JP2000061493A - Denitrification equipment - Google Patents

Denitrification equipment

Info

Publication number
JP2000061493A
JP2000061493A JP10247859A JP24785998A JP2000061493A JP 2000061493 A JP2000061493 A JP 2000061493A JP 10247859 A JP10247859 A JP 10247859A JP 24785998 A JP24785998 A JP 24785998A JP 2000061493 A JP2000061493 A JP 2000061493A
Authority
JP
Japan
Prior art keywords
gas
denitrification
oxygen
tank
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247859A
Other languages
Japanese (ja)
Inventor
Makiko Udagawa
万規子 宇田川
Yasuyuki Yagi
康之 八木
Hiroyuki Yamada
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP10247859A priority Critical patent/JP2000061493A/en
Publication of JP2000061493A publication Critical patent/JP2000061493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent reduction in denitrification performance due to the contamination of a denitrification vessel by oxygen and also any risk of explosion from being caused in the equipment. SOLUTION: In this equipment, oxygen that is originally dissolved in wastewater itself to be treated and carried into a denitrification vessel 12, or oxygen that is dissolved into the wastewater through air entrainment in wastewater due to cavitation or the like, in a raw water pump 18 and carried into a denitrification vessel 12, is purged from the wastewater to be treated, with gaseous hydrogen supplied to the denitrification vessel 12 and then, together with the gaseous hydrogen supplied to the vessel 12 and gaseous nitrogen generated by denitrification reaction, is recycled through a recycle gas line 22. When the oxygen concn. in the recycle gas reaches >1%, the recycle gas is allowed to flow through a bypass line 44 to absorb oxygen with an oxygen absorber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脱窒装置に係り、
特に有機物濃度が低く、且つ硝酸性窒素や亜硝酸性窒素
を含有する被処理水を水素ガスを利用して脱窒する脱窒
装置に関する。
TECHNICAL FIELD The present invention relates to a denitrification device,
In particular, the present invention relates to a denitrification device for denitrifying water to be treated having a low organic matter concentration and containing nitrate nitrogen or nitrite nitrogen using hydrogen gas.

【0002】[0002]

【従来の技術】従来の水素ガスを脱窒槽内に循環させて
生物学的又は化学的に脱窒処理する脱窒装置は、脱窒槽
自体が密閉型あるいはガスホルダ型等の密閉性を有する
構造になっており、この脱窒槽に脱窒菌を保持した接触
材又は水素添加触媒が充填されている。そして、水素ガ
スを脱窒槽の槽下部から吹き込み、さらに槽上部のガス
は槽下部に循環される。次式は水素ガスを利用した脱窒
反応の反応式である。
2. Description of the Related Art A conventional denitrification apparatus for circulating hydrogen gas in a denitrification tank to perform biological or chemical denitrification has a structure in which the denitrification tank itself has a hermeticity such as a hermetic type or a gas holder type. The denitrification tank is filled with a contact material holding denitrifying bacteria or a hydrogenation catalyst. Then, hydrogen gas is blown from the lower part of the denitrification tank, and the gas above the tank is circulated to the lower part of the tank. The following formula is a reaction formula of denitrification reaction using hydrogen gas.

【0003】 2NO3 - +5H2 →N2 +4H2 O+2OH- 上式からわかるように、この反応は、硝酸性窒素2mo
lに対して5molの水素ガスが消費されるため、密閉
型の脱窒槽の場合には槽内の圧力が低下し、ガスホルダ
型の脱窒槽の場合には、ホルダ部が低下する。そして、
密閉型の脱窒槽の場合には所定下限値まで圧力が低下し
た時、ガスホルダ型の脱窒槽の場合には所定下限値まで
のホルダ部が低下した時に、又は脱窒槽内の水素濃度の
低下を検知した時に脱窒槽内への水素ガスの供給を開始
する。同様に、所定上限値まで圧力が上昇した時、ホル
ダ部が所定上限値まで上昇した時、又は脱窒槽内の水素
濃度の上昇を検知した時に水素ガスの供給を停止する。
2NO 3 + 5H 2 → N 2 + 4H 2 O + 2OH As can be seen from the above formula, this reaction is carried out with nitrate nitrogen 2mo
Since 5 mol of hydrogen gas is consumed for 1 l, the pressure inside the tank is reduced in the case of the closed type denitrification tank, and the holder portion is lowered in the case of the gas holder type denitrification tank. And
In the case of a closed type denitrification tank, when the pressure drops to the specified lower limit value, in the case of a gas holder type denitrification tank, when the holder part has dropped to the specified lower limit value, or when the hydrogen concentration in the denitrification tank drops. When it is detected, supply of hydrogen gas to the denitrification tank is started. Similarly, the supply of hydrogen gas is stopped when the pressure rises to a predetermined upper limit value, when the holder portion rises to a predetermined upper limit value, or when an increase in the hydrogen concentration in the denitrification tank is detected.

【0004】水素ガスを利用した脱窒装置は、このよう
な水素ガスの間欠的又は連続的な供給工程を繰り返すこ
とで被処理水中の硝酸性窒素又は亜硝酸性窒素を窒素ガ
スに分解する。このように、水素ガスを利用した脱窒装
置は、上述したように脱窒槽が密閉型又はガスホルダ型
であり密閉性を有するため、従来は脱窒槽内への空気の
混入はほとんどないと考えられてきた。
A denitrification apparatus using hydrogen gas decomposes nitrate nitrogen or nitrite nitrogen in the water to be treated into nitrogen gas by repeating such an intermittent or continuous supply step of hydrogen gas. As described above, in the denitrification device using hydrogen gas, since the denitrification tank is a closed type or a gas holder type and has a hermeticity as described above, conventionally, it is considered that air is hardly mixed into the denitrification tank. Came.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、被処理
水を脱窒槽に供給する時に原水ポンプの突発的なキャビ
テーション等により被処理水中に微細な気泡が発生し、
この気泡に由来して脱窒槽内に酸素が混入する。脱窒槽
内への酸素の混入は、生物学的に脱窒処理を行う場合に
脱窒性能を低下させるという欠点がある。また、脱窒槽
内に供給する可燃性の水素ガスを爆発範囲内の濃度で使
用することが多いために、支燃性の酸素ガスが混入する
ことは爆発の危険性が生じるという問題がある。
However, when the water to be treated is supplied to the denitrification tank, fine bubbles are generated in the water to be treated due to sudden cavitation of the raw water pump, etc.
Oxygen is mixed in the denitrification tank due to the bubbles. Mixing oxygen into the denitrification tank has a drawback that the denitrification performance is lowered when biologically performing denitrification treatment. In addition, since flammable hydrogen gas supplied to the denitrification tank is often used at a concentration within the range of explosion, there is a problem that the mixture of the combustion-supporting oxygen gas causes a risk of explosion.

【0006】また、原水ポンプのキャビテーションのよ
うな突発的な要因とは別に、脱窒装置を硝化装置と組み
合わせた活性汚泥循環変法のような廃水処理装置の場
合、曝気を行う硝化槽の硝化液が脱窒槽に循環されるの
で、脱窒槽の被処理水中には曝気に由来する酸素が継続
的に混入されることになる。このような背景において、
従来の脱窒装置には、被処理水中の溶存酸素を除去する
ための有効な対策がなかった。
In addition to a sudden factor such as cavitation of a raw water pump, in the case of a wastewater treatment device such as a modified activated sludge circulation method in which a denitrification device is combined with a nitrification device, nitrification of a nitrification tank for aeration is performed. Since the liquid is circulated in the denitrification tank, oxygen derived from aeration is continuously mixed in the water to be treated in the denitrification tank. Against this background,
The conventional denitrification device does not have effective measures for removing dissolved oxygen in the water to be treated.

【0007】本発明は、このような事情に鑑みてなされ
たもので、被処理水中に混入した溶存酸素を迅速且つ効
率的に低減することができるので、脱窒性能の低下や爆
発の危険性を確実に防止することのできる脱窒方法及び
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances. Since the dissolved oxygen mixed in the water to be treated can be reduced quickly and efficiently, the denitrification performance is lowered and the risk of explosion is increased. An object of the present invention is to provide a denitrification method and device capable of surely preventing the above.

【0008】[0008]

【課題を解決するための手段】本発明は前記目的を達成
するために、密閉性を有する脱窒槽内の被処理水中に水
素ガスを供給して前記被処理水中の硝酸性窒素や亜硝酸
性窒素を生物学的又は化学的に脱窒すると共に、前記脱
窒槽の槽上部と槽下部を繋いで前記槽上部に溜まったガ
スを前記槽下部に循環させるガス循環ラインを備えた脱
窒装置において、前記ガス循環ラインに酸素吸収装置を
設けたことを特徴とする。
In order to achieve the above-mentioned object, the present invention supplies hydrogen gas into the water to be treated in a denitrifying tank having a hermeticity so that the nitrogen or nitrite property in the water to be treated is In a denitrification device equipped with a gas circulation line for biologically or chemically denitrifying nitrogen, connecting the tank upper part and the tank lower part of the denitrification tank and circulating the gas accumulated in the tank upper part to the tank lower part An oxygen absorption device is provided in the gas circulation line.

【0009】本発明によれば、被処理水自体に溶存して
脱窒槽内に持ち込まれた酸素や原水ポンプのキャビテー
ション等により被処理水中に溶存して脱窒槽内に持ち込
まれた酸素は、脱窒槽内に供給される水素ガスで被処理
水中から追い出されて、脱窒槽内に供給された水素ガス
や脱窒反応で発生する窒素ガスと共に、循環ラインを循
環する。そして、循環ラインを循環するガスのうち酸素
は、酸素吸収装置で迅速且つ効率的に吸収される。これ
により、被処理水中の酸素濃度を低減できるので、生物
学的な脱窒反応において脱窒性能を低下することがな
く、また生物学的及び化学的な脱窒反応において、酸素
と水素とにより爆発事故を起こすことも防止できる。
According to the present invention, oxygen dissolved in the water to be treated and brought into the denitrification tank and oxygen dissolved in the water to be treated and brought into the denitrification tank due to cavitation of the raw water pump are desorbed. The hydrogen gas supplied into the nitrification tank is expelled from the water to be treated and circulates in the circulation line together with the hydrogen gas supplied into the denitrification tank and the nitrogen gas generated by the denitrification reaction. Oxygen of the gas circulating in the circulation line is quickly and efficiently absorbed by the oxygen absorber. As a result, the oxygen concentration in the water to be treated can be reduced, so that the denitrification performance will not be reduced in the biological denitrification reaction, and in the biological and chemical denitrification reactions, oxygen and hydrogen It can also prevent an explosion accident.

【0010】[0010]

【発明の実施の形態】以下添付図面に従って、本発明の
脱窒装置の好ましい実施の形態を詳説する。図1は、本
発明に係る脱窒装置10の構成図であり、被処理水であ
る原水中の硝酸性窒素や亜硝酸性窒素を水素ガスを利用
して生物学的に脱窒する脱窒装置の例である。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the denitrification apparatus of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a configuration diagram of a denitrification device 10 according to the present invention, which is a denitrification system for biologically denitrifying nitrate nitrogen and nitrite nitrogen in raw water, which is water to be treated, using hydrogen gas. It is an example of an apparatus.

【0011】図1に示すように、脱窒槽12内には、脱
窒菌を保持させて接触材14が充填され、被処理水が原
水配管16を介して原水ポンプ18により脱窒槽12の
低部から脱窒槽12内に流入する。また、脱窒槽12内
の低部には水素ガスを散気する散気部材20が配設さ
れ、散気部材20はガス循環配管22を介して脱窒槽1
2内上部のヘッドスペース部24に連結される。このガ
ス循環配管22にはガスを循環させるブロア装置26が
設けられ、ブロア装置26吸込側のガス循環配管22に
水素ガス供給配管28が連結される。これにより、水素
ガスは水素ガス供給配管28からガス循環配管22に供
給され、ガス循環配管22を流れる循環ガス(ヘッドス
ペース部に溜まる水素ガス、窒素ガス、酸素ガス等のガ
ス)の流れに混ざって散気部材20に送られ、散気部材
20から前記接触材14に向けて散気される。
As shown in FIG. 1, the denitrifying tank 12 is filled with a contact material 14 while holding denitrifying bacteria, and the water to be treated is supplied to a lower portion of the denitrifying tank 12 by a raw water pump 18 through a raw water pipe 16. Flows into the denitrification tank 12. Further, a diffusing member 20 for diffusing hydrogen gas is arranged at a lower portion in the denitrification tank 12, and the diffusing member 20 is provided with a denitrification tank 1 via a gas circulation pipe 22.
2 is connected to the head space portion 24 in the upper part of the inside. The gas circulation pipe 22 is provided with a blower device 26 for circulating gas, and a hydrogen gas supply pipe 28 is connected to the gas circulation pipe 22 on the suction side of the blower device 26. As a result, the hydrogen gas is supplied from the hydrogen gas supply pipe 28 to the gas circulation pipe 22 and mixed with the flow of the circulation gas (gas such as hydrogen gas, nitrogen gas, oxygen gas accumulated in the head space portion) flowing through the gas circulation pipe 22. Is sent to the air diffuser 20 and is diffused from the air diffuser 20 toward the contact member 14.

【0012】また、脱窒槽12のヘッドスペース部24
に連通してヘッドスペース部24内の圧力変化を検出す
る圧力検出器30が設けられると共に、ガス循環配管2
2には循環ガス中の水素ガス濃度を検出する水素ガス検
出器32が設けられる。これらの検出器30、32は信
号ケーブルを介してコントローラ34に連結され、コン
トローラ34は水素ガス供給配管28に設けられた水素
ガス自動供給弁36に信号ケーブルを介して接続され
る。コトトローラ34は、圧力検出器30や水素ガス検
出器32の検出結果に基づいて水素ガス自動供給弁36
を開閉するか、開閉量を調節する。また、脱窒槽12の
ヘッドスペース部24に連通してガス排出配管38が設
けられ、ガス排出配管38にはガス排出自動弁40が設
けられる。このガス排出自動弁40は信号ケーブルを介
して前記コントローラ34に接続される。コントローラ
34は、圧力検出器30や水素ガス検出器32の検出結
果に基づいてガス排出自動弁を開閉する。尚、圧力検出
器30と水素ガス検出器32のうち、何れか一方のみを
使用してもよい。
Further, the head space portion 24 of the denitrification tank 12
A pressure detector 30 for communicating with the head space portion 24 for detecting a pressure change in the head space portion 24 is provided, and the gas circulation pipe 2
2 is provided with a hydrogen gas detector 32 for detecting the concentration of hydrogen gas in the circulating gas. These detectors 30 and 32 are connected to a controller 34 via a signal cable, and the controller 34 is connected to a hydrogen gas automatic supply valve 36 provided in the hydrogen gas supply pipe 28 via a signal cable. The controller 34 uses the hydrogen gas automatic supply valve 36 based on the detection results of the pressure detector 30 and the hydrogen gas detector 32.
Open or close, or adjust the opening and closing amount. Further, a gas discharge pipe 38 is provided in communication with the head space portion 24 of the denitrification tank 12, and the gas discharge pipe 38 is provided with a gas discharge automatic valve 40. The automatic gas discharge valve 40 is connected to the controller 34 via a signal cable. The controller 34 opens and closes the automatic gas discharge valve based on the detection results of the pressure detector 30 and the hydrogen gas detector 32. Incidentally, only one of the pressure detector 30 and the hydrogen gas detector 32 may be used.

【0013】そして、脱窒槽12内では、接触材14に
保持された脱窒菌が水素ガスを水素供与体として脱窒反
応を行い、被処理水中の硝酸性窒素や亜硝酸性窒素を窒
素ガスに分解する。脱窒処理された処理水は、脱窒槽1
2の上部に連結された処理水配管42から脱窒槽12外
に排出される。この脱窒反応の進行にともない窒素ガス
の発生と水素ガスの消費が行われ、ヘッドスペース部2
4の圧力や水素ガス濃度が低下する。この圧力と水素ガ
スの変化を、圧力検出器30と水素ガス検出器32で検
出し、検出値をコントローラ34に逐次送信する。コン
トローラ34で、検出値が所定の下限値に達した時に、
水素ガス自動供給弁36を開き、水素ガスを水素ガス供
給配管28からガス循環配管22に供給する。これによ
り、水素ガス濃度の増加した循環ガスが散気部材20か
ら脱窒槽12内に散気される。一方、圧力検出器30や
水素ガス検出器32の検出値が、所定の上限値に達した
時に、コントローラ34は水素ガス自動供給弁36を閉
じ、水素ガス供給配管28からガス循環配管22への水
素ガスの供給を停止する。このように、水素ガスの脱窒
槽12内への供給・停止は、ヘッドスペース部24の圧
力又はガス循環配管22を循環する循環ガス中の水素濃
度の上限値と下限値との間で自動的に制御される。
Then, in the denitrification tank 12, the denitrifying bacteria retained on the contact material 14 perform a denitrification reaction by using hydrogen gas as a hydrogen donor to convert nitrate nitrogen or nitrite nitrogen in the water to be treated into nitrogen gas. Disassemble. The denitrified treated water is the denitrification tank 1
It is discharged to the outside of the denitrification tank 12 from the treated water pipe 42 connected to the upper part of 2. As the denitrification reaction proceeds, nitrogen gas is generated and hydrogen gas is consumed, and the headspace 2
The pressure of 4 and the hydrogen gas concentration decrease. The change in the pressure and the hydrogen gas is detected by the pressure detector 30 and the hydrogen gas detector 32, and the detected values are sequentially transmitted to the controller 34. At the controller 34, when the detected value reaches a predetermined lower limit value,
The hydrogen gas automatic supply valve 36 is opened, and hydrogen gas is supplied from the hydrogen gas supply pipe 28 to the gas circulation pipe 22. As a result, the circulating gas having an increased hydrogen gas concentration is diffused from the diffuser member 20 into the denitrification tank 12. On the other hand, when the detection values of the pressure detector 30 and the hydrogen gas detector 32 reach a predetermined upper limit value, the controller 34 closes the hydrogen gas automatic supply valve 36 and connects the hydrogen gas supply pipe 28 to the gas circulation pipe 22. Stop the supply of hydrogen gas. As described above, the supply / stop of the hydrogen gas into the denitrification tank 12 is automatically performed between the pressure in the head space portion 24 or the upper limit value and the lower limit value of the hydrogen concentration in the circulating gas circulating in the gas circulation pipe 22. Controlled by.

【0014】自動ガス排出弁40は、脱窒反応で発生し
た窒素ガス濃度の高いガスをヘッドスペース部24から
排出することにより、脱窒槽12内の圧力が高くなりす
ぎないようにすると共に、循環ガス中の水素ガス濃度を
一定濃度以上に保持する役目を行う。即ち、脱窒反応で
発生した窒素ガスの増加により圧力検出器30の検出値
がガス排出の必要な上限値を越えた場合、或いは水素ガ
ス検出器32の検出値がガス排出の必要な下限値を下回
った場合、コントローラ34は自動ガス排出弁40を開
けてヘッドスペース部24のガスを一定時間放出する。
そして、コントローラ34は、一定時間放出した後で自
動ガス排出弁40を閉じるか、あるいは圧力検出器30
の検出値が略大気圧になった時に自動ガス排出弁40を
閉じる。そして、コントローラ34は、このガス放出の
後に水素ガス自動供給弁36を開いて水素ガスを供給す
ることによりガス循環配管22を流れる循環ガス中の水
素ガス濃度を速やかに増加させる。
The automatic gas discharge valve 40 prevents the pressure in the denitrification tank 12 from becoming too high by circulating the gas having a high nitrogen gas concentration generated by the denitrification reaction from the head space portion 24, and circulates the gas. It serves to keep the hydrogen gas concentration in the gas above a certain level. That is, when the detected value of the pressure detector 30 exceeds the upper limit required for gas discharge due to an increase in nitrogen gas generated by the denitrification reaction, or the detected value of the hydrogen gas detector 32 is lower limit required for gas discharge. When the temperature falls below the range, the controller 34 opens the automatic gas exhaust valve 40 to release the gas in the head space portion 24 for a certain period of time.
Then, the controller 34 closes the automatic gas exhaust valve 40 after releasing the gas for a certain period of time, or controls the pressure detector 30.
The automatic gas discharge valve 40 is closed when the detected value of is about atmospheric pressure. After the gas is released, the controller 34 opens the hydrogen gas automatic supply valve 36 to supply the hydrogen gas, thereby rapidly increasing the hydrogen gas concentration in the circulating gas flowing through the gas circulating pipe 22.

【0015】また、ガス循環配管22には、ガス循環配
管22から分岐して再び合流するバイパス配管44が形
成されると共に、このバイパス配管44には酸素吸収装
置46が配設される。そして、分岐手前のガス循環配管
22に循環ガス中の酸素ガスの濃度を検出する酸素検出
器47を設け、酸素検出器47で検出された酸素濃度は
逐次コントローラ34に送信される。また、バイパス配
管44には、酸素吸収装置46の前と後ろにそれぞれ第
1の自動開閉弁48と第2の自動開閉弁50が設けられ
ると共に、分岐位置と合流位置の間のガス循環配管22
にも第3の自動開閉弁52が設けられる。そして、コン
トローラ34は、酸素検出器47からの酸素濃度に基づ
いてこれらの3つの自動開閉弁48、50、52を開閉
することにより、循環ガスの流れをガス循環配管22と
バイパス配管44とに切換える。
Further, the gas circulation pipe 22 is formed with a bypass pipe 44 which branches from the gas circulation pipe 22 and joins again, and an oxygen absorber 46 is arranged in the bypass pipe 44. An oxygen detector 47 that detects the concentration of oxygen gas in the circulating gas is provided in the gas circulation pipe 22 before the branch, and the oxygen concentration detected by the oxygen detector 47 is sequentially transmitted to the controller 34. Further, the bypass pipe 44 is provided with a first automatic opening / closing valve 48 and a second automatic opening / closing valve 50 in front of and behind the oxygen absorber 46, respectively, and the gas circulation pipe 22 between the branch position and the merging position.
Also provided with a third automatic opening / closing valve 52. Then, the controller 34 opens / closes these three automatic opening / closing valves 48, 50, 52 based on the oxygen concentration from the oxygen detector 47, thereby causing the flow of the circulating gas to the gas circulation pipe 22 and the bypass pipe 44. Switch.

【0016】次に、上記の如く構成された本発明の脱窒
装置10の作用について説明する。原水ポンプ18によ
り脱窒槽12内に供給された被処理水と、接触材14に
保持された脱窒菌とが接触することにより、散気部材2
0からの水素ガスを水素供与体として脱窒反応が行わ
れ、被処理水中の硝酸性窒素や亜硝酸性窒素が窒素ガス
に分解される。分解した窒素ガスは、被処理水中に散気
されて脱窒反応で消費されなかった水素ガスと共にヘッ
ドスペース部24に上昇し、ガス循環配管22を介して
再び散気部材20に循環される。
Next, the operation of the denitrification device 10 of the present invention configured as described above will be described. The water to be treated supplied into the denitrification tank 12 by the raw water pump 18 and the denitrifying bacteria held in the contact material 14 come into contact with each other, so that the aeration member 2
A denitrification reaction is performed using hydrogen gas from 0 as a hydrogen donor, and nitrate nitrogen and nitrite nitrogen in the water to be treated are decomposed into nitrogen gas. The decomposed nitrogen gas rises to the headspace 24 together with the hydrogen gas that has been diffused into the water to be treated and not consumed in the denitrification reaction, and is circulated again to the diffuser member 20 through the gas circulation pipe 22.

【0017】この脱窒処理において、被処理水自体に溶
存して脱窒槽12内に持ち込まれた空気に由来する酸素
や、原水ポンプ18のキャビテーション等により被処理
水中に溶存した空気に由来する酸素等が脱窒槽12内に
持ち込まれ、脱窒処理の経過にともなって増加し脱窒槽
12内に蓄積される。この脱窒槽12内に持ち込まれた
酸素の蓄積は、脱窒菌の脱窒性能を低下させたり、水素
ガスとの接触により爆発事故の要因になる。即ち、硝酸
性窒素等を脱窒菌で分解する生物学的脱窒反応の場合、
脱窒菌の硝酸呼吸により行われるが、被処理水中に酸素
が存在すると脱窒菌は酸素呼吸を優先してしまう。この
為、硝酸呼吸が低下するので脱窒性能が低下する。ま
た、水素ガスは、爆発範囲内で使用されるため、酸素ガ
スの脱窒槽12内への混入は爆発の危険性につながる。
In this denitrification process, oxygen derived from air dissolved in the water to be treated and brought into the denitrification tank 12 or oxygen derived from air dissolved in the water to be treated by cavitation of the raw water pump 18 or the like. Etc. are brought into the denitrification tank 12, and increase with the progress of the denitrification treatment and accumulated in the denitrification tank 12. The accumulation of oxygen brought into the denitrification tank 12 reduces the denitrification performance of denitrifying bacteria and causes an explosion accident due to contact with hydrogen gas. That is, in the case of a biological denitrification reaction in which nitrate nitrogen etc. is decomposed by denitrifying bacteria,
This is done by nitric acid respiration of the denitrifying bacteria, but if oxygen is present in the water to be treated, the denitrifying bacteria prioritize oxygen respiration. For this reason, nitric acid respiration decreases, so the denitrification performance decreases. Further, since hydrogen gas is used within the range of explosion, mixing of oxygen gas into the denitrification tank 12 leads to danger of explosion.

【0018】ちなみに、図2は、生物学的な脱窒反応に
おけるヘッドスペース部24の酸素濃度の影響を示した
ものであり、被処理水中に含有する15mg/L濃度の
硝酸性窒素を全て窒素ガスに分解するまでの脱窒反応時
間を、ヘッドスペース部24の酸素濃度が1%の場合と
10%の場合とで比較したものである。脱窒槽12に供
給する被処理水としては、KNO3 濃度が15mg−N
/LとKH2 PO4 濃度が1mg−P/Lの模擬廃水を
使用した。また、ヘッドスペース部24のガス組成にお
いて、酸素以外のガスを全て水素ガスとした。また、ガ
ス空塔速度を20m/時間とした。
Incidentally, FIG. 2 shows the effect of the oxygen concentration in the headspace portion 24 on the biological denitrification reaction, in which all the nitrate nitrogen of 15 mg / L concentration contained in the water to be treated is converted into nitrogen. The denitrification reaction time until decomposition into gas is compared between the case where the oxygen concentration in the head space portion 24 is 1% and the case where the oxygen concentration is 10%. The water to be supplied to the denitrification tank 12 has a KNO 3 concentration of 15 mg-N
/ L and KH 2 PO 4 concentration of 1 mg-P / L simulated waste water was used. Further, in the gas composition of the head space portion 24, all gases other than oxygen were hydrogen gas. Further, the gas superficial velocity was set to 20 m / hour.

【0019】図2から分かるように、ヘッドスペース部
24の酸素濃度が1%の場合には、脱窒反応時間が約
0.8時間であるのに対し、10%の場合には約1.8
時間となった。このことは、ヘッドスペース部24の酸
素濃度が10%での脱窒性能は、1%の場合の脱窒性能
の半分以下に低下し、酸素濃度が脱窒反応時間に大きく
影響することを意味する。また、ヘッドスペース部24
の酸素濃度を1%以下にしても脱窒反応速度は殆ど変わ
らなかった。
As can be seen from FIG. 2, when the oxygen concentration in the headspace 24 is 1%, the denitrification reaction time is about 0.8 hours, whereas when it is 10%, the denitrification reaction time is about 1. 8
It's time. This means that the denitrification performance when the oxygen concentration in the head space portion 24 is 10% is less than half of the denitrification performance when the oxygen concentration is 1%, and the oxygen concentration has a great influence on the denitrification reaction time. To do. In addition, the head space portion 24
The denitrification reaction rate remained almost unchanged even when the oxygen concentration of 1 was less than 1%.

【0020】一方、図示しなかったが、酸素の存在によ
る爆発の危険性についてみると、水素ガス濃度が爆発範
囲内にある場合でも、循環ガス中の酸素濃度が5%以上
にならなければ着火源があっても爆発を防止することが
できる。そこで、本発明の脱窒装置10では、ガス循環
配管22に分岐したバイパス配管44に酸素吸収装置4
6を設けると共に、分岐手前のガス循環配管22に酸素
検出器47を設けて、酸素検出器47で検出した酸素ガ
ス濃度に基づいて循環ガスの流れをガス循環配管22と
バイパス配管44とで切り換えるようにした。例えば、
酸素検出器47で検出した循環ガス中の酸素濃度が1%
を越えたら、第1及び第2の自動開閉弁48、50を開
いて第3の自動開閉弁52を閉じて、循環ガスをバイパ
ス配管44に流す。これにより、循環ガスは酸素吸収装
置46を通るので、循環ガス中の酸素ガスが酸素吸収装
置46で吸収される。従って、脱窒槽12内には酸素濃
度が1%以下の脱窒反応時間に殆ど影響のない濃度の循
環ガスが供給されるので、高い脱窒性能を維持すること
ができる。また、酸素検出器47で検出した循環ガス中
の酸素濃度が1%以下になったら、第1及び第2の自動
開閉弁48、50を閉じて第3の自動開閉弁52を開
き、循環ガスをガス循環配管22に流す。このように、
脱窒性能を低下させることがなく、また爆発の危険もな
い酸素濃度においては、循環ガスがバイパス配管44に
流れないようにしたので、酸素吸収装置46に充填され
る酸素吸収材の寿命を延ばすことができる。
On the other hand, although not shown, regarding the danger of explosion due to the presence of oxygen, even if the hydrogen gas concentration is within the explosion range, if the oxygen concentration in the circulating gas does not reach 5% or more, the Explosion can be prevented even if there is a fire source. Therefore, in the denitrification device 10 of the present invention, the oxygen absorption device 4 is provided in the bypass pipe 44 branched to the gas circulation pipe 22.
6 is provided, an oxygen detector 47 is provided in the gas circulation pipe 22 before branching, and the flow of the circulating gas is switched between the gas circulation pipe 22 and the bypass pipe 44 based on the oxygen gas concentration detected by the oxygen detector 47. I did it. For example,
The oxygen concentration in the circulating gas detected by the oxygen detector 47 is 1%
When it exceeds the above, the first and second automatic opening / closing valves 48 and 50 are opened, the third automatic opening / closing valve 52 is closed, and the circulating gas is flown to the bypass pipe 44. As a result, the circulating gas passes through the oxygen absorbing device 46, so that the oxygen gas in the circulating gas is absorbed by the oxygen absorbing device 46. Therefore, since the circulating gas having a concentration of oxygen concentration of 1% or less and hardly affecting the denitrification reaction time is supplied into the denitrification tank 12, a high denitrification performance can be maintained. When the oxygen concentration in the circulating gas detected by the oxygen detector 47 becomes 1% or less, the first and second automatic opening / closing valves 48 and 50 are closed and the third automatic opening / closing valve 52 is opened to circulate the circulating gas. To the gas circulation pipe 22. in this way,
At the oxygen concentration where the denitrification performance is not deteriorated and there is no danger of explosion, the circulating gas is prevented from flowing into the bypass pipe 44, so that the life of the oxygen absorbing material filled in the oxygen absorbing device 46 is extended. be able to.

【0021】これらの酸素吸収操作を行っても酸素濃度
が低下せずに、循環ガス中の酸素濃度が5%に達した時
には自動ガス排出弁40を開けてヘッドスペース部24
内の酸素濃度の高いガスを排気した後、水素ガス自動供
給弁36を開いてガス循環配管22に水素ガスを供給す
る。これにより、ガス循環配管22を流れる循環ガス中
の酸素ガス濃度を速やかに減少でき、水素ガス濃度が速
やかに増加する。従って、爆発の危険性を未然に防止す
ることができる。
Even if these oxygen absorption operations are performed, the oxygen concentration does not decrease, and when the oxygen concentration in the circulating gas reaches 5%, the automatic gas exhaust valve 40 is opened to open the head space portion 24.
After exhausting the gas having a high oxygen concentration therein, the hydrogen gas automatic supply valve 36 is opened to supply the hydrogen gas to the gas circulation pipe 22. Thereby, the oxygen gas concentration in the circulation gas flowing through the gas circulation pipe 22 can be rapidly reduced, and the hydrogen gas concentration can be rapidly increased. Therefore, the danger of explosion can be prevented.

【0022】一般に、ガス中の酸素を吸収する方法とし
ては、還元薬品による酸素吸収法、触媒樹脂還元法、触
媒燃焼法等があり、図3は、触媒樹脂還元法による酸素
吸収装置46の例を示したものである。酸素吸収材とし
ては、SO3 型陰イオン交換樹脂を用い、空間速度(又
は空塔速度という)〔SV〕が40(ガス流量m3 /充
填層m3 ・時間)、循環ガス中の酸素濃度を10%とし
た。ここで、SO3 型陰イオン交換樹脂とは、イオン交
換樹脂に還元基を付着させたもので、SO3 型の場合に
はSO3 を付着させたものである。また、空間速度と
は、酸素吸収装置に充填された酸素吸収材の充填層を通
過する1時間当たりのガス流量を充填層の容量で割った
ものである。
Generally, as a method for absorbing oxygen in a gas, there are an oxygen absorption method using a reducing chemical, a catalytic resin reduction method, a catalytic combustion method, and the like. FIG. 3 shows an example of an oxygen absorption device 46 by the catalytic resin reduction method. Is shown. As the oxygen absorbent, SO 3 type anion exchange resin was used, and the space velocity (or superficial velocity) [SV] was 40 (gas flow rate m 3 / packed bed m 3 · hour), and oxygen concentration in the circulating gas Was set to 10%. Here, the SO 3 type anion exchange resin is an ion exchange resin to which a reducing group is attached, and in the case of the SO 3 type, SO 3 is attached. The space velocity is the gas flow rate per hour passing through the packed bed of the oxygen absorbent filled in the oxygen absorber divided by the capacity of the packed bed.

【0023】図3の曲線Aは吸収時間に対する酸素吸収
量を示している。図3の曲線Aから分かるように、循環
ガス中の10%濃度の酸素ガスは、酸素吸収材を通過す
ることで、瞬時に0.5%以下の酸素濃度に低減する。
従って、バイパス配管44に酸素吸収装置46を配設す
ることにより、循環ガス中の酸素濃度を確実に且つ速や
かに低減することができ、脱窒性能の低下や爆発の危険
を防止することができる。
Curve A in FIG. 3 shows the oxygen absorption amount with respect to the absorption time. As can be seen from the curve A of FIG. 3, the oxygen gas of 10% concentration in the circulating gas is instantaneously reduced to 0.5% or less by passing through the oxygen absorbent.
Therefore, by disposing the oxygen absorbing device 46 in the bypass pipe 44, the oxygen concentration in the circulating gas can be reliably and promptly reduced, and the denitrification performance can be reduced and the risk of explosion can be prevented. .

【0024】尚、上記実施の形態では、バイパス配管4
4に酸素吸収装置46を設けて、循環ガス中の酸素濃度
に応じて循環ガスの流れをバイパス配管22とガス循環
配管22とに切換えたが、バイパス配管44を設けない
で、ガス循環配管22に酸素吸収装置46を設け、酸素
濃度に関係なく循環ガスを酸素吸収装置46に通しても
よい。但し、図3の曲線Bで示した吸収時間に対する酸
素吸収量から分かるように、10%濃度の酸素ガスの場
合、吸収開始から20分程度で酸素吸収材の吸収が飽和
に達し、曲線Aのガス中の酸素濃度が急激に増加する。
このことは、循環ガス中の酸素濃度に関係なく、循環ガ
ス酸素吸収装置に常時通すと、酸素吸収材の交換頻度が
頻繁になる。従って、酸素吸収材の寿命等の経済的な面
では酸素濃度に応じて循環ガスの流れをバイパス配管4
4とガス循環配管22とに切り換えた方がより好まし
く、例えば酸素濃度1%を基準として切換を管理するこ
とが好ましい。
In the above embodiment, the bypass pipe 4 is used.
4 is provided with an oxygen absorber 46 and the flow of the circulating gas is switched between the bypass pipe 22 and the gas circulating pipe 22 in accordance with the oxygen concentration in the circulating gas, but the bypass pipe 44 is not provided and the gas circulating pipe 22 is not provided. It is also possible to provide an oxygen absorber 46 and to pass the circulating gas through the oxygen absorber 46 regardless of the oxygen concentration. However, as can be seen from the oxygen absorption amount with respect to the absorption time shown by the curve B in FIG. 3, in the case of oxygen gas with a concentration of 10%, the absorption of the oxygen absorbent reaches saturation within about 20 minutes from the start of absorption, and the curve A The oxygen concentration in the gas increases rapidly.
This means that regardless of the oxygen concentration in the circulating gas, if the circulating gas is constantly passed through the oxygen absorbing device, the frequency of replacement of the oxygen absorbent becomes frequent. Therefore, from the economical aspect such as the life of the oxygen absorber, the flow of the circulating gas is changed according to the oxygen concentration.
4 and the gas circulation pipe 22 are more preferable, and it is preferable to control the switching based on, for example, an oxygen concentration of 1%.

【0025】また、ガス循環配管22とバイパス配管4
4とを完全に切り換えるのではなく、第1、第2、第3
の自動開閉弁48、50、52の弁開度を調整して、循
環ガスの何割かが常時バイパス配管44に流れるように
することもできる。また、本実施の形態では、水素ガス
を利用した生物学的な脱窒装置で説明したが、水素添加
触媒を用いた化学的な脱窒装置の場合にも酸素濃度が高
くなると、硝酸性窒素の分解性能の低下や爆発の危険が
あるので、同様に本発明を適用することができる。
Further, the gas circulation pipe 22 and the bypass pipe 4
4 is not completely switched, but first, second, third
It is also possible to adjust the valve opening degree of the automatic open / close valves 48, 50, 52 so that some percentage of the circulating gas always flows to the bypass pipe 44. Further, in the present embodiment, the description has been made on the biological denitrification device using hydrogen gas, but in the case of a chemical denitrification device using a hydrogenation catalyst, when the oxygen concentration becomes high, the nitrate nitrogen The present invention can be similarly applied since there is a risk of degrading the decomposition performance and explosion.

【0026】[0026]

【発明の効果】以上説明したように、本発明の脱窒装置
によれば、被処理水中に混入した溶存酸素を迅速且つ効
率的に低減することができるので、脱窒性能の低下や爆
発の危険性を確実に防止することができる。
As described above, according to the denitrification apparatus of the present invention, the dissolved oxygen mixed in the water to be treated can be reduced quickly and efficiently, so that the denitrification performance is lowered and the explosion is prevented. The danger can be surely prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱窒装置の構成を示した部分断面図FIG. 1 is a partial cross-sectional view showing the configuration of a denitrification device of the present invention.

【図2】脱窒反応時間と酸素濃度との関係を説明する説
明図
FIG. 2 is an explanatory diagram illustrating the relationship between denitrification reaction time and oxygen concentration.

【図3】本発明の効果を説明する説明図FIG. 3 is an explanatory diagram illustrating an effect of the present invention.

【符号の説明】[Explanation of symbols]

10…脱窒装置 12…脱窒槽 14…接触材 16…原水配管 20…水素ガスの散気部材 22…ガス循環配管 24…ヘッドスペース部 26…ブロア装置 28…水素ガス供給配管 30…圧力検出器 32…水素ガス検出器 34…コントローラ 36…水素ガス自動供給弁 38…ガス排出配管 40…自動ガス排出弁 42…処理水配管 44…バイパス配管 46…酸素吸収装置 47…酸素検出器 48、50、52…自動開閉弁 10 ... Denitrification device 12 ... Denitrification tank 14 ... Contact material 16 ... Raw water piping 20 ... Hydrogen gas diffuser 22 ... Gas circulation piping 24 ... Headspace section 26. Blower device 28 ... Hydrogen gas supply pipe 30 ... Pressure detector 32 ... Hydrogen gas detector 34 ... Controller 36 ... Hydrogen gas automatic supply valve 38 ... Gas discharge pipe 40 ... Automatic gas discharge valve 42 ... Treated water piping 44 ... Bypass piping 46 ... Oxygen absorber 47 ... Oxygen detector 48, 50, 52 ... Automatic open / close valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D020 AA02 BA18 BA19 BA21 BB01 DA01 DA02 4D040 BB52 BB82 BB91 4D050 AB37 BA14 BD08 CA17    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4D020 AA02 BA18 BA19 BA21 BB01                       DA01 DA02                 4D040 BB52 BB82 BB91                 4D050 AB37 BA14 BD08 CA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】密閉性を有する脱窒槽内の被処理水中に水
素ガスを供給して前記被処理水中の硝酸性窒素や亜硝酸
性窒素を生物学的又は化学的に脱窒すると共に、前記脱
窒槽の槽上部と槽下部を繋いで前記槽上部に溜まったガ
スを前記槽下部に循環させるガス循環ラインを備えた脱
窒装置において、 前記ガス循環ラインに酸素吸収装置を設けたことを特徴
とする脱窒装置。
1. A hydrogen gas is supplied into the water to be treated in a denitrifying tank having a hermeticity to biologically or chemically denitrify nitrate nitrogen and nitrite nitrogen in the water to be treated, and In a denitrification device provided with a gas circulation line that connects a tank upper part and a tank lower part of a denitrification tank and circulates a gas accumulated in the tank upper part to the tank lower part, an oxygen absorption device is provided in the gas circulation line. And denitrification equipment.
【請求項2】前記ガス循環ラインを、ガス循環配管と該
ガス循環配管から分岐すると共に再び合流するバイパス
配管とで形成し、 前記バイパス配管に前記酸素吸収手段を設けると共に、
分岐位置手前のガス循環配管に循環ガス中の酸素濃度を
検出する酸素濃度計測手段を設け、 前記酸素濃度計測手段での酸素濃度に基づいて切換手段
で前記循環ガスの流れを前記循環ライン又は前記バイパ
スラインに切り換えることを特徴とする請求項1の脱窒
装置。
2. The gas circulation line is formed by a gas circulation pipe and a bypass pipe branched from the gas circulation pipe and joined again, and the oxygen absorption means is provided in the bypass pipe,
Oxygen concentration measuring means for detecting the oxygen concentration in the circulating gas is provided in the gas circulation pipe before the branch position, and the flow of the circulating gas is changed by the switching means on the basis of the oxygen concentration in the oxygen concentration measuring means. The denitrification device according to claim 1, wherein the denitrification device is switched to a bypass line.
【請求項3】前記酸素濃度計測手段の計測値が1%を越
えたら前記循環ガスの流れをバイパス配管側に切換え、
1%以下になったら前記ガス循環配管に切換るように前
記切換手段を制御する制御手段を設けたことを特徴とす
る請求項2の脱窒装置。
3. When the measured value of the oxygen concentration measuring means exceeds 1%, the flow of the circulating gas is switched to the bypass piping side,
3. The denitrification device according to claim 2, further comprising control means for controlling the switching means so as to switch to the gas circulation pipe when the gas concentration becomes 1% or less.
JP10247859A 1998-08-18 1998-08-18 Denitrification equipment Pending JP2000061493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247859A JP2000061493A (en) 1998-08-18 1998-08-18 Denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247859A JP2000061493A (en) 1998-08-18 1998-08-18 Denitrification equipment

Publications (1)

Publication Number Publication Date
JP2000061493A true JP2000061493A (en) 2000-02-29

Family

ID=17169712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247859A Pending JP2000061493A (en) 1998-08-18 1998-08-18 Denitrification equipment

Country Status (1)

Country Link
JP (1) JP2000061493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7100501B2 (en) * 2001-06-06 2006-09-05 Gaming Partners International Chip holding arrangement, pad printing system incorporating the arrangement, and method of pad printing a chip using the arrangement
CN106151865A (en) * 2015-04-13 2016-11-23 天津航天瑞莱科技有限公司 A kind of for pipeline low-temperature cyclic loading test system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7100501B2 (en) * 2001-06-06 2006-09-05 Gaming Partners International Chip holding arrangement, pad printing system incorporating the arrangement, and method of pad printing a chip using the arrangement
CN106151865A (en) * 2015-04-13 2016-11-23 天津航天瑞莱科技有限公司 A kind of for pipeline low-temperature cyclic loading test system

Similar Documents

Publication Publication Date Title
US6743402B2 (en) Purifier of noxious gas and method for manufacturing the same
US6638427B2 (en) Waste water treatment method being able to treat surface active agent, nitrogen, hydrogen peroxide and phosphor with high efficiency
EP1090674B1 (en) Device and method for cleaning noxious gas
JP2000061493A (en) Denitrification equipment
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
JPH10128389A (en) Method and apparatus for waste water treatment
SK151295A3 (en) Waste water treatment method
JPH08108195A (en) Method and apparatus for removing nitrogen in water
KR102633825B1 (en) Method and System for Reducing Nitrogen Oxides from Gas by Using Bacteria
JPH11128958A (en) Water denitrification treatment apparatus
JP3843141B2 (en) Method and apparatus for treating flue gas desulfurization waste water
JP2001113121A (en) Method for treating desulfurization waste water
JPH10286430A (en) Treatment of nitrogen oxide-containing gas
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
JP2003057395A (en) Disposal method and disposal device for radioactive organic waste
JPH0847696A (en) Desulfurizing device for anaerobic biological reaction gas
JPS62286598A (en) Biological nitration and denitrification of high temperature ammonia-containing waste water
JP7332501B2 (en) Ammonia nitrogen-containing wastewater treatment method and treatment apparatus
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JP3396959B2 (en) Nitrification method and apparatus
JPH0149555B2 (en)
JP3178979B2 (en) Biological deodorizer
JP3178770B2 (en) Ammonia nitrogen-containing wastewater treatment equipment
JP2002331298A (en) Wastewater treatment unit, wastewater treatment apparatus and wastewater treatment method
JPH0880497A (en) Nitrator