JP2000085523A - Starting control device for occupant protection device - Google Patents

Starting control device for occupant protection device

Info

Publication number
JP2000085523A
JP2000085523A JP10255385A JP25538598A JP2000085523A JP 2000085523 A JP2000085523 A JP 2000085523A JP 10255385 A JP10255385 A JP 10255385A JP 25538598 A JP25538598 A JP 25538598A JP 2000085523 A JP2000085523 A JP 2000085523A
Authority
JP
Japan
Prior art keywords
occupant
collision
vehicle
protection device
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255385A
Other languages
Japanese (ja)
Inventor
Katsuji Imai
勝次 今井
Noribumi Iyoda
紀文 伊豫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10255385A priority Critical patent/JP2000085523A/en
Publication of JP2000085523A publication Critical patent/JP2000085523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a starting control device for an occupant protection device, which can start the function of the occupant protection device at the proper timing based on the collision mode of a vehicle when the vehicle collides. SOLUTION: In this starting control device for an occupant protection device, which actuates the starting operation of the protection device when a value to be determined based on deceleration and the quantity of vehicle deformation, exceeds the specified threshold of a first start judging map, the device is equipped with a deceleration detecting means S10 detecting deceleration applied to a vehicle at the time of collision, operation means S13 and S14 obtaining the quantity of work received by an occupant and the work capacity of an occupant based on deceleration detected by the deceleration detecting means, a collision mode judging means S16 judging the collision mode based on the quantity of work received by an occupant and the capacity of an occupant obtained by the operation means, and with a start judging map switch means S17 making a switch from a first start judging map to a second start judging map based on the collision mode judged by the collision mode judging means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、車両が衝突した
時に的確に乗員保護装置を起動させる乗員保護装置の起
動制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a start-up control device for an occupant protection device that accurately starts an occupant protection device when a vehicle collides.

【0002】[0002]

【従来の技術】従来、乗員保護装置の起動を制御する起
動制御装置においては、車両に加わる衝撃を通常フロア
トンネル上に設置された加速度センサによって減速度と
して検出し、その検出された減速度に基づいて乗員保護
装置の起動の制御を行なっている。このような乗員保護
装置の起動を制御する装置としては、特開平9−998
03号公報に開示されている装置が存在する。この装置
においては、検出された減速度により求められる車両衝
突時の相対速度に基づいて車両の変形量を演算し、この
変形量がしきい値を越えたときにエアバッグ装置の起動
を行っている。
2. Description of the Related Art Conventionally, in an activation control device for controlling activation of an occupant protection device, an impact applied to a vehicle is usually detected as a deceleration by an acceleration sensor installed on a floor tunnel, and the detected deceleration is detected. The activation of the occupant protection device is controlled based on the occupant protection device. An apparatus for controlling the activation of such an occupant protection apparatus is disclosed in Japanese Patent Application Laid-Open No. 9-998.
There is an apparatus disclosed in Japanese Patent Publication No. 03-2003. In this device, the amount of deformation of the vehicle is calculated based on the relative speed at the time of a vehicle collision obtained from the detected deceleration, and when the amount of deformation exceeds a threshold, the airbag device is activated. I have.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、衝突形
態により車両の変形速度が異なることから、車両の変形
量がしきい値を越えたときにエアバッグ装置の起動を行
う上述の装置では、的確なタイミングでエアバッグ装置
の起動を行うことができない場合があった。
However, since the deformation speed of the vehicle differs depending on the type of collision, the above-described device for activating the airbag device when the amount of deformation of the vehicle exceeds a threshold value has an accurate In some cases, it was not possible to start the airbag device at the appropriate timing.

【0004】この発明の課題は、車両が衝突した場合に
車両の衝突形態に基づいて乗員保護装置を的確なタイミ
ングで起動することができる乗員保護装置の起動制御装
置を提供することである。
An object of the present invention is to provide a start-up control device for an occupant protection device that can start the occupant protection device at an appropriate timing based on the type of collision of the vehicle when the vehicle collides.

【0005】[0005]

【課題を解決するための手段】請求項1記載の乗員保護
装置の起動制御装置は、減速度及び車両変形量により定
められる値が第1の起動判定マップの所定のしきい値を
超えた場合に乗員保護装置の起動を行う乗員保護装置の
起動制御装置において、衝突時に車両に作用する減速度
を検出する減速度検出手段と、前記減速度検出手段によ
り検出された減速度に基づいて乗員が受ける仕事量及び
乗員の仕事容量を求める演算手段と、前記演算手段によ
り求められた前記乗員が受ける仕事量及び前記乗員の仕
事容量に基づいて前記車両の衝突形態を判別する衝突形
態判別手段と、前記衝突形態判別手段により判別された
衝突形態に基づいて、前記第1の起動判定マップを第2
の起動判定マップに切換える起動判定マップ切換手段と
を備えることを特徴とする。
According to a first aspect of the present invention, there is provided an occupant protection device activation control device, wherein a value determined by a deceleration and a vehicle deformation amount exceeds a predetermined threshold value of a first activation determination map. In the start-up control device of the occupant protection device that starts the occupant protection device, deceleration detection means for detecting a deceleration acting on the vehicle at the time of collision, and an occupant based on the deceleration detected by the deceleration detection means Calculating means for determining the amount of work to be received and the work capacity of the occupant; collision type determining means for determining a collision form of the vehicle based on the work amount to be received by the occupant and the work capacity of the occupant obtained by the calculating means; Based on the collision type determined by the collision type determination means, the first activation determination map is
And a startup determination map switching means for switching to the startup determination map.

【0006】この請求項1記載の乗員保護装置の起動制
御装置によれば、衝突形態判別手段により乗員が受ける
仕事量及び乗員の仕事容量に基づいて車両の衝突形態を
判別するため衝突形態の判別を的確に行うことができ、
起動判定マップ切換手段により衝突形態に基づいて第1
の起動判定マップを第2の起動判定マップに切換えるた
め起動判定マップに切換えを的確に行うことができる。
According to the activation control device for an occupant protection device of the present invention, the collision type is determined by the collision type determining means based on the work amount received by the occupant and the occupant's work capacity. Can be performed accurately,
Based on the collision mode, the first
Is switched to the second activation determination map, the switching to the activation determination map can be accurately performed.

【0007】また、請求項2記載の乗員保護装置の起動
制御装置は、請求項1記載の乗員保護装置の起動制御装
置の前記起動判定マップ切換手段が前記衝突形態判別手
段により衝突対象物の剛性が低い衝突と判別された場合
に前記第1の起動判定マップを前記第2の起動判定マッ
プに切換えることを特徴とする。
According to a second aspect of the present invention, there is provided an activation control device for an occupant protection device. When it is determined that the collision is low, the first activation determination map is switched to the second activation determination map.

【0008】この請求項2記載の乗員保護装置の起動制
御装置によれば、衝突対象物の剛性が低い衝突と判別さ
れた場合に第1の起動判定マップを第2の起動判定マッ
プに切換えるため、衝突対象物の剛性が低い場合におい
ても早期に乗員保護装置の起動を行うことができる。
According to the start control device of the occupant protection device, the first start determination map is switched to the second start determination map when it is determined that the collision has low rigidity. Also, even when the rigidity of the collision target is low, the occupant protection device can be activated at an early stage.

【0009】また、請求項3記載の乗員保護装置の起動
制御装置は、請求項1記載の乗員保護装置の起動制御装
置において、前記演算手段により求められた前記乗員が
受ける仕事量及び前記乗員の仕事容量に基づいて、前記
車両の衝突時における相対速度を求める相対速度演算手
段と、前記相対速度算出手段により算出された相対速度
に基づいて前記車両変形量を求める車両変形量演算手段
とを備えることを特徴とする。
According to a third aspect of the present invention, in the activation control device for an occupant protection device according to the first aspect, the work received by the occupant and the occupant's load obtained by the calculation means are determined. A relative speed calculating means for obtaining a relative speed at the time of the collision of the vehicle based on a work capacity; and a vehicle deformation amount calculating means for obtaining the vehicle deformation amount based on the relative speed calculated by the relative speed calculating means. It is characterized by the following.

【0010】この請求項3記載の乗員保護装置の起動制
御装置によれば、乗員が受ける仕事量及び乗員の仕事容
量に基づいて車両の衝突時における相対速度を求め、こ
の相対速度に基づいて車両変形量を求めるため的確に車
両変形量を求めることができる。
According to the start control device of the occupant protection device according to the third aspect, the relative speed at the time of collision of the vehicle is determined based on the work amount received by the occupant and the occupant's work capacity, and the vehicle is determined based on the relative speed. Since the amount of deformation is obtained, the amount of vehicle deformation can be accurately obtained.

【0011】[0011]

【発明の実施の形態】以下、図1〜図6を参照してこの
発明の実施の形態について説明する。図1は、この発明
の実施の形態にかかる乗員保護装置の起動制御装置を示
すブロック構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing an activation control device for an occupant protection device according to an embodiment of the present invention.

【0012】この乗員保護装置の起動制御装置は、乗員
保護装置の一種であるエアバッグ装置36の起動を制御
する装置であって、図1に示すように、主として制御回
路20、フロアセンサ32及び駆動回路34を備えてい
る。
The activation control device for the occupant protection device is a device for controlling the activation of an airbag device 36 which is a kind of the occupant protection device. As shown in FIG. A drive circuit 34 is provided.

【0013】このうち、フロアセンサ32は、車両に加
わる衝撃を検出するためのいわゆる加速度センサであっ
て、具体的には、車両に対して前後方向に加わる減速度
を随時検出して、その検出値を検出信号として出力す
る。
The floor sensor 32 is a so-called acceleration sensor for detecting an impact applied to the vehicle. More specifically, the floor sensor 32 detects a deceleration applied to the vehicle in the front-rear direction at any time, and detects the deceleration. The value is output as a detection signal.

【0014】制御回路20は、中央処理装置(CPU)
22、入出力回路(I/O回路)24、リード・オンリ
・メモリ(ROM)26及びランダム・アクセス・メモ
リ(RAM)28等を備えており、各構成要素はバスで
接続されている。このうちCPU22はROM26に記
憶されたプログラム等にしたがってエアバッグ装置の起
動制御等の各種処理を行なう。RAM28はフロアセン
サ32からの信号により得られたデータや、それに基づ
いてCPU22が演算した結果等を格納しておくための
メモリである。また、I/O回路24はフロアセンサ3
2から信号を入力すると共に駆動回路34に起動信号を
出力するための回路である。
The control circuit 20 includes a central processing unit (CPU)
22, an input / output circuit (I / O circuit) 24, a read only memory (ROM) 26, a random access memory (RAM) 28, and the like, and each component is connected by a bus. Among them, the CPU 22 performs various processes such as activation control of the airbag device according to a program or the like stored in the ROM 26. The RAM 28 is a memory for storing data obtained by signals from the floor sensor 32, results calculated by the CPU 22 based on the data, and the like. Also, the I / O circuit 24 is a floor sensor 3
2 and a circuit for outputting a start signal to the drive circuit 34.

【0015】また、駆動回路34は、制御回路20から
の起動信号によってエアバッグ装置36内のスクイブ3
8に通電し点火させる回路である。また、エアバッグ装
置36は、点火装置であるスクイブ38の他、スクイブ
38により点火されるガス発生剤(図示せず)や、発生
したガスによって膨張するバッグ(図示せず)等を備え
ている。これら構成要素のうち、制御回路20、フロア
センサ32及び駆動回路34は、ECU(電子制御装
置)に収納されて、車両内のほぼ中央にあるフロアトン
ネル上に取り付けられている。
The drive circuit 34 starts the squib 3 in the airbag device 36 in response to an activation signal from the control circuit 20.
A circuit for energizing and igniting 8. The airbag device 36 includes a squib 38 as an ignition device, a gas generating agent (not shown) ignited by the squib 38, a bag (not shown) expanded by generated gas, and the like. . Among these components, the control circuit 20, the floor sensor 32, and the drive circuit 34 are housed in an ECU (Electronic Control Unit) and mounted on a floor tunnel substantially in the center of the vehicle.

【0016】次に、車両衝突時におけるエアバッグ装置
36の起動制御について説明する。フロアセンサ32
は、車両に対して前後方向に加わる減速度を随時検出し
て、その検出値を検出信号として制御回路20に対して
出力する。
Next, the activation control of the airbag device 36 at the time of a vehicle collision will be described. Floor sensor 32
Detects the deceleration applied to the vehicle in the front-rear direction as needed, and outputs the detected value to the control circuit 20 as a detection signal.

【0017】制御回路20のCPU22は、フロアセン
サ32により出力された検出値をI/O回路24を介し
て取り込むと、カルマンフィルタにより検出値から振動
成分を取り除く(ステップS10)。そして振動成分を
取り除いた減速度G(t)を順次RAM28(波形メモ
リ)に記憶する(ステップS11)。
When the CPU 22 of the control circuit 20 captures the detected value output from the floor sensor 32 via the I / O circuit 24, the CPU 22 removes a vibration component from the detected value using a Kalman filter (step S10). Then, the deceleration G (t) from which the vibration component has been removed is sequentially stored in the RAM 28 (waveform memory) (step S11).

【0018】CPU22は、減速度G(t)が2g(重
力加速度)以上とならない場合には、ステップS10〜
ステップS12の処理を繰り返す。一方、減速度G
(t)が2g(重力加速度)以上となった場合に、乗員
移動量s(t)を数式1に基づいて計算し、G(t)と
s(t)とにより定められる値の変化の状態を求める
(図3(a)参照)。
If the deceleration G (t) does not exceed 2 g (gravitational acceleration), the CPU 22 proceeds to steps S10 to S10.
Step S12 is repeated. On the other hand, deceleration G
When (t) is equal to or greater than 2 g (gravity acceleration), the occupant movement amount s (t) is calculated based on Equation 1, and the state of the change in the value determined by G (t) and s (t) is calculated. (See FIG. 3A).

【0019】[0019]

【数1】 (Equation 1)

【0020】また、乗員が受ける仕事量をP(t)を数
式2に基づいて計算し、P(t)とs(t)とにより定
められる値の変化の状態を求める(図3(b)参照、ス
テップS13)。なお、一定の区間Δsを考えた場合に
P(t)は、図3(a)において斜線で示す領域で現わ
される。
Further, the work amount received by the occupant is calculated by calculating P (t) based on Equation 2, and the state of a change in the value determined by P (t) and s (t) is obtained (FIG. 3 (b)). Reference, step S13). In addition, when considering a fixed section Δs, P (t) appears in a hatched area in FIG.

【0021】[0021]

【数2】 (Equation 2)

【0022】次に、乗員の仕事容量C(t)を数式3に
基づいて計算し、C(t)とs(t)とにより定められ
る値の変化の状態を求める(図3(c)参照、ステップ
S14)。
Next, the work capacity C (t) of the occupant is calculated based on Equation 3, and the state of a change in the value determined by C (t) and s (t) is obtained (see FIG. 3 (c)). , Step S14).

【0023】[0023]

【数3】 (Equation 3)

【0024】そして、P(t)についてtmin(衝突発
生後の最初の極大値の後の極小値)を検出するまで待機
し、tminを検出した後に図4に示すCPマップを参照
して衝突形態判定を行う(ステップS15)。即ち、P
(t)の衝突発生後の最初の極大値及び、これに対応す
るC(t)の値(衝突発生後の最初の極大値)により定
められる値がCPマップ上のどこに位置するかにより正
突、ORB衝突(衝突対象物の剛性が高い場合の衝
突)、ODB衝突(衝突対象物の剛性が低い場合の衝
突)、悪路、低速衝突の何れかを判定する。ここでOD
B衝突と判定された場合には(ステップS16)、衝突
判定マップをRマップ(第1の起動判定マップ)からD
マップ(第2の起動判定マップ)に切換える(ステップ
S17)。
Then, it waits until t min (the minimum value after the first maximum value after the collision occurs) is detected for P (t), and after detecting t min , refer to the CP map shown in FIG. The collision type is determined (step S15). That is, P
The first local maximum value after the occurrence of the collision of (t) and the value determined by the corresponding value of C (t) (the first maximum value after the occurrence of the collision) correspond to the position on the CP map where the frontal collision occurs. , ORB collision (collision when the stiffness of the collision target is high), ODB collision (collision when the stiffness of the collision target is low), bad road, or low-speed collision. Here OD
If it is determined that the collision is B (step S16), the collision determination map is changed from the R map (first activation determination map) to D.
The map is switched to the map (second startup determination map) (step S17).

【0025】次に、相対速度V0’を数式4に基づき求
めると共に(ステップS18)、車両変形量S’(t)
を数式5に基づいて求める(ステップS19)。
Next, the relative speed V 0 ′ is obtained based on the mathematical formula 4 (step S 18), and the vehicle deformation amount S ′ (t) is obtained.
Is calculated based on Equation 5 (Step S19).

【0026】[0026]

【数4】 (Equation 4)

【0027】[0027]

【数5】 (Equation 5)

【0028】そしてDマップを用いてエアバッグ装置3
6の起動判定を行う(ステップS20)。即ちDマップ
による起動判定は、図5に示すようにG(t)とS’
(t)とにより定められる値がしきい値50を超えたか
否かにより行い、しきい値50を超えた場合に起動と判
定する。ここでODB衝突の場合には、衝突後期におい
てG(t)とS’(t)により定められる値が大きく立
ち上がるため、この大きな立ち上がりの途中においてエ
アバッグ装置36の起動(展開)の判定を行うことがで
きる。
Then, using the D map, the airbag device 3
6 is determined (step S20). That is, the start determination based on the D map is performed by determining G (t) and S ′ as shown in FIG.
The determination is made based on whether or not the value determined by (t) exceeds the threshold value 50. When the value exceeds the threshold value 50, it is determined to be activated. Here, in the case of an ODB collision, since the value determined by G (t) and S '(t) rises significantly in the late stage of the collision, the activation (deployment) of the airbag device 36 is determined during the large rise. be able to.

【0029】また、上述のステップS16において、O
RB衝突(衝突対象物の剛性が高い場合の衝突)又は、
正突と判定された場合には、相対速度V0を数式6に基
づき求めると共に(ステップS21)、車両変形量S
(t)を数式7に基づいて求める(ステップS22)。
In step S16, O
RB collision (collision when the rigidity of the collision target is high) or
If it is determined that the vehicle is in the head-on collision, the relative speed V 0 is obtained based on the formula 6 (step S21), and the vehicle deformation amount S
(T) is calculated based on Equation 7 (Step S22).

【0030】[0030]

【数6】 (Equation 6)

【0031】[0031]

【数7】 (Equation 7)

【0032】次に、起動判定マップをRマップからDマ
ップに切換える必要があるか否かを判別する(ステップ
S23)。即ち、図4に示すCPマップにおいて、OR
B衝突とODB衝突との境界部分(図4において斜線で
示す部分)は、ステップS16においては、一応ORB
衝突と判別されるが、S(t)の値が反発(S(t)の
値が増加していたものが減少し始めた場合)し、かつG
(t)の値が所定のしきい値Gth以上であることが検出
された場合には、起動判定マップをRマップからDマッ
プに切換え(ステップS17)、Dマップを用いてエア
バッグ装置36の起動判定を行う(ステップS18〜S
20)。これによりORB衝突とODB衝突との境界部
分、即ち衝突形態の判別が難しい衝突の場合においても
的確にエアバッグ装置36の起動を行うことができる。
Next, it is determined whether or not it is necessary to switch the activation determination map from the R map to the D map (step S23). That is, in the CP map shown in FIG.
In step S16, the boundary between the B collision and the ODB collision (the portion indicated by hatching in FIG. 4) is
Although the collision is determined, the value of S (t) rebounds (when the value of S (t) increases and starts to decrease), and G
If it is detected that the value of (t) is equal to or greater than the predetermined threshold Gth , the activation determination map is switched from the R map to the D map (step S17), and the airbag device 36 is used by using the D map. (Steps S18 to S
20). Thus, even in the case of a boundary portion between the ORB collision and the ODB collision, that is, in the case of a collision in which it is difficult to determine the type of collision, the airbag device 36 can be started accurately.

【0033】一方、ステップS23において、起動判定
マップの切換えが不要と判別された場合にはRマップを
用いてエアバッグ装置36の起動判定を行う(ステップ
S24)。即ち、Rマップによる起動判定は、図6に示
すようにG(t)とS(t)とにより定められる値がし
きい値52を超えたか否かにより行い、しきい値52を
超えた場合に起動と判定する。
On the other hand, if it is determined in step S23 that the switching of the activation determination map is not necessary, the activation of the airbag device 36 is determined using the R map (step S24). That is, the start determination based on the R map is performed based on whether or not the value defined by G (t) and S (t) exceeds the threshold value 52 as shown in FIG. Is determined to be activated.

【0034】更に、上述のステップS16において、低
速衝突(車速20km/h以下の衝突)、悪路(悪路走
行により振動により減速度が2gを越えた場合)と判定
された場合には、ステップS10に戻りステップS10
以降の処理を続行する。
If it is determined in step S16 that the collision is a low-speed collision (collision at a vehicle speed of 20 km / h or less) or a bad road (when the deceleration exceeds 2 g due to vibration due to running on a bad road), the flow proceeds to step S16. Return to S10 and step S10
Continue the subsequent processing.

【0035】上述のステップS20、S24において、
エアバッグ装置36の起動の判定が行われた場合には
(ステップS25)、ステップS26に進み、CPU2
2は駆動回路34に対して起動信号を出力する。これに
より、駆動回路34はエアバッグ装置36を起動すべく
スクイブ38に通電し、スクイブ38でガス発生剤(図
示せず)を点火させる。
In steps S20 and S24 described above,
When the activation of the airbag device 36 is determined (step S25), the process proceeds to step S26, and the CPU 2
2 outputs a start signal to the drive circuit 34. As a result, the drive circuit 34 energizes the squib 38 to activate the airbag device 36, and ignites the gas generating agent (not shown) with the squib 38.

【0036】従って、この実施の形態にかかる乗員保護
装置の起動制御装置によれば、車両が衝突した対象物の
剛性が低い場合には、衝突判定マップをRマップからD
マップに切換えるため、衝突対象物の剛性が低い場合に
おいても早期にエアバッグ装置を起動することができ
る。
Therefore, according to the activation control device of the occupant protection device according to this embodiment, when the rigidity of the object colliding with the vehicle is low, the collision determination map is changed from the R map to the D map.
Since the map is switched, the airbag device can be activated early even when the rigidity of the collision target is low.

【0037】[0037]

【発明の効果】請求項1記載の発明によれば、衝突形態
判別手段により乗員が受ける仕事量及び乗員の仕事容量
に基づいて車両の衝突形態を判別するため衝突形態の判
別を的確に行うことができ、起動判定マップ切換手段に
より衝突形態に基づいて第1の起動判定マップを第2の
起動判定マップに切換えるため起動判定マップに切換え
を的確に行うことができる。従って、車両衝突時に確実
に乗員を拘束することができる。
According to the first aspect of the present invention, the collision type is accurately determined by the collision type determining means for determining the collision type of the vehicle based on the amount of work received by the occupant and the occupant's work capacity. The first determination map is switched to the second determination map based on the collision mode by the determination map switching means, so that the switching to the determination map can be accurately performed. Therefore, the occupant can be reliably restrained in the event of a vehicle collision.

【0038】また、請求項2記載の発明によれば、衝突
対象物の剛性が低い衝突と判別された場合に第1の起動
判定マップを第2の起動判定マップに切換えるため、衝
突対象物の剛性が低い場合においても早期に乗員保護装
置の起動を行うことができる。
According to the second aspect of the invention, when it is determined that the collision of the collision object has low rigidity, the first activation determination map is switched to the second activation determination map. Even when the rigidity is low, the occupant protection device can be activated at an early stage.

【0039】また、請求項3記載の発明によれば、乗員
が受ける仕事量及び乗員の仕事容量に基づいて車両の衝
突時における相対速度を求め、この相対速度に基づいて
車両変形量を求めるため的確に車両変形量を求めること
ができる。
According to the third aspect of the present invention, the relative speed at the time of collision of the vehicle is obtained based on the work amount received by the occupant and the work capacity of the occupant, and the vehicle deformation amount is obtained based on the relative speed. The vehicle deformation amount can be accurately obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態にかかる乗員保護装置の
起動制御装置を示すブロック構成図である。
FIG. 1 is a block diagram showing an activation control device of an occupant protection device according to an embodiment of the present invention.

【図2】この発明の実施の形態にかかる乗員保護装置の
起動制御装置における処理を説明するためのフローチャ
ートである。
FIG. 2 is a flowchart for explaining processing in an activation control device of the occupant protection device according to the embodiment of the present invention;

【図3】この発明の実施の形態にかかる乗員保護装置の
起動制御装置において求められた演算値相互の関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between calculated values obtained by the activation control device of the occupant protection device according to the embodiment of the present invention.

【図4】この発明の実施の形態にかかる乗員保護装置の
起動制御装置において用いるCPマップを示す図であ
る。
FIG. 4 is a diagram showing a CP map used in the activation control device of the occupant protection device according to the embodiment of the present invention.

【図5】この発明の実施の形態にかかる乗員保護装置の
起動制御装置におけるDマップを用いた起動判定を説明
するための図である。
FIG. 5 is a diagram for explaining a start determination using a D map in the start control device of the occupant protection device according to the embodiment of the present invention;

【図6】この発明の実施の形態にかかる乗員保護装置の
起動制御装置におけるRマップを用いた起動判定を説明
するための図である。
FIG. 6 is a diagram for explaining a start determination using an R map in the start control device of the occupant protection device according to the embodiment of the present invention;

【符号の説明】[Explanation of symbols]

20…制御回路、22…CPU、24…I/O回路、2
6…ROM、28…RAM、32…フロアセンサ、34
…駆動回路、36…エアバッグ装置、38…スクイブ。
Reference numeral 20: control circuit, 22: CPU, 24: I / O circuit, 2
6 ROM, 28 RAM, 32 Floor sensor, 34
... drive circuit, 36 ... airbag device, 38 ... squib.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 減速度及び車両変形量により定められる
値が第1の起動判定マップの所定のしきい値を超えた場
合に乗員保護装置の起動を行う乗員保護装置の起動制御
装置において、 衝突時に車両に作用する減速度を検出する減速度検出手
段と、 前記減速度検出手段により検出された減速度に基づいて
乗員が受ける仕事量及び乗員の仕事容量を求める演算手
段と、 前記演算手段により求められた前記乗員が受ける仕事量
及び前記乗員の仕事容量に基づいて前記車両の衝突形態
を判別する衝突形態判別手段と、 前記衝突形態判別手段により判別された衝突形態に基づ
いて、前記第1の起動判定マップを第2の起動判定マッ
プに切換える起動判定マップ切換手段と、 を備えることを特徴とする乗員保護装置の起動制御装
置。
An activation control device for an occupant protection device that activates an occupant protection device when a value defined by a deceleration and a vehicle deformation amount exceeds a predetermined threshold value of a first activation determination map. A deceleration detecting means for detecting a deceleration acting on the vehicle at the time; a calculating means for obtaining a work amount received by the occupant and a work capacity of the occupant based on the deceleration detected by the deceleration detecting means; Collision type determination means for determining a collision type of the vehicle based on the obtained work amount received by the occupant and the work capacity of the occupant; and the first collision type based on the collision type determined by the collision type determination means. And a start determination map switching means for switching the start determination map to the second start determination map.
【請求項2】 前記起動判定マップ切換手段は、前記衝
突形態判別手段により、衝突対象物の剛性が低い衝突と
判別された場合に前記第1の起動判定マップを前記第2
の起動判定マップに切換えることを特徴とする請求項1
記載の乗員保護装置の起動制御装置。
2. The start-up determination map switching means, when the collision type determination means determines that the collision of the collision target has a low rigidity, causes the first start-up determination map to be the second start-up determination map.
2. The method according to claim 1, further comprising:
An activation control device for the occupant protection device according to the above.
【請求項3】 前記演算手段により求められた前記乗員
が受ける仕事量及び前記乗員の仕事容量に基づいて、前
記車両の衝突時における相対速度を求める相対速度演算
手段と、 前記相対速度算出手段により算出された相対速度に基づ
いて、前記車両変形量を求める車両変形量演算手段とを
備えることを特徴とする請求項1記載の乗員保護装置の
起動制御装置。
3. A relative speed calculating means for obtaining a relative speed at the time of a collision of the vehicle based on a work amount received by the occupant and a work capacity of the occupant obtained by the calculating means; 2. The activation control device for an occupant protection device according to claim 1, further comprising: a vehicle deformation amount calculating unit that calculates the vehicle deformation amount based on the calculated relative speed.
JP10255385A 1998-09-09 1998-09-09 Starting control device for occupant protection device Pending JP2000085523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255385A JP2000085523A (en) 1998-09-09 1998-09-09 Starting control device for occupant protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255385A JP2000085523A (en) 1998-09-09 1998-09-09 Starting control device for occupant protection device

Publications (1)

Publication Number Publication Date
JP2000085523A true JP2000085523A (en) 2000-03-28

Family

ID=17278033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255385A Pending JP2000085523A (en) 1998-09-09 1998-09-09 Starting control device for occupant protection device

Country Status (1)

Country Link
JP (1) JP2000085523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220743A (en) * 2012-04-17 2013-10-28 Mitsubishi Motors Corp Vehicle control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220743A (en) * 2012-04-17 2013-10-28 Mitsubishi Motors Corp Vehicle control device

Similar Documents

Publication Publication Date Title
JP3436185B2 (en) Activation control device for occupant protection device
JPH11286257A (en) Starting control device for occupant crash protector
KR100517774B1 (en) Apparatus and method for controlling activation of vehicle occupant protecting device
JP3346472B2 (en) Activation control device for occupant protection device
EP1651475B1 (en) Activation control apparatus for occupant protection apparatus
JPH11152010A (en) Starting controller of occupant protective device
JP2002059804A (en) Start controller for air bag device
JP2877145B2 (en) Control device for occupant protection device
JP2002362301A (en) Starting device for occupant crash protector
JP3364920B2 (en) Activation control device for occupant protection device
JP3885757B2 (en) Activation control device for occupant protection device
JP2000085523A (en) Starting control device for occupant protection device
JP2000079865A (en) Start control device for occupant crash protection device
JP3438774B2 (en) Activation control device for occupant protection device
JP2000233706A (en) Start control device for occupant crash protection device
JP2000168489A (en) Starting control device for occupant protecting device
JP2001277993A (en) Vehicular collision judging device
JP2000071929A (en) Activation control device for occupant crash protection device
JP2000019055A (en) Method for judging rigidity of vehicle collision object
JP2002096708A (en) Starting control device for occupant crash protection device
JP5162415B2 (en) Inclination detection device and occupant protection system
JP4602038B2 (en) Vehicle collision determination device
JPH08127310A (en) Air bag control device
JP2006088914A (en) Collision judging device for vehicle
JP2006088916A (en) Collision judging device for vehicle