JP2000084559A - Water treatment - Google Patents

Water treatment

Info

Publication number
JP2000084559A
JP2000084559A JP25523698A JP25523698A JP2000084559A JP 2000084559 A JP2000084559 A JP 2000084559A JP 25523698 A JP25523698 A JP 25523698A JP 25523698 A JP25523698 A JP 25523698A JP 2000084559 A JP2000084559 A JP 2000084559A
Authority
JP
Japan
Prior art keywords
water
frequency
electrodes
signal
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25523698A
Other languages
Japanese (ja)
Inventor
Hideo Hayakawa
英雄 早川
Mikio Ogata
幹夫 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25523698A priority Critical patent/JP2000084559A/en
Publication of JP2000084559A publication Critical patent/JP2000084559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method which is capable of improving the efficiency and treatment speed of a water purifying treatment of an enormous water volume of rivers, lake water, etc., contaminated by industrial waste and various other materials. SOLUTION: This water treatment method consists in arranging a pair of impression electrodes 2A, 2B and a grounding electrode 1 held in proximity to these impression electrodes in the water to be treated, using the electrodes consisting of metals having a high electrolytic characteristic as the impression electrodes and lowering the oxidation reduction potential of the water by impressing AC to a pair of the impression electrodes 2A, 2B. In this method, the water purifying treatment efficiency is improved by forming a portion which contains a signal generator for controlling an AC frequency, controls the oscillation frequency in correspondence to the signal and changes to rapid increasing or decreasing during the gentle frequency fluctuation and adding a colloidal soln. to the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気的処理によっ
て湖沼、河川、或は工場内の工業廃水や加工用水等の大
量の水に電気エネルギーを与えて浄水処理する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying water by applying electric energy to a large amount of water such as industrial wastewater or processing water in lakes, rivers, or factories by electric treatment.

【0002】[0002]

【従来の技術】従来、かかる水処理方法としては、本願
発明者自身による特許第2623204号公報や特開平
7−31981号公報に開示された方法が知られてい
る。かかる従来方法は、いずれも処理対象の水中に配置
した一対の印加電極に高周波の交流電圧を交互に印加す
ることにより水の酸化還元電位を下げることによって水
を汚染している有機物、無機物の凝集沈澱乃至は浮揚等
を促進して浄水処理をなすものである。
2. Description of the Related Art Conventionally, as such a water treatment method, methods disclosed in Japanese Patent No. 2623204 and Japanese Patent Application Laid-Open No. 7-31981 by the present inventor have been known. In such a conventional method, the coagulation of organic and inorganic substances contaminating the water by lowering the oxidation-reduction potential of the water by alternately applying a high-frequency AC voltage to a pair of application electrodes arranged in the water to be treated. Precipitation or flotation is promoted to perform water purification treatment.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、産業廃
棄物その他種々の物質に汚染された河川、湖水等の膨大
な水量を処理対象とする場合はなお一層の処理効率、処
理速度の向上が望ましい。
However, when an enormous amount of water such as rivers and lakes contaminated with industrial waste and other various substances is to be treated, it is desirable to further improve the treatment efficiency and the treatment speed.

【0004】[0004]

【課題を解決するための手段】上記課題は、処理対象の
水中に一対の印加電極と、当該印加電極に近接せしめた
接地電極を配置し、印加電極として電解性の高い金属か
らなる電極を用い、一対の印加電極に交流を印加するこ
とにより水の酸化還元電位を下げる水処理方法におい
て、上記交流周波数を制御する信号発生器を内蔵しその
信号に対応して発振周波数を制御し、周波数変化中にお
いて急激な上昇又は下降に変化する部分を作成するとと
もに、コロイド溶液を添加することによって解決され
る。
The above object is achieved by disposing a pair of applied electrodes and a ground electrode close to the applied electrodes in water to be treated, and using an electrode made of a highly electrolytic metal as the applied electrodes. In a water treatment method for lowering the oxidation-reduction potential of water by applying AC to a pair of application electrodes, a signal generator for controlling the AC frequency is built in, and the oscillation frequency is controlled in accordance with the signal to change the frequency. The problem is solved by creating a portion in which a sudden rise or fall occurs and adding a colloid solution.

【0005】かかる本発明方法によれば、コロイド溶液
を添加しない場合に比較して水中に溶解、乃至は浮遊す
る汚染物質、特に有機化合物をより迅速に凝集、沈殿さ
せることができ、浄水処理に要する時間が短縮される。
According to the method of the present invention, contaminants which dissolve or float in water, particularly organic compounds, can be aggregated and precipitated more quickly than when no colloid solution is added. The time required is reduced.

【0006】かかる水処理方法に使用される装置として
は、接地電極と一対の印加電極と、直流電源と、当該直
流電源に可変抵抗を介してそれぞれ接続された第1、第
2の交流スイッチと、これらの交流スイッチに抵抗を介
して接続されたフリップフロップ回路からなる交流切換
指令回路と、該交流切換指令回路に接続された交流発振
器と、この交流発振器に接続された制御回路とを備え、
該制御回路は変動信号発生器を内蔵し、変動信号発生器
からの出力制御信号を交流発振器に与えて発振周波数を
制御して変化させるとともに、該交流切換指令回路が交
流発振器からの切換指令を第1、第2交流スイッチに与
え、これら第1、第2の交流スイッチがオン、オフされ
て交流を形成して、上記一対の印加電極間に交流電圧を
印加することにより水の酸化還元電位を下げるようにし
た水処理装置を用いる。
An apparatus used in such a water treatment method includes a ground electrode, a pair of application electrodes, a DC power supply, and first and second AC switches respectively connected to the DC power supply via a variable resistor. An AC switching command circuit including a flip-flop circuit connected to these AC switches via resistors, an AC oscillator connected to the AC switching command circuit, and a control circuit connected to the AC oscillator.
The control circuit has a built-in fluctuation signal generator, and supplies an output control signal from the fluctuation signal generator to an AC oscillator to control and change the oscillation frequency, and the AC switching command circuit issues a switching command from the AC oscillator. The first and second AC switches are turned on and off to form an AC, and an AC voltage is applied between the pair of application electrodes to thereby provide an oxidation-reduction potential of water. Use a water treatment device that lowers the water content.

【0007】かかる水処理装置を用いて上記水処理方法
を実施するには、処理対象の湖沼、河川、工業廃水等の
水中に一対の印加電極を配置して同印加電極に交流電圧
を印加するとともにコロイド溶液を加えればよく、これ
によって短時間で対象水の酸化還元電位が下がり、水中
の有機化合物の速やかな凝集沈殿が生じ、或いは分解さ
れてガス化して浄化される。
In order to carry out the above-mentioned water treatment method using such a water treatment apparatus, a pair of application electrodes are arranged in water such as lakes, marshes, rivers, and industrial wastewater to be treated, and an AC voltage is applied to the application electrodes. At the same time, a colloid solution may be added, whereby the oxidation-reduction potential of the target water is reduced in a short time, and the organic compound in the water is rapidly coagulated and precipitated, or is decomposed and gasified for purification.

【0008】なお、ここに使用される印加電極には、ア
ルミニウム、亜鉛アルミニウム合金、マグネシウム合
金、純鉄、銅、ステンレス等の電解性の高い金属を用
い、接地電極としてはチタン、白金等の安定した金属を
用いることが好ましい。また、コロイド溶液としては、
例えば、インク、Fe2O3、TiO2、Al2O3、SiO2等を
用いることができる。
The applied electrode used here is a highly electrolytic metal such as aluminum, zinc-aluminum alloy, magnesium alloy, pure iron, copper or stainless steel, and the ground electrode is a stable electrode such as titanium or platinum. It is preferable to use a metal which has been used. In addition, as a colloid solution,
For example, ink, Fe2O3, TiO2, Al2O3, SiO2, or the like can be used.

【0009】上記水処理装置において、直流電源からの
出力は、変動信号発生器からの出力制御信号が制御回路
から交流発振器に与えられて発振周波数が制御されて変
化させられるとともに、交流切換指令回路が交流発振器
からの切換指令を第1、第2交流スイッチに与え、これ
ら第1、第2の交流スイッチがオン、オフされて交流が
形成されるとともに変化する周波数の中に急激な下降か
ら急激な上昇へ転ずる部分が作成され、コロイド溶液が
加えられた対象水の一対の印加電極間にかかる交流電圧
が印加されることにより、水の酸化還元電位が下げら
れ、水中の有機化合物が凝集沈澱、乃至は分解ガス化等
して改質処理される。
In the above water treatment apparatus, the output from the DC power supply is controlled by an output control signal from a fluctuating signal generator supplied to an AC oscillator from a control circuit to change the oscillation frequency. Gives a switching command from the AC oscillator to the first and second AC switches, and the first and second AC switches are turned on and off to form an alternating current and change from a sharp drop to a sudden change in frequency. When the AC voltage is applied between the pair of application electrodes of the target water to which the colloid solution is added, the oxidation-reduction potential of the water is lowered, and the organic compounds in the water aggregate and precipitate. , Or a reforming process such as decomposition gasification.

【0010】[0010]

【発明の実施の形態】次に、本発明の水処理方法に係る
実施例について添付図面を参照しつつさらに詳細に説明
することとする。第1図は、本発明の水処理方法に使用
される水処理装置の回路図であり、水中に配置される接
地電極1と、当該接地電極近くに配置した一対の印加電
極2A、2Bを有する。接地電極1の材料としては白金
を用い、印加電極2A、2Bとしては溶解性の高いアル
ミニウムが用いられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the water treatment method of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a circuit diagram of a water treatment apparatus used in the water treatment method of the present invention, which has a ground electrode 1 disposed in water and a pair of application electrodes 2A and 2B disposed near the ground electrode. . The ground electrode 1 is made of platinum, and the application electrodes 2A and 2B are made of highly soluble aluminum.

【0011】上記印加電極2A、2Bと直流電源3の間
には可変抵抗4を介して、該直流電源からの直流電流を
高周波の交流に変換して印加電極2A、2Bに与える第
1、第2の高周波スイッチ5A、5Bが接続されてい
る。これら第1、第2の高周波スイッチ5A、5Bは、
トランジスタ6A、7Aと、6B、7Bとでそれぞれ構
成されている。印加電極2A、2B間は、コンデンサ8
を介して接続されている。上記直流電源には処理水の用
途に応じて適宜調整しつつ用いることができるが本実施
例では100Vで用いた。
A first resistor and a first converter that convert a DC current from the DC power supply into a high-frequency AC through a variable resistor 4 between the application electrodes 2A and 2B and the DC power supply 3 and apply the high-frequency AC to the application electrodes 2A and 2B. Two high frequency switches 5A and 5B are connected. These first and second high-frequency switches 5A and 5B
Transistors 6A and 7A, and 6B and 7B, respectively. A capacitor 8 is provided between the application electrodes 2A and 2B.
Connected through. The DC power supply can be used while being appropriately adjusted according to the use of the treated water. In this embodiment, the DC power supply was used at 100V.

【0012】第1、第2の高周波スイッチ6A、6Bに
は、抵抗9A、9Bをそれぞれ介して当該スイッチに高
周波の切換指令を与えるフリップフロップ回路よりなる
高周波切換指令回路10が接続され、この高周波切換指
令回路10には制御信号に応動して発振周波数が変化す
る電圧制御発振器(VCO)からなる高周波発振回路1
1が接続されている。この高周波発振回路11にはラン
ダム電圧発生器を内蔵した制御回路12が接続されてい
る。
The first and second high-frequency switches 6A and 6B are connected via respective resistors 9A and 9B to a high-frequency switching command circuit 10 composed of a flip-flop circuit for giving a high-frequency switching command to the switches. The switching command circuit 10 includes a high frequency oscillation circuit 1 including a voltage controlled oscillator (VCO) whose oscillation frequency changes in response to a control signal.
1 is connected. A control circuit 12 having a built-in random voltage generator is connected to the high frequency oscillation circuit 11.

【0013】高周波発振回路11は可変周波数形の発振
回路であって、電圧制御発振器(VCO)に与えられる
制御信号の電圧値によってその発振周波数が制御され
る。この時の周波数の変動幅は、例えば、中心周波数
(約40KHz)の上下に約3〜5KHz 程度のものであ
る。
The high-frequency oscillating circuit 11 is a variable-frequency oscillating circuit, and its oscillating frequency is controlled by a voltage value of a control signal supplied to a voltage controlled oscillator (VCO). The fluctuation range of the frequency at this time is, for example, about 3 to 5 KHz above and below the center frequency (about 40 KHz).

【0014】制御回路12は前記発振回路11へその発
振周波数を制御するための制御電圧を供給するものであ
る。この制御回路12はランダム信号発生器を内蔵して
いて、それが発生するランダム信号に応じて電圧値の変
化する制御信号を出力する。図中のシフトレジスタSF
R13は16ステージ構成のものであり、その蓄積情報
は端子Q0〜Q15より並列に読取ることができるように
構成されている。このシフトレジスタSFRのシフト動
作はシフトレジスタSFRの端子CKにパルス発生器
(PG)14より供給されるシフトパルスによって制御
される。また、フリップフロップ15はパルス発生器1
4のパルスにより反転動作を行ない、反転する毎に図2
の"I"部分の急激な周波数変動を行なっている。
The control circuit 12 supplies a control voltage to the oscillation circuit 11 for controlling the oscillation frequency. The control circuit 12 has a built-in random signal generator and outputs a control signal whose voltage value changes according to a random signal generated by the generator. Shift register SF in the figure
R13 has a 16-stage configuration, and the stored information can be read in parallel from terminals Q0 to Q15. The shift operation of the shift register SFR is controlled by a shift pulse supplied from a pulse generator (PG) 14 to a terminal CK of the shift register SFR. The flip-flop 15 is connected to the pulse generator 1
Inverting operation is performed by the pulse of FIG.
Sharply fluctuates in the "I" part of FIG.

【0015】ゲートGTは両入力端子に入力される信号
が同一であれば1、相違すれば0の信号を出力する。所
謂排他的論理和動作を行なうゲートであり、一致検出回
路として作用する。このゲートGTの入力端子の一方に
は前記シフトレジスタSFRの偶数ステージ、例えば、
第6ステージの端子Q6より出力される信号が、また、
他方には奇数ステージ、例えば、第9ステージの端子Q
9より出力される信号が夫々入力される。このゲートG
Tによる一致検出の結果はシフトレジスタSFRの端子
Dより最下位の第0ステージへ入力される。この情報を
逐次上位へシフトしてゆくことによってシフトレジスタ
SFR内に乱数情報が蓄えられる。
The gate GT outputs a signal of 1 if the signals input to both input terminals are the same, and outputs a signal of 0 if the signals are different. This gate performs a so-called exclusive OR operation, and functions as a coincidence detection circuit. One of the input terminals of the gate GT is connected to an even stage of the shift register SFR, for example,
The signal output from the terminal Q6 of the sixth stage is
On the other hand, the odd-numbered stage, for example, the terminal Q of the ninth stage
The signals output from 9 are input respectively. This gate G
The result of the match detection by T is input from the terminal D of the shift register SFR to the 0th stage, which is the lowest. By sequentially shifting this information upward, random number information is stored in the shift register SFR.

【0016】このシフトレジスタSFR内に蓄えられた
乱数情報は適当に選択された約半数のステージから抵抗
器rによって取り出される。本実施例に於ては、第1、
第3、第8、第10、第12〜15の各ステージから信
号を取り出している。抵抗器rはこれら各ステージの端
子Q1、Q3、Q8、Q10、Q12〜Q15を共通の接続点A
に接続している。この接続点Aは発振回路11を構成す
る電圧制御発振器(VCO)に接続されている。また一
方、電圧制御発振器(VCO)はパルス発生器14に接
続されたフリップフロップ回路15にも接続されてい
る。
The random number information stored in the shift register SFR is taken out by a resistor r from about half of the appropriately selected stages. In this embodiment, the first,
Signals are extracted from the third, eighth, tenth, and twelfth to fifteenth stages. The resistor r connects the terminals Q1, Q3, Q8, Q10 and Q12 to Q15 of each stage to a common connection point A.
Connected to. This connection point A is connected to a voltage-controlled oscillator (VCO) constituting the oscillation circuit 11. On the other hand, the voltage controlled oscillator (VCO) is also connected to a flip-flop circuit 15 connected to the pulse generator 14.

【0017】従って、これら各ステージに蓄積された乱
数情報のパターンが変化すると、高レベルと低レベルと
に接続される抵抗器rの合成値が夫々変化するため、接
続点Aの電圧がこれに応じて変動してランダム信号が作
成される。この動作はCPUにより再現できる。
Therefore, when the pattern of the random number information stored in each stage changes, the combined value of the resistor r connected to the high level and the low level changes, and the voltage at the connection point A changes accordingly. A random signal is created varying accordingly. This operation can be reproduced by the CPU.

【0018】パルス発生器14は例えば5Hzを中心周
波数とする連続パルスを送出するパルス発生器であつ
て、電圧制御発振器(VCO)に入力される信号の電圧
値に従ってパルス繰返し周期が変化するように構成され
ている。この周波数の変動範囲は中心周波数の上下に夫
々数ヘルツ程度のものとなっている。このパルス発生器
14の端子には、前記接続点Aの電圧が抵抗器r2を介
して与えられる。従って、このパルス発生器14はシフ
トレジスタSFRによるランダム信号に応じてそのパル
ス繰返し周期が変動することになる。シフトレジスタS
FRはこのパルス発生器14の出力をシフトパルスとし
て用いている。従って、電圧制御発振器(VCO)に出
力される制御信号はその電圧値、変動周期共に全くラン
ダムに変化することになるとともに、フリップフロップ
回路15により、図2に示す急変化I部分を作りだして
いる。
The pulse generator 14 is a pulse generator for transmitting a continuous pulse having a center frequency of, for example, 5 Hz, so that the pulse repetition period changes according to the voltage value of a signal input to a voltage controlled oscillator (VCO). It is configured. This frequency variation range is about several hertz above and below the center frequency. The terminal of the pulse generator 14 is supplied with the voltage at the connection point A via a resistor r2. Therefore, the pulse repetition cycle of the pulse generator 14 fluctuates according to a random signal from the shift register SFR. Shift register S
FR uses the output of the pulse generator 14 as a shift pulse. Therefore, the control signal output to the voltage controlled oscillator (VCO) changes at random in both its voltage value and fluctuation period, and the flip-flop circuit 15 creates a sudden change I portion shown in FIG. .

【0019】ここで、この制御回路12においては、制
御信号をシフトレジスタSFRの約半数のステージに蓄
積された乱数情報のパターンを利用して作成しており、
その採用ステージにも偏りがあり、さらに前述のように
シフトレジスタSFRの入力情報として、偶数、奇数の
各々から1ステージずつ選ばれた情報の一致検出結果を
用いているため、電圧値が急上昇して急降下するような
極めて変動の激しい部分が頻繁に現われ、また、短期間
で同一の変化パターンを繰返すようなことはない。
Here, in the control circuit 12, a control signal is created using a pattern of random number information accumulated in about half of the stages of the shift register SFR.
There is also a bias in the adoption stages, and as described above, the input value of the shift register SFR uses the coincidence detection result of information selected one stage at a time from each of the even and odd numbers, so that the voltage value rises sharply. Extremely fluctuating portions, such as a sudden descent, frequently appear, and the same change pattern is not repeated in a short period of time.

【0020】上述のように構成された水処理装置の直流
電源3のスイッチがオンされると、該制御回路12が上
述のように動作してランダム信号に対応した制御信号が
高周波発振回路11に送出され、発振周波数が制御され
てランダムに変化する。そして高周波発振器から高周波
切換指令回路10にランダムに変化する高周波信号が与
えられる。高周波切換指令回路10にランダムな高周波
信号が与えられると、当該高周波切換指令回路から高周
波の切換指令が出され、第1、第2高周波スイッチ5
A、5Bに交互に与えられ、これら第1、第2の高周波
スイッチが高周期でオン、オフされてランダムに変化す
る高周波交流が形成され、水中に配置された1対の印加
電極2A、2Bに交互に印加される。
When the switch of the DC power supply 3 of the water treatment apparatus configured as described above is turned on, the control circuit 12 operates as described above, and a control signal corresponding to a random signal is transmitted to the high frequency oscillation circuit 11. It is transmitted and the oscillation frequency is controlled and changes randomly. Then, a high-frequency signal that changes at random is supplied from the high-frequency oscillator to the high-frequency switching command circuit 10. When a random high-frequency signal is given to the high-frequency switching command circuit 10, a high-frequency switching command is issued from the high-frequency switching command circuit, and the first and second high-frequency switches 5
A and 5B are alternately applied, and the first and second high-frequency switches are turned on and off at a high cycle to form a randomly changing high-frequency alternating current, and a pair of application electrodes 2A and 2B arranged underwater. Are applied alternately.

【0021】ここで、高周波発振回路11から送出され
る発振周波数は、その電圧値及びその電圧値の持続時間
が全くランダムに変化するとともに、電圧値が急上昇し
てから急降下する極めて激しく変動する部分を頻繁に含
んでいる(図2参照)。かかる装置を用いてした本発明
方法の試験例を以下に示す。
Here, the oscillation frequency sent from the high-frequency oscillation circuit 11 is such that the voltage value and the duration of the voltage value change completely at random, and the voltage value rises sharply and then drops very sharply. (See FIG. 2). Test examples of the method of the present invention using such an apparatus are shown below.

【0022】試験例1 タンク内に採取した手賀沼の水に対して当該試料100
ml当り2滴の割合で黒インクを添加して攪拌しつつ上記
処理装置を作動せしめたところ、黒インクを添加しない
従来の処理方法と比較してみると、従来方法だと凝集沈
殿が生じるまでに15分を要したが、黒インクを添加し
た場合だと10分で凝集沈殿が生じた。また、黒インク
による黒色がほとんど消えて透明となった。
Test Example 1 The sample 100 was taken against the water of Teganuma collected in the tank.
When the above-mentioned processing device was operated while adding black ink at a rate of 2 drops per ml and stirring, compared with the conventional processing method in which black ink was not added, in the conventional method, coagulation and sedimentation occurred. However, when black ink was added, coagulation and precipitation occurred in 10 minutes. Further, the black color by the black ink almost disappeared and became transparent.

【0023】試験例2 酢酸ビニル系接着剤2%の白濁溶液(pH3.5、 pH5.5、 pH
10.5)それぞれに対して当該溶液100ml当り2滴の割
合で黒インクを添加して攪拌しつつ上記装置を作動せし
めたところ、黒インクを添加しない従来の処理方法だと
20分を経過してもいずれも凝集沈殿が生じなかった
が、黒インクを添加した本発明方法の場合だと酸性、中
性、アルカリ性のいずれの場合も15分で凝集沈殿が生
じ白濁溶液は透明になった。
Test Example 2 White turbid solution of 2% vinyl acetate adhesive (pH 3.5, pH 5.5, pH
10.5) Black ink was added at a rate of 2 drops per 100 ml of the solution, and the above apparatus was operated with stirring. Even if 20 minutes had passed with the conventional processing method without adding black ink, No coagulation and sedimentation occurred in any case, but in the case of the method of the present invention to which the black ink was added, coagulation and sedimentation occurred in 15 minutes in any of the acidic, neutral and alkaline cases, and the cloudy solution became transparent.

【0024】試験例3 デンプン白濁溶液(200ppm)に対して当該溶液100ml
当り2滴の割合で黒インクを添加して攪拌しつつ上記装
置を作動せしめたところ、黒インクを添加しない従来の
処理方法と比較してみたところ、従来方法だと凝集沈殿
が生じるまでにいずれも25分を要したが、黒インクを
添加した場合だと15分で凝集沈殿が生じ白濁溶液は透
明になった。
Test Example 3 100 ml of starch opaque solution (200 ppm)
When the above-mentioned apparatus was operated while adding black ink at a rate of 2 drops and stirring, and compared with the conventional processing method in which black ink was not added, the conventional method showed that before the coagulation and sedimentation occurred, However, when the black ink was added, aggregation and precipitation occurred in 15 minutes, and the cloudy solution became transparent.

【0025】[0025]

【発明の効果】本発明方法によれば、産業廃棄物その他
種々の物質に汚染された河川、湖水等の膨大な水量に対
する浄水処理における処理効率を向上することができ
る。
According to the method of the present invention, it is possible to improve the treatment efficiency in the water purification treatment for an enormous amount of water such as rivers and lakes contaminated with industrial waste and other various substances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水処理方法に用いる水処理装置の一実
施例における回路図である。
FIG. 1 is a circuit diagram of an embodiment of a water treatment apparatus used in a water treatment method of the present invention.

【図2】同上の制御回路から送出される制御周波数の変
動を示すグラフである。
FIG. 2 is a graph showing a change in a control frequency sent from the control circuit of the above.

【符号の説明】[Explanation of symbols]

1、1A、1B 接地電極 2A、2B 電極板セット 3 直流電源 4 可変抵抗 5A 第1高周波スイッチ 5B 第2高周波スイッチ 6A、6B、7A、7B トランジスタ 8 コンデンサ 9A、9B 抵抗 10 高周波切換指令回路 11 高周波発振器 12 制御回路 13 シフトレジスタ 14 パルス発生器 15 フリップフロップ回路 DESCRIPTION OF SYMBOLS 1, 1A, 1B Ground electrode 2A, 2B Electrode plate set 3 DC power supply 4 Variable resistor 5A First high frequency switch 5B Second high frequency switch 6A, 6B, 7A, 7B Transistor 8 Capacitor 9A, 9B Resistance 10 High frequency switching command circuit 11 High frequency Oscillator 12 Control circuit 13 Shift register 14 Pulse generator 15 Flip-flop circuit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年1月6日(1999.1.6)[Submission date] January 6, 1999 (1999.1.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】なお、ここに使用される印加電極には、ア
ルミニウム、亜鉛アルミニウム合金、マグネシウム合
金、純鉄、銅、ステンレス等の電解性の高い金属を用
い、接地電極としてはチタン、白金等の安定した金属を
用いることが好ましい。また、コロイド溶液としては、
例えば、インク、Fe2 O3 、TiO2 、Al2 O3 、SiO2 等を用いる
ことができる。
The applied electrode used here is a highly electrolytic metal such as aluminum, zinc-aluminum alloy, magnesium alloy, pure iron, copper or stainless steel, and the ground electrode is a stable electrode such as titanium or platinum. It is preferable to use a metal which has been used. In addition, as a colloid solution,
For example, ink, Fe 2 O 3 , TiO 2 , Al 2 O 3 , SiO 2 and the like can be used.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D061 AA01 AA02 AA08 AB16 AB18 AC08 AC11 BA02 BA03 BB09 BB26 BB27 BB28 BB39 BB40 BD10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D061 AA01 AA02 AA08 AB16 AB18 AC08 AC11 BA02 BA03 BB09 BB26 BB27 BB28 BB39 BB40 BD10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 処理対象の水中に一対の印加電極と、当
該印加電極に近接せしめた接地電極を配置し、印加電極
として電解性の高い金属からなる電極を用い、一対の印
加電極に交流を印加することにより水の酸化還元電位を
下げる水処理方法において、上記交流周波数を制御する
信号発生器を内蔵しその信号に対応して発振周波数を制
御し、緩やかな周波数変動中において急激な上昇又は下
降に変化する部分を作成するとともに、コロイド溶液を
添加することを特徴とする水処理方法。
1. A pair of applied electrodes and a ground electrode placed close to the applied electrodes are disposed in water to be treated, and an electrode made of a highly electrolytic metal is used as the applied electrodes, and alternating current is applied to the pair of applied electrodes. In a water treatment method for lowering the oxidation-reduction potential of water by applying a signal, a signal generator for controlling the AC frequency is built in, and the oscillation frequency is controlled in accordance with the signal. A water treatment method characterized by forming a portion that changes to a downward motion and adding a colloid solution.
【請求項2】 上記コロイド溶液としてインクを用いて
なる請求項1記載の水処理方法。
2. The water treatment method according to claim 1, wherein an ink is used as the colloid solution.
JP25523698A 1998-09-09 1998-09-09 Water treatment Pending JP2000084559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25523698A JP2000084559A (en) 1998-09-09 1998-09-09 Water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25523698A JP2000084559A (en) 1998-09-09 1998-09-09 Water treatment

Publications (1)

Publication Number Publication Date
JP2000084559A true JP2000084559A (en) 2000-03-28

Family

ID=17275933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25523698A Pending JP2000084559A (en) 1998-09-09 1998-09-09 Water treatment

Country Status (1)

Country Link
JP (1) JP2000084559A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062500B2 (en) 2001-12-05 2011-11-22 Oculus Innovative Sciences, Inc. Method and apparatus for producing negative and positive oxidative reductive potential (ORP) water
US8147444B2 (en) 2006-01-20 2012-04-03 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US8323252B2 (en) 2005-03-23 2012-12-04 Oculus Innovative Sciences, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062500B2 (en) 2001-12-05 2011-11-22 Oculus Innovative Sciences, Inc. Method and apparatus for producing negative and positive oxidative reductive potential (ORP) water
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US8323252B2 (en) 2005-03-23 2012-12-04 Oculus Innovative Sciences, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US8147444B2 (en) 2006-01-20 2012-04-03 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US9072726B2 (en) 2006-01-20 2015-07-07 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Similar Documents

Publication Publication Date Title
JP2623204B2 (en) Water reforming method
US3740331A (en) Method for precipitation of heavy metal sulfides
DE69832638D1 (en) DEVICE FOR TREATING INDUSTRIAL WASTE WATERS BY ELECTRIC COAGULATION
Mollah et al. Electrocoagulation (EC)—science and applications
KR950005754A (en) Water purification method and apparatus
JP4596937B2 (en) Water purification method using sodium hypochlorite
JP2000084559A (en) Water treatment
US3414497A (en) Method of clarifying a polluted aqueous liquid
Niza et al. Removal of ammoniacal nitrogen from old leachate using batch electrocoagulation with vibration-induced electrode plate
JP3337422B2 (en) Water treatment method and apparatus
US6706168B2 (en) Wastewater treatment method and apparatus
ES447542A1 (en) Electrolytic process and apparatus for removal of contaminants from water
JP4296036B2 (en) Method and apparatus for alternating current electrolysis of liquid
JP4675827B2 (en) Method and apparatus for alternating current electrolysis of liquid
JP2013046936A (en) Electrolysis treatment method of aqueous grinding/cutting fluid
CN110240339A (en) Processing method, device and the computer readable storage medium of sewage
JP2001000979A (en) Septic apparatus
JP2003340457A (en) Method and apparatus for cleaning contaminated water while saving power
JP2546952B2 (en) Electrode structure in wastewater treatment equipment
CA1087132A (en) Method for coalescing mercury particles
Gündüz et al. Effective removal of reactive blue 222 dye by electrocoagulation and ultrasound-associated electrocoagulation
JP2002239550A (en) Method and apparatus for cleaning polluted water
JP2005296743A (en) Method for removing nitrate nitrogen
US20160355417A1 (en) Alternating current electrolysis method for liquid
JP2547402Y2 (en) Drinking water reformer