JP2000097913A - Surface electrolytic dissociation-type ionization device - Google Patents

Surface electrolytic dissociation-type ionization device

Info

Publication number
JP2000097913A
JP2000097913A JP10269195A JP26919598A JP2000097913A JP 2000097913 A JP2000097913 A JP 2000097913A JP 10269195 A JP10269195 A JP 10269195A JP 26919598 A JP26919598 A JP 26919598A JP 2000097913 A JP2000097913 A JP 2000097913A
Authority
JP
Japan
Prior art keywords
gas
sample
ionization
molecule
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10269195A
Other languages
Japanese (ja)
Inventor
Hideyuki Kamigaki
英之 上垣
Toshihiro Fujii
敏博 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATL INST FOR ENVIRONMENTAL ST
NATL INST FOR ENVIRONMENTAL STUDIES
Shimadzu Corp
Japan Science and Technology Agency
Original Assignee
NATL INST FOR ENVIRONMENTAL ST
NATL INST FOR ENVIRONMENTAL STUDIES
Shimadzu Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATL INST FOR ENVIRONMENTAL ST, NATL INST FOR ENVIRONMENTAL STUDIES, Shimadzu Corp, Japan Science and Technology Corp filed Critical NATL INST FOR ENVIRONMENTAL ST
Priority to JP10269195A priority Critical patent/JP2000097913A/en
Publication of JP2000097913A publication Critical patent/JP2000097913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To make easily changeable a surface electrolytic dissociation ionization (HSI) using supersonic molecular jet to normal surface electrolytic dissociation ionization (SI). SOLUTION: H2 gas with a small molecular weight and N2 gas with a large molecular weight are selected by a valve 3, are added to a sample gas as an auxiliary gas, and are introduced to a nozzle 6. Translation energy being obtained when a sample gas molecule jets out from a gas jet hole 7 depends on the amount of molecule of the auxiliary gas, thus accelerating a sample gas molecule to a supersonic region, and allowing the sample gas molecule to collide with an emitter 9 when the H2 gas is added. on the other hand, when the N2 gas is added, the sample gas molecule is brought into contact with the emitter 9 at a relatively slow speed without accelerating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばガスクロマ
トグラフ用の検出器(質量分析計も含む)等において気
体試料をイオン化するイオン源として利用されるイオン
化装置であって、表面電離作用によりイオン化を行う表
面電離型イオン化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ionization apparatus used as an ion source for ionizing a gas sample in a detector (including a mass spectrometer) for a gas chromatograph, for example. The present invention relates to a surface ionization type ionization apparatus.

【0002】[0002]

【従来の技術】試料ガス分子をイオン化する手法として
は、従来より、電子衝撃イオン化法(EI)、化学イオ
ン化法(CI)等種々のものが用いられている。表面電
離イオン化法はその一方法であって、適度に加熱した固
体表面に試料分子又は原子を接触させ、表面電離作用に
より該試料分子又は原子をイオン化するものである。表
面電離イオン化法は、固体表面へ試料分子が接触する際
の該分子の速度という観点から2つに大別することがで
きる。
2. Description of the Related Art Various techniques for ionizing sample gas molecules, such as electron impact ionization (EI) and chemical ionization (CI), have been used. The surface ionization ionization method is one of the methods, in which a sample molecule or atom is brought into contact with an appropriately heated solid surface, and the sample molecule or atom is ionized by a surface ionization action. The surface ionization ionization method can be roughly classified into two types from the viewpoint of the speed of the sample molecule when it comes into contact with the solid surface.

【0003】すなわち、その1つは、超音速分子流法と
称される分子加速法を利用して、試料分子を超音速領域
まで加速して固体表面に衝突させる方法である(以下、
この方法を「HSI」という)。この方法では、分子量
が大きくそれ自身では加速が容易でない試料ガス分子に
対して水素、ヘリウム等の比重の軽い補助ガスを混合
し、その混合ガスを微小径のガス噴出孔から真空雰囲気
中に勢いよく噴出させる。すると、試料ガス分子は補助
ガス分子と二体衝突を繰り返すことにより加速され、超
音速領域の速度に到達する。そのような超音速分子噴流
中に固体表面を配設することにより、試料ガス分子は固
体表面に勢いよく衝突してイオン化される。(なお、詳
しくは特公平5−12663号公報など参照)。
That is, one of the methods is a method in which a sample molecule is accelerated to a supersonic range and collides with a solid surface by using a molecular acceleration method called a supersonic molecular flow method (hereinafter, referred to as a supersonic molecular flow method).
This method is called “HSI”). In this method, a sample gas molecule having a large molecular weight, which cannot be easily accelerated by itself, is mixed with an auxiliary gas having a low specific gravity, such as hydrogen or helium, and the mixed gas is forced from a gas outlet having a small diameter into a vacuum atmosphere. Squirt well. Then, the sample gas molecule is accelerated by repeating two-body collision with the auxiliary gas molecule, and reaches a speed in a supersonic region. By disposing the solid surface in such a supersonic molecular jet, the sample gas molecules collide with the solid surface vigorously and are ionized. (For details, see Japanese Patent Publication No. 5-12663).

【0004】他の1つの方法は、分子加速を行わずに比
較的遅い速度でもって試料ガス分子を固体表面に導く方
法である。一般に表面電離イオン化法と呼ばれているの
はこの方法である(以下、この方法を「SI」とい
う)。
[0004] Another method is to introduce sample gas molecules to a solid surface at a relatively low speed without performing molecular acceleration. This method is generally called a surface ionization ionization method (hereinafter, this method is referred to as “SI”).

【0005】HSIでは試料ガス分子が極めて大きな運
動エネルギをもって固体表面に接触するので、高い効率
でもってイオン化が行われる。その反面、イオン化エネ
ルギの大小にあまり関係なくイオン化が行われるので、
特定の分子のみをイオン化する、つまり高い選択性を得
ることは困難である。これに対しSIでは、イオン化エ
ネルギの大きな分子をイオン化することが困難であって
イオン化効率は高くないが、反面、選択性は高いという
特徴を有している。
[0005] In the HSI, since the sample gas molecules come into contact with the solid surface with extremely large kinetic energy, ionization is performed with high efficiency. On the other hand, ionization is performed irrespective of the magnitude of ionization energy,
It is difficult to ionize only specific molecules, that is, to obtain high selectivity. On the other hand, SI has a feature that it is difficult to ionize a molecule having a large ionization energy and the ionization efficiency is not high, but the selectivity is high.

【0006】[0006]

【発明が解決しようとする課題】このようにHSIとS
Iとはそれぞれ異なる特徴をもっているので、分析の目
的などに応じて両方法を適宜切り替えて使用したいとい
う要求がある。上述のように試料ガス分子を補助ガスと
ともに真空雰囲気中に噴出させて分子噴流を発生させる
場合、試料ガス分子が得る運動エネルギはガス噴出孔の
口径に依存しており、口径が大きいほど該エネルギは小
さくなる。そこで、従来、SIを行う場合にはガスを吹
き出す配管の先端にノズルを取り付けず、HSIを行う
場合にはその配管の先端に微小口径のガス噴出孔を有す
るノズルを取り付ける、という方法が採られていた。
As described above, HSI and S
Since each has different characteristics from I, there is a demand to switch and use both methods as appropriate according to the purpose of analysis. When the sample gas molecules are ejected together with the auxiliary gas into the vacuum atmosphere to generate a molecular jet as described above, the kinetic energy obtained by the sample gas molecules depends on the diameter of the gas ejection hole. Becomes smaller. Therefore, conventionally, a method has been adopted in which, when performing SI, no nozzle is attached to the tip of a pipe that blows out gas, and when performing HSI, a nozzle having a gas ejection hole with a small diameter is attached to the tip of the pipe. I was

【0007】しかしながら、このような方法ではノズル
の着脱という面倒な作業を要するとともに、イオン化室
内を大気圧に戻した状態でそのような作業を行わなけれ
ばならないため、分析途中で両イオン化法を切り替える
ことはできなかった。
However, such a method requires a troublesome work of attaching and detaching the nozzle, and such a work must be performed while returning the pressure of the ionization chamber to the atmospheric pressure. Therefore, both ionization methods are switched during the analysis. I couldn't do that.

【0008】本発明は上記課題を解決するために成され
たものであり、その目的とするところは、HSIとSI
とを容易に切り替えることが可能な表面電離型イオン化
装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its object to provide an HSI and an SI.
To provide a surface ionization type ionization apparatus capable of easily switching between the ionization apparatus and the ionization apparatus.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る表面電離型イオン化装置は、 a)真空室内に配設された固体表面と、 b)該固体表面に向けてガスを噴出する小口径のガス噴出
孔を有するノズルと、 c)分子量の相違する複数の補助ガスの1つを選択して送
給するガス選択手段と、 d)該ガス選択手段により選択された補助ガスと試料成分
分子を含む試料ガスとを混合して前記ノズルに送給する
配管と、を備えることを特徴としている。
Means for Solving the Problems A surface ionization type ionization apparatus according to the present invention which has been made to solve the above-mentioned problems comprises: a) a solid surface disposed in a vacuum chamber; A) a nozzle having a small-diameter gas ejection hole for ejecting a gas, c) a gas selection means for selecting and sending one of a plurality of auxiliary gases having different molecular weights, and d) a gas selection means selected by the gas selection means. And a pipe for mixing the auxiliary gas and a sample gas containing sample component molecules and feeding the mixed gas to the nozzle.

【0010】[0010]

【発明の実施の形態】この発明では、試料成分分子はガ
ス選択手段により選択された補助ガスの分子とともにノ
ズルのガス噴出孔から噴出し、その前方に位置する固体
表面に接触する。試料成分分子が固体表面に接触すると
きの速度は補助ガスの分子量に依存しており、その分子
量が小さいほど大きな速度を得る。従って、相対的に小
さな分子量を有する補助ガスを用いると、試料成分分子
を超音速領域まで加速して固体表面に衝突させることが
でき、一方、相対的に大きな分子量を有する補助ガスを
用いると、試料成分分子を加速せずに固体表面まで導く
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, sample component molecules are ejected from a gas ejection hole of a nozzle together with molecules of an auxiliary gas selected by a gas selection means, and come into contact with a solid surface located in front of the nozzle. The speed at which the sample component molecules come into contact with the solid surface depends on the molecular weight of the auxiliary gas, and the smaller the molecular weight, the higher the speed. Therefore, when an auxiliary gas having a relatively small molecular weight is used, the sample component molecules can be accelerated to a supersonic region and collide with a solid surface, while using an auxiliary gas having a relatively large molecular weight, The sample component molecules can be guided to the solid surface without acceleration.

【実施例】【Example】

【0011】以下、本発明に係る表面電離型イオン化装
置の一実施例を図1の構成図により具体的に説明する。
Hereinafter, an embodiment of the surface ionization type ionization apparatus according to the present invention will be described in detail with reference to the block diagram of FIG.

【0012】図1において、試料ガスが供給される試料
ガス流路1に対し補助ガス流路2が接続され、その末端
には、先端が直径1〜150μm程度の微小径のガス噴
出孔7に形成されたノズル6が装着されている。ノズル
6先端部は、真空ポンプ12により真空排気されるイオ
ン化室11内部に露出しており、ガス噴出孔7の前方に
は表面電離作用を起こすためのエミッタ9が配設されて
いる。試料成分分子が正イオンになるものである場合に
は、エミッタ9は仕事関数の高いものとされ、例えば白
金、レニウム、タングステン等の金属又はその金属酸化
物が用いられる。ノズル6先端部にはヒータ8が周設さ
れており、図示しない加熱制御部から供給される加熱電
流によってノズル6は適度な温度に加熱される。また、
エミッタ9も適度な温度に加熱される。
In FIG. 1, an auxiliary gas flow path 2 is connected to a sample gas flow path 1 to which a sample gas is supplied, and a distal end of the auxiliary gas flow path 2 has a small diameter gas ejection hole 7 having a diameter of about 1 to 150 μm. The formed nozzle 6 is mounted. The tip of the nozzle 6 is exposed inside the ionization chamber 11 that is evacuated by the vacuum pump 12, and an emitter 9 for causing a surface ionization is disposed in front of the gas ejection hole 7. When the sample component molecules become positive ions, the emitter 9 has a high work function. For example, a metal such as platinum, rhenium, and tungsten or a metal oxide thereof is used. A heater 8 is provided around the tip of the nozzle 6, and the nozzle 6 is heated to an appropriate temperature by a heating current supplied from a heating control unit (not shown). Also,
The emitter 9 is also heated to an appropriate temperature.

【0013】エミッタ9近傍で発生したイオンの進行方
向にはコレクタ10が配設され、コレクタ10に捕集さ
れたイオンによって流れるイオン電流を検出するために
微小電流計13が設けられている。補助ガス流路2の他
端は三方バルブ(3ポート2ポジション)3の共通ポー
トに接続され、他の2ポートには水素ガス流路4と窒素
ガス流路5とが接続されている。従って、三方バルブ3
を切り替えると、水素ガス(H2)又は窒素ガス(N2)
のいずれか一方が選択されて補助ガス流路2に流れ込
む。なお、水素ガス及び窒素ガスの流量は図示しない流
量調節器又は圧力弁などによって適宜に調節されてい
る。
A collector 10 is provided in the traveling direction of ions generated in the vicinity of the emitter 9, and a minute ammeter 13 is provided for detecting an ion current flowing by the ions collected by the collector 10. The other end of the auxiliary gas passage 2 is connected to a common port of a three-way valve (3 ports, 2 positions) 3, and the other two ports are connected to a hydrogen gas passage 4 and a nitrogen gas passage 5. Therefore, the three-way valve 3
Is switched to hydrogen gas (H2) or nitrogen gas (N2)
Is selected and flows into the auxiliary gas flow path 2. The flow rates of the hydrogen gas and the nitrogen gas are appropriately adjusted by a flow controller (not shown) or a pressure valve.

【0014】HSIモードの分析を行う際には、三方バ
ルブ3は図1中の実線で示した流路に接続される。試料
ガス流路1は例えばガスクロマトグラフ装置のキャピラ
リカラムの出口端に接続されており、クロマトグラフ分
析時に該カラムから流出する試料ガスが試料ガス流路1
に供給され、補助ガス流路2を介して送り込まれる水素
ガスが混合されてノズル6に到達する。
When performing the analysis in the HSI mode, the three-way valve 3 is connected to a flow path indicated by a solid line in FIG. The sample gas flow path 1 is connected to, for example, an outlet end of a capillary column of a gas chromatograph device, and the sample gas flowing out of the column at the time of chromatographic analysis is supplied to the sample gas flow path 1.
And the hydrogen gas fed through the auxiliary gas flow path 2 is mixed and reaches the nozzle 6.

【0015】ガス噴出孔7は微小径であり且つガスは連
続的に供給されるため、ノズル6内のガス圧は次第に高
まる。イオン化室11内は真空雰囲気であるため、ガス
噴出孔7の内側と外側とでは大きな圧力差が生じる。そ
の結果、軽い水素ガス分子は勢いよくイオン化室11内
に噴出し、重い試料成分分子も水素ガスの噴出流に乗っ
て真空雰囲気中に飛び出す。そして、試料成分分子は二
体衝突を繰り返しながら超音速領域の速度に達する。こ
の超音速自由噴流となった試料成分分子はエミッタ9に
勢いよく衝突し、表面電離作用によりイオン化される。
発生したイオンはコレクタ10に捕集され、そのイオン
量に応じた電流を微小電流計13で測定することにより
試料成分の濃度を順次検出する。
Since the gas ejection hole 7 has a small diameter and the gas is continuously supplied, the gas pressure in the nozzle 6 gradually increases. Since the inside of the ionization chamber 11 is in a vacuum atmosphere, a large pressure difference occurs between the inside and the outside of the gas ejection hole 7. As a result, the light hydrogen gas molecules squirt into the ionization chamber 11 vigorously, and the heavy sample component molecules also jump into the vacuum atmosphere riding on the squirt flow of the hydrogen gas. Then, the sample component molecules reach the velocity in the supersonic region while repeating two-body collision. The sample component molecules, which have become the supersonic free jet, vigorously collide with the emitter 9 and are ionized by the surface ionization.
The generated ions are collected by the collector 10, and the current according to the amount of the ions is measured by the microammeter 13 to sequentially detect the concentrations of the sample components.

【0016】上述のように分子加速が行われるとき、ガ
ス噴出孔7から飛び出した試料成分分子の得る並進運動
エネルギEは次の(1)式で近似できることが知られてい
る。 E={(2/5)・(Mh/M1)・k・TN} ・{1−exp(−δ・P0・d)} …(1) ここで、Mh:試料成分分子の質量〔g〕、M1:補助ガ
ス分子の質量〔g〕、TN:ノズルの温度〔K〕、P0:
ノズル内圧〔Torr〕、d:ガス噴出孔の口径〔cm〕、
kとδは定数である。従って、補助ガス分子の分子量が
小さいほど上記並進運動エネルギEは大きく、水素ガ
ス、ヘリウムなどを補助ガスとして使用すれば試料成分
分子に大きな並進運動エネルギを与えて超音速領域まで
加速することができる。
It is known that when the molecular acceleration is performed as described above, the translational kinetic energy E obtained by the sample component molecules ejected from the gas ejection holes 7 can be approximated by the following equation (1). E = {(2/5) · (Mh / M1) · k · TN} · {1-exp (−δ · P0 · d)} (1) where Mh: mass of sample component molecule [g] , M1: mass of auxiliary gas molecules [g], TN: nozzle temperature [K], P0:
Nozzle internal pressure [Torr], d: diameter of gas ejection hole [cm],
k and δ are constants. Therefore, the smaller the molecular weight of the auxiliary gas molecule, the larger the above-mentioned translational kinetic energy E. If hydrogen gas, helium or the like is used as the auxiliary gas, the sample component molecules can be given a large translational kinetic energy and accelerated to the supersonic range. .

【0017】一方、SIモードの分析を行う際には、三
方バルブ3は図1中に点線で示した流路に接続される。
すると、補助ガス流路2に窒素ガスが送り込まれ、試料
ガスと窒素ガスとが混合されてノズル6に到達する。窒
素ガスの分子量は上記水素ガスの分子量の10倍以上で
ある。従って上記(1)式によれば、試料成分分子が得る
並進運動エネルギは上述の場合の1/10以下でしかな
い。実際上、このような小さな並進運動エネルギしか得
られないと、ガス噴出孔7から噴出した試料成分分子は
殆ど加速されることなく、イオン化室11内の残留ガス
分子と衝突しながら熱運動流れとしてエミッタ9に到達
する。そして、エミッタ9と接触してイオン化される。
On the other hand, when performing the SI mode analysis, the three-way valve 3 is connected to the flow path shown by the dotted line in FIG.
Then, nitrogen gas is sent into the auxiliary gas flow path 2, and the sample gas and the nitrogen gas are mixed and reach the nozzle 6. The molecular weight of the nitrogen gas is at least 10 times the molecular weight of the hydrogen gas. Therefore, according to the above equation (1), the translational kinetic energy obtained by the sample component molecules is only 1/10 or less of the above case. In practice, if only such a small translational kinetic energy is obtained, the sample component molecules ejected from the gas ejection holes 7 are hardly accelerated and collide with the residual gas molecules in the ionization chamber 11 to form a thermal kinetic flow. It reaches the emitter 9. And it is ionized in contact with the emitter 9.

【0018】このように本実施例の構成では、三方バル
ブ3の切替えによって短時間の間にHSIモードとSI
モードとを切り替えて、高感度と高選択性という両モー
ドの特徴を生かした分析を行うことができる。このよう
な短時間での切替えは、例えば次のような場合に有用で
ある。一連のクロマトグラフ分析の途中で部分的に夾雑
成分の妨害があることが予めわかっている場合、その妨
害の発生する期間中だけ三方バルブ3を切り替えて窒素
ガスを補助ガスとして送り込む。すると、その期間だけ
イオン化の選択性が高まり、夾雑成分分子を排除した分
析が可能となる。
As described above, in the configuration of the present embodiment, the HSI mode and the SI
By switching between the modes, it is possible to perform analysis utilizing the characteristics of both modes, that is, high sensitivity and high selectivity. Switching in such a short time is useful, for example, in the following case. If it is known in advance that there is partial interference of the contaminant component during a series of chromatographic analyses, the three-way valve 3 is switched only during the period in which the interference occurs, and nitrogen gas is supplied as an auxiliary gas. Then, the selectivity of ionization is increased only for that period, and analysis excluding contaminant component molecules becomes possible.

【0019】なお、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変更や修正を行なえることは明らか
である。
The above embodiment is merely an example, and it is apparent that changes and modifications can be made within the spirit of the present invention.

【0020】[0020]

【発明の効果】以上説明したように、本発明に係る表面
電離型イオン化装置では、試料ガスと混合させる補助ガ
スの種類を切り替えることにより、HSIとSIとを切
り替えて実行することができるので、従来のようにノズ
ルの交換等の面倒な作業が不要であって効率的な分析が
行える。また、イオン化室の真空状態を維持したままで
切替えが可能であるので、クロマトグラフ分析途中で一
時的にHSI/SIモードを相互に切り替え、HSIの
高感度、SIの高選択性という特徴を利用することがで
きる。
As described above, in the surface ionization type ionization apparatus according to the present invention, HSI and SI can be switched and executed by switching the type of auxiliary gas mixed with the sample gas. A troublesome operation such as replacement of a nozzle is not required as in the related art, and efficient analysis can be performed. In addition, since switching can be performed while maintaining the vacuum state of the ionization chamber, the HSI / SI mode can be temporarily switched during chromatographic analysis to utilize the features of high sensitivity of HSI and high selectivity of SI. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による表面電離型イオン化
装置の構成図。
FIG. 1 is a configuration diagram of a surface ionization type ionization apparatus according to one embodiment of the present invention.

【符号の説明】 1…試料ガス流路 2…補助ガス流路 3…三方バルブ 4…水素ガス流路 5…窒素ガス流路 6…ノズル 7…ガス噴出孔 9…エミッタ 10…コレクタ 11…イオン化室[Description of Signs] 1 ... Sample gas flow path 2 ... Auxiliary gas flow path 3 ... Three-way valve 4 ... Hydrogen gas flow path 5 ... Nitrogen gas flow path 6 ... Nozzle 7 ... Gas ejection hole 9 ... Emitter 10 ... Collector 11 ... Ionization Room

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上垣 英之 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所三条工場内 (72)発明者 藤井 敏博 つくば市小野川16番2号 国立環境研究所 内 Fターム(参考) 5C038 GG13 GH04 GH08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideyuki Uegaki 1-chome, Kuwabaracho, Nishinokyo, Nakagyo-ku, Kyoto Inside Shimadzu Corporation Sanjo Plant (72) Inventor Toshihiro Fujii 16-2 Onogawa, Tsukuba City National Institute for Environmental Studies F Term (reference) 5C038 GG13 GH04 GH08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)真空室内に配設された固体表面と、 b)該固体表面に向けてガスを噴出する小口径のガス噴出
孔を有するノズルと、 c)分子量の相違する複数の補助ガスの1つを選択して送
給するガス選択手段と、 d)該ガス選択手段により選択された補助ガスと試料成分
分子を含む試料ガスとを混合して前記ノズルに送給する
配管と、 を備えることを特徴とする表面電離型イオン化装置。
1. a) a solid surface disposed in a vacuum chamber; b) a nozzle having a small-diameter gas ejection hole for ejecting a gas toward the solid surface; c) a plurality of assists having different molecular weights. Gas selecting means for selecting and sending one of the gases; d) a pipe for mixing the auxiliary gas selected by the gas selecting means with a sample gas containing sample component molecules and sending the mixed gas to the nozzle; A surface ionization type ionization apparatus comprising:
JP10269195A 1998-09-24 1998-09-24 Surface electrolytic dissociation-type ionization device Pending JP2000097913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10269195A JP2000097913A (en) 1998-09-24 1998-09-24 Surface electrolytic dissociation-type ionization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269195A JP2000097913A (en) 1998-09-24 1998-09-24 Surface electrolytic dissociation-type ionization device

Publications (1)

Publication Number Publication Date
JP2000097913A true JP2000097913A (en) 2000-04-07

Family

ID=17469008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269195A Pending JP2000097913A (en) 1998-09-24 1998-09-24 Surface electrolytic dissociation-type ionization device

Country Status (1)

Country Link
JP (1) JP2000097913A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978284B2 (en) 2015-03-06 2021-04-13 Micromass Uk Limited Imaging guided ambient ionisation mass spectrometry
US11031222B2 (en) 2015-03-06 2021-06-08 Micromass Uk Limited Chemically guided ambient ionisation mass spectrometry
US11031223B2 (en) 2015-09-29 2021-06-08 Micromass Uk Limited Capacitively coupled REIMS technique and optically transparent counter electrode
US11037774B2 (en) 2015-03-06 2021-06-15 Micromass Uk Limited Physically guided rapid evaporative ionisation mass spectrometry (“REIMS”)
US11139156B2 (en) 2015-03-06 2021-10-05 Micromass Uk Limited In vivo endoscopic tissue identification tool
US11239066B2 (en) 2015-03-06 2022-02-01 Micromass Uk Limited Cell population analysis
US11264223B2 (en) 2015-03-06 2022-03-01 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry (“REIMS”) and desorption electrospray ionisation mass spectrometry (“DESI-MS”) analysis of swabs and biopsy samples
US11270876B2 (en) 2015-03-06 2022-03-08 Micromass Uk Limited Ionisation of gaseous samples
US11282688B2 (en) 2015-03-06 2022-03-22 Micromass Uk Limited Spectrometric analysis of microbes
US11289320B2 (en) 2015-03-06 2022-03-29 Micromass Uk Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
US11342170B2 (en) 2015-03-06 2022-05-24 Micromass Uk Limited Collision surface for improved ionisation
US11367605B2 (en) 2015-03-06 2022-06-21 Micromass Uk Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
US11454611B2 (en) 2016-04-14 2022-09-27 Micromass Uk Limited Spectrometric analysis of plants
US11515136B2 (en) 2015-03-06 2022-11-29 Micromass Uk Limited Spectrometric analysis
US11699583B2 (en) 2018-07-11 2023-07-11 Micromass Uk Limited Impact ionisation ion source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264223B2 (en) 2015-03-06 2022-03-01 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry (“REIMS”) and desorption electrospray ionisation mass spectrometry (“DESI-MS”) analysis of swabs and biopsy samples
US11282688B2 (en) 2015-03-06 2022-03-22 Micromass Uk Limited Spectrometric analysis of microbes
US11515136B2 (en) 2015-03-06 2022-11-29 Micromass Uk Limited Spectrometric analysis
US11037774B2 (en) 2015-03-06 2021-06-15 Micromass Uk Limited Physically guided rapid evaporative ionisation mass spectrometry (“REIMS”)
US11139156B2 (en) 2015-03-06 2021-10-05 Micromass Uk Limited In vivo endoscopic tissue identification tool
US11239066B2 (en) 2015-03-06 2022-02-01 Micromass Uk Limited Cell population analysis
US11031222B2 (en) 2015-03-06 2021-06-08 Micromass Uk Limited Chemically guided ambient ionisation mass spectrometry
US11270876B2 (en) 2015-03-06 2022-03-08 Micromass Uk Limited Ionisation of gaseous samples
US10978284B2 (en) 2015-03-06 2021-04-13 Micromass Uk Limited Imaging guided ambient ionisation mass spectrometry
US11289320B2 (en) 2015-03-06 2022-03-29 Micromass Uk Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
US11342170B2 (en) 2015-03-06 2022-05-24 Micromass Uk Limited Collision surface for improved ionisation
US11367605B2 (en) 2015-03-06 2022-06-21 Micromass Uk Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
US11031223B2 (en) 2015-09-29 2021-06-08 Micromass Uk Limited Capacitively coupled REIMS technique and optically transparent counter electrode
US11454611B2 (en) 2016-04-14 2022-09-27 Micromass Uk Limited Spectrometric analysis of plants
US11699583B2 (en) 2018-07-11 2023-07-11 Micromass Uk Limited Impact ionisation ion source

Similar Documents

Publication Publication Date Title
JP2000097913A (en) Surface electrolytic dissociation-type ionization device
US5270542A (en) Apparatus and method for shaping and detecting a particle beam
US6768108B2 (en) Ion attachment mass spectrometry apparatus, ionization apparatus, and ionization method
JP5601370B2 (en) Atmospheric pressure ionization mass spectrometer
US9541479B2 (en) Apparatus and method for liquid sample introduction
JPH031435A (en) Ionizing method for mass spectrogram
US9804183B2 (en) Apparatus and method for liquid sample introduction
JP2008524804A (en) Atmospheric pressure ionization using optimized drying gas flow
EP2793248A2 (en) Multimode ionization device
CN112368799B (en) Ion generator for multiple gas flow
JPWO2003041115A1 (en) Mass spectrometer
JPH10247472A (en) Surface ionization device
JP2015511704A (en) Improved interface for mass spectrometer equipment
JP6620896B2 (en) Ionizer and mass spectrometer
GB2522801A (en) High yield atmospheric pressure ion source for ion spectrometers in vacuum
JPH0218854A (en) Liquid chromathograph/mass spectrometer
WO2007102204A1 (en) Mass analyzer
JPH11307041A (en) Ionization device
JP3718971B2 (en) Mass spectrometer
JP2000149866A (en) Surface ionization type ionization device
JP2777614B2 (en) Mass spectrometry method and mass spectrometer
JP3242264B2 (en) Ion source and mass spectrometer using the same
JPS6245664B2 (en)
JPH07306193A (en) Ion source and mass spectrograph
JPH11345590A (en) Surface ionization type ionization detector

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210