020-03-12 2023-06-06 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
US11678599B2 (en) 2020-03-12 2023-06-20 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control steering
US11685381B2 (en) 2020-03-13 2023-06-27 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed
US11753016B2 (en) 2020-03-13 2023-09-12 Deere & Company Method and system for estimating surface roughness of ground for an off-road vehicle to control ground speed
CN112414327B (en) * 2020-11-17 2022-08-09 中国三峡建设管理有限公司 Handheld concrete roughness three-dimensional detection device and method
CN112414327A (en) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 Handheld concrete roughness three-dimensional detection device and method
CN113819879A (en) * 2021-09-22 2021-12-21 中国航空工业集团公司北京长城计量测试技术研究所 Dynamic angle measurement method and system based on laser zero meter and high-frequency sampling
CN114166102A (en) * 2021-12-08 2022-03-11 贾月坤 Highway engineering pitch paves flat flattening detection device of back way section

Also Published As

Publication number Publication date
JP3852893B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
WO2001081861A1 (en) Road surface roughness measuring device
JP2000131043A (en) Road surface roughness measuring system
EP0731336B1 (en) Method and apparatus for measuring the dynamic camber of vehicle tyres
JP3488200B2 (en) Traveling road surface shape measuring device
US6688167B2 (en) Measuring the profile of a pavement by moving three contactless distance-measuring sensors
CN213579166U (en) Sensor mounting position calibration device of intelligent driving vehicle
JP2001336927A (en) Device for measuring longitudinal-section shape
CN2474570Y (en) Device for automatic detecting flatness of road surface
CN113686571A (en) Torque and speed fluctuation testing system and method for steering intermediate shaft
CN211291368U (en) Perpendicular detection device of bridge pier column
JPH06281417A (en) Method for measuring height and deviation of trolley line
JPH10185665A (en) Axle load measuring device
JP3797760B2 (en) Road surface roughness measuring device
JP3947988B2 (en) Deflection measuring machine for roadbed
JPH0416890Y2 (en)
CN111179725A (en) Experimental device for mechanical engineering teaching
JP2712537B2 (en) Road surface measurement method
JPS63177008A (en) Apparatus for measuring unevenness of tread surface of rail
JP2813758B2 (en) Axle dynamometer
JPH06294709A (en) Method and apparatus for measuring residual cornering force of tire
JPH087056B2 (en) Road and other painting line measuring device
CN203422227U (en) Detection instrument of agricultural vehicle braking performance
CN2260313Y (en) Device for calibrating automobile levelling wheel position indicator
Tarpinian Equipment for Measuring Forces and Moments on Passenger Tires
SU1585682A1 (en) Profilograph of route

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees