JP2000061472A - Method and device for removing fine particles in water - Google Patents

Method and device for removing fine particles in water

Info

Publication number
JP2000061472A
JP2000061472A JP10232072A JP23207298A JP2000061472A JP 2000061472 A JP2000061472 A JP 2000061472A JP 10232072 A JP10232072 A JP 10232072A JP 23207298 A JP23207298 A JP 23207298A JP 2000061472 A JP2000061472 A JP 2000061472A
Authority
JP
Japan
Prior art keywords
water
electrodes
particles
electric field
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10232072A
Other languages
Japanese (ja)
Inventor
Takaaki Tokutomi
孝明 徳富
Sosuke Nishimura
総介 西村
Tetsuo Mizuniwa
哲夫 水庭
Akira Mizuno
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10232072A priority Critical patent/JP2000061472A/en
Publication of JP2000061472A publication Critical patent/JP2000061472A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively collect fine particles in water and also to remove uncharged particles by providing electrodes facing each other, a restriction part of an electric field formed between the electrodes, a liquid passing device for causing water to be treated to flow to between the electrodes, and a power source device for applying voltage to between the electrodes. SOLUTION: Since when high voltage pulses are applied, an electric field is formed between an anode 1 and a cathode 2, but a restriction part of the electric field is formed in openings 5a, 5b of insulating sheets 6a, 6b, fine particles in water move toward the part by dielectrophoresis to hold them in filter medium 3. In this case, since the dielectrophoresis moves the particles to a part of high electric field density irrespective of polarity of the electrodes, they are collected on both the insulating sheets 6a, 6b. By applying pulses of positive polarity, electrophoresis is caused to move the particles having negative charge to the anode side and to catch them. Negatively charged particles are thus moved more to the anode 1 side than to the cathode 2 side and are caught. Since two phenomena of dielectric dielectrophoresis and electrophoresis thus occur at the same time, particles can effectively move.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水中に存在する微粒
子を誘電泳動により除去する方法および装置に関し、特
に純水、超純水のような高純度水に存在する微粒子を除
去する方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for removing fine particles existing in water by dielectrophoresis, and more particularly to a method and apparatus for removing fine particles existing in high-purity water such as pure water and ultrapure water. It is a thing.

【0002】[0002]

【従来の技術】半導体製造工程、医療材料製造工程等で
用いられる超純水は、塩類、有機物のような水に溶解す
る物質のほか、水に溶解しない粒子や微生物等の微粒子
が除去される。このような超純水の製造はRO(逆浸
透)装置等により脱塩して純水を製造し、その純水をイ
オン交換装置、酸化処理装置、UF(限外濾過)装置等
を含むサブシステムで処理して超純水を得ている。
2. Description of the Related Art Ultrapure water used in semiconductor manufacturing processes, medical material manufacturing processes, etc. removes not only water-soluble substances such as salts and organic substances but also water-insoluble particles and microparticles such as microorganisms. . Such ultrapure water is manufactured by demineralizing with an RO (reverse osmosis) device or the like to produce pure water, and the pure water is sub-processed including an ion exchange device, an oxidation treatment device, a UF (ultrafiltration) device and the like. It is processed by the system to obtain ultrapure water.

【0003】このような純水、超純水等の高純度水製造
工程において、RO装置、UF装置等の膜分離装置で処
理を行う際、被処理水に微粒子が含まれていると、膜面
が目詰まりするほか、微生物は膜面に捕捉されて増殖
し、膜面および処理水を汚染する。このため膜分離装置
の前において水中の微生物を除去しておく必要がある。
In the process of producing high-purity water such as pure water and ultrapure water, when the water to be treated contains fine particles when the treatment is carried out by a membrane separation device such as an RO device or a UF device, In addition to clogging of the surface, microorganisms are trapped on the surface of the membrane and proliferate, contaminating the surface of the membrane and treated water. For this reason, it is necessary to remove microorganisms in the water before the membrane separation device.

【0004】またこのような処理を行った後、イオン交
換等の他の処理を行うと、その処理に伴って微粒子が生
成することがあるので、ユースポイントへ処理水を送る
直前にも微粒子を除去する必要がある。また処理水を処
理系に循環する場合にも系内で微粒子が生成し特に微生
物は系内で増殖して水中に混入するので、このような循
環系においても微粒子の除去が必要となる場合がある。
Further, after such a treatment, if another treatment such as ion exchange is performed, fine particles may be generated along with the treatment, so the fine particles may be generated immediately before sending the treated water to the point of use. Need to be removed. Further, when the treated water is circulated in the treatment system, fine particles are generated in the system, and in particular, since microorganisms grow in the system and are mixed in water, it may be necessary to remove the fine particles even in such a circulation system. is there.

【0005】従来、水中の微粒子の除去方法として、対
向する電極間に電圧を印加して、微粒子を電極に集めて
除去する方法が提案されている(例えば特開昭61−1
87989号)。この方法はいわゆる電気泳動法であっ
て、一様な平等電界中で荷電し、微粒子を電極に集めて
除去する方法であり、粒子を移動させるためには高電圧
を印加する必要があり、また荷電していない微粒子は集
めることができないという問題点がある。
Conventionally, as a method of removing fine particles in water, a method has been proposed in which a voltage is applied between opposing electrodes to collect fine particles on the electrodes and remove them (for example, Japanese Patent Laid-Open No. 61-1).
87989). This method is a so-called electrophoretic method, in which particles are charged in a uniform and even electric field to collect and remove fine particles at an electrode. In order to move the particles, it is necessary to apply a high voltage. There is a problem that uncharged fine particles cannot be collected.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、水中
に存在する微粒子を効率よく移動させて集めることがで
き、しかも非荷電粒子も除去することが可能な水中微粒
子の除去方法および装置を提案することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for removing fine particles in water, which are capable of efficiently moving and collecting fine particles existing in water and removing uncharged particles. It is to propose.

【0007】[0007]

【課題を解決するための手段】本発明は次の水中微粒子
の除去方法および装置である。 (1) 対向する電極間に形成される電界の絞り部を形
成し、電極間に被処理水を流し、電極間に電圧を印加し
て誘電泳動により水中の微粒子を捕捉することを特徴と
する水中微粒子の除去方法。 (2) 対向する電極間に高電圧パルスを印加して誘電
泳動および電気泳動により水中の微粒子を捕捉する上記
(1)または(2)記載の方法。 (3) 被処理水が高純度水である上記(1)記載の方
法。 (4) 対向する電極と、電極間に形成される電界の絞
り部と、電極間に被処理水を流す通液装置と、電極間に
電圧を印加する電源装置とを含む水中微粒子の除去装
置。
The present invention is the following method and apparatus for removing fine particles in water. (1) A narrowed portion of an electric field formed between opposing electrodes is formed, treated water is flown between the electrodes, and a voltage is applied between the electrodes to capture fine particles in water by dielectrophoresis. Method of removing fine particles in water. (2) The method according to (1) or (2) above, wherein a high-voltage pulse is applied between opposing electrodes to trap fine particles in water by dielectrophoresis and electrophoresis. (3) The method according to (1) above, wherein the water to be treated is high-purity water. (4) A device for removing fine particles in water, which includes electrodes facing each other, a narrowed portion of an electric field formed between the electrodes, a liquid passing device for flowing water to be treated between the electrodes, and a power supply device for applying a voltage between the electrodes. .

【0008】本発明において処理の対象となる被処理水
は微粒子を含む水であるが、特に純水、超純水のような
高純度水が対象として適している。このような高純度水
は比電導度100μS/cm以下のものが好ましい。本
発明による処理は、特に超純水製造系におけるRO装
置、UF装置等の膜分離装置の前または後、ならびにユ
ースポイントへ処理水を送る直前、あるいは処理水の循
環系における水を処理対象とするのが好ましい。
In the present invention, the water to be treated to be treated is water containing fine particles, but particularly high purity water such as pure water and ultrapure water is suitable. Such high-purity water preferably has a specific electric conductivity of 100 μS / cm or less. The treatment according to the present invention is intended to treat water before or after a membrane separation device such as an RO device or a UF device in an ultrapure water production system, just before sending treated water to a point of use, or treating water in a circulating system of treated water. Preferably.

【0009】除去対象となる微粒子は被処理水中に存在
する不溶性の無機または有機物粒子、細菌等の微生物な
どがあり、これらは元々被処理水に含まれているものの
ほか、処理の途中で外部から混入あるいは生成したも
の、ならびに系内において器壁等から剥離等により混入
したものなどが含まれる。これらの粒子は荷電粒子であ
っても非荷電粒子であってもよい。このような除去対象
となる微粒子は粒径0.1〜100μm、好ましくは
0.1〜10μmのものが処理対象として適している。
The fine particles to be removed include insoluble inorganic or organic particles existing in the water to be treated, microorganisms such as bacteria, etc., which are originally contained in the water to be treated and also from the outside during the treatment. Those which are mixed or generated, and those which are mixed in the system by peeling from the vessel wall and the like are included. These particles may be charged particles or uncharged particles. The particles to be removed have a particle size of 0.1 to 100 μm, preferably 0.1 to 10 μm.

【0010】本発明ではこのような微粒子を対向する電
極間に通して誘電泳動により電極に集めて被処理水から
除去する。荷電粒子については誘導泳動とともに電気泳
動が起こってもよい。電気泳動は荷電粒子が電界中で反
対の電荷を持つ電極に向って移動する現象であり、均一
電界中でも不均一電界中でも起こる。
In the present invention, such fine particles are passed between the opposing electrodes and collected by the electrodes by dielectrophoresis to be removed from the water to be treated. For charged particles, electrophoresis may occur together with induction migration. Electrophoresis is a phenomenon in which charged particles move toward an electrode having an opposite charge in an electric field, and occurs in both a uniform electric field and a non-uniform electric field.

【0011】これに対して誘電泳動は不均一電界中に置
かれた誘電体が分極し、その誘起双極子と電界との相互
作用によって生じる力により粒子が移動する。この場合
微粒子は電界の絞り部、すなわち電気力線の集中する部
分の移動して電極に集められる。電気泳動は直流または
整流されたパルスである必要があるが、誘電泳動は交流
であってもまたパルスであってもよい。
On the other hand, in dielectrophoresis, a dielectric substance placed in an inhomogeneous electric field is polarized, and particles are moved by the force generated by the interaction between the induced dipole and the electric field. In this case, the fine particles move in the narrowed portion of the electric field, that is, the portion where the lines of electric force are concentrated, and are collected in the electrode. Electrophoresis must be DC or rectified pulses, but dielectrophoresis can be AC or pulsed.

【0012】本発明ではこのような誘電泳動を行うため
に対向する電極間に電界の絞り部を形成する。電界の絞
り部は電界が集中する部分であって、この部分で電気力
線の密度が高くなり、この部分に向って粒子が移動して
集められる。板状の電極を対向させる場合、特に平板状
の電極を平行に対向させる場合は、絶縁体例えばテトラ
フルオロエチレン樹脂のパンチングシート、網、格子等
の開口部を有するシートを電極間に介在させると、開口
部に電界が集中し絞り部が形成される。電極面または電
極間に濾紙、濾布等を設けて電界の絞り部を形成させて
もよい。このような絶縁体シートは電極の近くに配置さ
れるのが好ましい。絶縁体シートは片側の電極近くのみ
でも、両側の電極近くに配置させてもよいが、両側に配
置した方が両側に絞り部が形成されて好ましい。さらに
電極近傍だけではなく、電極間の空間に濾紙、絶縁体シ
ートを設置しても絞り部が形成されるので好ましい。
In the present invention, in order to perform such dielectrophoresis, an electric field diaphragm is formed between the opposing electrodes. The narrowed portion of the electric field is a portion where the electric field is concentrated, and the density of the lines of electric force becomes high in this portion, and the particles move toward this portion and are collected. When the plate-shaped electrodes are opposed to each other, particularly when the flat-plate-shaped electrodes are opposed to each other in parallel, an insulating material such as a punching sheet of tetrafluoroethylene resin, a sheet having an opening such as a net or a grid is interposed between the electrodes. The electric field is concentrated in the opening to form a diaphragm. A filter paper, a filter cloth, or the like may be provided on the electrode surface or between the electrodes to form the narrowed portion of the electric field. Such an insulator sheet is preferably placed near the electrodes. The insulator sheet may be arranged only near the electrode on one side or near the electrodes on both sides, but it is preferable to arrange the insulator sheet on both sides because the narrowed portions are formed on both sides. Further, not only in the vicinity of the electrodes but also in the space between the electrodes, a squeezing portion is formed even if a filter paper or an insulating sheet is installed, which is preferable.

【0013】このほか絞り部としては一方の電極板に凹
凸を形成してエッジ部を設けることにより、エッジ部に
電界が集中し電界の絞り部が形成される。このような対
向電極としては平行平板電極のほか同心円筒状のシリン
ダタイプでもよい。板状電極に対向して針状電極を設け
たものは針状電極に電界が集中して絞り部が形成され
る。
In addition, as the diaphragm portion, by forming irregularities on one electrode plate and providing an edge portion, the electric field is concentrated on the edge portion to form the diaphragm portion of the electric field. Such a counter electrode may be a parallel plate electrode or a concentric cylindrical cylinder type. In the case where the needle-shaped electrode is provided so as to face the plate-shaped electrode, the electric field is concentrated on the needle-shaped electrode to form the narrowed portion.

【0014】このような電界の絞り部は対向電極の電極
間隙に沿ってほぼ全域に均一に分散して配置されるのが
よく、例えば電極間に開口部を有する絶縁物シートを介
在させる場合、絶縁物シートに設けられる開口部が絶縁
シートのほぼ全域にわたって均一に配置されるのが好ま
しい。また一方の電極に凹凸部によりエッジ部を形成す
る場合、あるいは一方の電極を針状電極とする場合も、
これらのエッジ部および針状電極は他方の電極面に対し
てほぼ全域にわたり均一に配置するのが好ましい。さら
にこのような電界の絞り部は、その大きさが除去対象粒
子と同程度であると除去効率が良くなるので、同程度の
大きさにするのが好ましい。
It is preferable that the narrowed portions of such an electric field are evenly distributed over substantially the entire area along the electrode gap of the counter electrode. For example, when an insulating sheet having an opening is interposed between the electrodes, It is preferable that the openings provided in the insulating sheet are arranged uniformly over almost the entire area of the insulating sheet. Also, when forming an edge portion with a concavo-convex portion on one electrode, or when using one electrode as a needle-shaped electrode,
It is preferable that the edge portion and the needle-shaped electrode are evenly arranged over the entire area of the other electrode surface. Further, it is preferable to make the diaphragm portion of such an electric field the same size because the removal efficiency is improved when the size is the same as the particles to be removed.

【0015】電極の材質としては陽極、陰極ともにステ
ンレス鋼やトリウム合金を使用することができるが液体
中への電極成分の溶出を防ぐためにはチタン酸バリウム
などの強誘電体セラミックスを利用することができる。
電極間に介在させる開口部を有する絶縁物シートとして
は、フッ素樹脂(例えばポリテトラフルオロエチレン)
のほか、ガラス、セラミックなどが使用できる。
As the material of the electrode, stainless steel or thorium alloy can be used for both the anode and the cathode, but in order to prevent the elution of electrode components into the liquid, it is possible to use ferroelectric ceramics such as barium titanate. it can.
Fluorine resin (for example, polytetrafluoroethylene) is used as an insulator sheet having openings to be interposed between electrodes.
Besides, glass and ceramics can be used.

【0016】各電極面には集められた粒子を保持するた
めの濾材を設けるのが好ましい。この濾材は濾紙、濾布
等からなり、材質としては紙、テトラフルオロエチレン
樹脂の不織布などが使用できる。濾材によってもミクロ
領域で強電界部分が形成される。このような濾材は電極
面に密着して設けられるのが好ましく、開口絶縁体は濾
材に近接して設けるのが好ましい。
Each electrode surface is preferably provided with a filter medium for holding the collected particles. This filter material is made of filter paper, filter cloth, or the like, and as the material, paper, non-woven fabric of tetrafluoroethylene resin, or the like can be used. The strong electric field portion is also formed in the micro region by the filter medium. Such a filter medium is preferably provided in close contact with the electrode surface, and the opening insulator is preferably provided close to the filter medium.

【0017】電極間に電圧を印加する電源装置として
は、直流電源、交流電源、高電圧パルス電源などがある
が、高電圧パルス電源が好ましい。交流の場合周波数1
0〜1010Hz、好ましくは105〜108Hz、電圧1
0V〜100kV、好ましくは50V〜100kV、高
電圧パルス電源の場合ピーク電圧100V〜100k
V、好ましくは1kV〜50kV、パルス幅10-9〜1
-3秒、好ましくは10-6〜10-3秒とすることができ
る。電源は、ダイオードを用いて半波整流したものでも
よい。
As a power supply device for applying a voltage between the electrodes, there are a DC power supply, an AC power supply, a high voltage pulse power supply and the like, but a high voltage pulse power supply is preferable. Frequency 1 in case of alternating current
0 to 10 10 Hz, preferably 10 5 to 10 8 Hz, voltage 1
0V to 100kV, preferably 50V to 100kV, peak voltage 100V to 100k in case of high voltage pulse power supply
V, preferably 1 kV to 50 kV, pulse width 10 -9 to 1
It can be 0 -3 seconds, preferably 10 -6 to 10 -3 seconds. The power supply may be half-wave rectified using a diode.

【0018】電源装置は処理時にON、洗浄時および休
止時にOFFになるように切換えられるが、洗浄時は逆
電圧印加するように構成することができる。
The power supply device can be switched so that it is turned on during processing and turned off during cleaning and during rest, but a reverse voltage can be applied during cleaning.

【0019】電極間に被処理液を通液する通液装置は、
処理時に電極間隙の一端側の給液路から処理液を導入
し、他端側の処理液路から処理液を取出し、洗浄時には
洗浄液路から洗浄液を供給し、洗浄排路から洗浄排液を
排出するように構成される。
The liquid passing device for passing the liquid to be treated between the electrodes is
During treatment, the treatment liquid is introduced from the supply liquid passage on one end side of the electrode gap, the treatment liquid is taken out from the treatment liquid passage on the other end side, the cleaning liquid is supplied from the cleaning liquid passage at the time of cleaning, and the cleaning waste liquid is discharged from the cleaning discharge passage. To be configured.

【0020】電源装置により各電極間に電圧を印加した
状態で通液装置により被処理液を電極間に通液すると、
誘電泳動により、また場合によっては誘電泳動と電気泳
動により水中の微粒子が電界の絞り部に移動し、電極に
集められて除去される。粒子を除去した処理液は処理液
路から取出される。
When the liquid to be treated is passed between the electrodes by the liquid passing device while the voltage is applied between the electrodes by the power supply device,
By dielectrophoresis, and in some cases by dielectrophoresis and electrophoresis, the fine particles in the water move to the narrowed portion of the electric field, and are collected and removed by the electrodes. The treatment liquid from which the particles have been removed is taken out from the treatment liquid passage.

【0021】電極に集められた粒子は濾材に保持される
が、多量に蓄積すると処理水とともに漏出するので、間
欠的に洗浄を行う。洗浄は電圧の印加を停止して洗浄液
を流すことにより、電極付近に蓄積した粒子を洗い流す
ことができるが、このとき逆電圧を印加してもよい。洗
浄液としては被処理液を用いてもよく、また処理液を用
いてもよい。
The particles collected on the electrodes are retained by the filter medium, but if they accumulate in large quantities, they will leak out together with the treated water, so washing is performed intermittently. For cleaning, the particles that have accumulated near the electrodes can be washed away by stopping the application of voltage and flowing a washing solution, but at this time, a reverse voltage may be applied. The liquid to be treated may be used as the cleaning liquid, or the treatment liquid may be used.

【0022】直流電圧を印加しても電気泳動と誘電泳動
によって粒子除去することができるが、この場合電気分
解によりガスが発生し、集まった粒子が分散するので、
高電圧パルスまたは交流電圧を印加するのが好ましい。
特に高電圧パルスを印加することによりガスの発生を防
止して電気泳動と誘電泳動を行うことができる。
Even if a DC voltage is applied, the particles can be removed by electrophoresis and dielectrophoresis. In this case, however, gas is generated by electrolysis and the collected particles are dispersed.
It is preferable to apply a high voltage pulse or an alternating voltage.
In particular, by applying a high voltage pulse, generation of gas can be prevented and electrophoresis and dielectrophoresis can be performed.

【0023】[0023]

【発明の効果】本発明によれば、誘電泳動により水中の
微粒子を集めて除去するようにしたので、電気泳動に比
べて少ない消費電力で水中に存在する微粒子を効率よく
移動させて集めることができ、しかも非荷電粒子も除去
することが可能である。
According to the present invention, since particles in water are collected and removed by dielectrophoresis, particles present in water can be efficiently moved and collected with less power consumption than electrophoresis. It is possible to remove uncharged particles.

【0024】また電極間に高電圧パルスを印加すること
により、ガスを発生させることなく、電気泳動による粒
子の移動を行うことができ、誘電泳動と電気泳動の併用
によりさらに効率よく微粒子を除去することができる。
Further, by applying a high voltage pulse between the electrodes, the particles can be moved by electrophoresis without generating a gas, and the particles can be removed more efficiently by using both dielectrophoresis and electrophoresis. be able to.

【0025】このような方法を純水、超純水等の高純度
水に適用すると、低電導度のため消費電力の小さい状態
で効率よく粒子の除去が可能であり、これによりRO、
UF等の膜分離装置の汚染を防止することができる。
When such a method is applied to high-purity water such as pure water or ultrapure water, it is possible to remove particles efficiently with a low electric power consumption because of its low electrical conductivity.
It is possible to prevent contamination of the membrane separation device such as UF.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態の水中微粒子除去装置
を示す構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an underwater particle removing apparatus of an embodiment.

【0027】図1において、Aは水中粒子除去装置であ
って、陽極1および陰極2からなる平行の平板電極が対
向して設けられている。陽極1および陰極2のそれぞれ
の対向する電極面1a、2aはそれぞれ平滑面となって
いて、濾紙、濾布等の濾材3、4が密着して設けられて
いる。そして一方の電極(陽極1)に近接して開口部5
aを有する絶縁シート6aが濾材3に密着して設けら
れ、他方の電極(陰極2)に近接して開口部5bを有す
る絶縁シート6bが濾材4に密着して設けられている。
開口部5a、5bは電極間隙7に沿って、電極1、2の
ほぼ全面にわたり均一に設けられ、電界の絞り部を形成
している。
In FIG. 1, A is an underwater particle removing device in which parallel plate electrodes composed of an anode 1 and a cathode 2 are provided so as to face each other. The facing electrode surfaces 1a and 2a of the anode 1 and the cathode 2 are smooth surfaces, and filter materials 3 and 4 such as filter paper and filter cloth are provided in close contact with each other. Then, the opening 5 is formed close to one electrode (anode 1).
An insulating sheet 6a having a is provided in close contact with the filter medium 3, and an insulating sheet 6b having an opening 5b in close proximity to the other electrode (cathode 2) is provided in close contact with the filter medium 4.
The openings 5a and 5b are evenly provided along the electrode gap 7 over substantially the entire surfaces of the electrodes 1 and 2 to form a diaphragm for the electric field.

【0028】電極間には、交流電源8および整流器9を
有する電源装置10が接続し、陰極側が接地され、正極
性の高電圧パルスを印加するようになっている。電極間
隙7の一方の側には被処理液路11が連絡し、他方の側
には処理液路12が連絡している。また同様に電極間隙
7の一方の側に洗浄液路13が連絡し、他方の側に洗浄
排液路14が連絡している。
A power supply unit 10 having an AC power supply 8 and a rectifier 9 is connected between the electrodes, the cathode side is grounded, and a positive high voltage pulse is applied. The liquid passage 11 to be treated is connected to one side of the electrode gap 7, and the treatment liquid passage 12 is connected to the other side thereof. Similarly, the cleaning liquid passage 13 is connected to one side of the electrode gap 7, and the cleaning drainage passage 14 is connected to the other side.

【0029】上記の装置による水中微粒子の除去方法
は、電源装置10により陽極1、陰極2間に正極性の高
電圧パルスを印加し、電極間隙7に被処理液路11から
被処理液を導入し、処理液路12から処理液を取出しな
がら処理を行う。このとき陽極1、陰極2間には電界が
形成されるが、絶縁シート6a、6bの開口部5a、5
bに電界の絞り部が形成されるため、この部分に向って
誘電泳動により水中の微粒子が移動し、濾材3に保持さ
れる。この場合誘電泳動は電極の極性に関係なく電界密
度の高い部分に粒子が移動するため両側の絶縁シート6
a、6bに集まる。
In the method of removing fine particles in water by the above apparatus, a high voltage pulse having a positive polarity is applied between the anode 1 and the cathode 2 by the power supply device 10, and the liquid to be treated is introduced into the electrode gap 7 from the liquid passage 11 to be treated. Then, the processing is performed while taking out the processing liquid from the processing liquid passage 12. At this time, an electric field is formed between the anode 1 and the cathode 2, but the openings 5a, 5 of the insulating sheets 6a, 6b are formed.
Since the narrowed portion of the electric field is formed in b, the particles in the water move toward this portion by dielectrophoresis and are held by the filter medium 3. In this case, the dielectrophoresis causes particles to move to a portion where the electric field density is high regardless of the polarity of the electrodes, so that the insulating sheets 6 on both sides are
Gather at a and 6b.

【0030】ここで正極性のパルスを印加することによ
り、電気泳動も起こり、負荷電を有する粒子が陽極側に
移動して捕捉される。このため陰極2側よりも陽極1側
にマイナス帯電した粒子が移動して捕捉される。このよ
うに誘電泳動と電気泳動の2つの現象が同時に起こるこ
とにより、効率よく粒子が移動し、一方の電極側の濾材
3に捕捉される。そしてパルスにより間欠的に電圧を印
加することにより電気分解を防止し、これによりガスの
発生を防止して処理を行うことができる。
By applying a positive pulse here, electrophoresis also occurs, and the negatively charged particles move to the anode side and are captured. Therefore, the negatively charged particles move toward the anode 1 side rather than the cathode 2 side and are captured. In this way, two phenomena of dielectrophoresis and electrophoresis occur at the same time, so that the particles move efficiently and are captured by the filter medium 3 on one electrode side. Then, the voltage is intermittently applied to prevent electrolysis, thereby preventing gas from being generated and performing the treatment.

【0031】このように被処理水中の微粒子が陽極1お
よび陰極2側に移動して集められるため、これらの微粒
子が除去された処理水が処理液路12から取り出され
る。処理が進行して微粒子が大量に捕捉されると、一部
が処理水中に漏出するので処理を停止して洗浄を行う。
洗浄方法は電圧の印加を停止して洗浄液路13から洗浄
水を流し、洗浄排液路14から洗浄排液を排出して行
う。電圧印加の停止により電極の電気的な吸着力が消失
するため、洗浄水により容易に微粒子が洗い流される。
このとき逆電圧を印加することにより、微粒子の離脱を
促進することができる。洗浄水としては処理水(超純
水)を用いるのが好ましい。
In this way, since the fine particles in the water to be treated move toward the anode 1 and the cathode 2 and are collected, the treated water from which these fine particles have been removed is taken out from the treatment liquid passage 12. When the treatment progresses and a large amount of fine particles are captured, a part of the fine particles leaks into the treated water, so the treatment is stopped and the cleaning is performed.
The cleaning method is performed by stopping the application of the voltage, flowing the cleaning water from the cleaning liquid passage 13, and discharging the cleaning drainage from the cleaning drainage passage 14. Since the electric attraction of the electrodes disappears when the voltage application is stopped, the fine particles are easily washed away by the washing water.
At this time, by applying a reverse voltage, the separation of the fine particles can be promoted. It is preferable to use treated water (ultra pure water) as the washing water.

【0032】図2は他の実施形態の水中微粒子除去装置
を示す構成図である。この実施形態では対向する陽極1
および陰極2の対向する電極面1a、2aには凹部1
b、2bが形成されて、基準面との境界部にエッジ部1
c、2cが形成されており、このエッジ部1c、2cが
電界の絞り部を形成している。この場合も電極面1a、
2aに沿って濾材(3、4)を設けることができるが、
ここでは誘電泳動の現象を説明するために、濾材のない
状態を図示している。15は粒子であり、顕微鏡で観察
した例を示している。
FIG. 2 is a block diagram showing an underwater particulate matter removing apparatus of another embodiment. In this embodiment, the opposing anode 1
And recesses 1 on the opposing electrode surfaces 1a, 2a of the cathode 2.
b, 2b are formed, and the edge portion 1 is formed at the boundary with the reference plane.
c, 2c are formed, and the edge portions 1c, 2c form the diaphragm portion of the electric field. Also in this case, the electrode surface 1a,
Filter media (3, 4) can be provided along 2a,
Here, in order to explain the phenomenon of dielectrophoresis, the state without a filter medium is shown. Reference numeral 15 is a particle, showing an example observed with a microscope.

【0033】図2(a)は電圧印加前の状態を示してお
り、電極1、2間に存在する粒子15はバラバラに存在
し、ブラウン運動によりランダム方向に移動する。
(b)は高電圧パルス印加開始時の状態を示し、粒子1
5は電気力線に沿って数珠状に凝集を始める。(c)は
高電圧パルス印加継続中の状態を示し、電界の絞り部で
あるエッジ部1cに向けて凝集した粒子15が移動し、
電極面1aに付着する。このような現象はラテックスビ
ーズ、大腸菌菌体、活性炭粉末で確認された。
FIG. 2 (a) shows a state before voltage application. Particles 15 existing between the electrodes 1 and 2 are scattered and move in random directions by Brownian motion.
(B) shows the state at the start of high voltage pulse application.
No. 5 begins to bead-shaped to agglomerate along the lines of electric force. (C) shows a state in which the high voltage pulse is being continuously applied, in which the agglomerated particles 15 move toward the edge portion 1c which is the narrowed portion of the electric field,
It adheres to the electrode surface 1a. Such a phenomenon was confirmed with latex beads, Escherichia coli cells, and activated carbon powder.

【0034】図3は超純水製造系を示すフロー図であ
る。図3において、21は1次純水系、22はサブシス
テムである。1次純水系21は原水から1次純水を製造
する系であり、RO装置23を含んでいて、RO装置2
3で製造された1次純水をサブタンク24に供給するよ
うに連結している。サブシステム22は1次純水から超
純水を製造する系であり、サブタンク24から1次純水
をポンプ25で送り、熱交換装置26で冷却し、UV酸
化装置27で酸化処理し、脱イオン装置28、29で脱
イオンし、UF装置30でUF膜処理を行って超純水を
製造するように構成されている。製造された超純水は給
水路31からユースポイント33に送られ、循環路32
からサブタンクに循環するように連絡している。
FIG. 3 is a flow chart showing the ultrapure water production system. In FIG. 3, 21 is a primary pure water system, and 22 is a subsystem. The primary pure water system 21 is a system for producing primary pure water from raw water, and includes an RO device 23,
The primary pure water manufactured in 3 is connected to the sub tank 24 so as to be supplied. The subsystem 22 is a system for producing ultrapure water from primary pure water. The primary pure water is pumped from the subtank 24 by a pump 25, cooled by a heat exchange device 26, oxidized by a UV oxidation device 27, and deoxidized. Deionization is performed by the ion devices 28 and 29, and UF film treatment is performed by the UF device 30 to produce ultrapure water. The produced ultrapure water is sent from the water supply passage 31 to the use point 33, and is circulated in the circulation passage 32.
It is in contact with the sub tank to circulate it.

【0035】このような超純水製造系では、1次純水系
21のRO装置23の前、サブシステム22のUF装置
30の前、ユースポイント33の前、およびサブタンク
24の前に、前記図1または図2に示される粒子除去装
置A1、A2、A3、A4が設置され、被処理水中の微
粒子が除去される。これにより、A1、A2の場合はR
O装置23およびUF装置30の膜汚染を防止し、A
3、A4の場合はユースポイント33または循環する超
純水中の微粒子が除去される。
In such an ultrapure water production system, before the RO device 23 of the primary pure water system 21, in front of the UF device 30 of the subsystem 22, in front of the use point 33, and in front of the sub-tank 24, the above-mentioned figure is used. 1 or the particle removing device A1, A2, A3, A4 shown in FIG. 2 is installed to remove fine particles in the water to be treated. As a result, in the case of A1 and A2, R
Prevents film contamination of the O device 23 and the UF device 30,
In the case of 3 and A4, the use point 33 or the fine particles in the circulating ultrapure water are removed.

【0036】このほかユースポイントから排出されるウ
エハーの研磨排水やCMP排水のようにROまたはUF
膜等の透過膜処理を行う系では膜処理の前に水中粒子除
去装置Aを設けることにより、微粒子を除去することが
でき、これにより透過膜の汚染を防止することができ
る。この場合、微粒子が多量に含まれる場合でも除去が
可能である。
In addition, RO or UF such as wafer polishing drainage and CMP drainage discharged from the use point
In a system for treating a permeable membrane such as a membrane, by providing the underwater particle removing device A before the membrane treatment, it is possible to remove fine particles and thereby prevent the permeable membrane from being contaminated. In this case, even if a large amount of fine particles are contained, it can be removed.

【0037】[0037]

【実施例】以下、本発明の実施例について説明する。 実施例1 純水中のラテックス粒子の除去 陽極および陰極としてアルミニウムの平行平板型電極を
用い(大きさ5cm×10cm、電極間距離3mm)、
それぞれに濾紙(厚さ10μm)を貼り付け、さらに電
界を絞るためにフッ素樹脂(ポリテトラフルオロエチレ
ン)のパンチングシートを陽極に貼り付けた。電源はイ
ンバータネオントランス(周波数26kHz)を用い、
出力をダイオードで整流して正極性の成分を取り出し、
ピーク電圧で500Vを印加した。一方、ラテックス粒
子として直径1μmの球形の粒子を用い、4.9×10
6個/mlの温度で純水中に懸濁させた。この溶液を3
ml/minの速度でチャンバーに通水し、処理後の粒
子濃度を測定した。その結果、処理前の粒子濃度は4.
9×106個/mlに対して、処理後は粒子濃度1.5
×104個/mlとなり、高電圧処理によって水中の粒
子は99.7%除去することができた。この処理によっ
ても電気分解が起こりごく微量のガスが発生するが、粒
子の捕集には影響を及ぼさなかった。
EXAMPLES Examples of the present invention will be described below. Example 1 Removal of Latex Particles in Pure Water Aluminum parallel plate electrodes were used as an anode and a cathode (size 5 cm × 10 cm, distance between electrodes 3 mm),
Filter paper (thickness: 10 μm) was attached to each of them, and a punching sheet of fluororesin (polytetrafluoroethylene) was attached to the anode in order to reduce the electric field. The power supply uses an inverter neon transformer (frequency 26 kHz),
Rectify the output with a diode and take out the positive component,
A peak voltage of 500 V was applied. On the other hand, spherical particles having a diameter of 1 μm were used as the latex particles, and 4.9 × 10
It was suspended in pure water at a temperature of 6 cells / ml. 3 this solution
Water was passed through the chamber at a rate of ml / min, and the particle concentration after the treatment was measured. As a result, the particle concentration before treatment was 4.
9 × 10 6 particles / ml, particle concentration 1.5 after treatment
× 10 4 cells / ml, and the water particles by the high voltage process was able to remove 99.7%. This treatment also caused electrolysis to generate a very small amount of gas, but did not affect the collection of particles.

【0038】実施例2 純水中の微生物菌体の除去 実施例1と同じ電極、電源、通液条件で処理を行った。
微生物菌体として、大腸菌をLB培地で培養し集菌した
ものを純水中に懸濁させて試料とした。その結果、処理
前の粒子(菌体)濃度5×106個/mlに対し、処理
後は粒子濃度3000個/mlとなり、粒子除去装置で
処理することによって、粒子(菌体)を99%以上減少
させることができた。
Example 2 Removal of microbial cells in pure water Treatment was carried out under the same electrode, power supply and liquid passing conditions as in Example 1.
As a microbial cell, Escherichia coli was cultured in an LB medium and the collected cells were suspended in pure water to prepare a sample. As a result, the concentration of particles (bacteria) was 5 × 10 6 particles / ml before treatment, and the concentration of particles was 3000 / ml after treatment, and 99% of particles (bacteria) were treated by the particle removing device. It was possible to reduce the above.

【0039】実施例3 シリカ含有排水中のシリカの除
去 コロイダルシリカを含有するシリカ含有排水を10倍希
釈し、実施例1と同一条件で処理を行った。その結果、
処理前のシリカ濃度25mg/lに対し、処理後はシリ
カ濃度11mg/lとなり、除去率は56%であった。
Example 3 Removal of Silica from Silica-Containing Wastewater The silica-containing wastewater containing colloidal silica was diluted 10 times and treated under the same conditions as in Example 1. as a result,
The silica concentration was 25 mg / l before the treatment, and the silica concentration was 11 mg / l after the treatment, and the removal rate was 56%.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態の水中微粒子除去装置の構成図であ
る。
FIG. 1 is a configuration diagram of an underwater particle removal apparatus of an embodiment.

【図2】他の実施形態の水中微粒子除去装置の構成図で
ある。
FIG. 2 is a configuration diagram of an underwater particle removal device of another embodiment.

【図3】超純水製造系のフロー図である。FIG. 3 is a flow chart of an ultrapure water production system.

【符号の説明】[Explanation of symbols]

1 陽極 2 陰極 3、4 濾材 5a、5b 開口部 6a、6b 絶縁シート 7 電極間隙 8 交流電源 9 整流器 10 電源装置 11 被処理液路 12 処理液路 13 洗浄液路 14 洗浄排液路 15 粒子 21 1次純水系 22 サブシステム 23 RO装置 24 サブタンク 25 ポンプ 26 熱交換装置 27 UV酸化装置 28、29 脱イオン装置 30 UF装置 31 給水路 32 循環路 33 ユースポイント 1 anode 2 cathode 3, 4 filter media 5a, 5b opening 6a, 6b Insulation sheet 7 electrode gap 8 AC power supply 9 Rectifier 10 power supply 11 Liquid path to be treated 12 Processing liquid path 13 Cleaning liquid path 14 Cleaning drain 15 particles 21 Primary pure water system 22 Subsystem 23 RO equipment 24 sub tanks 25 pumps 26 Heat Exchanger 27 UV oxidizer 28, 29 Deionizer 30 UF device 31 water supply 32 circuit 33 Use Point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 総介 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 水庭 哲夫 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 水野 彰 愛知県豊橋市北山町字東浦2番地の1 Fターム(参考) 4D061 AA02 AB15 BA02 BA10 BA13 BB04 BB05 BB07 BB09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Sosuke Nishimura             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. (72) Inventor Tetsuo Mizuba             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. (72) Inventor Akira Mizuno             1 of 2 Higashiura, Kitayama-cho, Toyohashi City, Aichi Prefecture F-term (reference) 4D061 AA02 AB15 BA02 BA10 BA13                       BB04 BB05 BB07 BB09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向する電極間に形成される電界の絞り
部を形成し、電極間に被処理水を流し、電極間に電圧を
印加して誘電泳動により水中の微粒子を捕捉することを
特徴とする水中微粒子の除去方法。
1. An electric field diaphragm formed between opposing electrodes, water to be treated is flowed between the electrodes, and a voltage is applied between the electrodes to capture fine particles in water by dielectrophoresis. Method for removing fine particles in water.
【請求項2】 対向する電極間に高電圧パルスを印加し
て誘電泳動および電気泳動により水中の微粒子を捕捉す
る請求項1記載の方法。
2. The method according to claim 1, wherein a high-voltage pulse is applied between opposed electrodes to trap fine particles in water by dielectrophoresis and electrophoresis.
【請求項3】 被処理水が高純度水である請求項1また
は2記載の方法。
3. The method according to claim 1 or 2, wherein the water to be treated is high-purity water.
【請求項4】 対向する電極と、 電極間に形成される電界の絞り部と、 電極間に被処理水を流す通液装置と、 電極間に電圧を印加する電源装置とを含む水中微粒子の
除去装置。
4. Particles in water comprising: opposed electrodes; an electric field diaphragm formed between the electrodes; a liquid passing device for flowing water to be treated between the electrodes; and a power supply device for applying a voltage between the electrodes. Removal device.
JP10232072A 1998-08-18 1998-08-18 Method and device for removing fine particles in water Pending JP2000061472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10232072A JP2000061472A (en) 1998-08-18 1998-08-18 Method and device for removing fine particles in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10232072A JP2000061472A (en) 1998-08-18 1998-08-18 Method and device for removing fine particles in water

Publications (1)

Publication Number Publication Date
JP2000061472A true JP2000061472A (en) 2000-02-29

Family

ID=16933559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10232072A Pending JP2000061472A (en) 1998-08-18 1998-08-18 Method and device for removing fine particles in water

Country Status (1)

Country Link
JP (1) JP2000061472A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289341A1 (en) * 2003-03-17 2006-12-28 Evotec Ag Methods and devices for separting particles in a liquid flow
JP2008018392A (en) * 2006-07-14 2008-01-31 Tokyo Metropolitan Univ Bacteria concentration and sterilization device and method
CN102260001A (en) * 2011-07-22 2011-11-30 内蒙古介电电泳应用技术研究院 Process for treating and recycling rare-earth wastewater containing magnesium sulfate, ammonium sulfate and sulfuric acid
CN102267773A (en) * 2011-07-22 2011-12-07 内蒙古介电电泳应用技术研究院 Process for treating and recycling high arsenic-containing copper smelting waste water
JP2013504157A (en) * 2009-09-02 2013-02-04 コリア・ベーシック・サイエンス・インスティテュート Liquid medium plasma discharge generator
CN109574384A (en) * 2018-12-07 2019-04-05 智造起源科技有限公司 A kind of membrane module cabinet of the structure of pre-filtering containing dielectrophoresis
CN109574159A (en) * 2018-12-07 2019-04-05 智造起源科技有限公司 A kind of dielectrophoresis electrode structure
JP2020520806A (en) * 2017-05-24 2020-07-16 オープンウォーター.アイエヌ ピーヴイティー. リミテッド.Openwater.In Pvt. Ltd. High throughput fluid treatment system
KR20220158298A (en) * 2021-05-24 2022-12-01 한국생산기술연구원 Device for removing fine particle in water using frictional power generation and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289341A1 (en) * 2003-03-17 2006-12-28 Evotec Ag Methods and devices for separting particles in a liquid flow
US8262883B2 (en) * 2003-03-17 2012-09-11 PerkinElmer Cellular Technologies Germany, GmbH Methods and devices for separating particles in a liquid flow
US9149813B2 (en) 2003-03-17 2015-10-06 Perkinelmer Cellular Technologies Germany Gmbh Methods and devices for separating particles in a liquid flow
JP2008018392A (en) * 2006-07-14 2008-01-31 Tokyo Metropolitan Univ Bacteria concentration and sterilization device and method
JP2013504157A (en) * 2009-09-02 2013-02-04 コリア・ベーシック・サイエンス・インスティテュート Liquid medium plasma discharge generator
CN102260001A (en) * 2011-07-22 2011-11-30 内蒙古介电电泳应用技术研究院 Process for treating and recycling rare-earth wastewater containing magnesium sulfate, ammonium sulfate and sulfuric acid
CN102267773A (en) * 2011-07-22 2011-12-07 内蒙古介电电泳应用技术研究院 Process for treating and recycling high arsenic-containing copper smelting waste water
JP2020520806A (en) * 2017-05-24 2020-07-16 オープンウォーター.アイエヌ ピーヴイティー. リミテッド.Openwater.In Pvt. Ltd. High throughput fluid treatment system
CN109574384A (en) * 2018-12-07 2019-04-05 智造起源科技有限公司 A kind of membrane module cabinet of the structure of pre-filtering containing dielectrophoresis
CN109574159A (en) * 2018-12-07 2019-04-05 智造起源科技有限公司 A kind of dielectrophoresis electrode structure
KR20220158298A (en) * 2021-05-24 2022-12-01 한국생산기술연구원 Device for removing fine particle in water using frictional power generation and method for manufacturing the same
KR102508861B1 (en) 2021-05-24 2023-03-10 한국생산기술연구원 Device for removing fine particle in water using frictional power generation and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7018522B2 (en) Method and apparatus for removing contaminants from conduits and fluid columns
US5423962A (en) Electrolytic treatment apparatus
TW200815294A (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
JP2009543695A (en) Microscale capacitive deionizer
JP2000061472A (en) Method and device for removing fine particles in water
CN109890765B (en) Water treatment device and water treatment method
JP4120098B2 (en) Method and apparatus for sterilizing microorganisms in liquid
CN103130363B (en) Desalination system and desalination method
WO2017122520A1 (en) Water treatment device and water treatment method
TW466214B (en) Water treatment device
JP7382072B2 (en) Deionization devices and methods for at least partially deionizing feed solutions containing dissolved electrolytes, and apparatus using such devices.
JP2011136292A (en) Electrification treatment method, apparatus, and anode of the same
CN111151144B (en) Nano porous membrane cleaning device and cleaning method based on insulation dielectrophoresis
AU688542B2 (en) Apparatus for disinfecting fluids
CA2797250C (en) An electrolytic liquid treating cell and a method of removing impurities from a liquid
JP2002250792A (en) Radioactive waste liquid processor
JPH06328081A (en) Multicylindrical electrode electrolytic cohesion device
JPS6014987A (en) Process and device for separating contaminating material in filthy liquid
JP2017035686A (en) Waste water processing method
KR101394112B1 (en) Water treatment cell by electrosorption, Electrosorptive water treatment apparatus and method using the same
JP2002336863A (en) Method and apparatus for making desalted water
JP4013527B2 (en) Water treatment equipment
JP2002273432A (en) Device for producing desalted water and method of producing desalted water
KR20230099743A (en) Water treatment apparatus with reduction fuction of membrane fouling
JP2003290760A (en) Method and apparatus for decontaminating contaminated soil