JP2000077713A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JP2000077713A
JP2000077713A JP24188998A JP24188998A JP2000077713A JP 2000077713 A JP2000077713 A JP 2000077713A JP 24188998 A JP24188998 A JP 24188998A JP 24188998 A JP24188998 A JP 24188998A JP 2000077713 A JP2000077713 A JP 2000077713A
Authority
JP
Japan
Prior art keywords
type
layer
substrate
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24188998A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP24188998A priority Critical patent/JP2000077713A/en
Publication of JP2000077713A publication Critical patent/JP2000077713A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with a P-type transparent electrode in which a high controllability is required. SOLUTION: This element is a semiconductor light-emitting element constituted into a structure, wherein an n-type GaN semiconductor layer 3, a GaN semiconductor luminous layer 4, a P-type AlGaN semiconductor layer 5 and a P-type GaN semiconductor layer 6 are laminated on a substrate 2 consisting of an N-type 4H or 2H-SiC film At the same time, an N-type electrode 8 and a P-type electrode 7 are respectively formed on the substrate 7 and the layer 6. Here, the electrode 8 is arranged at the corner of the substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体発光素子に関
する。
[0001] The present invention relates to a semiconductor light emitting device.

【0002】[0002]

【従来の技術】GaN(窒化ガリウム)系、SiC(炭
化ケイ素)系の材料は、青色発光に適した材料として注
目され、現在様々な技術が提案されている。
2. Description of the Related Art GaN (gallium nitride) -based and SiC (silicon carbide) -based materials attract attention as materials suitable for blue light emission, and various techniques have been proposed at present.

【0003】例えば特開平8−64910号公報では、
図5(A)に示すように、n型SiC基板10上にn型
SiCクラッド層11、InGaN活性層12、p型S
iCクラッド層13が順に積層され、このp型SiCク
ラッド層13上部中央にAl電極14が、n型SiC基
板10下部中央にNi電極15が形成された青色発光が
可能な半導体発光素子(以下、従来構造A)が提案され
ている。
[0003] For example, in JP-A-8-64910,
As shown in FIG. 5A, an n-type SiC cladding layer 11, an InGaN active layer 12, a p-type S
An iC cladding layer 13 is sequentially stacked, an Al electrode 14 is formed in the upper center of the p-type SiC cladding layer 13, and a Ni electrode 15 is formed in the lower center of the n-type SiC substrate 10. Conventional structure A) has been proposed.

【0004】また、同公報には、その従来技術として、
図5(B)に示すように、サファイヤ基板20上に、A
lGaNバッファ層21、n型GaN層22、n型Al
GaNクラッド層23、InGaN活性層24、p型A
lGaNクラッド層25、p型GaN層26、p型透明
電極27が順に積層され、更にこのp型透明電極27の
上にp型電極28が、n型GaN層22の一部にn型電
極29が形成された青色発光が可能な半導体発光素子
(以下、従来構造B)も開示されている。
[0004] Further, the same publication discloses, as its prior art,
As shown in FIG. 5B, on the sapphire substrate 20, A
lGaN buffer layer 21, n-type GaN layer 22, n-type Al
GaN cladding layer 23, InGaN active layer 24, p-type A
An lGaN cladding layer 25, a p-type GaN layer 26, and a p-type transparent electrode 27 are sequentially stacked. Further, a p-type electrode 28 is provided on the p-type transparent electrode 27, and an n-type electrode 29 is provided on a part of the n-type GaN layer 22. A semiconductor light-emitting device capable of emitting blue light (hereinafter, referred to as a conventional structure B) formed with is also disclosed.

【0005】従来構造Aにおいては、低温成長(約80
0℃)のInGaN活性層12の上部に高温成長(14
00〜1500℃)のp型SiCクラッド層13を成長
させるため、p型SiCクラッド層13の成長中にIn
GaN活性層12中のNが離脱して格子欠陥を生じやす
く、良好な結晶が得られない、素子特性が低下するなど
の課題がある。
In the conventional structure A, low-temperature growth (about 80
(0 ° C.) on the InGaN active layer 12 at a high temperature (14
During the growth of the p-type SiC cladding layer 13, in order to grow the p-type SiC cladding layer 13
There is a problem that N in the GaN active layer 12 is easily detached to cause lattice defects, good crystals cannot be obtained, and device characteristics are deteriorated.

【0006】また、従来構造Bにおいては、基板20に
絶縁体であるサファイヤを用いているので、基板20を
通って素子の上下方向に導通を図ることができない。ま
た、格子定数が3.11〜3.16ÅのGaN系の層
を、格子定数が4.76Åのサファイヤ基板20上に積
層するので、格子不整合によってGaN系の層に結晶欠
陥が生じやすいという課題がある。
Further, in the conventional structure B, since sapphire, which is an insulator, is used for the substrate 20, it is not possible to conduct electrical conduction in the vertical direction of the element through the substrate 20. In addition, since a GaN-based layer having a lattice constant of 3.11 to 3.16 ° is laminated on the sapphire substrate 20 having a lattice constant of 4.76 °, crystal defects are likely to occur in the GaN-based layer due to lattice mismatch. There are issues.

【0007】このような点を考慮し、図5(C)に示す
半導体発光素子のように、GaN系半導体の格子定数と
かなり近い格子定数を有するn型のSiCを基板30と
して用い、この上にGaN系の層、すなわちSi添加の
n型GaN層31、Si,Zn添加のGaN発光層3
2、Mg添加のp型AlGaN半導体(クラッド)層3
3,Mg添加のp型GaN半導体(コンタクト)層34
を形成し、その上に透明なp型電極35とp型パッド電
極36を形成することによって従来構造A,Bの問題点
を解消する構造(以下、構造C)とすることが考えられ
る。
In consideration of such a point, n-type SiC having a lattice constant substantially similar to that of a GaN-based semiconductor is used as the substrate 30 as in the semiconductor light emitting device shown in FIG. A GaN-based layer, that is, an n-type GaN layer 31 doped with Si, a GaN light emitting layer 3 doped with Si and Zn.
2, Mg-added p-type AlGaN semiconductor (cladding) layer 3
3, p-type GaN semiconductor (contact) layer 34 with Mg added
Is formed, and a transparent p-type electrode 35 and a p-type pad electrode 36 are formed thereon to solve the problems of the conventional structures A and B (hereinafter, structure C).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、構造C
においても、p型AlGaN半導体(クラッド)層3
3,Mg添加のp型GaN半導体(コンタクト)層34
の比抵抗値が数オーム・cmと高く、十分低抵抗なp型
層が得られないため、電流の広がりを図るための透明電
極35を別途設ける必要があり、製造工程が複雑化する
という課題がある。この透明電極35は一般に、遮光性
の金属材料を光を透過できる程度に薄く成膜して形成す
る必要があるので、透明電極35を作成するための工程
に高い制御性が必要になるという課題がある。
However, the structure C
Also, in the p-type AlGaN semiconductor (cladding) layer 3
3, p-type GaN semiconductor (contact) layer 34 with Mg added
Has a high specific resistance of several ohm-cm, and a sufficiently low-resistance p-type layer cannot be obtained. Therefore, it is necessary to separately provide a transparent electrode 35 for spreading the current, which complicates the manufacturing process. There is. In general, it is necessary to form the transparent electrode 35 by forming a light-shielding metal material so as to be thin enough to transmit light, so that a high controllability is required in a process for forming the transparent electrode 35. There is.

【0009】[0009]

【課題を解決するための手段】本発明は上記の点を考慮
してなされたもので、基本的な特徴は、基板上にGaN
系の半導体発光層を含む半導体層を積層した半導体発光
素子において、基板として発光波長に対して透明、かつ
導電性のあるSiC基板を用い、このSiC基板に接続
する不透明なパッド電極をSiC基板の中央を避けて隅
部に配置して構成したことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and its basic feature is that GaN is provided on a substrate.
In a semiconductor light emitting device in which a semiconductor layer including a semiconductor light emitting layer is laminated, a transparent and conductive SiC substrate for an emission wavelength is used as a substrate, and an opaque pad electrode connected to this SiC substrate is formed on the SiC substrate. It is arranged at the corner avoiding the center.

【0010】基板として発光波長に対して透明、かつ導
電性のあるSiC基板を用いるので、基板が上に位置す
るように配置してこの基板を通して光を取出すことによ
り、従来必要としていた透明電極を不要とすることがで
きる。透明電極を不要として製造工程の削減、並びにコ
ストダウンを図ることができる。
Since a transparent and conductive SiC substrate for the emission wavelength is used as the substrate, the substrate is arranged so that the substrate is located on the upper side, and light is extracted through this substrate, so that the transparent electrode, which has been conventionally required, can be formed. It can be unnecessary. Since a transparent electrode is not required, the number of manufacturing steps and cost can be reduced.

【0011】[0011]

【発明の実施の形態】以下本発明の実施例を、図1に示
す青色発光に適した半導体発光素子(発光ダイオード)
1を例にとって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to a semiconductor light emitting device (light emitting diode) suitable for blue light emission shown in FIG.
1 will be described as an example.

【0012】この半導体発光素子1は、n型SiC半導
体からなる基板2の上に、GaN系の化合物半導体層、
すなわち、不純物としてSiをド−プしたn型GaN半
導体層3、不純物としてSi,Znをド−プしたn型G
aN半導体発光層4、不純物としてMgをド−プしたp
型AlGaN半導体層5、不純物としてMgをド−プし
たp型GaN半導体コンタクト層6を順に結晶成長して
積層した構造となっている。発光層4は、直接遷移型の
GaN系半導体を用いているので、発光効率を高くする
ことができ、例えば発光層に間接遷移型のSiCを用い
る場合に比べて、発光効率を100倍程度大きくするこ
とができる。
This semiconductor light emitting device 1 has a GaN-based compound semiconductor layer on a substrate 2 made of an n-type SiC semiconductor.
That is, an n-type GaN semiconductor layer 3 doped with Si as an impurity, and an n-type GaN semiconductor layer 3 doped with Si and Zn as an impurity.
aN semiconductor light-emitting layer 4, p doped with Mg as an impurity
It has a structure in which a p-type GaN semiconductor contact layer 6 doped with Mg as an impurity and a p-type GaN semiconductor contact layer 6 are sequentially crystal-grown and stacked. Since the light-emitting layer 4 uses a direct transition type GaN-based semiconductor, the light-emitting efficiency can be increased. can do.

【0013】p型AlGaN半導体層5、p型GaN半
導体コンタクト層6は、比抵抗値が大きいので、その低
抵抗値化を図るために、必要に応じて前記結晶成長後に
800度C前後の温度で所定時間アニ−リング処理して
もよい。このような処理によって比抵抗値を数オーム・
cmに低下させることができるが、この値は、例えばp
型のSiC層の比抵抗値に比べて10倍程度も大きく、
p型のSiC層の場合のような電流広がりを得ることは
困難である。
Since the p-type AlGaN semiconductor layer 5 and the p-type GaN semiconductor contact layer 6 have a large specific resistance, if necessary, a temperature of about 800 ° C. after the crystal growth is used to reduce the resistance. For a predetermined time. By such processing, the specific resistance value is several ohms.
cm, but this value is, for example, p
About 10 times larger than the specific resistance value of the SiC layer of
It is difficult to obtain a current spread as in the case of a p-type SiC layer.

【0014】SiC基板は、製造が最も容易な6H−S
iCを用いるのが一般的であるが、図4に示すように、
この6H−SiCは、その光吸収端が428nmであ
り、発光層4の発光ピーク波長(425〜430nm)
と一致するので、発光波長に対して不透明となる。そこ
で、SiC基板2としては、光吸収端が発光層4の発光
ピーク波長より短く、発光波長に対して透明な4H−S
iC、あるいは2H−SiCを用いている。ここで、S
iC基板2としては、2H−SiCよりも製造が容易な
4H−SiCを用いるのが好ましい。
The SiC substrate is 6H-S, which is the easiest to manufacture.
Although it is common to use iC, as shown in FIG.
This 6H-SiC has a light absorption edge of 428 nm, and a light emission peak wavelength of the light emitting layer 4 (425 to 430 nm).
And becomes opaque to the emission wavelength. Therefore, the SiC substrate 2 has a light absorption edge shorter than the light emission peak wavelength of the light emitting layer 4 and is transparent to the light emission wavelength.
iC or 2H-SiC is used. Where S
As the iC substrate 2, it is preferable to use 4H-SiC which is easier to manufacture than 2H-SiC.

【0015】p型GaN半導体(コンタクト)層6に
は、その中央部にSiとAlとAuからなるp型電極7
を形成し、SiC基板2には、NiとAuからなるパッ
ド用のn型電極8を形成している。この発光素子1は、
図2に示すように、SiC基板2が上に位置するように
上下反転して用いられるため、素子取付面Tに配置され
るp型電極7は、比較的大きな面積に形成されている。
ワイヤボンド接続されるパッド用のn型電極8は、厚み
が厚くて不透明であるので、基板2から出射する光を遮
らないように、基板2の中央を避けて基板2の隅部に配
置している。
The p-type GaN semiconductor (contact) layer 6 has a p-type electrode 7 made of Si, Al, and Au at its center.
Are formed, and an n-type electrode 8 made of Ni and Au for a pad is formed on the SiC substrate 2. This light emitting element 1
As shown in FIG. 2, since the SiC substrate 2 is used upside down so as to be positioned above, the p-type electrode 7 arranged on the element mounting surface T has a relatively large area.
Since the n-type electrode 8 for the pad to be wire-bonded is thick and opaque, it is arranged at a corner of the substrate 2 so as not to block light emitted from the substrate 2, avoiding the center of the substrate 2. ing.

【0016】上記のように構成した素子1は、図2に示
すように、基板2が上側に位置するように上下反転さ
れ、p型電極7が導電性接着剤S等によってリード電極
等の取付面Tに固定配置される。そして、上側に位置す
るパッド用のn型電極8に、金などの細線Yがワイヤボ
ンド接続される。素子1は、発光装置として、図2に示
すように組み立てられるが、この組立てに際して、透明
樹脂等によって周囲を被うことにより、光取り出し効率
を高めることができる。
The element 1 constructed as described above is turned upside down so that the substrate 2 is located on the upper side, as shown in FIG. 2, and the p-type electrode 7 is attached with a conductive adhesive S or the like to a lead electrode or the like. It is fixedly arranged on the surface T. Then, a thin line Y such as gold is wire-bonded to the pad n-type electrode 8 located on the upper side. The element 1 is assembled as shown in FIG. 2 as a light emitting device. At this time, the light extraction efficiency can be increased by covering the periphery with a transparent resin or the like.

【0017】電圧を印加してp型電極7からn型電極8
に向けて素子1内部に所定の電流を流すと、発光層4に
おいて発光ピーク波長が425〜430nmの光が発生
する。この光は、発光波長に対して透明なn型GaN半
導体層3、SiC基板2を含む発光層4の周囲から外部
に出射される。ここで、低抵抗値化が困難なp型GaN
系半導体層6に大面積のp型電極7を形成しているの
で、駆動電圧を低減でき、また発光面積も拡大できる構
成とすることができる。また、n型のSiC基板2は、
その抵抗値がp型GaN系半導体層はもとより、p型の
SiCよりも十分に小さいので、電流が広がりやすく、
電極を隅部に配置しても発光部分の偏在という問題が生
じない。そこで、電流が広がりやすいn型SiC基板2
に接続するn型電極8は、SiC基板2の隅部に配置
し、SiC基板2を介して外部に出射される光のn型電
極8による遮光を防止している。
A voltage is applied to change the p-type electrode 7 to the n-type electrode 8
When a predetermined current is applied to the inside of the element 1 toward the light emitting device 1, light having a light emission peak wavelength of 425 to 430 nm is generated in the light emitting layer 4. This light is emitted to the outside from the periphery of the light emitting layer 4 including the n-type GaN semiconductor layer 3 and the SiC substrate 2 which are transparent to the emission wavelength. Here, p-type GaN for which it is difficult to reduce the resistance value
Since the large-area p-type electrode 7 is formed in the system semiconductor layer 6, the driving voltage can be reduced and the light emitting area can be enlarged. Further, the n-type SiC substrate 2
Since the resistance value is sufficiently smaller than that of the p-type GaN-based semiconductor layer as well as the p-type SiC, the current easily spreads,
Even if the electrodes are arranged at the corners, the problem of uneven distribution of the light emitting portion does not occur. Therefore, the n-type SiC substrate 2 where the current easily spreads
The n-type electrode 8 is disposed at a corner of the SiC substrate 2 to prevent light emitted to the outside via the SiC substrate 2 from being blocked by the n-type electrode 8.

【0018】このように、発光波長に対して透明であ
り、導電性を有するSiC基板2を上側に配置し、この
SiC基板2の隅にパッド用の電極8を設けたので、S
iC基板2を通して光を効率的に取出すことがができ
る。そのため、低抵抗値化が困難なGaN系のp型層に
接続するp型電極7として、従来のように透明な電極を
用いる必要がなくなり、p型電極の構成、並びに製造工
程を簡素化することができる。
As described above, since the SiC substrate 2 which is transparent to the emission wavelength and has conductivity is disposed on the upper side, and the pad electrodes 8 are provided at the corners of the SiC substrate 2,
Light can be efficiently extracted through the iC substrate 2. For this reason, it is not necessary to use a transparent electrode as in the related art as the p-type electrode 7 connected to the GaN-based p-type layer for which it is difficult to reduce the resistance, and the configuration of the p-type electrode and the manufacturing process are simplified. be able to.

【0019】尚、導電性接着剤Sのはい上がりによる短
絡を防止するために、図3に示すように、基板2の一部
とその上の層3〜6の露出面を覆うように、酸化シリコ
ン(SiO2)や窒化シリコン(SiNX)等の絶縁性の被膜9を形
成することもできる。
As shown in FIG. 3, in order to prevent short-circuiting due to the rise of the conductive adhesive S, as shown in FIG. 3, the oxidation is performed so as to cover a part of the substrate 2 and the exposed surfaces of the layers 3 to 6 thereon. An insulating film 9 such as silicon (SiO 2 ) or silicon nitride (SiN x ) can be formed.

【0020】また、上記実施例は発光層4として、S
i,Znを不純物としてド−プしたn型GaN半導体材
料を用いる場合を例示したが、本発明は、発光層4とし
て、例えば、Si,Znを不純物としてド−プしたIn
GaN半導体層、アンド−プのInGaN半導体層、あ
るいはIn組成比が異なるInGaNの多重量子井戸層
等の、InGaN半導体材料を用いることもできる。こ
のような場合、発光波長がGaNに比べて長波長(44
0nm以上)となるので、発光波長に対して透明な基板
として、n型の4Hもしくは2HのSiC基板に加え
て、n型の6HSiC基板を用いることもできる。
In the above embodiment, the light emitting layer 4 is made of S
Although the case where an n-type GaN semiconductor material doped with i and Zn as impurities is used has been described as an example, the present invention provides, as the light emitting layer 4, for example, an In doped with Si and Zn doped as impurities.
InGaN semiconductor materials such as a GaN semiconductor layer, an undoped InGaN semiconductor layer, or an InGaN multiple quantum well layer having a different In composition ratio can also be used. In such a case, the emission wavelength is longer (44) than GaN.
0 nm or more), an n-type 6H SiC substrate can be used as a substrate transparent to the emission wavelength, in addition to the n-type 4H or 2H SiC substrate.

【0021】また、上記実施例は、GaNもしくはIn
GaN半導体発光層4の上下の一方に位置するn型Ga
N系半導体層として、Siド−プn型GaN半導体層3
を用い、発光層4の上下の他方に位置するp型GaN系
半導体層として、Mgド−プp型AlGaN半導体層
5、Mgド−プp型GaNコンタクト層6を用いる場合
を例に取ったが、本発明はこれに限定されるものではな
い。
In the above embodiment, GaN or In
N-type Ga located on one of the upper and lower sides of the GaN semiconductor light emitting layer 4
Si doped n-type GaN semiconductor layer 3 as an N-based semiconductor layer
And an example in which a Mg-doped p-type AlGaN semiconductor layer 5 and a Mg-doped p-type GaN contact layer 6 are used as p-type GaN-based semiconductor layers located on the other of the upper and lower sides of the light-emitting layer 4. However, the present invention is not limited to this.

【0022】例えば、n型GaN系半導体層の他の例と
して、不純物を加えないアンド−プn型GaN半導体層
(n型AlGaN半導体層)、あるいは、不純物として
Si以外のSe,Ge,Sn等のドナ−不純物を加えた
n型GaN半導体層(n型AlGaN半導体層)を用い
ることができる。また、前記n型GaN半導体層と発光
層4の間に、n型AlGaN半導体層を介在した構造と
することもできる。さらにまた、前記n型SiC基板2
と発光層4の間に、n型AlGaN半導体層のみを介在
した構造とすることもできる。
For example, as another example of the n-type GaN-based semiconductor layer, an undoped n-type GaN semiconductor layer (an n-type AlGaN semiconductor layer) to which no impurity is added, or Se, Ge, Sn, etc. other than Si as an impurity N-type GaN semiconductor layer (n-type AlGaN semiconductor layer) to which a donor impurity is added can be used. Further, a structure in which an n-type AlGaN semiconductor layer is interposed between the n-type GaN semiconductor layer and the light emitting layer 4 may be employed. Furthermore, the n-type SiC substrate 2
A structure in which only an n-type AlGaN semiconductor layer is interposed between the light-emitting layer 4 and the light-emitting layer 4 may be employed.

【0023】また、p型GaN系半導体層の他の例とし
て、不純物としてMg以外のZn等のアクセプタ不純物
を加えたp型GaN半導体層(p型AlGaN半導体
層)を用いることができる。また、発光層4とp型Ga
N半導体層の間に介在していたp型AlGaN半導体層
を省略し、発光層4に隣接してp型GaN半導体層を設
けた構造とすることができる。さらにまた、発光層4に
隣接するp型GaN系半導体層として、p型AlGaN
半導体層のみを設けた構造とすることもできる。
As another example of the p-type GaN-based semiconductor layer, a p-type GaN semiconductor layer (p-type AlGaN semiconductor layer) to which an acceptor impurity such as Zn other than Mg is added as an impurity can be used. Further, the light emitting layer 4 and the p-type Ga
A structure in which the p-type AlGaN semiconductor layer interposed between the N semiconductor layers is omitted and a p-type GaN semiconductor layer is provided adjacent to the light emitting layer 4 can be adopted. Furthermore, as a p-type GaN-based semiconductor layer adjacent to the light emitting layer 4, p-type AlGaN
A structure in which only a semiconductor layer is provided can be employed.

【0024】また、上記実施例では、n型SiC基板2
に直接n型GaN系半導体層を形成する場合を例示した
が、n型SiC基板2とn型GaN系半導体層の間に、
両者の格子不整合を防止するためのAlGaN半導体層
等からなるGaN系のバッファ層を形成することができ
る。
In the above embodiment, the n-type SiC substrate 2
Although the case where the n-type GaN-based semiconductor layer is directly formed is illustrated as an example, between the n-type SiC substrate 2 and the n-type GaN-based semiconductor layer,
A GaN-based buffer layer made of an AlGaN semiconductor layer or the like for preventing lattice mismatch between the two can be formed.

【0025】[0025]

【発明の効果】本発明の半導体発光素子は、基板として
発光波長に対して透明、かつ導電性のあるSiC基板を
用いるので、基板が上に位置するように配置してこの基
板を通して光を透過させることにより、従来必要として
いた透明電極を不要とすることができる。透明電極を不
要として製造工程の削減、並びにコストダウンを図るこ
とができる。また、本発明の半導体発光素子は、発光層
に直接遷移型のGaNあるいはInGaNの半導体材料
を用いているので、SiCを発光層に用いる場合に比べ
て発光効率を極めて高く保つとともに、SiC基板によ
る光吸収を低減して明るい発光素子を提供することがで
きる。
According to the semiconductor light emitting device of the present invention, a SiC substrate which is transparent and conductive with respect to the emission wavelength is used as a substrate. Therefore, the substrate is arranged so that the substrate is located above and light is transmitted through this substrate. By doing so, it is possible to eliminate the need for a transparent electrode that has been required conventionally. Since a transparent electrode is not required, the number of manufacturing steps and cost can be reduced. Further, since the semiconductor light emitting device of the present invention uses a direct transition type GaN or InGaN semiconductor material for the light emitting layer, the luminous efficiency is kept extremely high as compared with the case where SiC is used for the light emitting layer, and the semiconductor light emitting device uses the SiC substrate. Light emission can be provided by reducing light absorption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における半導体発光素子の構
造を示した断面図である。
FIG. 1 is a cross-sectional view illustrating a structure of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】同実施例の半導体発光素子を備える発光装置の
要部断面図である。
FIG. 2 is a sectional view of a main part of a light emitting device including the semiconductor light emitting element of the same embodiment.

【図3】他の実施例の半導体発光素子を備える発光装置
の要部断面図である。
FIG. 3 is a cross-sectional view of a main part of a light emitting device including a semiconductor light emitting element according to another embodiment.

【図4】同実施例における半導体発光素子の材料の物性
定数を示した図である。
FIG. 4 is a view showing physical constants of materials of the semiconductor light emitting device in the same example.

【図5】(A)(B)は、従来技術による半導体発光素
子の構造を示した断面図、(C)は同図(A)(B)の
改良構造を示す断面図である。
FIGS. 5A and 5B are cross-sectional views showing the structure of a conventional semiconductor light emitting device, and FIGS. 5C and 5C are cross-sectional views showing the improved structure of FIGS.

【符号の説明】[Explanation of symbols]

1 半導体発光素子 2 n型SiC基板 3 n型GaN半導体層 4 GaN半導体発光層 5 p型AlGaN半導体(クラッド)層 6 p型GaN半導体(コンタクト)層 7 p型電極 8 n型電極 Reference Signs List 1 semiconductor light-emitting element 2 n-type SiC substrate 3 n-type GaN semiconductor layer 4 GaN semiconductor light-emitting layer 5 p-type AlGaN semiconductor (cladding) layer 6 p-type GaN semiconductor (contact) layer 7 p-type electrode 8 n-type electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SiCからなる半導体製の基板の上にG
aN系の半導体発光層を含む半導体層を積層した半導体
発光素子であって、前記SiC基板として、発光波長に
対して透明、かつ導電性のある基板を用いるとともに、
このSiC基板に接続する不透明なパッド電極をSiC
基板の中央を避けて隅部に配置したことを特徴とする半
導体発光素子。
1. A method in which G is placed on a semiconductor substrate made of SiC.
A semiconductor light-emitting device in which semiconductor layers including an aN-based semiconductor light-emitting layer are stacked, wherein a transparent and conductive substrate for an emission wavelength is used as the SiC substrate,
An opaque pad electrode connected to this SiC substrate is
A semiconductor light emitting device, wherein the semiconductor light emitting device is arranged at a corner portion avoiding a center of a substrate.
【請求項2】 n型の4Hもしくは2HのSiCからな
る基板の上に、n型GaN系半導体層、GaN半導体発
光層、p型GaN系半導体層を積層するとともに、前記
SiC基板にn型の電極を形成し、前記p型GaN系半
導体層にp型電極を形成した半導体発光素子であって、
前記n電極を基板の隅に配置したことを特徴とする半導
体発光素子。
2. An n-type GaN-based semiconductor layer, a GaN semiconductor light-emitting layer, and a p-type GaN-based semiconductor layer are stacked on an n-type substrate made of 4H or 2H SiC, and an n-type GaN-based semiconductor layer is formed on the SiC substrate. An electrode is formed, and a p-type electrode is formed on the p-type GaN-based semiconductor layer.
A semiconductor light emitting device, wherein the n-electrode is arranged at a corner of a substrate.
【請求項3】 n型の6H,4Hもしくは2HのSiC
からなる基板の上に、n型GaN系半導体層、InGa
N半導体発光層、p型GaN系半導体層を積層するとと
もに、前記SiC基板にn型の電極を形成し、前記p型
GaN系半導体層にp型電極を形成した半導体発光素子
であって、前記n電極を基板の隅に配置したことを特徴
とする半導体発光素子。
3. An n-type 6H, 4H or 2H SiC.
N-type GaN-based semiconductor layer, InGa
A semiconductor light-emitting device comprising: an N semiconductor light-emitting layer; a p-type GaN-based semiconductor layer stacked; an n-type electrode formed on the SiC substrate; and a p-type electrode formed on the p-type GaN-based semiconductor layer. A semiconductor light emitting device wherein an n-electrode is arranged at a corner of a substrate.
JP24188998A 1998-08-27 1998-08-27 Semiconductor light-emitting element Pending JP2000077713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24188998A JP2000077713A (en) 1998-08-27 1998-08-27 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24188998A JP2000077713A (en) 1998-08-27 1998-08-27 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2000077713A true JP2000077713A (en) 2000-03-14

Family

ID=17081066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24188998A Pending JP2000077713A (en) 1998-08-27 1998-08-27 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2000077713A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010817A3 (en) * 2001-07-23 2003-07-10 Cree Inc Light emitting diodes including modifications for submount bonding and manufacturing methods therefor
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
WO2005008791A2 (en) * 2003-07-16 2005-01-27 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
JP2005286338A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 4 h-type polytype gallium nitride-based semiconductor element formed on 4 h-type polytype substrate
WO2006006556A1 (en) * 2004-07-12 2006-01-19 Rohm Co., Ltd. Semiconductor light emitting element
JP2006528435A (en) * 2003-05-09 2006-12-14 クリー インコーポレイテッド LED production by ion implant isolation
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
JP2010500780A (en) * 2006-08-11 2010-01-07 ブリッジラックス・インク Surface mount chip
US7691656B2 (en) 2000-10-17 2010-04-06 Osram Gmbh Method for fabricating a semiconductor component based on GaN
US7939844B2 (en) 2000-05-26 2011-05-10 Osram Gmbh Light-emitting-diode chip comprising a sequence of GAN-based epitaxial layers which emit radiation and a method for producing the same
US7943406B2 (en) 2003-11-12 2011-05-17 Cree, Inc. LED fabrication via ion implant isolation
US7943954B2 (en) 2004-05-06 2011-05-17 Cree, Inc. LED fabrication via ion implant isolation
US8288787B2 (en) 2002-06-26 2012-10-16 Lg Electronics, Inc. Thin film light emitting diode
US8384120B2 (en) 2002-04-09 2013-02-26 Lg Electronics Inc. Method of fabricating vertical structure LEDs
JP2013175674A (en) * 2012-02-27 2013-09-05 Nano Material Kenkyusho:Kk Semiconductor device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436393B2 (en) 2000-05-26 2013-05-07 Osram Gmbh Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same
US7939844B2 (en) 2000-05-26 2011-05-10 Osram Gmbh Light-emitting-diode chip comprising a sequence of GAN-based epitaxial layers which emit radiation and a method for producing the same
US7691656B2 (en) 2000-10-17 2010-04-06 Osram Gmbh Method for fabricating a semiconductor component based on GaN
US8129209B2 (en) 2000-10-17 2012-03-06 Osram Ag Method for fabricating a semiconductor component based on GaN
US8809086B2 (en) 2000-10-17 2014-08-19 Osram Gmbh Method for fabricating a semiconductor component based on GaN
US7420222B2 (en) 2001-02-01 2008-09-02 Cree, Inc. Light emitting diodes including transparent oxide layers
US7026659B2 (en) 2001-02-01 2006-04-11 Cree, Inc. Light emitting diodes including pedestals
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US8907366B2 (en) 2001-07-23 2014-12-09 Cree, Inc. Light emitting diodes including current spreading layer and barrier sublayers
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US7037742B2 (en) 2001-07-23 2006-05-02 Cree, Inc. Methods of fabricating light emitting devices using mesa regions and passivation layers
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
WO2003010817A3 (en) * 2001-07-23 2003-07-10 Cree Inc Light emitting diodes including modifications for submount bonding and manufacturing methods therefor
US7611915B2 (en) 2001-07-23 2009-11-03 Cree, Inc. Methods of manufacturing light emitting diodes including barrier layers/sublayers
US9224907B2 (en) 2002-04-09 2015-12-29 Lg Innotek Co., Ltd. Vertical structure LEDs
US10453993B1 (en) 2002-04-09 2019-10-22 Lg Innotek Co., Ltd. Vertical structure LEDs
US8896017B2 (en) 2002-04-09 2014-11-25 Lg Innotek Co., Ltd. Vertical structure LEDs
US10461217B2 (en) 2002-04-09 2019-10-29 Lg Innotek Co., Ltd. Vertical structure LEDs
US8384120B2 (en) 2002-04-09 2013-02-26 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US10600933B2 (en) 2002-04-09 2020-03-24 Lg Innotek Co., Ltd. Vertical structure LEDs
US9472727B2 (en) 2002-04-09 2016-10-18 Lg Innotek Co., Ltd. Vertical structure LEDs
US9882084B2 (en) 2002-04-09 2018-01-30 Lg Innotek Co., Ltd. Vertical structure LEDs
US10243101B2 (en) 2002-04-09 2019-03-26 Lg Innotek Co., Ltd. Vertical structure LEDs
US8288787B2 (en) 2002-06-26 2012-10-16 Lg Electronics, Inc. Thin film light emitting diode
JP2011187966A (en) * 2003-05-09 2011-09-22 Cree Inc Led fabrication via ion implant isolation
JP2006528435A (en) * 2003-05-09 2006-12-14 クリー インコーポレイテッド LED production by ion implant isolation
US7872280B2 (en) 2003-07-16 2011-01-18 Panasonic Corporation Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
US7683377B2 (en) 2003-07-16 2010-03-23 Panasonic Corporation Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
WO2005008791A2 (en) * 2003-07-16 2005-01-27 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
WO2005008791A3 (en) * 2003-07-16 2005-05-12 Matsushita Electric Ind Co Ltd Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
US8742434B2 (en) 2003-07-16 2014-06-03 Panasonic Corporation Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
US8237173B2 (en) 2003-07-16 2012-08-07 Panasonic Corporation Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
US7687822B2 (en) 2003-08-26 2010-03-30 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7943406B2 (en) 2003-11-12 2011-05-17 Cree, Inc. LED fabrication via ion implant isolation
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
JP2005286338A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 4 h-type polytype gallium nitride-based semiconductor element formed on 4 h-type polytype substrate
US7943954B2 (en) 2004-05-06 2011-05-17 Cree, Inc. LED fabrication via ion implant isolation
WO2006006556A1 (en) * 2004-07-12 2006-01-19 Rohm Co., Ltd. Semiconductor light emitting element
JP2010500780A (en) * 2006-08-11 2010-01-07 ブリッジラックス・インク Surface mount chip
JP2013175674A (en) * 2012-02-27 2013-09-05 Nano Material Kenkyusho:Kk Semiconductor device

Similar Documents

Publication Publication Date Title
JP5283436B2 (en) Nitride semiconductor light emitting device
JP4620027B2 (en) Nitride-based semiconductor light emitting device
US6583448B2 (en) Light emitting diode and method for manufacturing the same
US9425361B2 (en) Light-emitting device
JP4699258B2 (en) Flip chip light emitting diode and manufacturing method thereof
JP6934812B2 (en) Light emitting element and light emitting element array including it
JP4484826B2 (en) Nitride semiconductor light emitting device
KR100708936B1 (en) Nitride semiconductor light emitting device for flip-chip
JP2000077713A (en) Semiconductor light-emitting element
JP2006245524A (en) Nitride semiconductor light emitting element with vertical structure
US20130015465A1 (en) Nitride semiconductor light-emitting device
TW201427082A (en) Nitride semiconductor light emitting device and method of manufacturing the same
JPH09167861A (en) Multi-color light-emitting device and display device using that
KR100812737B1 (en) Nitride semiconductor light emitting device for flip-chip
KR20050096010A (en) Nitride semiconductor light emitting diode and fabrication method thereof
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
JP2002185037A (en) Light-emitting device
KR100743468B1 (en) Iii-nitride semiconductor light emitting device
JPH09129933A (en) Light emitting element
US20060243991A1 (en) Light emitting diode and manufacturing method thereof
JP4286983B2 (en) AlGaInP light emitting diode
JP2008300424A (en) Light-emitting element and light-emitting device
JP3322301B2 (en) Nitride semiconductor device
JP2007149984A (en) Manufacture of nitride semiconductor light-emitting element
KR102330022B1 (en) Light emitting device and light emitting device package

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302