JP2000126168A - Bone image processing method and bone strength evaluation method - Google Patents

Bone image processing method and bone strength evaluation method

Info

Publication number
JP2000126168A
JP2000126168A JP10300975A JP30097598A JP2000126168A JP 2000126168 A JP2000126168 A JP 2000126168A JP 10300975 A JP10300975 A JP 10300975A JP 30097598 A JP30097598 A JP 30097598A JP 2000126168 A JP2000126168 A JP 2000126168A
Authority
JP
Japan
Prior art keywords
bone
region
trabecular
image
cortical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10300975A
Other languages
Japanese (ja)
Other versions
JP3499761B2 (en
Inventor
Koichiro Daimatsu
浩一郎 大松
Ayumi Matani
歩 眞溪
Osamu Oshiro
理 大城
Kunihiro Chihara
國宏 千原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP30097598A priority Critical patent/JP3499761B2/en
Publication of JP2000126168A publication Critical patent/JP2000126168A/en
Application granted granted Critical
Publication of JP3499761B2 publication Critical patent/JP3499761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an index better reflecting the strength of a bone rather than the density thereof by repeating for the whole of a bone image a processing in which a scanning is made in the direction of the starting point of a raster scanning line from the bottom side of an isosceles triangle to determine an extracted bone region as cortical bone region and the cortical bone region is finally defined if an element of a bone image exists within the region to separate the bone image into the cortical bone region and a bone beam region. SOLUTION: Firstly, a raster scanning line is extended from a starting point and when the raster scanning line reaches a bone region, an isosceles triangle is set having the reached point as apex and the axis of the scan line as height and the apex is fixed to specify an isosceles triangle that can maximize the area thereof as far as drawn in the bone region. A scanning is made reversely to the starting point of the raster scanning from the bottom side of the specified isosceles triangle to determine the selected bone area as cortical bone area and if any element of a bone image exists in the region, it is imaged. Upon the completion of the imaging by the processing, the imaged bone region can be separated as cortical bone region and the non-imaged bone region as bone beam region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、骨画像処理方法お
よび骨強度評価方法に関するものである。さらに詳細に
は,本発明は被検骨の連続断面構造を画像化する手段を
用いて得られた画像を画像処理装置に入力し、画像中の
骨を皮質骨領域と骨梁領域に分離した後、皮質骨体積、
最大連結骨梁成分体積、骨梁辺数、空洞数を計算するこ
とによって骨強度を正確に評価する方法を提供するもの
である。
The present invention relates to a bone image processing method and a bone strength evaluation method. More specifically, the present invention inputs an image obtained by using a means for imaging a continuous cross-sectional structure of a test bone to an image processing apparatus, and separates a bone in the image into a cortical bone region and a trabecular region. Later, cortical bone volume,
An object of the present invention is to provide a method for accurately evaluating bone strength by calculating the maximum connected trabecular component volume, the number of trabecular sides, and the number of cavities.

【0002】[0002]

【従来の技術】骨強度は骨量と骨質により規定されてお
り、生体骨では骨量により骨強度の約80%を評価する
ことができると言われている.非侵襲的に骨量、すなわ
ち骨塩量を定量化する方法として、従来よりMD(Micr
o Densitometry)法、DIP(Digital Image Processi
ng)法などの単純X線フィルムを利用する方法がある
が、この方法は筋肉や臓器などの影響の大きい躯幹骨に
は適用できず、手指などの末梢骨への適用に限られてい
る。次にDPA(Dual Photon Absorptiometry)法が出
現し、腰椎の骨塩量が測定されるようになったが、DP
A法は核種の取扱いや管理区域の問題および精度の低さ
などにより普及するには至らなかった。核種の代わりに
X線を用いるものとしてDXA(Dual-energy X-ray Ab
sorptiometry)法の登場に至り、現在ではDXA法が骨
塩定量の一般的手法として用いられている。
2. Description of the Related Art Bone strength is defined by bone mass and bone quality, and it is said that about 80% of bone strength can be evaluated by bone mass in living bone. As a method of non-invasively quantifying bone mass, that is, bone mineral mass, MD (Micr
o Densitometry method, DIP (Digital Image Processi)
Although there is a method using a simple X-ray film such as the ng) method, this method cannot be applied to a trunk bone which greatly affects muscles and organs, and is limited to application to a peripheral bone such as a finger. Next, the DPA (Dual Photon Absorptiometry) method appeared, and the amount of bone mineral in the lumbar spine was measured.
Method A has not been widely used due to problems with nuclide handling and management areas and low accuracy. DXA (Dual-energy X-ray Ab) uses X-rays instead of nuclides.
With the advent of the sorptiometry method, the DXA method is currently used as a general method for bone mineral quantification.

【0003】以上のような手法を用いて骨密度(BMD =
Bone Mineral Density)を測定することで骨の評価が行
われているが、同程度の骨密度であっても骨折する場合
としない場合があり、近年では骨梁構造をはじめとする
骨質評価も重要とされている。
[0003] Bone density (BMD =
Bone evaluation is performed by measuring bone density (Bone Mineral Density), but bone fracture may or may not occur even with similar bone density. It has been.

【0004】そこで様々な骨質評価のための画像解析手
法が提案されている。しかし、StarVolume法、Run Leng
th法、Fractal解析法などの従来の骨質評価方法は主に
2次元骨断層画像を対象としているため、測定部位によ
って評価結果が著しく異なる場合がある。また骨折を想
定した場合、必要となるべき撮像平面に垂直な方向に対
する考察がほとんど行われていない。
Therefore, various image analysis techniques for evaluating bone quality have been proposed. However, StarVolume method, Run Leng
Conventional bone quality evaluation methods such as the th method and the Fractal analysis method mainly target two-dimensional bone tomographic images, so that the evaluation results may differ significantly depending on the measurement site. In addition, when a fracture is assumed, little consideration is given to the direction perpendicular to the imaging plane that should be required.

【0005】さらに、骨断面画像の骨領域を皮質骨領
域、骨梁領域に自動的に分離するための好適な方法は無
く、画像処理技術で分離したとしても骨梁領域の一部を
皮質骨領域と誤認識する場合があり、画像毎に手作業に
よる修正が必要であるものが大半である。
Further, there is no suitable method for automatically separating a bone region of a bone cross-sectional image into a cortical bone region and a trabecular bone region. There is a case where the image is erroneously recognized as a region, and most of the images need to be manually corrected for each image.

【0006】[0006]

【発明が解決しようとする課題】本発明は、非破壊的か
つ微視的に被検骨の内部構造を観察し、画像処理技術に
よって自動的に皮質骨領域と骨梁領域を分離し、骨密度
よりも骨強度をよく反映する指標及び該指標を計測する
方法を見出すことを目的としている。
SUMMARY OF THE INVENTION The present invention observes the internal structure of a bone to be examined non-destructively and microscopically, automatically separates a cortical bone region and a trabecular region by image processing technology, and The purpose is to find an index that reflects bone strength better than density and a method of measuring the index.

【0007】[0007]

【課題を解決するための手段】本発明者らは、かかる目
的を達成するために鋭意研究した結果、骨梁構造を充分
に確認可能である微小フォーカスX線断層写真撮影装置
によって撮影された被検骨の連続横断面画像複数枚を入
力画像群とし、各種画像処理を3次元的に施すことによ
って、従来より使用されてきた骨密度よりも骨強度と相
関性の高い各指標を計測できることを見出し本発明に到
達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, the object photographed by a microfocus X-ray tomography apparatus capable of sufficiently confirming the trabecular structure. By using a plurality of continuous cross-sectional images of bone examination as an input image group and performing various image processing three-dimensionally, it is possible to measure each index having a higher correlation with bone strength than conventionally used bone density. Heading reached the present invention.

【0008】すなわち本発明は、被検骨の関心領域の連
続横断面画像を微小フォーカスX線断層写真撮影装置等
によって撮影し、それらの画像を2値化して骨部のみを
抽出し、骨梁構造が確認できる解像度で撮影された骨の
2値化断面画像を作成し、該画像の端を始点として画像
の内側に向かってラスター走査線を伸ばし、該走査線が
骨領域に当たった点を頂点、該走査線軸を高さ方向とす
る二等辺三角形を選択し、該二等辺三角形の底辺が骨領
域中に描ける最大の二等辺三角形を特定し、該二等辺三
角形の底辺からラスター走査線の始点方向に対して走査
し抽出する骨領域を皮質骨領域と決定し、該領域内に骨
画像の要素があれば該要素部分を皮質骨領域とする処理
を画像全体に対して繰り返すことで、骨画像を皮質骨領
域と骨梁領域に分離する骨画像処理方法を提供するもの
である。
That is, according to the present invention, a continuous cross-sectional image of a region of interest of a bone to be examined is photographed by a micro-focus X-ray tomographic photographing apparatus or the like, and these images are binarized to extract only a bone portion, and a trabecular bone. Create a binary cross-sectional image of the bone taken at a resolution that allows confirmation of the structure, extend a raster scan line toward the inside of the image starting from the end of the image, and determine the point at which the scan line hits the bone region. Apex, select an isosceles triangle with the scanning line axis as the height direction, identify the largest isosceles triangle whose bottom is drawn in the bone region, and select the raster scanning line from the bottom of the isosceles triangle. The bone region to be scanned and extracted in the direction of the starting point is determined as a cortical bone region, and if there is a bone image element in the region, the process of setting the element portion to the cortical bone region is repeated for the entire image. Bone image is divided into cortical bone region and trabecular region Bone image processing method for there is provided a.

【0009】また、本発明は、骨梁構造が確認できる解
像度で撮影された骨の2値化連続横断面画像複数枚を入
力画像群とし、各画像について上記方法を用いて皮質骨
領域のみを抽出し、該皮質骨領域を3次元的に連結する
ことによって皮質骨体積を求めることを特徴とする骨強
度評価方法、特にその指標の1つである破断力、最大荷
重を評価する方法を提供するものである。
Further, the present invention provides, as an input image group, a plurality of binarized continuous cross-sectional images of a bone taken at a resolution that allows the trabecular structure to be confirmed, and for each image, only the cortical bone region is obtained using the above method. A bone strength evaluation method characterized in that cortical bone volume is obtained by extracting and correlating the cortical bone region three-dimensionally, and in particular, a method for evaluating a breaking force and a maximum load, which are one of the indexes, is provided. Is what you do.

【0010】また、本発明は、骨梁構造が確認できる解
像度で撮影された骨の2値化連続横断面画像複数枚を入
力画像群とし、各画像について上記方法を用いて骨梁領
域のみを抽出し、該骨梁領域を3次元的に連結すること
により骨梁成分体積を求め、その中で最も大きい骨梁成
分体積(最大連結骨梁成分体積)を求めることを特徴と
する骨強度評価方法、特に骨強度を反映する指標の1つ
である軸変位を評価する方法を提供するものである。
In addition, the present invention provides a plurality of binarized continuous cross-sectional images of a bone taken at a resolution at which a trabecular structure can be confirmed as an input image group, and for each image, only the trabecular region is determined using the above method. Bone strength evaluation characterized by extracting a trabecular component volume by extracting and connecting the trabecular regions three-dimensionally, and determining the largest trabecular component volume (maximum connected trabecular component volume) among them. It is intended to provide a method, in particular, a method of evaluating axial displacement, which is one of the indexes reflecting bone strength.

【0011】また、本発明は、骨梁構造が確認できる解
像度で撮影された骨の2値化連続横断面画像複数枚を入
力画像群とし、各画像について上記方法を用いて骨梁領
域のみを抽出し、該骨梁領域を3次元的に連結すること
により求めた骨梁領域成分を3次元細線化処理を行い、
該細線化画像から骨梁の辺数を求めることを特徴とする
骨強度評価方法、特に骨強度を反映する指標の1つであ
る靭性を評価する方法を提供するものである。
Further, the present invention provides a plurality of binarized continuous cross-sectional images of a bone taken at a resolution that allows the trabecular structure to be confirmed as an input image group. The trabecular region component obtained by extracting and connecting the trabecular region three-dimensionally is subjected to three-dimensional thinning processing,
It is an object of the present invention to provide a bone strength evaluation method characterized by obtaining the number of sides of a trabecular bone from the thinned image, in particular, a method of evaluating toughness which is one of the indexes reflecting bone strength.

【0012】更に、本発明は、骨梁構造が確認できる解
像度で撮影された骨の2値化連続横断面画像複数枚を入
力画像群とし、各画像について上記方法を用いて骨梁領
域のみを抽出し、該骨梁領域を3次元的に連結した骨梁
領域成分の3次元細線化処理を行い、該細線化画像の中
の卵殻のような構造物として現れる空洞数を求めること
を特徴とする骨強度評価方法、骨強度を反映する指標の
1つである最大弾性力を評価する方法を提供するもので
ある。
Further, according to the present invention, a plurality of binarized continuous cross-sectional images of a bone taken at a resolution that allows the trabecular structure to be confirmed are used as an input image group, and only the trabecular region is determined for each image using the above method. Extracting, performing a three-dimensional thinning process on a trabecular region component obtained by connecting the trabecular regions three-dimensionally, and determining the number of cavities appearing as a structure like an eggshell in the thinned image. The present invention provides a method for evaluating bone strength, and a method for evaluating the maximum elastic force, which is one of the indexes reflecting bone strength.

【0013】[0013]

【発明の実施の形態】以下に、本発明の骨強度評価方法
の好ましい態様例を示す。本実施例においては実験用ラ
ットの腰椎部分の骨強度を評価することを目的とした
が、人を含め他動物、他部位の骨についても容易に応用
可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The preferred embodiment of the bone strength evaluation method of the present invention will be described below. Although the purpose of this embodiment is to evaluate the bone strength of the lumbar vertebrae of the experimental rat, it can be easily applied to bones of other animals including humans and other parts.

【0014】まず、実験用の正常ラット(Shamモデル)
5体、骨粗鬆症ラット(OVXモデル)5体を準備し、そ
れぞれの第3腰椎部(L3)の微小フォーカスX線CT撮
影装置によって、1体あたり連続30断面、計300枚
を以下の条件で撮影した。 ・解像度:25.8μm/pixel ・スライス厚み:20.7μm
First, normal rats for experiments (Sham model)
Five osteoporotic rats (OVX model) were prepared, and each of the third lumbar vertebrae (L3) was imaged by a micro-focus X-ray CT imaging apparatus with a total of 300 cross-sections of 30 sections per body under the following conditions. did.・ Resolution: 25.8 μm / pixel ・ Slice thickness: 20.7 μm

【0015】尚、OVXモデルとは、左右のうち片側若
しくは両側の卵巣を摘出した動物モデルのことをいう。
このOVXモデルは原発性閉経後骨粗鬆症のモデルとし
てよく実験に使用される。OVXモデルに対するSha
mモデルとは、卵巣摘出手術による影響を除外するため
に、OVXモデル動物と同一の手術を施すが、卵巣は摘
出しない群を指す。
The OVX model refers to an animal model in which the ovaries on one or both of the right and left sides have been removed.
This OVX model is often used in experiments as a model for primary postmenopausal osteoporosis. Sha for OVX model
The m model refers to a group in which the same operation as that of the OVX model animal is performed, but the ovaries are not removed, in order to exclude the effects of the ovariectomy.

【0016】本発明における皮質骨領域、骨梁領域の分
離には、画像の2値化が必要となる。今回は大津の判別
分析法の結果をもとに閾値を決定し2値化を行ったが、
画像の2値化の手法は、他にも様々な手法が知られてい
る。
In order to separate the cortical bone region and the trabecular region in the present invention, binarization of an image is required. This time, the threshold was determined and binarized based on the results of Otsu's discriminant analysis method.
Various other methods for binarizing an image are known.

【0017】2値化した健常ラット腰椎の微小フォーカ
スX線CT画像の一例を図1に、2値化画像を皮質骨領
域、骨梁領域を分離するアルゴリズムのフローチャート
を図2に示す。
FIG. 1 shows an example of a binarized fine focus X-ray CT image of a healthy rat lumbar spine, and FIG. 2 shows a flowchart of an algorithm for separating the binarized image into a cortical bone region and a trabecular region.

【0018】図2に記載の「ラスター走査の始点の設
定」においては、図3に示す始点に属する全画素をラス
ター走査開始する始点として順次定義し、ラスター走査
の方向の決定を行う。
In the "setting of the starting point of raster scanning" shown in FIG. 2, all pixels belonging to the starting point shown in FIG. 3 are sequentially defined as starting points for starting raster scanning, and the direction of raster scanning is determined.

【0019】図2および図3に記載の「3等分線」と
は、骨の2次モーメント軸を水平軸としたときの、その
骨の最左端(図4中の最左波線)と最右端(図4中の最
右波線)の距離を3等分する線のことである。
The "trisecting line" shown in FIGS. 2 and 3 means the leftmost end of the bone (leftmost wavy line in FIG. 4) when the second moment axis of the bone is the horizontal axis. This is a line that divides the distance at the right end (the rightmost wavy line in FIG. 4) into three equal parts.

【0020】画像の中で骨の外側の輪郭が凸エッジのみ
を有している時には、画像端点からのスキャンによって
皮質骨領域、骨梁領域の分離が可能であるが、本実施例
において使用したラット腰椎の画像には凹のエッジも存
在するため、突起状の骨領域の影に当たる領域には、画
像端点からのスキャンだけではスキャン線が到達せず、
皮質骨領域、骨梁領域を完全に分離することはできな
い。したがって、上述の3等分線を設定し利用して骨画
像を分割して処理することによって、凹のエッジを持つ
ラット腰椎の画像においても皮質骨領域、骨梁領域の分
離を可能となる。
When the outer contour of the bone has only a convex edge in the image, the cortical bone region and the trabecular region can be separated by scanning from the end point of the image. Since the image of the rat lumbar vertebra also has a concave edge, the scan line does not reach the shadowed area of the protruding bone region only by scanning from the image end point,
Cortical bone area and trabecular area cannot be completely separated. Therefore, by setting and using the above-mentioned trisecting lines to divide and process the bone image, it becomes possible to separate the cortical bone region and the trabecular region even in the image of the rat lumbar vertebra having a concave edge.

【0021】また、図2に記載の「ラスター走査&塗り
潰し」では以下の処理を行う。 始点からラスター走査線を伸ばす。 ラスター走査線が骨領域に当たれば、その点を頂点
とし、走査線軸を高さとする二等辺三角形を設定し、頂
角を一定として骨領域中に描ける面積最大の二等辺三角
形を特定する。設定する二等辺三角形は、頂角が60°
以下であることが好ましく、中でも頂角が20〜60°
の範囲の二等辺三角形が分析精度の点から好ましい。本
実施例では、底辺:高さ=1:2の二等辺三角形を設定
した。 特定した二等辺三角形の底辺から、ラスター走査の
始点方向に向けて逆に走査し、そこで選ばれた骨領域を
皮質骨領域として決定し、その領域内に骨画像の要素が
あれば塗り潰す。
The following processing is performed in "raster scanning &filling" shown in FIG. Extend the raster scan line from the starting point. When the raster scanning line hits the bone region, an isosceles triangle having the point as the apex and the scanning line axis as the height is set, and the isosceles triangle having the maximum area that can be drawn in the bone region with the apex angle constant is specified. The isosceles triangle to be set has a vertex angle of 60 °
It is preferable that the angle is 20 to 60 °
The isosceles triangle in the range is preferred from the viewpoint of analysis accuracy. In this embodiment, an isosceles triangle having a base: height = 1: 2 is set. From the bottom side of the specified isosceles triangle, scanning is performed in the reverse direction toward the start point of the raster scan, and the selected bone region is determined as a cortical bone region, and if there is a bone image element in that region, it is filled.

【0022】すなわち、このアルゴリズムはラスター走
査線が画像中の骨領域に入ってから背景領域に抜けるま
でを皮質骨領域とする考え方を元にしている。補正を全
く行わない従来手法を用いた場合、ラスター走査線は皮
質骨から骨梁領域へと進んでしまい、骨梁領域も皮質骨
領域であると誤認する場合がある。
That is, this algorithm is based on the idea that a period from when a raster scan line enters a bone region in an image to when it passes through a background region is regarded as a cortical bone region. When the conventional method without any correction is used, the raster scan line advances from the cortical bone to the trabecular region, and the trabecular region may be erroneously recognized as the cortical bone region.

【0023】これを避ける方法として本発明において
は、図5に示すように、ラスター走査線が骨領域に入っ
た位置からその走査幅を広げていき、最終的には面積最
大の二等辺三角形を描き、塗り潰し領域を設定すること
とした。この処理による塗り潰しが終了すれば、塗り潰
された骨領域を皮質骨領域、塗り潰されなかった骨領域
を骨梁領域として分離することができる。
As a method of avoiding this, in the present invention, as shown in FIG. 5, the scanning width is increased from the position where the raster scanning line enters the bone region, and finally the isosceles triangle having the largest area is formed. I decided to draw and set the filled area. When the filling by this processing is completed, it is possible to separate the filled bone region as a cortical bone region and the unfilled bone region as a trabecular region.

【0024】図6に図1の画像から分離された皮質骨領
域の画像を示す。
FIG. 6 shows an image of the cortical bone region separated from the image of FIG.

【0025】次に、上述の画像処理を入力画像群である
被検骨の連続横断面画像群全部に対して行い、各々の画
像を重ね合せることにより3次元的に連結した皮質骨領
域を作成し、1[voxel]が表す単位体積[mm3/voxe
l]を元にして、各被検骨に対して皮質骨体積[mm3
を導出した。
Next, the above-described image processing is performed on the entire continuous cross-sectional image group of the subject bone, which is the input image group, and the three-dimensionally connected cortical bone regions are created by superimposing the images. And the unit volume [mm 3 / voxe] represented by 1 [voxel]
l], the cortical bone volume [mm 3 ] for each test bone
Was derived.

【0026】続いて3次元的に連結した骨梁領域を抽出
する方法について述べる。
Next, a method for extracting three-dimensionally connected trabecular regions will be described.

【0027】大域的な視点から見ると、骨梁は大きな1
つの連結成分として考えられる。しかし、有限枚のCT
画像に写り込んだ空間的に限定された領域での骨梁を考
えると、それぞれは幾つかの独立した連結成分から成
る。従って複数枚の2次元骨梁画像からは複数個の3次
元的に連結した骨梁成分が抽出されることになる。
From a global perspective, trabeculae are large
Considered as two connected components. However, a finite number of CT
Considering the trabecular bone in a spatially limited area reflected in the image, each consists of several independent connected components. Therefore, a plurality of three-dimensionally connected trabecular components are extracted from the plurality of two-dimensional trabecular images.

【0028】3次元的に連結した骨梁成分を抽出するた
めには、n枚の連続した画像に対して3次元のラベリン
グ処理が必要になる。本実施例において使用したラベリ
ング処理は以下のように行い、そのフローチャートを図
7に示す。
In order to extract three-dimensionally connected trabecular components, it is necessary to perform three-dimensional labeling on n consecutive images. The labeling process used in this embodiment is performed as follows, and its flowchart is shown in FIG.

【0029】2値化画像から骨梁領域部分のみを取り
出した画像群を入力画像群とし、該画像群すべてに対し
てラベリング処理を実施する。 連続するラベル画像n枚のうち、k(1≦k<n)枚
目の画像とk+1枚目の画像について、骨梁領域の上下
対応に従って再ラベリング処理を実施する。
An image group obtained by extracting only the trabecular region from the binarized image is set as an input image group, and labeling processing is performed on all the image groups. The re-labeling process is performed on the k-th (1 ≦ k <n) image and the (k + 1) -th image among the n consecutive label images in accordance with the vertical correspondence of the trabecular area.

【0030】k=1の場合:k←k+1してへ戻
る。 k=n−1の場合:k枚目より前に処理した画像に対
し、k枚目の結果に従って再ラベリング処理を実施し、
処理を終了する。 それ以外の場合:k枚目より前に処理した画像に対して
も、k枚目の結果に従って再ラベリング処理を実施し、
k←k+1してへ戻る。
If k = 1: k ← k + 1 and return. When k = n−1: Re-labeling is performed on the image processed before the k-th image according to the result of the k-th image.
The process ends. In other cases: For the image processed before the k-th image, re-labeling is performed according to the result of the k-th image.
Return to k ← k + 1.

【0031】尚、図7に記載の「上下対応を調べる」と
は、隣接する2枚の画像を見て、画像間で重なるpixel
が1つでもある骨梁領域があるかどうかを調べることで
あり、重なるpixelがあれば上下対応があるとみなす。
Note that "checking the up / down correspondence" in FIG. 7 means that two adjacent images are viewed,
Is to check whether there is at least one trabecular region. If there is an overlapping pixel, it is considered that there is a vertical correspondence.

【0032】即ちk枚目の画像がa0からanのラベル領
域を持ち、k+1枚目の画像がb0からbmのラベル領域
を持ち、例えば図8に示したように各ラベル領域に上下
対応があるとする。
[0032] That is k th image is has a label area of a n from a 0, k + 1 th image from b 0 has a label area of b m, for example, the label area as shown in FIG. 8 Suppose there is a vertical correspondence.

【0033】図8での上下対応をわかりやすく行列で書
くと、図9のようになる。
FIG. 9 shows the upper and lower correspondence in FIG. 8 in a matrix which is easy to understand.

【0034】上下対応のあるラベル領域間を示す個所を
○で示す。このとき以下のような事項が成り立つ。 同じ行又は同じ列に○がある場合、それは3次元的に
同一の領域になる。 同じ列に○がない場合、その領域はk+1枚目以降に
3次元的連結はない。 同じ行に○がない場合、その領域はk+1枚目から初
めて3次元的連結が始まる。
A portion indicating a space between label regions having upper and lower correspondences is indicated by a circle. At this time, the following matters hold. If there is a circle in the same row or the same column, it becomes the same area in three dimensions. If there is no circle in the same column, there is no three-dimensional connection in the area after the (k + 1) -th sheet. If there is no circle in the same row, three-dimensional connection starts from the (k + 1) -th area in that area.

【0035】この条件にしたがって最初のラベル番号を
1として順次再ラベリングすると、図10のような行列
を作成できる。ここで図9中のa3には同じ列には○が
存在せず、a3で示された領域はk+1枚目以降に3次
元的連結がないことを示しているので、a3には十分に
大きなラベル値を与える。また図9中のb3には同じ行
に○が存在せず、b3で示された領域はk+1枚目以降
から初めて3次元的連結が始まることを示しているの
で、b3には新しい領域を示すラベル値を与える。以上
のラベリング処理を実施すれば、図8は図11のように
描くことができる。
If the first label number is set to 1 and re-labeled sequentially according to this condition, a matrix as shown in FIG. 10 can be created. Here there is no ○ in the same column to a 3 in FIG. 9, the region indicated by a 3 indicates that there is no three-dimensionally connected to k + 1 th and subsequent sheets, the a 3 is Give a sufficiently large label value. Also there is no ○ on the same line in b 3 in FIG. 9, the region indicated by b 3 shows that the first three-dimensional coupling of k + 1 th and subsequent sheets is started, the b 3 new Gives a label value indicating the area. If the above labeling process is performed, FIG. 8 can be drawn as shown in FIG.

【0036】ただし、k枚目の再ラベリング処理によっ
て、k枚目とk−1枚目以前の画像との間にはラベルの
対応がなくなってしまう。したがって、k枚目のラベリ
ング処理結果に従い、aのラベル値の変化はk−1枚目
以前のラベリング処理済画像でのラベルにも反映させ
る。そして該処理を行った後、bのラベル値に従い、k
+1枚目以降の画像を順次ラベリング処理していく。こ
の処理をn枚の連続骨断面画像全体に適用することで、
3次元ラベリング処理が完了する。
However, due to the re-labeling of the k-th sheet, there is no label correspondence between the k-th sheet and the (k-1) -th image. Therefore, according to the result of the labeling processing of the k-th sheet, the change in the label value of a is reflected on the labels of the labeling-processed images before the (k-1) -th sheet. Then, after performing the processing, according to the label value of b, k
Labeling processing is sequentially performed on the + 1st and subsequent images. By applying this process to the entire n continuous bone cross-sectional images,
The three-dimensional labeling process is completed.

【0037】更に詳細に説明すると、例えば、K枚目の
画像中には骨梁成分が5つあったとする。その時、それ
ぞれの骨梁成分に[1],[2],[3],[4],[5]というラベ
ル番号を割り振る。その後、K+1枚目の画像を調べ
る。K+1枚目の画像中には骨梁成分が6つあるとする。
More specifically, for example, assume that there are five trabecular components in the K-th image. At that time, label numbers [1], [2], [3], [4], [5] are assigned to each trabecular component. Thereafter, the (K + 1) th image is examined. It is assumed that there are six trabecular components in the (K + 1) th image.

【0038】6つある骨梁成分のうち5つが、K枚目の
画像で[1],[2],[3],[4],[5]とラベル番号を付けら
れた骨梁成分と上下対応があるならば、K+1枚目の画像
中の骨梁成分のうち5つには[1]〜[5]の番号を付けるこ
とができ、K枚目の画像との上下対応が認められなかっ
た骨梁成分には、新しく[6]というラベル番号を与え
る。
Five of the six trabecular components are the trabecular components labeled [1], [2], [3], [4], and [5] in the Kth image. If there is a vertical correspondence, five of the trabecular components in the (K + 1) th image can be numbered [1] to [5], and the vertical correspondence with the Kth image Unrecognized trabecular components are given a new label number [6].

【0039】続いて、K+2枚目の画像を調べる。K+2枚目
の画像には4つしか骨梁成分がなかったとする。K+1枚
目とK+2枚目の骨梁成分の上下対応を調べたところ、K+1
枚目の画像で[1]とラベル番号を付けられていた骨梁成
分はK+2枚目の骨梁成分のどの骨梁成分とも上下対応が
なかった場合、K+1枚目まで[1]とラベル番号を付けられ
ていた骨梁成分はK+2枚目以降の画像には現れてこない
として、十分に大きなラベル番号(ここでは[100]と再
ラベリングします)を与える。今まで[1]というラベル
番号をもった骨梁成分のラベル番号がK+1枚目の画像で
[100]となったわけであるから、K枚目以前の画像に関し
ても、[1]というラベル番号は全て[100]と再ラベリング
する。
Subsequently, the (K + 2) th image is examined. Assume that the K + 2 image has only four trabecular components. When examining the vertical correspondence of the trabecular components of the K + 1 sheet and the K + 2 sheet, K + 1
The trabecular component labeled [1] in the first image does not correspond to any of the trabecular components of the K + 2nd trabecular component. The trabecular component labeled with] is given a sufficiently large label number (here relabeled as [100]), as it does not appear in the second and subsequent images. Until now, the label number of the trabecular component with the label number [1] is the K + 1st image
Since it is [100], all the label numbers [1] are re-labeled as [100] for the images before the K-th image.

【0040】次にK+1枚目まで[2]、[3]となっていた骨
梁成分をK+2枚目との間で調べた結果、[2]、[3]の骨梁
成分がK+2枚目の画像中の骨梁成分1つと上下対応があ
ったとする。その場合、今まで[2]、[3]と別々の骨梁成
分であったと認識されていた骨梁同士が、実は連結して
いたとわかる。そこで、K+2枚目の画像中での該骨梁成
分には[2]というラベル番号を与え,K+1枚目以前の画像
中で[3]となっていた骨梁成分のラベル番号を[2]と再ラ
ベリングしていく。
Next, as a result of examining the trabecular components which had been [2] and [3] up to the K + 1st sheet between the K + 2nd sheet, the trabecular components of [2] and [3] were obtained. Assume that there is an up-down correspondence with one trabecular component in the K + 2nd image. In that case, it can be understood that the trabeculae that had been recognized as a separate trabecular component from [2] and [3] were actually connected. Therefore, the trabecular component in the K + 2nd image is given a label number [2], and the label number of the trabecular component which was [3] in the image before the K + 1th image Is relabeled as [2].

【0041】K+2枚目の画像中にある残り3つの骨梁成
分のいずれもK+1枚目の画像中での骨梁成分と上下対応
が取れなかった場合、それぞれに[7],[8],[9]という
ラベル番号を与える。上の処理の結果、 K枚目の画像の骨梁成分のラベル番号は,[100],[2],
[2],[4],[5] K+1枚目の画像の骨梁成分のラベル番号は,[100],
[2],[2],[4],[5],[6] K+2枚目の画像の骨梁成分のラベル番号は,「2」,[7],
[8],[9] となる。以上のような処理を延々と画像全体に繰り返
す。
When none of the remaining three trabecular components in the K + 2nd image correspond to the trabecular component in the K + 1st image in the up-down direction, [7], Label numbers [8] and [9] are given. As a result of the above processing, the label numbers of the trabecular components of the Kth image are [100], [2],
[2], [4], [5] The label number of the trabecular component of the K + 1st image is [100],
[2], [2], [4], [5], [6] The label numbers of the trabecular components of the K + 2nd image are "2", [7],
[8] and [9]. The above processing is repeated endlessly for the entire image.

【0042】上で示した処理方法を適用し、3次元ラベ
リング処理によって得られた3次元連結骨梁成分の一例
を図12、13、14に示す。図12は得られた3次元
連結骨梁成分全体を示し、図13は図12中のregion A
で示された3次元連結骨梁成分を、図14は図12中の
region Bで示された3次元連結骨梁成分を示したもので
ある。
FIGS. 12, 13 and 14 show examples of three-dimensional connected trabecular components obtained by three-dimensional labeling by applying the processing method described above. FIG. 12 shows the entire obtained three-dimensional connected trabecular component, and FIG. 13 shows the region A in FIG.
FIG. 14 shows the three-dimensional connected trabecular component indicated by.
It shows a three-dimensional connected trabecular component indicated by region B.

【0043】3次元的に連結した骨梁領域を作成後、1
[voxel]が表す単位体積[mm3/voxel]を元にして皮質
骨体積を導出したときと同様、3次元的に連結した骨梁
領域成分それぞれについての体積を導出した。その上で
各被検骨について体積が最大である3次元連結骨梁成分
を求め、それらを各被検骨に関する最大連結骨梁成分体
積[mm3]とした。
After creating the three-dimensionally connected trabecular area,
As in the case of deriving the cortical bone volume based on the unit volume [mm 3 / voxel] represented by [voxel], the volume for each of the three-dimensionally connected trabecular region components was derived. Then, the three-dimensional connected trabecular component having the maximum volume for each test bone was determined, and the obtained value was defined as the maximum connected trabecular component volume [mm 3 ] for each test bone.

【0044】続いて、3次元的に連結した骨梁の辺数を
求める方法について述べる。
Next, a method for determining the number of sides of the three-dimensionally connected trabecular bone will be described.

【0045】まず、骨梁構造の解析を容易にするため、
上述の方法で得られた3次元連結骨梁成分に対して3次
元細線化の処理を施した。3次元細線化とは、3次元空
間において、厚さ、あるいは太さのある図形を3次元線
図形に変換する処理のことであり、該3次元線図形で
は、分岐、交差、空洞などの特殊な場所を除いて太さは
1であり、かつ、端点以外には消去可能な画素を含まな
い。該3次元線図形は、元の図形の3次元スケルトンと
呼ぶ。
First, in order to facilitate the analysis of the trabecular structure,
A three-dimensional thinning process was performed on the three-dimensional connected trabecular component obtained by the above method. The three-dimensional thinning is a process of converting a thick or thick figure into a three-dimensional line figure in a three-dimensional space. In the three-dimensional line figure, special processing such as branching, intersection, and cavity is performed. The thickness is 1 except for the appropriate locations, and no erasable pixels are included except for the end points. The three-dimensional line graphic is called a three-dimensional skeleton of the original graphic.

【0046】3次元細線化の方法は従来より様々な方法
が知られており、本発明においては「安江正宏他、3次
元濃淡画像の細線化法と医用画像への応用における能力
の比較評価、電子情報通信学会論文誌、第J79-D-II巻、
pp.1664-1674,1996」記載の方法を用いて3次元連結骨
梁成分の3次元細線化処理を実施した。3次元細線化処
理後の画像の一例を、図15に示す。
Various methods have been known for the three-dimensional thinning method. In the present invention, "Yasue Masahiro et al., Comparative evaluation of the ability of thinning method of three-dimensional grayscale image and application to medical images, IEICE Transactions, Volume J79-D-II,
pp. 1664-1674, 1996 ", a three-dimensional thinning process of the three-dimensional connected trabecular component was performed. FIG. 15 shows an example of the image after the three-dimensional thinning processing.

【0047】各被検骨の連続横断面画像群から得られた
骨梁成分の3次元スケルトンを3次元グラフとして考え
ると、骨梁構造に含まれる端点、辺、分岐点などの情報
が所得可能になる。すなわち、辺数を求めるためには、
3次元スケルトン内で、頂点から頂点までの距離が1以
上の辺を数えあげればよい。そこで該処理を各被検骨に
ついて実施し、各被検骨の骨梁の辺数を求めた。
When the three-dimensional skeleton of the trabecular component obtained from the continuous cross-sectional image group of each test bone is considered as a three-dimensional graph, information such as end points, sides, and branch points included in the trabecular structure can be obtained. become. That is, to determine the number of sides,
In the three-dimensional skeleton, it is sufficient to count the sides whose distance from the vertex to the vertex is 1 or more. Therefore, this process was performed for each of the test bones, and the number of sides of the trabecular bone of each test bone was determined.

【0048】続いて、3次元連結骨梁成分の3次元スケ
ルトン内に現れる空洞数を求める方法について述べる。
Next, a method for obtaining the number of cavities appearing in the three-dimensional skeleton of the three-dimensional connected trabecular component will be described.

【0049】複数枚の骨の横断面画像群から3次元画像
を生成し、さらに3次元細線化処理を行って3次元スケ
ルトンを得ると、該3次元スケルトン内に卵の殻のよう
な構造物が現れる。該構造物は2次元画像処理では現れ
ず、3次元画像処理で初めて現れるものであり、空洞と
呼ばれる。
When a three-dimensional image is generated from a group of cross-sectional images of a plurality of bones and further subjected to three-dimensional thinning processing to obtain a three-dimensional skeleton, a structure such as an egg shell is contained in the three-dimensional skeleton. Appears. The structure does not appear in the two-dimensional image processing, but first appears in the three-dimensional image processing, and is called a cavity.

【0050】実際に空洞数を求めるために行った処理を
以下に述べる。 前述の方法により、各被検骨の3次元連結骨梁成
分の3次元スケルトンを獲得する。 得られたスケルトンから、辺、すなわち頂点から
頂点までの距離が1より大きい線分を消去する。 の処理により空洞のみが残るため、該空洞の個
数をカウントし、空洞数とする。
The processing actually performed to determine the number of cavities will be described below. The three-dimensional skeleton of the three-dimensional connected trabecular component of each test bone is obtained by the above-described method. From the obtained skeleton, a line segment whose edge, that is, the distance from the vertex to the vertex is larger than 1 is deleted. Since only the cavities remain due to the above processing, the number of the cavities is counted and set as the number of cavities.

【0051】該処理を各被検骨について実施し、各被検
骨の空洞数を求めた。
The above treatment was performed for each of the test bones, and the number of cavities of each test bone was determined.

【0052】以上に示した方法によって、各被検骨に対
して、皮質骨体積、最大連結骨梁成分体積、骨梁辺数、
空洞数の4つの指標を求めた結果を図16に示す。
According to the above-described method, the cortical bone volume, the maximum connected trabecular component volume, the number of trabecular sides,
FIG. 16 shows the result of obtaining four indices of the number of cavities.

【0053】上で求めた4つの指標を、最も一般的な骨
質評価指標として使用されている骨密度(BMD)と比
較するため、被検骨である実験用ラット10体の第3腰
椎部(本実施例において、本発明による4つの指標を導
出した被検骨と同一の骨)全てに対して、骨密度の測定
を行った。測定装置はHologic社製QDR−20
00を用い、DXA法により測定した。骨密度の測定結
果は、Sham群の平均が1となるように正規化し、O
VX群も該結果に合わせて計算することで相対骨密度と
して導出した。測定結果を図17に示す。
In order to compare the four indices obtained above with the bone mineral density (BMD) used as the most general bone quality evaluation index, the third lumbar vertebrae of 10 experimental rats (test bones) were used. In the present example, the bone density was measured for all the same bones as the test bone from which the four indices according to the present invention were derived. The measuring device is QDR-20 manufactured by Holic.
The measurement was carried out by the DXA method using No. 00. The measurement results of the bone density were normalized so that the average of the Sham group was 1, and
The VX group was also derived as a relative bone density by calculating according to the results. FIG. 17 shows the measurement results.

【0054】続いて,実験用ラット10体の第4腰椎部
に対し、骨強度の測定を圧縮試験によって実施した。圧
縮試験時、各腰椎は歯科用レジンに埋め込み固定し、図
18のように骨梁構造の最も発達している部分をハッチ
ング部に設定し、変位速度6[mm/min]にて負荷
を加えていくことで、骨強度を反映する指標である破断
力、最大荷重、軸変位、靭性、最大弾性力の5種類の指
標を測定した。破断力[N]とは、被試験体が破断した
時に加わっていた負荷のことであり、最大荷重[N]と
は、破断までに加えられた最大負荷のことである。ま
た、軸変位[mm]とは、被試験体に負荷を加えはじめ
てから破断する間に被試験体が変形した量のことであ
り、靭性[N・mm]とは、破断するまでに被試験体に
負荷されたエネルギーのことである。さらに最大弾性力
[N/mm]とは、剛性、堅さ、曲がり難さ等を示すも
のであり、以上5種類の指標の説明を図19に示す。ま
た、Sham群の平均が1となるように正規化し、OV
X群も該結果に合わせて計算することで相対骨強度とし
て導出した圧縮試験の結果を図20に示す。
Subsequently, the bone strength of the fourth lumbar vertebra of the 10 experimental rats was measured by a compression test. At the time of the compression test, each lumbar vertebra was embedded and fixed in a dental resin, the most developed portion of the trabecular structure was set as a hatched portion as shown in FIG. 18, and a load was applied at a displacement speed of 6 [mm / min]. As a result, five kinds of indices, ie, breaking force, maximum load, axial displacement, toughness, and maximum elastic force, which are indicators reflecting bone strength, were measured. The breaking force [N] refers to the load applied when the test piece fractured, and the maximum load [N] refers to the maximum load applied before the fracture. Further, the axial displacement [mm] is the amount of deformation of the test piece during the breakage after the load is first applied to the test piece, and the toughness [N · mm] is the amount of the test piece before the breakage. Energy applied to the body. Further, the maximum elastic force [N / mm] indicates rigidity, rigidity, difficulty in bending, and the like, and the description of the above five types of indices is shown in FIG. Also, normalization is performed so that the average of the Sham group becomes 1, and the OV
FIG. 20 shows the results of the compression test derived as relative bone strength by calculating the X group in accordance with the results.

【0055】次に、本発明により導出される皮質骨体
積、最大連結骨梁成分体積、骨梁辺数、空洞数と、上の
圧縮試験にて得られた破断力、最大荷重、軸変位、靭
性、最大弾性力との相関を調べた。同様に、従来より骨
評価の指標として使用されてきた骨密度(BMD)と、圧
縮試験にて得られた破断力、最大荷重、軸変位、靭性、
最大弾性力との相関も調べた。
Next, the cortical bone volume, the maximum connected trabecular component volume, the number of trabecular sides and the number of cavities derived by the present invention, the breaking force, the maximum load, the axial displacement, The correlation with toughness and maximum elasticity was investigated. Similarly, bone density (BMD), which has been conventionally used as an index for bone evaluation, and the breaking force, maximum load, axial displacement, toughness,
The correlation with the maximum elastic force was also investigated.

【0056】結果、皮質骨体積は破断力、最大荷重と、
最大連結骨梁成分体積は軸変位と、骨梁辺数は靭性と、
空洞数は最大弾性力と相関が高いことがわかった。相関
係数の計算結果を図21に示す。同様に骨密度と破断
力、最大荷重、軸変位、靭性、最大弾性力との相関係数
の計算結果も図21中に同時に示してある。参考として
破断力−皮質骨体積の相関図を図22、破断力−骨密度
の相関図を図23、最大荷重−皮質骨体積の相関図を図
24、最大荷重−骨密度の相関図を図25、軸変位−最
大連結骨梁成分体積の相関図を図26、軸変位−骨密度
の相関図を図27、靭性−骨梁辺数の相関図を図28、
靭性−骨密度の相関図を図29、最大弾性力−空洞数の
相関図を図30、最大弾性力−骨密度の相関図を図31
に示す。
As a result, the cortical bone volume was determined by the breaking force, the maximum load,
The maximum connected trabecular component volume is axial displacement, the number of trabecular sides is toughness,
It was found that the number of cavities had a high correlation with the maximum elastic force. FIG. 21 shows the calculation result of the correlation coefficient. Similarly, the calculation results of the correlation coefficient between the bone density and the breaking force, the maximum load, the axial displacement, the toughness, and the maximum elastic force are also shown in FIG. 21 at the same time. For reference, FIG. 22 shows a breaking force-cortical bone volume correlation diagram, FIG. 23 shows a breaking force-bone density correlation diagram, FIG. 24 shows a maximum load-cortical bone volume correlation diagram, and FIG. 24 shows a maximum load-bone density correlation diagram. 25, a correlation diagram of axial displacement-maximum connected trabecular component volume, FIG. 26, a correlation diagram of axial displacement-bone density, and FIG. 28 a correlation diagram of toughness-trabecular number.
FIG. 29 shows a correlation diagram of toughness-bone density, FIG. 30 shows a correlation diagram of maximum elastic force-number of cavities, and FIG. 31 shows a correlation diagram of maximum elastic force-bone density.
Shown in

【0057】図21より、本発明による4つの指標、す
なわち皮質骨体積、最大連結骨梁成分体積、骨梁辺数、
空洞数は、従来使用されてきた骨密度(BMD)よりも
骨強度を反映する指標(破断力、最大荷重、軸変位、靭
性、最大弾性力)との相関が高く、より精度の高い評価
ができると言える。
FIG. 21 shows that four indices according to the present invention, namely, cortical bone volume, maximum connected trabecular component volume, number of trabecular sides,
The number of cavities has a higher correlation with indexes (breaking force, maximum load, axial displacement, toughness, maximum elastic force) that reflect bone strength than conventionally used bone density (BMD), and a more accurate evaluation has been achieved. It can be said that it can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】健常ラット腰椎の微小フォーカスX線CT画像
(2値化後)の一例。
FIG. 1 is an example of a microfocus X-ray CT image (after binarization) of a healthy rat lumbar spine.

【図2】皮質骨領域、骨梁領域分離アルゴリズムのフロ
ーチャート。
FIG. 2 is a flowchart of an algorithm for separating a cortical bone region and a trabecular bone region.

【図3】ラスター走査のパターン。FIG. 3 is a raster scanning pattern.

【図4】ラスター走査の始点、方向。FIG. 4 shows the starting point and direction of raster scanning.

【図5】皮質骨塗り潰し領域の決定方法。FIG. 5 is a method for determining a cortical bone filling region.

【図6】分離された皮質骨領域画像の一例。FIG. 6 is an example of a separated cortical bone region image.

【図7】3次元ラベリングのフローチャート。FIG. 7 is a flowchart of three-dimensional labeling.

【図8】各ラベル領域の上下対応。FIG. 8 is an upper and lower correspondence of each label area.

【図9】各ラベル領域の上下対応表。FIG. 9 is an upper / lower correspondence table of each label area.

【図10】各ラベル領域の上下対応表(ラベリング処理
後)。
FIG. 10 is an upper / lower correspondence table of each label area (after labeling processing).

【図11】3次元連結成分のラベリング。FIG. 11 shows labeling of three-dimensional connected components.

【図12】3次元連結骨梁成分の一例。FIG. 12 shows an example of a three-dimensional connected trabecular component.

【図13】3次元連結骨梁成分(region A)。FIG. 13 shows a three-dimensional connected trabecular bone component (region A).

【図14】3次元連結骨梁成分(region B)。FIG. 14 shows a three-dimensional connected trabecular bone component (region B).

【図15】3次元連結骨梁成分のスケルトンの一例。FIG. 15 is an example of a skeleton of a three-dimensional connected trabecular component.

【図16】本発明による指標の測定結果。FIG. 16 shows a measurement result of an index according to the present invention.

【図17】相対骨密度の測定結果。FIG. 17 shows measurement results of relative bone density.

【図18】圧縮試験時のハッチング部分。FIG. 18 is a hatched portion during a compression test.

【図19】骨強度を反映する指標5種類の位置づけ。FIG. 19 shows five types of indexes reflecting bone strength.

【図20】圧縮試験の結果。FIG. 20 shows the results of a compression test.

【図21】相関係数計算結果。FIG. 21 shows correlation coefficient calculation results.

【図22】破断力−皮質骨体積の相関図。FIG. 22 is a correlation diagram of breaking force-cortical bone volume.

【図23】破断力−骨密度の相関図。FIG. 23 is a correlation diagram of breaking force-bone density.

【図24】最大荷重−皮質骨体積の相関図。FIG. 24 is a correlation diagram of maximum load-cortical bone volume.

【図25】最大荷重−骨密度の相関図。FIG. 25 is a correlation diagram of maximum load-bone density.

【図26】軸変位−最大連結骨梁成分体積の相関図。FIG. 26 is a correlation diagram of axial displacement-maximum connected trabecular component volume.

【図27】軸変位−骨密度の相関図。FIG. 27 is a correlation diagram between axial displacement and bone density.

【図28】靭性−骨梁辺数の相関図。FIG. 28 is a correlation diagram of toughness-trabecular number.

【図29】靭性−骨密度の相関図。FIG. 29 is a correlation diagram of toughness and bone density.

【図30】最大弾性力−空洞数の相関図。FIG. 30 is a correlation diagram of the maximum elastic force-the number of cavities.

【図31】最大弾性力−骨密度の相関図。FIG. 31 is a correlation diagram of maximum elastic force-bone density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大城 理 奈良県生駒市高山町8916番地の5 奈良先 端科学技術大学院大学内 (72)発明者 千原 國宏 奈良県生駒市高山町8916番地の5 奈良先 端科学技術大学院大学内 Fターム(参考) 4C093 AA22 CA50 DA10 FF08 FF23 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Osamu Oshiro 5-16, Takayama-cho, Ikoma, Nara Prefecture Inside the Nippon Advanced Institute of Science and Technology (72) Inventor Kunihiro Chihara 5-16, 8816 Takayama-cho, Ikoma, Nara Prefecture Nara F-Term at the National Institute of Science and Technology F-term (reference) 4C093 AA22 CA50 DA10 FF08 FF23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 骨梁構造が確認できる解像度で撮影され
た骨の2値化断面画像において、画像の端を始点として
画像の内側に向かってラスター走査線を伸ばし、該走査
線が骨領域に当たった点を頂点、該走査線軸を高さ方向
とする二等辺三角形を選択し、該二等辺三角形の底辺が
骨領域中に描ける最大の二等辺三角形を特定し、該二等
辺三角形の底辺からラスター走査線の始点方向に対して
走査し抽出する骨領域を皮質骨領域と決定し、該領域内
に骨画像の要素があれば該要素部分を皮質骨領域とする
処理を画像全体に対して繰り返すことで、骨画像を皮質
骨領域と骨梁領域に分離する骨画像処理方法。
1. In a binary cross-sectional image of a bone taken at a resolution at which a trabecular structure can be confirmed, a raster scan line is extended from the end of the image toward the inside of the image, and the scan line extends to a bone region. Select the isosceles triangle with the hit point as the vertex and the scanning line axis as the height direction, specify the largest isosceles triangle whose bottom side can be drawn in the bone region, and from the base of the isosceles triangle. A bone region to be scanned and extracted in the direction of the start point of the raster scanning line is determined as a cortical bone region, and if there is a bone image element in the region, a process of setting the element portion as a cortical bone region is performed on the entire image. A bone image processing method for separating a bone image into a cortical bone region and a trabecular bone region by repeating.
【請求項2】 骨梁構造が確認できる解像度で撮影され
た骨の2値化連続横断面画像複数枚を入力画像群とし、
各画像について請求項1記載の方法を用いて皮質骨領域
のみを抽出し、該皮質骨領域を3次元的に連結すること
によって皮質骨体積を求めることを特徴とする骨強度評
価方法。
2. An input image group comprising a plurality of binarized continuous cross-sectional images of a bone taken at a resolution at which a trabecular structure can be confirmed,
A bone strength evaluation method, wherein only a cortical bone region is extracted from each image by using the method according to claim 1, and the cortical bone volume is obtained by connecting the cortical bone regions three-dimensionally.
【請求項3】 骨梁構造が確認できる解像度で撮影され
た骨の2値化連続横断面画像複数枚を入力画像群とし、
各画像について請求項1記載の方法を用いて骨梁領域の
みを抽出し、該骨梁領域を3次元的に連結することによ
り骨梁成分体積を求め、その中で最も大きい骨梁成分体
積(最大連結骨梁成分体積)を求めることを特徴とする
骨強度評価方法。
3. An input image group comprising a plurality of binarized continuous cross-sectional images of a bone taken at a resolution at which a trabecular structure can be confirmed,
For each image, only the trabecular region is extracted using the method according to claim 1, and the trabecular region volume is obtained by connecting the trabecular regions three-dimensionally. A bone strength evaluation method characterized by obtaining a maximum connected trabecular bone component volume).
【請求項4】 骨梁構造が確認できる解像度で撮影され
た骨の2値化連続横断面画像複数枚を入力画像群とし、
各画像について請求項1記載の方法を用いて骨梁領域の
みを抽出し、該骨梁領域を3次元的に連結することによ
り求めた骨梁領域成分を3次元細線化処理を行い、該細
線化画像から骨梁の辺数を求めることを特徴とする骨強
度評価方法。
4. A plurality of binarized continuous cross-sectional images of a bone taken at a resolution that allows confirmation of a trabecular structure as an input image group.
The method according to claim 1, wherein only the trabecular region is extracted from each image, and the trabecular region component obtained by connecting the trabecular regions three-dimensionally is subjected to three-dimensional thinning processing. A bone strength evaluation method characterized by obtaining the number of sides of a trabecular bone from a digitized image.
【請求項5】 骨梁構造が確認できる解像度で撮影され
た骨の2値化連続横断面画像複数枚を入力画像群とし、
各画像について請求項1記載の方法を用いて骨梁領域の
みを抽出し、該骨梁領域を3次元的に連結した骨梁領域
成分の3次元細線化処理を行い、該細線化画像の中の空
洞の数を求めることを特徴とする骨強度評価方法。
5. An input image group comprising a plurality of binary continuous cross-sectional images of a bone taken at a resolution at which a trabecular structure can be confirmed,
Only the trabecular region is extracted from each image using the method according to claim 1, and a three-dimensional thinning process of a trabecular region component obtained by connecting the trabecular regions three-dimensionally is performed. A bone strength evaluation method, wherein the number of cavities is determined.
JP30097598A 1998-10-22 1998-10-22 Bone image processing method and bone strength evaluation method Expired - Fee Related JP3499761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30097598A JP3499761B2 (en) 1998-10-22 1998-10-22 Bone image processing method and bone strength evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30097598A JP3499761B2 (en) 1998-10-22 1998-10-22 Bone image processing method and bone strength evaluation method

Publications (2)

Publication Number Publication Date
JP2000126168A true JP2000126168A (en) 2000-05-09
JP3499761B2 JP3499761B2 (en) 2004-02-23

Family

ID=17891338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30097598A Expired - Fee Related JP3499761B2 (en) 1998-10-22 1998-10-22 Bone image processing method and bone strength evaluation method

Country Status (1)

Country Link
JP (1) JP3499761B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304872A (en) * 2004-04-22 2005-11-04 Hirokazu Gesso Fracture precognition determination system and fracture precognition determination method
WO2006085525A1 (en) * 2005-02-09 2006-08-17 Hitachi Medical Corporation Diagnostic imaging support system and diagnostic imaging support program
US7840247B2 (en) 2002-09-16 2010-11-23 Imatx, Inc. Methods of predicting musculoskeletal disease
US7995822B2 (en) 2003-03-25 2011-08-09 Imatx, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
US8000441B2 (en) 2000-08-29 2011-08-16 Imatx, Inc. Calibration devices and methods of use thereof
US8000766B2 (en) 2001-05-25 2011-08-16 Imatx, Inc. Methods to diagnose treat and prevent bone loss
US8031836B2 (en) 2000-08-29 2011-10-04 Imatx, Inc. Methods and devices for quantitative analysis of x-ray images
US8068580B2 (en) 2000-08-29 2011-11-29 Imatx, Inc. Methods and devices for quantitative analysis of x-ray images
US8073521B2 (en) 2003-09-19 2011-12-06 Imatx, Inc. Method for bone structure prognosis and simulated bone remodeling
US8290564B2 (en) 2003-09-19 2012-10-16 Imatx, Inc. Method for bone structure prognosis and simulated bone remodeling
JP2013027608A (en) * 2011-07-29 2013-02-07 Shimadzu Corp Trabecular bone analyzing apparatus
US8600124B2 (en) 2004-09-16 2013-12-03 Imatx, Inc. System and method of predicting future fractures
US8625874B2 (en) 2000-10-11 2014-01-07 Imatx, Inc. Methods and devices for analysis of x-ray images
US8639009B2 (en) 2000-10-11 2014-01-28 Imatx, Inc. Methods and devices for evaluating and treating a bone condition based on x-ray image analysis
US8939917B2 (en) 2009-02-13 2015-01-27 Imatx, Inc. Methods and devices for quantitative analysis of bone and cartilage
US8965075B2 (en) 2002-09-16 2015-02-24 Imatx, Inc. System and method for predicting future fractures
JP2015092906A (en) * 2013-11-08 2015-05-18 株式会社島津製作所 Trabecula analyzer
JP2015107142A (en) * 2013-12-03 2015-06-11 株式会社島津製作所 Trabecula analyzer
JP2015108863A (en) * 2013-12-03 2015-06-11 株式会社島津製作所 Bone trabecula analysis system
JP2017118985A (en) * 2015-12-28 2017-07-06 朝日レントゲン工業株式会社 Osteoporosis diagnosis support apparatus, osteoporosis diagnosis support program, and osteoporosis diagnosis support method
JPWO2016129682A1 (en) * 2015-02-13 2017-10-19 株式会社島津製作所 Bone analyzer
JP2018008094A (en) * 2009-09-11 2018-01-18 ストラックスコープ ピーティワイ リミテッドStraxcorp Pty Ltd Analysis method and analysis system
JP2018030017A (en) * 2012-04-19 2018-03-01 オブシェストボ エス オグラノチェノイ オトヴェツトヴェノスチウ “パラファーム” Apparatus for diagnosing osteoporosis by method for checking processes of closing cavity lesions for assessing effectiveness of various osteoprotectors
CN113658706A (en) * 2021-08-06 2021-11-16 中国人民解放军总医院第一医学中心 Bone strength simulation calculation method and device and storage medium

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031836B2 (en) 2000-08-29 2011-10-04 Imatx, Inc. Methods and devices for quantitative analysis of x-ray images
US8649481B2 (en) 2000-08-29 2014-02-11 Imatx, Inc. Methods and devices for quantitative analysis of X-ray images
US8588365B2 (en) 2000-08-29 2013-11-19 Imatx, Inc. Calibration devices and methods of use thereof
US8068580B2 (en) 2000-08-29 2011-11-29 Imatx, Inc. Methods and devices for quantitative analysis of x-ray images
US8000441B2 (en) 2000-08-29 2011-08-16 Imatx, Inc. Calibration devices and methods of use thereof
US9275469B2 (en) 2000-10-11 2016-03-01 Imatx, Inc. Methods and devices for evaluating and treating a bone condition on x-ray image analysis
US8639009B2 (en) 2000-10-11 2014-01-28 Imatx, Inc. Methods and devices for evaluating and treating a bone condition based on x-ray image analysis
US8913818B2 (en) 2000-10-11 2014-12-16 Imatx, Inc. Methods and devices for evaluating and treating a bone condition based on X-ray image analysis
US9767551B2 (en) 2000-10-11 2017-09-19 Imatx, Inc. Methods and devices for analysis of x-ray images
US8625874B2 (en) 2000-10-11 2014-01-07 Imatx, Inc. Methods and devices for analysis of x-ray images
US8000766B2 (en) 2001-05-25 2011-08-16 Imatx, Inc. Methods to diagnose treat and prevent bone loss
US9267955B2 (en) 2001-05-25 2016-02-23 Imatx, Inc. Methods to diagnose treat and prevent bone loss
US9460506B2 (en) 2002-09-16 2016-10-04 Imatx, Inc. System and method for predicting future fractures
US8965075B2 (en) 2002-09-16 2015-02-24 Imatx, Inc. System and method for predicting future fractures
US8818484B2 (en) 2002-09-16 2014-08-26 Imatx, Inc. Methods of predicting musculoskeletal disease
US7840247B2 (en) 2002-09-16 2010-11-23 Imatx, Inc. Methods of predicting musculoskeletal disease
US9155501B2 (en) 2003-03-25 2015-10-13 Imatx, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
US8781191B2 (en) 2003-03-25 2014-07-15 Imatx, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
US7995822B2 (en) 2003-03-25 2011-08-09 Imatx, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
US8290564B2 (en) 2003-09-19 2012-10-16 Imatx, Inc. Method for bone structure prognosis and simulated bone remodeling
US8073521B2 (en) 2003-09-19 2011-12-06 Imatx, Inc. Method for bone structure prognosis and simulated bone remodeling
JP2005304872A (en) * 2004-04-22 2005-11-04 Hirokazu Gesso Fracture precognition determination system and fracture precognition determination method
US8965087B2 (en) 2004-09-16 2015-02-24 Imatx, Inc. System and method of predicting future fractures
US8600124B2 (en) 2004-09-16 2013-12-03 Imatx, Inc. System and method of predicting future fractures
US8139829B2 (en) 2005-02-09 2012-03-20 Hitachi Medical Corporation Diagnostic imaging support system and diagnostic imaging support program
WO2006085525A1 (en) * 2005-02-09 2006-08-17 Hitachi Medical Corporation Diagnostic imaging support system and diagnostic imaging support program
JP5324779B2 (en) * 2005-02-09 2013-10-23 株式会社日立メディコ Image diagnosis support system, image diagnosis support program
US8939917B2 (en) 2009-02-13 2015-01-27 Imatx, Inc. Methods and devices for quantitative analysis of bone and cartilage
JP2018008094A (en) * 2009-09-11 2018-01-18 ストラックスコープ ピーティワイ リミテッドStraxcorp Pty Ltd Analysis method and analysis system
US10182781B2 (en) 2009-09-11 2019-01-22 Straxcorp Pty Ltd Method and system for image analysis
JP2013027608A (en) * 2011-07-29 2013-02-07 Shimadzu Corp Trabecular bone analyzing apparatus
JP2018030017A (en) * 2012-04-19 2018-03-01 オブシェストボ エス オグラノチェノイ オトヴェツトヴェノスチウ “パラファーム” Apparatus for diagnosing osteoporosis by method for checking processes of closing cavity lesions for assessing effectiveness of various osteoprotectors
JP2015092906A (en) * 2013-11-08 2015-05-18 株式会社島津製作所 Trabecula analyzer
JP2015108863A (en) * 2013-12-03 2015-06-11 株式会社島津製作所 Bone trabecula analysis system
JP2015107142A (en) * 2013-12-03 2015-06-11 株式会社島津製作所 Trabecula analyzer
JPWO2016129682A1 (en) * 2015-02-13 2017-10-19 株式会社島津製作所 Bone analyzer
JP2017118985A (en) * 2015-12-28 2017-07-06 朝日レントゲン工業株式会社 Osteoporosis diagnosis support apparatus, osteoporosis diagnosis support program, and osteoporosis diagnosis support method
CN113658706A (en) * 2021-08-06 2021-11-16 中国人民解放军总医院第一医学中心 Bone strength simulation calculation method and device and storage medium
CN113658706B (en) * 2021-08-06 2024-01-02 中国人民解放军总医院第一医学中心 Bone strength simulation calculation method, device and storage medium

Also Published As

Publication number Publication date
JP3499761B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
JP3499761B2 (en) Bone image processing method and bone strength evaluation method
US10182781B2 (en) Method and system for image analysis
Pietka et al. Feature extraction in carpal-bone analysis
AU2002251559B2 (en) Three-dimensional joint structure measuring method
US8139836B2 (en) Automatic segmentation of the heart and aorta in medical 3-D scans without contrast media injections
US8233692B2 (en) Method of suppressing obscuring features in an image
EP2365356B1 (en) Three-dimensional (3D) ultrasound system for scanning object inside human body and method for operating 3D ultrasound system
US8649843B2 (en) Automated calcium scoring of the aorta
JP4717585B2 (en) Medical image determination apparatus, medical image determination method and program thereof
US20060029268A1 (en) Image displaying apparatus, image displaying method, computer readable medium and computer program product
CN103886576B (en) A kind of gland tissue signature grey scale detection method and device
US7813536B2 (en) Image measuring apparatus and method, and image measuring system for glomerular filtration rate
WO2000074567A1 (en) Bone measuring method
US20120078101A1 (en) Ultrasound system for displaying slice of object and method thereof
CN113658706B (en) Bone strength simulation calculation method, device and storage medium
JP2019536538A (en) Bone and hard plaque segmentation in spectral CT
JPH09294740A (en) Osteometry
CN111583219A (en) Analysis method and device for craniomaxillofacial soft and hard tissues and electronic equipment
JP3238626B2 (en) Bone measurement method
JP3258233B2 (en) Bone measurement method
Kiraly et al. A novel visualization method for the ribs within chest volume data
CN111583221B (en) Analysis method and device for craniomaxillofacial soft and hard tissues and electronic equipment
Zhou et al. Automated measurement of bone-mineral-density (BMD) values of vertebral bones based on X-ray torso CT images
JP2005304872A (en) Fracture precognition determination system and fracture precognition determination method
Asano et al. Extraction of trabecular structures of mandible excluding tooth roots on dental panoramic radiographs using mathematical morphology

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees