JP2000105313A - Dispersion compensator - Google Patents

Dispersion compensator

Info

Publication number
JP2000105313A
JP2000105313A JP10277473A JP27747398A JP2000105313A JP 2000105313 A JP2000105313 A JP 2000105313A JP 10277473 A JP10277473 A JP 10277473A JP 27747398 A JP27747398 A JP 27747398A JP 2000105313 A JP2000105313 A JP 2000105313A
Authority
JP
Japan
Prior art keywords
dispersion
refractive index
dispersion compensator
index material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10277473A
Other languages
Japanese (ja)
Inventor
Kazuro Kikuchi
和朗 菊池
Yuichi Takushima
裕一 多久島
Kenneth Zhaboronski Mark
ケンネス ジャボロンスキー マーク
Yuichi Tanaka
佑一 田中
Shin Azuma
伸 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KODEN KENKYUSHITSU KK
Takushima Yuichi
Original Assignee
OYO KODEN KENKYUSHITSU KK
Takushima Yuichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KODEN KENKYUSHITSU KK, Takushima Yuichi filed Critical OYO KODEN KENKYUSHITSU KK
Priority to JP10277473A priority Critical patent/JP2000105313A/en
Publication of JP2000105313A publication Critical patent/JP2000105313A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To embody constitution which allows relatively easy designing and is relatively easy in the regulation of a compensation quantity. SOLUTION: The dispersion compensator is constituted by linearly arraying three pieces of resonator filters 10a, 10b and 10c at prescribed intervals. These resonator filters 10a to 10c are laminated in this order on a glass substrate 18. The respective resonator filters 10a to 10c are coupled to each other in the state that Ta2O5 layers 24 are respectively interposed therebetween. The resonator filters 10a to 10c respectively have spacer layers 12 having first surfaces 12a and second surfaces 12b facing each other in parallel, first multilayered dielectric films 14 coupled to the first surfaces 12a and second multilayered dielectric films 16 coupled to the second surfaces 12b. The first multilayered dielectric films 14 and the second multilayered dielectric films 16 are formed by alternately laminating layers 20 of high-refractive index material and layers 22 of low-refractive index materials along an array direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光ファイバに短
光パルスを伝送させたときに生じる3次分散(群速度分
散の波長依存性)を補償するための分散補償器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion compensator for compensating for third-order dispersion (wavelength dependence of group velocity dispersion) generated when a short optical pulse is transmitted through an optical fiber.

【0002】[0002]

【従来の技術】ピコ秒〜フェムト秒パルス光を伝送する
ためのファイバシステムにおいては、群速度の波長依存
性、いわゆる3次分散を補償する(平坦にする)ことが
重要である。
2. Description of the Related Art In a fiber system for transmitting picosecond to femtosecond pulsed light, it is important to compensate (flatten) the wavelength dependence of group velocity, so-called third-order dispersion.

【0003】例えば、図4(A)のグラフには、一般的
な光ファイバの群遅延特性(曲線a)が示されている。
横軸に波長を取り、縦軸に群遅延量を取って示してあ
る。曲線aで示すように、通常の光ファイバ、例えば
1.3μm零分散ファイバや分散シフトファイバなどの
場合、3次分散は正となる。すなわち、曲線aは図中の
下側に凸となる。従って、図4(A)に示す3次分散を
補償するには、図4(B)に示すような群遅延特性(曲
線b)を有した補償器を用いる必要がある。
For example, a graph of FIG. 4A shows a group delay characteristic (curve a) of a general optical fiber.
The horizontal axis shows the wavelength, and the vertical axis shows the group delay amount. As shown by the curve a, in the case of a normal optical fiber such as a 1.3 μm zero-dispersion fiber or a dispersion-shifted fiber, the third-order dispersion is positive. That is, the curve a is convex downward in the figure. Therefore, in order to compensate the third-order dispersion shown in FIG. 4A, it is necessary to use a compensator having a group delay characteristic (curve b) as shown in FIG. 4B.

【0004】図4(B)のグラフには、理想的な補償器
の群遅延特性が示されている。横軸に波長を取り、縦軸
に群遅延量を取って示してある。曲線bは上側に凸とな
り、従って負の3次分散特性を示す。
FIG. 4B shows a group delay characteristic of an ideal compensator. The horizontal axis shows the wavelength, and the vertical axis shows the group delay amount. Curve b is convex upward and thus exhibits a negative third-order dispersion characteristic.

【0005】従来は、分散補償ファイバやGT(Gires-
Tourois )干渉計などを用いて、分散補償を行ってい
た。分散補償ファイバによれば、低損失であり、補償で
きる帯域が広く、補償量が大きく、しかも補償量をファ
イバの長さで調整できるという特徴がある。また、GT
干渉計は透過帯域内で比較的平坦な透過特性を示す。
Conventionally, a dispersion compensating fiber or a GT (Gires-
Tourois) The dispersion compensation was performed using an interferometer or the like. The dispersion compensating fiber is characterized in that it has a low loss, a wide band that can be compensated, a large compensation amount, and that the compensation amount can be adjusted by the length of the fiber. Also, GT
The interferometer exhibits a relatively flat transmission characteristic in the transmission band.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た分散補償ファイバでは、群速度分散および3次分散の
大きさが固定されているため、設計が非常に困難であ
り、2種類以上の補償ファイバを組み合わせることが必
要である。また、群速度分散と3次分散との比を、補償
対象と補償ファイバとで一致させる必要がある。さら
に、上述のGT干渉計は、補償量が非常に小さいという
欠点も有している。
However, in the above-mentioned dispersion compensating fiber, since the magnitudes of the group velocity dispersion and the third-order dispersion are fixed, it is very difficult to design the dispersion compensating fiber. It is necessary to combine. Further, the ratio between the group velocity dispersion and the third-order dispersion needs to be matched between the compensation target and the compensation fiber. Furthermore, the above-mentioned GT interferometer also has the disadvantage that the amount of compensation is very small.

【0007】従って、従来より、比較的容易に設計が可
能であり、補償量の調整が比較的容易な分散補償器の出
現が望まれていた。
Therefore, there has been a demand for a dispersion compensator which can be designed relatively easily and whose compensation amount can be adjusted relatively easily.

【0008】[0008]

【課題を解決するための手段】そこで、この発明の分散
補償器によれば、複数個の共振器型フィルタが所定の間
隔をもって直線的に配列しており、共振器型フィルタの
各々は、実質的に互いに平行に対向する第1の表面およ
び第2の表面を有したスペーサ層と、第1の表面に結合
した第1の誘電体多層膜と、第2の表面に結合した第2
の誘電体多層膜とを具えていることを特徴とする。
Therefore, according to the dispersion compensator of the present invention, a plurality of resonator-type filters are linearly arranged at predetermined intervals, and each of the resonator-type filters is substantially A spacer layer having a first surface and a second surface opposing each other in parallel, a first dielectric multilayer film bonded to the first surface, and a second dielectric film bonded to the second surface.
And a dielectric multilayer film.

【0009】このように、誘電体多層膜を具えた共振器
型のフィルタによれば、誘電体多層膜における多重反射
により分散が生じるため、比較的急峻な遮断特性を有し
たフィルタを構成することができる。また、このフィル
タは、透過帯域内では比較的平坦な透過特性を示す。
As described above, according to the resonator type filter having the dielectric multilayer film, since the dispersion occurs due to the multiple reflection in the dielectric multilayer film, a filter having a relatively steep cutoff characteristic can be constituted. Can be. Also, this filter shows a relatively flat transmission characteristic within the transmission band.

【0010】例えば、図5は、このフィルタの特性を示
すグラフであり、横軸に波長を取り、縦軸に透過率を取
って示してある。図5に示すように、立ち上がりおよび
立ち下がりが急激に起こり、透過帯域内において平坦な
透過特性を示す特性が、補償器として用いるに好適であ
る。また、このフィルタは比較的大きな群遅延を示すた
め、大きな補償効果が期待できる。
For example, FIG. 5 is a graph showing the characteristics of this filter, in which the horizontal axis represents wavelength and the vertical axis represents transmittance. As shown in FIG. 5, a characteristic in which rise and fall occur sharply and show a flat transmission characteristic in a transmission band is suitable for use as a compensator. Also, since this filter exhibits a relatively large group delay, a large compensation effect can be expected.

【0011】そして、各共振器型フィルタを配列して多
重共振器化することにより、補償量を大きくすることが
できる。
The amount of compensation can be increased by arranging each resonator type filter to form a multiple resonator.

【0012】図6は、1個の共振器型フィルタの透過特
性であり、図7は、3個の共振器型フィルタを用いて構
成したフィルタの透過特性である。この例では、中心波
長を1550nmとしている。図6および図7のグラフ
の横軸に波長をnm単位で取り、1540nmから15
60nmの範囲を示してある。縦軸には、透過率を示し
てある。図示の通り、3重化することにより遮断特性が
向上することが分かる。よって、3次分散の補償量が大
きくなる。
FIG. 6 shows the transmission characteristics of one resonator type filter, and FIG. 7 shows the transmission characteristics of a filter formed using three resonator type filters. In this example, the center wavelength is 1550 nm. The wavelengths are plotted in nm on the horizontal axis of the graphs of FIGS.
The range of 60 nm is shown. The vertical axis shows the transmittance. As shown in the figure, it can be seen that the cutoff characteristics are improved by the triple structure. Therefore, the compensation amount of the third-order dispersion increases.

【0013】従って、共振器型フィルタの個数に応じて
補償量を変更することができる。特に、2個以上の共振
器を用いることにより、フィルタの特性は、群速度分散
が零で、かつ負の3次分散を示すようになる。従って、
3次分散を補償するための補償器が実現できる。
Therefore, the amount of compensation can be changed according to the number of resonator type filters. In particular, by using two or more resonators, the characteristics of the filter have zero group velocity dispersion and negative third-order dispersion. Therefore,
A compensator for compensating for third-order dispersion can be realized.

【0014】以下、この発明の分散補償器の分散特性の
基本的性質について述べる。 1)3次分散は波長の関数であり、どの帯域を使用する
かで、実効的な3次分散量が決まる。 2)共振器数が1のときは、実効3次分散は正(被補償
対象のファイバと同符号)であり、共振器数が2以上で
あると負(ファイバと逆符号)となる。 3)共振器数が多い方が群遅延量は大きくなるが、同時
にリプルも増大する。 4)3次分散量は、フィルタの帯域幅の3乗に反比例す
る。 5)フィルタの中心波長で群遅延分散が零になる。 6)遮断波長近傍で3次分散量が非常に大きくなる(可
変分散)。
Hereinafter, the basic characteristics of the dispersion characteristics of the dispersion compensator of the present invention will be described. 1) The third-order dispersion is a function of the wavelength, and the effective third-order dispersion is determined by which band is used. 2) When the number of resonators is 1, the effective third-order dispersion is positive (the same sign as that of the fiber to be compensated), and when the number of resonators is two or more, it is negative (the opposite sign as the fiber). 3) The group delay amount increases as the number of resonators increases, but ripples increase at the same time. 4) The third order dispersion is inversely proportional to the cube of the filter bandwidth. 5) The group delay dispersion becomes zero at the center wavelength of the filter. 6) The third-order dispersion becomes very large near the cutoff wavelength (variable dispersion).

【0015】尚、群遅延分散(群速度分散)とは、群遅
延時間の波長依存性であり、群遅延時間を光の角周波数
で微分したものである。
The group delay dispersion (group velocity dispersion) is the wavelength dependence of the group delay time, and is obtained by differentiating the group delay time with the angular frequency of light.

【0016】また、3次分散とは、群遅延分散の波長依
存性であり、群遅延分散を光の角周波数で微分したもの
である。
The third-order dispersion is the wavelength dependence of the group delay dispersion, and is obtained by differentiating the group delay dispersion with the angular frequency of light.

【0017】以上説明したように、この発明によれば、
比較的容易に設計が可能であり、かつ補償量の調整が比
較的容易な(3次)分散補償器が実現できる。
As described above, according to the present invention,
A (third-order) dispersion compensator that can be designed relatively easily and whose adjustment amount is relatively easy can be realized.

【0018】この発明の分散補償器において、好ましく
は、第1および第2の誘電体多層膜の各々は、高屈折率
材料の層と低屈折率材料の層とが上述の配列方向に沿っ
て交互に積層したものであると良い。
In the dispersion compensator according to the present invention, preferably, each of the first and second dielectric multilayer films includes a high refractive index material layer and a low refractive index material layer in the arrangement direction described above. It is good to have it laminated alternately.

【0019】また、この発明の分散補償器において、好
ましくは、高屈折率材料をTa25 とし、低屈折率材
料をSiO2 とするのが良い。
In the dispersion compensator of the present invention, it is preferable that the high refractive index material is Ta 2 O 5 and the low refractive index material is SiO 2 .

【0020】また、この発明の分散補償器において、好
ましくは、高屈折率材料の層および低屈折率材料の層を
それぞれ4分の1波長層とするのが良い。
In the dispersion compensator of the present invention, it is preferable that each of the high refractive index material layer and the low refractive index material layer is a quarter wavelength layer.

【0021】また、この発明の分散補償器において、好
ましくは、スペーサ層を2分の1波長層とするのが良
い。
In the dispersion compensator of the present invention, it is preferable that the spacer layer is a half-wavelength layer.

【0022】また、この発明の分散補償器において、好
ましくは、所定の間隔を、中心透過波長の4分の1の光
路長とするのが良い。
Further, in the dispersion compensator of the present invention, it is preferable that the predetermined interval is set to an optical path length which is a quarter of the center transmission wavelength.

【0023】[0023]

【発明の実施の形態】以下、図を参照して、この発明の
実施の形態につき説明する。尚、図は、この発明が理解
できる程度に構成や配置関係が概略的に示されているに
過ぎない。また、以下に記載される数値条件や材料など
は単なる一例に過ぎない。従って、この発明は、この実
施の形態に何ら限定されることがない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the drawings only schematically show the configuration and arrangement relationship to the extent that the present invention can be understood. The numerical conditions and materials described below are merely examples. Therefore, the present invention is not limited to this embodiment.

【0024】図1(A)は、この実施の形態の分散補償
器の構成を示す断面図である。この実施の形態の分散補
償器は、複数個、この例では3個の共振器型フィルタ1
0a、10bおよび10cが所定の間隔をもって直線的
に配列してなる。これら共振器型フィルタ10a、10
b、10cは、ガラス基板18の上に、この順序で積層
している。共振器型フィルタ10aと10bとの間、お
よび共振器型フィルタ10bと10cとの間は、それぞ
れTa25 層24を介した状態で結合されている。
FIG. 1A is a sectional view showing the configuration of the dispersion compensator of this embodiment. The dispersion compensator of this embodiment has a plurality of, in this example, three, resonator type filters 1.
0a, 10b, and 10c are linearly arranged at predetermined intervals. These resonator filters 10a, 10a
b and 10c are laminated on the glass substrate 18 in this order. The resonator-type filters 10a and 10b and the resonator-type filters 10b and 10c are coupled to each other with a Ta 2 O 5 layer 24 interposed therebetween.

【0025】また、共振器型フィルタ10a、10b、
10cの各々は、実質的に互いに平行に対向する第1の
表面12aおよび第2の表面12bを有したスペーサ層
12と、第1の表面12aに結合した第1の誘電体多層
膜14と、第2の表面12bに結合した第2の誘電体多
層膜16とを具えている。
The resonator type filters 10a, 10b,
Each of 10c includes a spacer layer 12 having a first surface 12a and a second surface 12b opposed substantially parallel to each other, a first dielectric multilayer film 14 bonded to the first surface 12a, A second dielectric multilayer film 16 coupled to the second surface 12b.

【0026】図1(B)は、共振器型フィルタ10aの
構造を示す断面図である。第1の誘電体多層膜14およ
び第2の誘電体多層膜16の各々は、高屈折率材料の層
20と低屈折率材料の層22とが配列方向(図中の矢印
aで示す方向)に沿って交互に積層したものである。こ
の例では、高屈折率材料を屈折率2.1100のTa2
5 とし、低屈折率材料を屈折率1.4600のSiO
2 としている。また、高屈折率材料としてはNb25
を用いても良い。
FIG. 1B is a sectional view showing the structure of the resonator type filter 10a. In each of the first dielectric multilayer film 14 and the second dielectric multilayer film 16, the high refractive index material layer 20 and the low refractive index material layer 22 are arranged in the arrangement direction (the direction indicated by the arrow a in the figure). Are alternately stacked along the line. In this example, a high-refractive-index material is made of Ta 2 having a refractive index of 2.1100.
O 5 , and the low-refractive-index material is SiO 2 having a refractive index of 1.4600.
And 2 . Nb 2 O 5 is used as a high refractive index material.
May be used.

【0027】尚、図1(B)には、高屈折率材料の層2
0および低屈折率材料の層22の個数が正確に示されて
いない。一例では、各層を8層程度にするのが好適であ
る。
FIG. 1B shows a layer 2 of a high refractive index material.
The number of zero and low refractive index material layers 22 is not shown exactly. In one example, it is preferable that each layer has about eight layers.

【0028】また、高屈折率材料の層(以下、Ta2
5 層)20および低屈折率材料の層(以下、SiO2
層)22をそれぞれ4分の1波長層とする。すなわち、
この例では、中心透過波長を1μmとしているため、T
25 層20およびSiO2層22の光学的厚さがそ
れぞれ0.25μmとなるように形成する。
A layer of a high refractive index material (hereinafter referred to as Ta 2 O)
5 layers) 20 and a layer of a low refractive index material (hereinafter, SiO 2)
Layer 22 is a quarter-wave layer. That is,
In this example, since the center transmission wavelength is 1 μm, T
The a 2 O 5 layer 20 and the SiO 2 layer 22 are formed so that the optical thickness of each is 0.25 μm.

【0029】また、各スペーサ層12を2分の1波長層
とする。この例では、スペーサ層12として屈折率が
1.4600のSiO2 層を用いており、このSiO2
層の光学的厚さが0.5μmとなるように形成する。
Each spacer layer 12 is a half-wave layer. In this example, the refractive index as the spacer layer 12 is used an SiO 2 layer of 1.4600, the SiO 2
The layer is formed to have an optical thickness of 0.5 μm.

【0030】さらに、各共振器型フィルタの間に挿入さ
れたTa25 層24をそれぞれ4分の1波長層とす
る。この例では、屈折率が2.1100および光学的厚
さが0.5μmのTa25 層を用いている。この結
果、各共振器型フィルタの配列間隔は中心透過波長の4
分の1の光路長となる。
Further, the Ta 2 O 5 layers 24 inserted between the resonator filters are each made into a quarter wavelength layer. In this example, a Ta 2 O 5 layer having a refractive index of 2.1100 and an optical thickness of 0.5 μm is used. As a result, the arrangement interval of each resonator type filter is set to 4 times of the center transmission wavelength.
The optical path length is reduced by a factor of one.

【0031】次に、分散補償器の特性の測定結果を示
す。この例では、分散測定を位相シフト法により行った
が、干渉法によっても同様の結果が得られる。但し、中
心波長が1567.5nmの場合の構成につき、測定を
行った。
Next, the measurement results of the characteristics of the dispersion compensator will be shown. In this example, the dispersion measurement is performed by the phase shift method, but the same result can be obtained by the interference method. However, the measurement was performed for a configuration in which the center wavelength was 1567.5 nm.

【0032】図2は、分散補償器の透過特性を示すグラ
フである。横軸に波長をnm単位で取り、縦軸に強度を
任意単位で取って示す。波長は0nmを中心波長とし、
そこからのずれを−16nmから16nmの範囲で目盛
って示してある。グラフ中、破線aおよびbは、それぞ
れ上述した構成の分散補償器の特性を示すものであり、
実線cは、これら2つの分散補償器を直列に結合した場
合の特性を示している。
FIG. 2 is a graph showing transmission characteristics of the dispersion compensator. The horizontal axis indicates the wavelength in nm, and the vertical axis indicates the intensity in arbitrary units. The wavelength is centered on 0 nm,
The deviation therefrom is shown in a scale from -16 nm to 16 nm. In the graph, broken lines a and b show the characteristics of the dispersion compensator having the above-described configuration, respectively.
The solid line c shows the characteristics when these two dispersion compensators are coupled in series.

【0033】図3は、分散補償器の3次分散特性を示す
グラフである。横軸に波長をnm単位で取り、縦軸に3
次分散量をps3 単位で取って示す。波長は0nmを中
心波長とし、そこからのずれを−6nmから6nmの範
囲で目盛って示してある。グラフ中、破線aおよびb
は、それぞれ上述した構成の分散補償器の3次分散特性
を示すものであり、実線cは、これら2つの分散補償器
を直列に結合した場合の3次分散特性を示している。そ
れぞれ、中心波長近傍で負となっている。
FIG. 3 is a graph showing a third-order dispersion characteristic of the dispersion compensator. The horizontal axis represents the wavelength in nm, and the vertical axis represents 3
It indicates taking the following dispersion amount in ps 3 units. The wavelength has a center wavelength of 0 nm, and the deviation therefrom is graduated in the range of -6 nm to 6 nm. In the graph, broken lines a and b
Indicates the third-order dispersion characteristics of the dispersion compensator having the above-described configuration, and the solid line c indicates the third-order dispersion characteristics when these two dispersion compensators are coupled in series. Each is negative near the center wavelength.

【0034】[0034]

【発明の効果】この発明の分散補償器によれば、誘電体
多層膜を具えた共振器型のフィルタを用いる。この誘電
体多層膜における多重反射により分散が生じるため、比
較的急峻な遮断特性を有したフィルタを構成することが
できる。また、このフィルタは、透過帯域内では比較的
平坦な透過特性を示す。また、このフィルタは比較的大
きな群遅延を示すため、大きな補償効果が期待できる。
そして、各共振器型フィルタを配列して多重共振器化す
ることにより、補償量を大きくすることができる。従っ
て、共振器型フィルタの個数に応じて補償量を変更する
ことができる。特に、2個以上の共振器を用いることに
より、フィルタの特性は、群速度分散が零で、かつ負の
3次分散を示すようになる。従って、比較的容易に設計
が可能であり、かつ補償量の調整が比較的容易な(3
次)分散補償器が実現できる。
According to the dispersion compensator of the present invention, a resonator type filter having a dielectric multilayer film is used. Since dispersion occurs due to multiple reflection in the dielectric multilayer film, a filter having a relatively steep cutoff characteristic can be configured. Also, this filter shows a relatively flat transmission characteristic within the transmission band. Also, since this filter exhibits a relatively large group delay, a large compensation effect can be expected.
The amount of compensation can be increased by arranging the resonator filters to form a multiple resonator. Therefore, the compensation amount can be changed according to the number of resonator type filters. In particular, by using two or more resonators, the characteristics of the filter have zero group velocity dispersion and negative third-order dispersion. Therefore, the design can be performed relatively easily, and the adjustment of the compensation amount is relatively easy (3.
Next, a dispersion compensator can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態の分散補償器の構成を示す図であ
る。
FIG. 1 is a diagram illustrating a configuration of a dispersion compensator according to an embodiment.

【図2】分散補償器の透過特性を示す図である。FIG. 2 is a diagram illustrating transmission characteristics of a dispersion compensator.

【図3】分散補償器の3次分散特性を示す図である。FIG. 3 is a diagram illustrating a third-order dispersion characteristic of a dispersion compensator.

【図4】従来技術の説明に供する図である。FIG. 4 is a diagram provided for explanation of a conventional technique.

【図5】フィルタ特性を示す図である。FIG. 5 is a diagram illustrating filter characteristics.

【図6】1個の共振器型フィルタの透過特性を示す図で
ある。
FIG. 6 is a diagram showing transmission characteristics of one resonator type filter.

【図7】3個の共振器型フィルタで構成したフィルタの
透過特性を示す図である。
FIG. 7 is a diagram showing transmission characteristics of a filter constituted by three resonator filters.

【符号の説明】[Explanation of symbols]

10a、10b、10c:共振器型フィルタ 12a:第1の表面 12b:第2の表面 12:スペーサ層 14:第1の誘電体多層膜 16:第2の誘電体多層膜 18:ガラス基板 24:Ta25 層 20:高屈折率材料の層(Ta25 層) 22:低屈折率材料の層(SiO2 層)10a, 10b, 10c: resonator type filter 12a: first surface 12b: second surface 12: spacer layer 14: first dielectric multilayer 16: second dielectric multilayer 18: glass substrate 24: Ta 2 O 5 layer 20: High refractive index material layer (Ta 2 O 5 layer) 22: Low refractive index material layer (SiO 2 layer)

フロントページの続き (72)発明者 菊池 和朗 神奈川県横浜市港北区新吉田町1139−1 フォルム綱島クレスタワーズ1304 (72)発明者 多久島 裕一 埼玉県川口市芝富士2丁目18番18号 セイ ケイハイツ202号 (72)発明者 マーク ケンネス ジャボロンスキー 東京都目黒区駒場4丁目6番29号 K518 (72)発明者 田中 佑一 東京都杉並区和田1丁目13番23号 株式会 社応用光電研究室内 (72)発明者 東 伸 東京都杉並区和田1丁目13番23号 株式会 社応用光電研究室内 Fターム(参考) 2H048 GA04 GA13 GA23 GA30 GA34 GA48 GA52 GA62 Continued on the front page (72) Inventor Kazuo Kikuchi 1139-1 Shinyoshida-cho, Kohoku-ku, Yokohama-shi, Kanagawa 1304 Form Tsunashima Cres Towers 1304 (72) Inventor Yuichi Takushima 2-18-18 Shiba Fuji, Kawaguchi-shi, Saitama Sei Kei Heights 202 No. (72) Inventor Mark Kennes Jaboronsky K518, 4-6-129 Komaba, Meguro-ku, Tokyo K72 ) Inventor Shin Shin Higashi 1-13-23 Wada, Suginami-ku, Tokyo F-term (reference) 2H048 GA04 GA13 GA23 GA30 GA34 GA48 GA52 GA62

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数個の共振器型フィルタが所定の間隔
をもって直線的に配列しており、 前記共振器型フィルタの各々は、 実質的に互いに平行に対向する第1の表面および第2の
表面を有したスペーサ層と、 前記第1の表面に結合した第1の誘電体多層膜と、 前記第2の表面に結合した第2の誘電体多層膜とを具え
ていることを特徴とする分散補償器。
A plurality of resonator-type filters are linearly arranged at a predetermined interval, and each of the resonator-type filters has a first surface and a second surface substantially parallel to each other. A spacer layer having a surface, a first dielectric multilayer film bonded to the first surface, and a second dielectric multilayer film bonded to the second surface. Dispersion compensator.
【請求項2】 請求項1に記載の分散補償器において、 前記第1および第2の誘電体多層膜の各々は、高屈折率
材料の層と低屈折率材料の層とが前記配列方向に沿って
交互に積層したものであることを特徴とする分散補償
器。
2. The dispersion compensator according to claim 1, wherein each of the first and second dielectric multilayer films includes a high refractive index material layer and a low refractive index material layer in the arrangement direction. A dispersion compensator characterized in that the dispersion compensators are alternately stacked along the same.
【請求項3】 請求項2に記載の分散補償器において、 前記高屈折率材料をTa25 とし、前記低屈折率材料
をSiO2 とすることを特徴とする分散補償器。
3. The dispersion compensator according to claim 2, wherein the high refractive index material is Ta 2 O 5 and the low refractive index material is SiO 2 .
【請求項4】 請求項2に記載の分散補償器において、 前記高屈折率材料の層および低屈折率材料の層をそれぞ
れ4分の1波長層とすることを特徴とする分散補償器。
4. The dispersion compensator according to claim 2, wherein each of the high refractive index material layer and the low refractive index material layer is a quarter wavelength layer.
【請求項5】 請求項1に記載の分散補償器において、 前記スペーサ層を2分の1波長層とすることを特徴とす
る分散補償器。
5. The dispersion compensator according to claim 1, wherein the spacer layer is a half-wavelength layer.
【請求項6】 請求項1に記載の分散補償器において、 前記所定の間隔を、中心透過波長の4分の1の光路長と
することを特徴とする分散補償器。
6. The dispersion compensator according to claim 1, wherein the predetermined interval is an optical path length that is one quarter of a center transmission wavelength.
JP10277473A 1998-09-30 1998-09-30 Dispersion compensator Withdrawn JP2000105313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10277473A JP2000105313A (en) 1998-09-30 1998-09-30 Dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10277473A JP2000105313A (en) 1998-09-30 1998-09-30 Dispersion compensator

Publications (1)

Publication Number Publication Date
JP2000105313A true JP2000105313A (en) 2000-04-11

Family

ID=17584092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10277473A Withdrawn JP2000105313A (en) 1998-09-30 1998-09-30 Dispersion compensator

Country Status (1)

Country Link
JP (1) JP2000105313A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086328A1 (en) * 2000-05-10 2001-11-15 Oyokoden Lab Co., Ltd. Optical component and dispersion compensating method
WO2001094991A1 (en) * 2000-06-08 2001-12-13 Oyokoden Lab Co., Ltd. Composite light dispersion for compensating device and method for compensating light dispersion using the device
WO2002023234A1 (en) * 2000-09-14 2002-03-21 Oyokoden Lab Co., Ltd. Optical dispersion compensating device, composite optical dispersion compensating device comprising the device, and optical dispersion compensating method using the device
WO2002031542A1 (en) * 2000-10-13 2002-04-18 Oyokoden Lab Co., Ltd. Light dispersion compensating element and composite type light dispersion compensating element using that element and light dispersion compensating method using that element
JP2003075629A (en) * 2001-08-30 2003-03-12 Koshin Kogaku Kogyo Kk Multicavity band pass filter and method for manufacturing the same
JP2004501347A (en) * 2000-04-17 2004-01-15 ベクトン・ディキンソン・アンド・カンパニー Method for analyzing mixtures
JP2004198601A (en) * 2002-12-17 2004-07-15 Nec Corp Optical dispersion filter and optical module
JP2006516075A (en) * 2002-11-06 2006-06-15 アズナ・エルエルシー Power supply for scattering-compensated optical fiber systems
US7492976B2 (en) 2002-10-04 2009-02-17 Finisar Corporation Flat dispersion frequency discriminator (FDFD)
US7502532B2 (en) 2002-11-06 2009-03-10 Finisar Corporation Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology
US7536113B2 (en) 2002-11-06 2009-05-19 Finisar Corporation Chirp managed directly modulated laser with bandwidth limiting optical spectrum reshaper
JP2009169429A (en) * 2009-04-17 2009-07-30 Nec Corp Optical module
US7616902B2 (en) 2002-07-09 2009-11-10 Finisar Corporation Power source for a dispersion compensation fiber optic system
US7657179B2 (en) 2002-07-09 2010-02-02 Finisar Corporation Wavelength division multiplexing source using multifunctional filters
US7941057B2 (en) 2006-12-28 2011-05-10 Finisar Corporation Integral phase rule for reducing dispersion errors in an adiabatically chirped amplitude modulated signal
US7962044B2 (en) 2007-02-02 2011-06-14 Finisar Corporation Temperature stabilizing packaging for optoelectronic components in a transmitter module
US7962045B2 (en) 2006-12-22 2011-06-14 Finisar Corporation Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element
US7991291B2 (en) 2007-02-08 2011-08-02 Finisar Corporation WDM PON based on DML
US7991297B2 (en) 2007-04-06 2011-08-02 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US8027593B2 (en) 2007-02-08 2011-09-27 Finisar Corporation Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers
US8131157B2 (en) 2007-01-22 2012-03-06 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US8160455B2 (en) 2008-01-22 2012-04-17 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US8199785B2 (en) 2009-06-30 2012-06-12 Finisar Corporation Thermal chirp compensation in a chirp managed laser
US8204386B2 (en) 2007-04-06 2012-06-19 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US8260150B2 (en) 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array
US8792531B2 (en) 2003-02-25 2014-07-29 Finisar Corporation Optical beam steering for tunable laser applications

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501347A (en) * 2000-04-17 2004-01-15 ベクトン・ディキンソン・アンド・カンパニー Method for analyzing mixtures
JP4863595B2 (en) * 2000-04-17 2012-01-25 ベクトン・ディキンソン・アンド・カンパニー Method for analyzing mixtures
WO2001086328A1 (en) * 2000-05-10 2001-11-15 Oyokoden Lab Co., Ltd. Optical component and dispersion compensating method
US6943951B2 (en) 2000-05-10 2005-09-13 Oyokoden Lab Co., Ltd. Optical component and dispersion compensation method
WO2001094991A1 (en) * 2000-06-08 2001-12-13 Oyokoden Lab Co., Ltd. Composite light dispersion for compensating device and method for compensating light dispersion using the device
WO2002023234A1 (en) * 2000-09-14 2002-03-21 Oyokoden Lab Co., Ltd. Optical dispersion compensating device, composite optical dispersion compensating device comprising the device, and optical dispersion compensating method using the device
WO2002031542A1 (en) * 2000-10-13 2002-04-18 Oyokoden Lab Co., Ltd. Light dispersion compensating element and composite type light dispersion compensating element using that element and light dispersion compensating method using that element
JP2003075629A (en) * 2001-08-30 2003-03-12 Koshin Kogaku Kogyo Kk Multicavity band pass filter and method for manufacturing the same
JP4653912B2 (en) * 2001-08-30 2011-03-16 光伸光学工業株式会社 Multi-cavity bandpass filter and manufacturing method thereof
US7663762B2 (en) 2002-07-09 2010-02-16 Finisar Corporation High-speed transmission system comprising a coupled multi-cavity optical discriminator
US7477851B2 (en) 2002-07-09 2009-01-13 Finisar Corporation Power source for a dispersion compensation fiber optic system
US7616902B2 (en) 2002-07-09 2009-11-10 Finisar Corporation Power source for a dispersion compensation fiber optic system
US7657179B2 (en) 2002-07-09 2010-02-02 Finisar Corporation Wavelength division multiplexing source using multifunctional filters
US7492976B2 (en) 2002-10-04 2009-02-17 Finisar Corporation Flat dispersion frequency discriminator (FDFD)
US7502532B2 (en) 2002-11-06 2009-03-10 Finisar Corporation Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology
US7536113B2 (en) 2002-11-06 2009-05-19 Finisar Corporation Chirp managed directly modulated laser with bandwidth limiting optical spectrum reshaper
JP4764633B2 (en) * 2002-11-06 2011-09-07 フィニサー コーポレイション Light source for dispersion-compensated optical fiber system
JP2006516075A (en) * 2002-11-06 2006-06-15 アズナ・エルエルシー Power supply for scattering-compensated optical fiber systems
JP2004198601A (en) * 2002-12-17 2004-07-15 Nec Corp Optical dispersion filter and optical module
US7495832B2 (en) 2002-12-17 2009-02-24 Nec Corporation Light dispersion filter and optical module
US7944613B2 (en) 2002-12-17 2011-05-17 Nec Corporation Optical module having three or more optically transparent layers
US8456741B2 (en) 2002-12-17 2013-06-04 Nec Corporation Optical module having three or more optically transparent layers
WO2009075006A1 (en) * 2002-12-17 2009-06-18 Kenji Sato Light dispersion filter and optical module
US8792531B2 (en) 2003-02-25 2014-07-29 Finisar Corporation Optical beam steering for tunable laser applications
US7962045B2 (en) 2006-12-22 2011-06-14 Finisar Corporation Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element
US7941057B2 (en) 2006-12-28 2011-05-10 Finisar Corporation Integral phase rule for reducing dispersion errors in an adiabatically chirped amplitude modulated signal
US8131157B2 (en) 2007-01-22 2012-03-06 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US7962044B2 (en) 2007-02-02 2011-06-14 Finisar Corporation Temperature stabilizing packaging for optoelectronic components in a transmitter module
US8027593B2 (en) 2007-02-08 2011-09-27 Finisar Corporation Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers
US7991291B2 (en) 2007-02-08 2011-08-02 Finisar Corporation WDM PON based on DML
US8204386B2 (en) 2007-04-06 2012-06-19 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US7991297B2 (en) 2007-04-06 2011-08-02 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US8160455B2 (en) 2008-01-22 2012-04-17 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US8260150B2 (en) 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array
JP2009169429A (en) * 2009-04-17 2009-07-30 Nec Corp Optical module
US8199785B2 (en) 2009-06-30 2012-06-12 Finisar Corporation Thermal chirp compensation in a chirp managed laser

Similar Documents

Publication Publication Date Title
JP2000105313A (en) Dispersion compensator
US4553816A (en) Tunable Fabry-Perot filter
US6850366B2 (en) Multi-cavity optical filter
JP3879411B2 (en) Dispersion compensator
US7199927B2 (en) Optical element and optical add-drop module
US5410431A (en) Multi-line narrowband-pass filters
US6844975B2 (en) Etalon devices employing multiple materials
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
JP2002311235A (en) Composite light diffusion compensating element and light diffusion compensating method using the same
JPWO2001086328A1 (en) Optical component and its dispersion compensation method
US6600604B2 (en) Athermal thin film filter
JP4613814B2 (en) Variable dispersion compensator
US20020154845A1 (en) Method and apparatus for an optical filter
EP1520193B1 (en) Method and apparatus for an optical filter
US5185842A (en) Optical waveguide type wavelength filter
JPH07209516A (en) Optical multilayer film filter
JP2008158258A (en) Optical interference filter and its fabrication
JP2005236336A (en) Composite type light dispersion compensating element and light dispersion compensating method
JP2741731B2 (en) Polarizer
JPH09258116A (en) Variable wavelength filter
JPH11326633A (en) Wavelength selecting element and optical device using the same
JPH05281480A (en) Optical wavelength variable filter and its production
JP2002122732A (en) Optical dispersion compensating device
JP2637254B2 (en) Optical bandpass filter
JPH07104122A (en) Band-pass filter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110