JP2000073134A - LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME - Google Patents

LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME

Info

Publication number
JP2000073134A
JP2000073134A JP10239780A JP23978098A JP2000073134A JP 2000073134 A JP2000073134 A JP 2000073134A JP 10239780 A JP10239780 A JP 10239780A JP 23978098 A JP23978098 A JP 23978098A JP 2000073134 A JP2000073134 A JP 2000073134A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
weight
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10239780A
Other languages
Japanese (ja)
Inventor
Yasuhito Sugahara
泰人 須ヶ原
Tama Nakano
瑞 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10239780A priority Critical patent/JP2000073134A/en
Publication of JP2000073134A publication Critical patent/JP2000073134A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrogen storage alloy excellent in high temp. characteristics, high in capacity, high in discharging characteristics and rapid in charging characteristics by incorporating specified amounts of Ce and La into a mixture of rare earth elements to form into an LaNi5 hydrogen storage alloy. SOLUTION: This hydrogen storage alloy is expressed by the general formula of R(Ni)x-y-z(M1)y(M2)z(M3)w. In the formula, R denotes a mixture of rare earth elements at least contg. 41 to 50 wt.% Ce and 50 to 59 wt.% La, M1 denotes Mn and/or Al, M2 denotes at least one or more kinds selected from Co, Fe and Cu, M3 denotes Si and/or Ti, (x), (y) and (z) denote the atomic ratios to R and are controlled to 4.83<=x<=5.27, 0.3<=y<=1.0 and 0.4<=z<=1.0, and (w) is the value set in such a manner that M3 is controlled to 0.01 to 1 wt.%, preferably to 0.05 to 0.5 wt.% in the case the total of R, Ni, M1 and M2 is 100 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び
それを用いた電極に関し、特に、アルカリ蓄電池用の負
電極として好適な水素吸蔵合金及びそれを用いた電極に
関する。
The present invention relates to a hydrogen storage alloy and an electrode using the same, and more particularly to a hydrogen storage alloy suitable as a negative electrode for an alkaline storage battery and an electrode using the same.

【0002】[0002]

【従来の技術】水素を吸蔵したり、放出する水素吸蔵合
金が発見されて以来、その応用は、単なる水素貯蔵手段
にとどまらず、ヒートポンプや電池へと展開が図られて
きた。特に、水素吸蔵合金を負電極として用いるアルカ
リ蓄電池は殆ど実用の域に達しており、用いる水素吸蔵
合金も次々に改良されている。
2. Description of the Related Art Since the discovery of a hydrogen storage alloy that absorbs and releases hydrogen, its application has been expanded not only to hydrogen storage means but also to heat pumps and batteries. In particular, alkaline storage batteries using a hydrogen storage alloy as a negative electrode have almost reached practical use, and the hydrogen storage alloys used have been continuously improved.

【0003】即ち、当初に検討されたLaNi5 合金
(特開昭51−13934号公報参照)は、水素吸蔵量
が大きいという利点がある一方、La金属が高価である
上、水素を吸蔵したり放出することの繰り返しによって
微粉化し易く、更に、アルカリ溶液や酸溶液によって腐
蝕され易いという欠点があった。しかし、かかる欠点
は、Laの一部を、Ce、Pr、Ndその他の希土類元
素に置換することによって、及び/又はNiの一部をC
o、Al、Mn等の金属で置換することによって改良さ
れた(例えば、特開昭53−48918号公報、同54
−64014号公報、同60−250558号公報、同
61−233969号公報、同62−43064号公報
参照)。
[0003] That is, the LaNi 5 alloy studied at the beginning (see Japanese Patent Application Laid-Open No. 51-13934) has the advantage of a large amount of hydrogen storage, while the La metal is expensive and can store hydrogen. It has the drawback that it is easily pulverized by repeated release, and is easily corroded by an alkali solution or an acid solution. However, such drawbacks are that some of La are replaced by Ce, Pr, Nd and other rare earth elements and / or some of Ni is
o, Al, Mn and the like (for example, Japanese Patent Application Laid-Open Nos. 53-48918, 54).
-64014, 60-250558, 61-233969, and 62-43064).

【0004】そして、通常Laの一部をCe、Pr、N
d等で置換した金属としては、市販のミッシュメタル
(Mm)が使用されていた。ミッシュメタルは希土類元
素の混合物であり、例えば、Ce45重量%、La30
重量%、Nd5重量%、及び、その他の希土類元素20
重量%からなる。
[0004] Usually, part of La is Ce, Pr, N
Commercially available misch metal (Mm) was used as the metal substituted with d or the like. The misch metal is a mixture of rare earth elements, for example, Ce 45% by weight, La30
Wt%, Nd5 wt%, and other rare earth elements 20
% By weight.

【0005】ところで、一般に、水素吸蔵合金を電池用
の負電極として使用した場合には、高温特性が重要な条
件となる。即ち、この合金を用いて負電極を作製し、電
池に使用した場合には、充電時や夏の暑い時期に車の中
などに放置した場合、電池が高温となるために負電極の
寿命が短くなり、電池としての機能が劣化する。このよ
うな欠点は、特に、高温にさらされる機会が多い電気自
動車(EV)用の電池の場合には顕著である。このた
め、高温特性を有する電池用の負電極として使用するこ
とのできる水素吸蔵合金の開発が望まれていた。
In general, when a hydrogen storage alloy is used as a negative electrode for a battery, high-temperature characteristics are important conditions. In other words, when a negative electrode is manufactured using this alloy and used in a battery, if the battery is left in a car during charging or in a hot summer season, the temperature of the battery becomes high, so the life of the negative electrode is extended. It becomes shorter, and the function as a battery deteriorates. Such a drawback is particularly remarkable in a battery for an electric vehicle (EV) which is frequently exposed to high temperatures. Therefore, development of a hydrogen storage alloy that can be used as a negative electrode for a battery having high temperature characteristics has been desired.

【0006】そこで、電池用の電極とした場合の高温特
性に優れた水素吸蔵合金について、電極の高温特性が水
素吸蔵合金中に占めるCeの含有量に大きく依存するこ
とを見出し、前記CeがMm 中に45重量%以上含有さ
れていることを特徴とする水素吸蔵合金及びそれを用い
た電極、更に詳細に検討した結果、希土類元素の殆んど
をCeとLaとすることにより、高容量で高温性能に優
れた電極を得ることができることを見出し、特開平6−
306517が公開されている。しかし、Ce及びLa
を特定しただけであり、大電流での放電容量に対する更
なる向上が望まれていた。
Accordingly, it has been found that, with respect to a hydrogen storage alloy having excellent high-temperature characteristics when used as an electrode for a battery, the high-temperature characteristics of the electrode greatly depend on the content of Ce in the hydrogen storage alloy. A hydrogen storage alloy characterized by being contained in 45% by weight or more and an electrode using the same, and as a result of further examination, it was found that most of the rare earth elements were made of Ce and La, so that a high capacity was obtained. It has been found that an electrode having excellent high-temperature performance can be obtained.
306517 has been published. However, Ce and La
However, further improvement in the discharge capacity at a large current has been desired.

【0007】[0007]

【発明が解決しようとする課題】本願は、高温特性に優
れた水素吸蔵合金であり、かつ高容量で、高率放電特
性、急速充電特性に優れた水素吸蔵合金を提供すること
である。また、高温で、特に30℃以上の高温で、電池
を使用した場合であっても、電池が劣化せず、高容量
で、高率放電特性、急速充電特性に優れた水素吸蔵合金
を用いた電極を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen storage alloy which is excellent in high-temperature characteristics, and which has high capacity, high rate discharge characteristics and rapid charge characteristics. In addition, even when the battery is used at a high temperature, particularly at a high temperature of 30 ° C. or higher, the hydrogen storage alloy which does not deteriorate and has a high capacity, a high rate discharge characteristic, and an excellent rapid charge characteristic is used. It is to provide an electrode.

【0008】[0008]

【課題を解決するための手段】本発明の上記の諸目的
は、LaNi5系のR(Ni)x-y-z (M1 y (M2
z (M3 w で表される水素吸蔵合金であって、Rが少
なくともCeを41〜50重量%及びLaを50〜59
重量%含有する希土類元素の混合物であり、かつ、Ti
及び/又はSiを含有した水素吸蔵合金を用いることに
より、高率放電特性に優れ、急速充電にも対応できる電
極を提供することが可能になった。
SUMMARY OF THE INVENTION The above objects of the present invention.
Is LaNiFiveR (Ni) of the systemxyz(M1)y(MTwo)
z(MThree)wA hydrogen storage alloy represented by
At least 41 to 50% by weight of Ce and 50 to 59% of La
% By weight and a mixture of rare earth elements and Ti
And / or using a hydrogen storage alloy containing Si
More excellent high-rate discharge characteristics,
It has become possible to provide poles.

【0009】本発明の水素吸蔵合金は、希土類元素の混
合物であるR中に41〜50重量%のCeを含有してい
る。このような組成を有する合金をアルカリ蓄電池の負
電極とすることによって、高温履歴に強い電池(以下、
高温性能に優れた電池と同義である。)を製造すること
ができる。更に、本発明の水素吸蔵合金は、R中にLa
を50〜59重量%含有している。これにより高温性能
に優れるのみならず、高容量の電池を得ることができ
る。
The hydrogen storage alloy of the present invention contains 41 to 50% by weight of Ce in R, which is a mixture of rare earth elements. By using an alloy having such a composition as the negative electrode of an alkaline storage battery, a battery having a high temperature history (hereinafter, referred to as “high temperature history”)
This is synonymous with a battery having excellent high-temperature performance. ) Can be manufactured. Further, the hydrogen storage alloy of the present invention contains La
Of 50 to 59% by weight. As a result, a high-capacity battery as well as excellent high-temperature performance can be obtained.

【0010】[0010]

【発明の実施の形態】本発明は、一般式(1)として、R
(Ni)x-y-z (M1 y (M2 z (M3w で表さ
れる水素吸蔵合金を提供する。Rは少なくともCeを4
1〜50重量%及びLaを50〜59重量%含有する希
土類元素の混合物である。M1 はMn及び/又はAlを
表し、M2 はCo、Fe、Cuから選ばれる少なくとも
一種以上を表し、M3 はSi及び/又はTiを表す。
x、y、zは、Rに対する原子比であって、4.83≦
x≦5.27、0.3≦y≦1.0、0.4≦z≦1.
0を満足する数である。wは、Rに対する原子比であ
り、R、Ni、M1 、M2 の合計量を100重量%とし
た場合、M3が0.01〜1重量%、好ましくは0.0
5〜0.5重量%となるように設定される数である。R
は少なくともCeを41〜50重量%及びLaを50〜
59重量%含有する希土類元素の混合物である。Rは、
CeとLa以外にもPr、Nd、Sm、Y等を含有する
ことができるが、特にRをCe及びLaからなる混合物
の構成にすることが好ましい。R中におけるCeとLa
との含有量を上記範囲としたのは、Laが増加すると、
放電容量は大きくなるが寿命が短くなり、また、La量
が減少すると放電容量が小さくなる。また、Rの大部分
をLa及びCeで構成することにより、高温履歴に強い
合金を得ることができる。M1 としては、MnとAlは
単独での置換でも可能であるが、特には両方を同時に選
択置換することが好ましい。MnとAl、M2 元素が共
存すると、アルカリ水溶液中での合金構成元素の溶出を
抑制し、高温での耐食性が更に向上する。M3 として
は、特にTiを用いることが好ましく、Tiの添加によ
り合金中に固溶せず、CaCu5 構造以外に第2相とし
てTi化合物として存在し、表面積を増大させることが
できる。これにより、更に高率放電特性が向上し合金の
特性が上がる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a compound represented by the general formula (1)
(Ni) xyz (M 1 ) y (M 2 ) z A hydrogen storage alloy represented by (M 3 ) w is provided. R is at least 4
It is a mixture of rare earth elements containing 1 to 50% by weight and 50 to 59% by weight of La. M 1 represents Mn and / or Al, M 2 represents at least one selected from Co, Fe, and Cu, and M 3 represents Si and / or Ti.
x, y, and z are atomic ratios with respect to R, and 4.83 ≦
x ≦ 5.27, 0.3 ≦ y ≦ 1.0, 0.4 ≦ z ≦ 1.
It is a number that satisfies 0. w is the atomic ratio to R, and when the total amount of R, Ni, M 1 and M 2 is 100% by weight, M 3 is 0.01 to 1% by weight, preferably 0.0% by weight.
The number is set to be 5 to 0.5% by weight. R
Represents at least 41 to 50% by weight of Ce and 50 to 50% of La.
It is a rare earth element mixture containing 59% by weight. R is
In addition to Ce and La, Pr, Nd, Sm, Y and the like can be contained, but it is particularly preferable that R be a mixture of Ce and La. Ce and La in R
The reason for setting the content of the above to the above range is that when La increases,
Although the discharge capacity is increased, the life is shortened, and when the La amount is reduced, the discharge capacity is reduced. Further, when most of R is composed of La and Ce, it is possible to obtain an alloy that is resistant to a high-temperature history. As M 1 , Mn and Al can be substituted alone, but it is particularly preferable to selectively substitute both at the same time. When Mn, Al and M 2 elements coexist, elution of alloy constituent elements in an alkaline aqueous solution is suppressed, and the corrosion resistance at high temperatures is further improved. As M 3, it is particularly preferable to use Ti, which does not form a solid solution in the alloy due to the addition of Ti, exists as a Ti compound as a second phase other than the CaCu 5 structure, and can increase the surface area. Thereby, the high rate discharge characteristics are further improved, and the characteristics of the alloy are improved.

【0011】xが4.83未満では、希土類元素の割合
が大きくなり、寿命が短く、耐食性が低下し、実用的で
はない。xが5.27をこえると、合金単位重量当たり
の水素吸蔵量が少なくなり、実用的ではない。yが0.
3未満では高温での合金単位重量当たりの水素吸蔵量が
少なくなり実用的ではない。yが1.0をこえると、常
温以下での合金単位重量当たりの水素吸蔵量が少なくな
り実用的ではない。zが0.4未満では、寿命が短くな
り実用的ではない。zが1.0をこえると、単位重量当
たりの水素吸蔵量が少なくなり実用的ではない。R、N
i、M1 、M2 の合計量を100重量%とした場合、M
3 が0.01重量%未満となるようにwを設定すると、
3 添加による高率放電特性の向上等の効果が十分に発
揮されない。M3 が1重量%をこえるようにwを設定す
ると、合金単位重量当たりの水素吸蔵量が少なくなり実
用的ではない。
When x is less than 4.83, the ratio of the rare earth element becomes large, the life is short, the corrosion resistance is reduced, and it is not practical. If x exceeds 5.27, the amount of hydrogen absorbed per unit weight of the alloy becomes small, which is not practical. y is 0.
If it is less than 3, the amount of hydrogen absorbed per unit weight of the alloy at a high temperature becomes small, which is not practical. If y exceeds 1.0, the amount of hydrogen occlusion per unit weight of the alloy at a normal temperature or lower becomes small, which is not practical. When z is less than 0.4, the life is shortened and is not practical. When z exceeds 1.0, the hydrogen storage amount per unit weight decreases, which is not practical. R, N
When the total amount of i, M 1 and M 2 is 100% by weight, M
When w is set so that 3 is less than 0.01% by weight,
Effects such as improvement of high-rate discharge characteristics by addition of M 3 are not sufficiently exhibited. If w is set so that M 3 exceeds 1% by weight, the amount of hydrogen occlusion per unit weight of the alloy decreases, which is not practical.

【0012】さらに、本発明は、一般式(2)として、R
(Ni)x-y1-y2-z (Mn)y1(Al)y2(M2
z (M3 w で表される水素吸蔵合金を提供する。R、
2 、M 3 、x、z、wは、一般式(1)と同様である。
x、z、wをこの範囲とした理由も一般式(1)と同様で
ある。また、y1、y2は、Rに対する原子比であり、
y1は0.1〜0.5の範囲の数であり、y2は0.1
〜0.6の範囲の数である。y1とy2をこの範囲とし
たのは、合金の平衡解離圧を調整し、常温、高温での容
量を確保するために必要であり、y1、y2が大きくな
ると耐食性に不利となる。M3 であるTi及び/又はS
iの添加は、各元素と同時に仕込み溶解させるか、Rを
再溶解させ、その他金属とともに投入し溶解させてもよ
く、また、R(Ni)x-y-z (M1 y (M2 z の合
金を作製し、更に該合金を再溶解させた際投入してもよ
い。
Further, the present invention provides a compound represented by the general formula (2):
(Ni)x-y1-y2-z(Mn)y1(Al)y2(MTwo)
z(MThree)wA hydrogen storage alloy represented by the formula: R,
MTwo, M Three, X, z, and w are the same as in the general formula (1).
The reason for setting x, z, and w in this range is also the same as in the general formula (1).
is there. Further, y1 and y2 are atomic ratios to R,
y1 is a number in the range of 0.1 to 0.5, and y2 is 0.1
It is a number in the range of 0.6. Let y1 and y2 be this range
The reason is to adjust the equilibrium dissociation pressure of the alloy and
It is necessary to secure the amount, and y1 and y2 are large.
This is disadvantageous for corrosion resistance. MThreeTi and / or S
i is added and dissolved simultaneously with each element, or R is added.
It may be re-dissolved and put together with other metals to dissolve
And R (Ni)xyz(M1)y(MTwo)zIf
It may be charged when gold is produced and the alloy is melted again.
No.

【0013】本発明の水素吸蔵合金は、公知の方法によ
って上記組成の各元素を加え溶解することにより容易に
得ることができる。具体的には、所定量の各元素を秤量
し、るつぼ等を用いて高周波溶解炉、アーク溶解炉等に
て真空中(0.01torr以下の低圧下)またはアルゴ
ン、ヘリウム等の不活性ガス雰囲気下で200〜800
torrのもと溶解後、冷却し、インゴット等に鋳造等す
る。さらに真空中(0.01torr以下の低圧下)または
アルゴン、ヘリウム等の不活性ガス雰囲気下(600〜
1000torr)中において800〜1200℃で5〜2
0時間熱処理を行う。また、上記鋳造方法だけでなく、
本発明の合金は上記合金溶湯をロール急冷、アトマイズ
法等の急冷法により得ることができる。
The hydrogen storage alloy of the present invention can be easily obtained by adding and dissolving each element of the above composition by a known method. Specifically, a predetermined amount of each element is weighed, and is evacuated using a crucible or the like in a high-frequency melting furnace, an arc melting furnace, or the like (in a low pressure of 0.01 torr or less) or in an inert gas atmosphere such as argon or helium. Below 200-800
After melting under torr, it is cooled and cast into an ingot or the like. Further, in vacuum (under a low pressure of 0.01 torr or less) or in an atmosphere of an inert gas such as argon or helium (600 to
5 to 2 at 800 to 1200 ° C in 1000 torr)
Heat treatment is performed for 0 hours. Also, not only the above casting method,
The alloy of the present invention can be obtained by quenching the molten alloy by a quenching method such as a roll quenching method and an atomizing method.

【0014】上記方法で製造した当該水素吸蔵合金をア
ルゴン、窒素等の不活性ガス雰囲気下で衝撃式または摩
砕式粉砕機により平均粒径5〜50μmの合金粉末を容
易に得ることができる。さらに本発明の合金粉末を水酸
化カリウム等のアルカリ溶液、塩酸等の酸性溶液等で表
面処理を施し活性化したり、Ni、Co等の遷移金属等
で合金表面に金属層を形成させ電気的接触や触媒能の向
上をはかってもよい。
An alloy powder having an average particle size of 5 to 50 μm can be easily obtained from the hydrogen-absorbing alloy produced by the above-mentioned method under an inert gas atmosphere of argon, nitrogen or the like by an impact-type or grinding-type pulverizer. Further, the alloy powder of the present invention is subjected to a surface treatment with an alkali solution such as potassium hydroxide or an acidic solution such as hydrochloric acid or the like to activate the alloy powder, or a metal layer is formed on the alloy surface with a transition metal such as Ni or Co to make electrical contact. Alternatively, the catalytic ability may be improved.

【0015】本発明の電極は、公知の例えば、ポリビニ
ルアルコール、カルボキシルメチルセルロース等のセル
ロース類、PTFE、高分子ラテックス等バインダーを
合金に対し0.1〜20重量%用い、更に必要によりカ
ーボン、グラファイト粉末、Ni粉末、Cu粉末等の導
電助材を0.5〜10重量%を添加してもよく、ペース
ト化し、パンチングメタル、発泡ニッケル、ニッケル繊
維体等の集電支持体に充填、塗布し容易に得ることがで
きる。従って、本発明の負極、公知のニッケル正極、セ
パレータ等を組み込むことにより、アルカリ蓄電池を得
ることができる。
The electrode of the present invention uses a known binder such as polyvinyl alcohol, carboxymethyl cellulose or the like, a binder such as PTFE or a polymer latex in an amount of 0.1 to 20% by weight based on the alloy, and further contains carbon or graphite powder if necessary. , Ni powder, Cu powder, etc., may be added in an amount of 0.5 to 10% by weight, and may be made into a paste, easily filled and applied to a current collecting support such as punched metal, foamed nickel, nickel fiber, and the like. Can be obtained. Therefore, an alkaline storage battery can be obtained by incorporating the negative electrode of the present invention, a known nickel positive electrode, a separator, and the like.

【0016】本発明の水素吸蔵合金は、上記した如く、
アルカリ蓄電池用の電極として用いた場合に、その特徴
を最も発揮することができるが、上記電極以外の用途と
して、本来の水素貯蔵手段として、あるいはヒートポン
プ用等として使用することができることは言うまでもな
い。
[0016] The hydrogen storage alloy of the present invention, as described above,
When used as an electrode for an alkaline storage battery, its characteristics can be best exhibited, but it goes without saying that it can be used as an original hydrogen storage means or as a heat pump for applications other than the above electrodes.

【0017】[0017]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。 実施例1〜5 表1に記載の組成になるよう、各元素を秤量し、それら
をアルゴンガス下でアーク溶解炉で溶解して合金を得
た。なお、表1において、Tiの「重量%」は、La、
Ce、Ni、Mn、Al、Co、及び該当する場合には
FeとCuとの合計量に対する重量%である。得られた
合金をアルゴンガス雰囲気下で1000℃×5時間の熱
処理を施し、その後該合金を粉砕して平均粒径が75μ
m未満の粉末にした。この粉末10gに対し、3重量%
のポリビニルアルコール(ケン化度98モル%、平均重
合度2000)の水溶液を2.5g加えて混合し、ペー
ストとした。得られたペーストを多孔度94〜96%の
発泡ニッケル多孔体(寸法30×40×厚み1.2m
m)内へ均一になるように充填し、乾燥した後、加圧成
形して負電極を作製した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Examples 1 to 5 Each element was weighed so as to have the composition shown in Table 1, and they were melted in an arc melting furnace under argon gas to obtain an alloy. In Table 1, "wt%" of Ti is La,
Ce, Ni, Mn, Al, Co and, where applicable, percentages by weight relative to the total amount of Fe and Cu. The obtained alloy is subjected to a heat treatment at 1000 ° C. × 5 hours in an argon gas atmosphere, and then the alloy is pulverized to have an average particle size of 75 μm.
m. 3% by weight based on 10 g of the powder
2.5 g of an aqueous solution of polyvinyl alcohol (having a degree of saponification of 98 mol% and an average degree of polymerization of 2,000) was added and mixed to obtain a paste. The obtained paste is formed into a porous nickel foam having a porosity of 94 to 96% (dimensions 30 × 40 × thickness 1.2 m).
m) was uniformly filled, dried, and then press-molded to produce a negative electrode.

【0018】[0018]

【表1】 [Table 1]

【0019】一方、公知の方法に従って作製された焼結
式ニッケルを酸化ニッケル正電極とした。セパレータと
してポリオレフィン(PP)不織布を用い、上記の電極
を、前記の負電極と組み合わせると共に、電解液として
6モル濃度の水酸化カリウム水溶液を用いて、開放型ニ
ッケル−水素蓄電池を構成させた。
On the other hand, a sintered nickel produced according to a known method was used as a nickel oxide positive electrode. An open-type nickel-hydrogen storage battery was constructed using a polyolefin (PP) nonwoven fabric as a separator, combining the above electrode with the above-mentioned negative electrode, and using an aqueous solution of 6 molar potassium hydroxide as an electrolytic solution.

【0020】得られた各電池を、20℃の一定温度下
で、充電電流30mA/gで15時間充電し、30分放
置後、放電電流60mA/gで電池電圧が0.8Vにな
るまで続けるというサイクルを15回繰り返した後、5
0℃で同様のサイクルを10回繰り返し、再び20℃に
戻した時の放電量を50℃でのサイクルに入る直前の2
0℃での放電容量に対する回復率で測定し、「高温後回
復率」とした。また、20℃の一定温度下で、充電電流
30mA/gで15時間充電し、30分放置後、放電電
流60mA/gで電池電圧が0.8Vになるまで続ける
というサイクルを300回繰り返した後の放電容量を測
定し、初期〜30サイクルの中の最大放電容量を初期容
量とし、これに対する容量の比を「放電容量維持率」と
して測定した。同様に用意した電池を用い、充放電試験
条件は20℃で60mA/gの電流で7.5時間充電し
た後、種々の電流(300mA/g、900mA/g)
で電池電圧が0.8Vになるまで放電し、初期容量に対
する容量比を放電率(「300mA/g放電率」、「9
00mA/g放電率」)として評価した。以上の結果を
表2に示す。
Each of the obtained batteries is charged at a constant temperature of 20 ° C. with a charging current of 30 mA / g for 15 hours, left for 30 minutes, and continued until the battery voltage reaches 0.8 V at a discharging current of 60 mA / g. After repeating this cycle 15 times, 5
The same cycle was repeated 10 times at 0 ° C., and when the temperature was returned to 20 ° C. again, the amount of discharge was 2
The recovery rate with respect to the discharge capacity at 0 ° C. was measured and defined as “post-high-temperature recovery rate”. After repeating a cycle of charging at a constant current of 20 ° C. at a charging current of 30 mA / g for 15 hours, leaving the battery for 30 minutes, and continuing at a discharging current of 60 mA / g until the battery voltage becomes 0.8 V, 300 times. Was measured, and the maximum discharge capacity in the initial to 30 cycles was defined as the initial capacity, and the ratio of the capacity to this was measured as the "discharge capacity retention ratio". Using a battery prepared in the same manner, the battery was charged at 20 ° C. at a current of 60 mA / g for 7.5 hours, and then charged at various currents (300 mA / g, 900 mA / g).
To discharge the battery voltage to 0.8 V, and change the capacity ratio to the initial capacity by the discharge rate (“300 mA / g discharge rate”, “9
00 mA / g discharge rate "). Table 2 shows the above results.

【0021】[0021]

【表2】 [Table 2]

【0022】比較例1〜8 表1に記載の組成になるよう、各元素を秤量し、実施例
と同様の方法で合金、負電極を作製した。また実施例と
同様の方法で開放型ニッケル−水素蓄電池を構成させ
た。また、実施例と同様の方法で特性を調べた。以上の
結果を表2に示す。
Comparative Examples 1 to 8 Each element was weighed so as to have the composition shown in Table 1, and alloys and negative electrodes were produced in the same manner as in the examples. An open nickel-hydrogen storage battery was constructed in the same manner as in the example. The characteristics were examined in the same manner as in the examples. Table 2 shows the above results.

【0023】表2の比較例3に示すように、Ce45重
量%に対し、La55重量%を含有する負電極を用いた
場合には、高温後における電池の回復率が100%にな
り、高温前後を通じて高容量である電池が得られること
が実証されたが、高率放電特性は不十分である。
As shown in Comparative Example 3 in Table 2, when a negative electrode containing 55% by weight of La with respect to 45% by weight of Ce was used, the recovery rate of the battery after high temperature was 100%, and the recovery rate after high temperature was about 100%. It has been proved that a high-capacity battery can be obtained, but the high-rate discharge characteristics are insufficient.

【0024】表2において、比較例3に対して実施例1
〜5に示すように、Tiが存在する場合に、高率放電特
性が向上していることがわかる。また、実施例1〜5に
対して比較例1、2、4〜8では、放電容量が小さかっ
たり、寿命が短くなることがわかる。
In Table 2, Example 1 was compared to Comparative Example 3.
As shown in Tables 1 to 5, it can be seen that the high-rate discharge characteristics were improved when Ti was present. In addition, in Comparative Examples 1, 2, 4 to 8 as compared with Examples 1 to 5, it can be seen that the discharge capacity is small and the life is short.

【0025】[0025]

【発明の効果】本発明の水素吸蔵合金は、アルカリ蓄電
池の負電極とした場合に、高温履歴に強く高容量である
電極として使用することができる。従って、本発明の水
素吸蔵合金を用いた電極によれば、低温下で使用できる
のみならず、高温を経験した後であっても、電極の劣化
が少ないので、電池の容量変化が僅かであり、長期間に
亘って高容量を維持することのできる電池を提供するこ
とができる。また、高率放電特性に優れ、急速充電にも
対応できる電池を提供することができる。
When the hydrogen storage alloy of the present invention is used as a negative electrode of an alkaline storage battery, it can be used as an electrode having a high temperature history and a high capacity. Therefore, according to the electrode using the hydrogen storage alloy of the present invention, not only can it be used at a low temperature, but even after experiencing a high temperature, deterioration of the electrode is small, so that the capacity change of the battery is small. Further, it is possible to provide a battery capable of maintaining a high capacity for a long period of time. Further, it is possible to provide a battery having excellent high-rate discharge characteristics and capable of coping with rapid charging.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表されるLaNi5
水素吸蔵合金。 R(Ni)x-y-z (M1 y (M2 z (M3 w …(1) (上式中、Rは少なくともCeを41〜50重量%及び
Laを50〜59重量%含有する希土類元素の混合物で
あり、M1 はMn及び/又はAlを表し、M2 はCo、
Fe、Cuから選ばれる少なくとも一種以上を表し、M
3 はSi及び/又はTiを表し、x、y、zは、Rに対
する原子比であり、4.83≦x≦5.27、0.3≦
y≦1.0、0.4≦z≦1.0を満足する数である。
wは、Rに対する原子比であり、R、Ni、M1 、M2
の合計量を100重量%とした場合、M3 が0.01〜
1重量%となるように設定される数である。)
1. A LaNi 5 -based hydrogen storage alloy represented by the following general formula (1). R (Ni) xyz (M 1 ) y (M 2 ) z (M 3 ) w (1) (where R is a rare earth element containing at least 41 to 50% by weight of Ce and 50 to 59% by weight of La) A mixture of elements, M 1 represents Mn and / or Al, M 2 represents Co,
M represents at least one or more selected from Fe and Cu;
3 represents Si and / or Ti, x, y, and z are atomic ratios with respect to R, and 4.83 ≦ x ≦ 5.27, 0.3 ≦
It is a number that satisfies y ≦ 1.0 and 0.4 ≦ z ≦ 1.0.
w is the atomic ratio to R, and R, Ni, M 1 , M 2
When the total amount of 100 wt%, 0.01 is M 3
It is a number set to be 1% by weight. )
【請求項2】 下記一般式(2)で表されるLaNi5
水素吸蔵合金。 R(Ni)x-y1-y2-z (Mn)y1(Al)y2(M2 z (M3 w …(2) (上式中、Rは少なくともCeを41〜50重量%及び
Laを50〜59重量%含有する希土類元素の混合物で
あり、M2 はCo、Fe、Cuから選ばれる少なくとも
一種以上を表し、M3 はSi及び/又はTiを表し、
x、y1、y2、zは、Rに対する原子比であり、4.
83≦x≦5.27、0.1≦y1≦0.5、0.1≦
y2≦0.6、0.4≦z≦1.0を満足する数であ
る。wは、Rに対する原子比であり、R、Ni、Mn、
Al、M2 の合計量を100重量%とした場合、M3
0.01〜1重量%となるように設定される数であ
る。)
2. A LaNi 5 -based hydrogen storage alloy represented by the following general formula (2). R (Ni) x-y1-y2-z (Mn) y1 (Al) y2 (M 2 ) z (M 3 ) w (2) (where R is at least 41 to 50% by weight of Ce and La Is a mixture of rare earth elements containing 50 to 59% by weight, M 2 represents at least one or more selected from Co, Fe, and Cu; M 3 represents Si and / or Ti;
3. x, y1, y2, and z are atomic ratios to R;
83 ≦ x ≦ 5.27, 0.1 ≦ y1 ≦ 0.5, 0.1 ≦
It is a number that satisfies y2 ≦ 0.6 and 0.4 ≦ z ≦ 1.0. w is the atomic ratio to R, and R, Ni, Mn,
Al, when the total amount of M 2 to 100 wt%, a number M 3 is set to be 0.01 to 1 wt%. )
【請求項3】 上記Rが、La及びCeからなる希土類
混合物である請求項1又は請求項2に記載の水素吸蔵合
金。
3. The hydrogen storage alloy according to claim 1, wherein R is a rare earth mixture of La and Ce.
【請求項4】 請求項1〜3のいずれかに記載のLaN
5 系水素吸蔵合金を用いて形成してなる電極。
4. The LaN according to claim 1, wherein
electrodes formed by using a i 5 based hydrogen storage alloy.
JP10239780A 1998-08-26 1998-08-26 LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME Pending JP2000073134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10239780A JP2000073134A (en) 1998-08-26 1998-08-26 LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10239780A JP2000073134A (en) 1998-08-26 1998-08-26 LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME

Publications (1)

Publication Number Publication Date
JP2000073134A true JP2000073134A (en) 2000-03-07

Family

ID=17049791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239780A Pending JP2000073134A (en) 1998-08-26 1998-08-26 LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME

Country Status (1)

Country Link
JP (1) JP2000073134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319402A (en) * 2001-04-20 2002-10-31 Nippon A & L Kk Secondary battery anode binder and secondary battery electrode composition
KR100435180B1 (en) * 2001-09-28 2004-06-11 가부시끼가이샤 도시바 Negative electrode material for non-aqueous electrolyte secondary cell, negative electrode, non-aqueous electrolyte secondary cell, and method of producing the material
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319402A (en) * 2001-04-20 2002-10-31 Nippon A & L Kk Secondary battery anode binder and secondary battery electrode composition
KR100435180B1 (en) * 2001-09-28 2004-06-11 가부시끼가이샤 도시바 Negative electrode material for non-aqueous electrolyte secondary cell, negative electrode, non-aqueous electrolyte secondary cell, and method of producing the material
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery

Similar Documents

Publication Publication Date Title
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP4304430B2 (en) Hydrogen storage alloy and electrode using the same
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JP2655074B2 (en) Hydrogen storage alloy and its electrode
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JPH0765833A (en) Hydrogen storage alloy electrode
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP3198896B2 (en) Nickel-metal hydride battery
JP2847952B2 (en) Sealed alkaline storage battery
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JP4573421B2 (en) Hydrogen storage alloy
JPH10212509A (en) Production of hydrogen storage alloy powder
JP3152845B2 (en) Nickel-metal hydride battery
JP2000192177A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JP2000073133A (en) Rare earth-base hydrogen storage alloy and electrode using the same
JPH08143993A (en) Hydrogen storage alloy and negative electrode using same