JP2000049373A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JP2000049373A
JP2000049373A JP10218029A JP21802998A JP2000049373A JP 2000049373 A JP2000049373 A JP 2000049373A JP 10218029 A JP10218029 A JP 10218029A JP 21802998 A JP21802998 A JP 21802998A JP 2000049373 A JP2000049373 A JP 2000049373A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
light
conversion element
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10218029A
Other languages
Japanese (ja)
Other versions
JP3695950B2 (en
Inventor
Toshiaki Baba
俊明 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21802998A priority Critical patent/JP3695950B2/en
Publication of JP2000049373A publication Critical patent/JP2000049373A/en
Application granted granted Critical
Publication of JP3695950B2 publication Critical patent/JP3695950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coloring matter sensitized type optoelectric conversion element that has high photoelectric conversion characteristics and is rich in reliability and massproducibility. SOLUTION: A photoelectric conversion element is provided with a first electrode 3, consisting of a semiconductor layer 3B with a plurality of columnar holes 10, etc., which are provided continuously in the direction of layer thickness and a light absorbing layer 3A being formed on the surface of the semiconductor layer 3B, a second electrode 5 that is provided opposite to the light absorption layer 3A, and a carrier mobile layer 4 provided between the first and second electrodes 3 and 5 on the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体層の表面に
色素を担持させてなる色素増感電極を用いた色素増感型
の光電変換素子に係わり、光電変換特性が良好で且つ生
産性及び信頼性の向上した固体の光電変換素子を提供す
る技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dye-sensitized photoelectric conversion element using a dye-sensitized electrode in which a dye is carried on the surface of a semiconductor layer, and has a good photoelectric conversion characteristic and a high productivity. This is a technique for providing a solid-state photoelectric conversion element with improved reliability.

【0002】[0002]

【従来の技術】近年新しい光電変換作用を用いた光電変
換素子として、可視光を吸収性する適当な色素が酸化物
半導体上に担持されてなる色素増感電極を用い、半導体
の本来もつ光吸収領域より低エネルギーの光を利用可能
とした構造の光電変換素子が知られている。
2. Description of the Related Art In recent years, as a photoelectric conversion element using a new photoelectric conversion function, a dye-sensitized electrode in which an appropriate dye capable of absorbing visible light is carried on an oxide semiconductor has been used. 2. Description of the Related Art A photoelectric conversion element having a structure in which light having lower energy than a region can be used is known.

【0003】斯かる色素増感型の光電変換素子として、
電解液中に色素増感電極と対向電極とを浸して構成した
湿式のものが知られてる。
As such a dye-sensitized photoelectric conversion element,
A wet type in which a dye-sensitized electrode and a counter electrode are immersed in an electrolyte is known.

【0004】例えば、多孔質TiO2電極表面にRu金
属錯体色素を担持させた色素増感電極を、対向電極とな
るSnO2電極と共に電解液中に浸して構成した光電変
換素子において、10%の光電変換効率が報告されてい
る(Nature,353(1991)737)。
For example, in a photoelectric conversion element in which a dye-sensitized electrode having a Ru metal complex dye supported on the surface of a porous TiO 2 electrode and an SnO 2 electrode serving as a counter electrode are immersed in an electrolytic solution, 10% The photoelectric conversion efficiency has been reported (Nature, 353 (1991) 737).

【0005】この湿式の光電変換素子によれば、色素増
感電極が700nm以下の波長の光を効率よく吸収し、
TiO2への電子注入−電解液中の電子ドナー(ヨウ素
イオン)の色素による酸化−対向電極による酸化された
ヨウ素の還元、というサイクルを繰り返すことにより光
電流が発生する。
According to this wet photoelectric conversion element, the dye-sensitized electrode efficiently absorbs light having a wavelength of 700 nm or less,
A photocurrent is generated by repeating a cycle of electron injection into TiO 2, oxidation of the electron donor (iodine ion) in the electrolyte by the dye, and reduction of oxidized iodine by the counter electrode.

【0006】然し乍ら、斯かる湿式の色素増感型光電変
換素子はホール移動層となる電解質が液体であるために
液漏れの可能性が有り、斯かる液漏れが生じると信頼性
が低下すると共に性能も劣化する。
However, in such a wet dye-sensitized photoelectric conversion element, since the electrolyte serving as the hole transfer layer is a liquid, there is a possibility of liquid leakage. Performance also deteriorates.

【0007】そこで、液体の電解質の代わりに固体のホ
ール移動層を用いた乾式の色素増感型光電変換素子が提
案されている(Chem. Lett.,(1997)
471)。
Accordingly, a dry dye-sensitized photoelectric conversion element using a solid hole transfer layer instead of a liquid electrolyte has been proposed (Chem. Lett., (1997)).
471).

【0008】図6は斯かる従来の色素増感型光電変換素
子の素子構造断面図であり、同図において31はガラス
からなる基板であり、32は該ガラス基板31表面に形
成されたFドープSnO2又はITO等の透光性導電膜
である。33は表面に色素が担持された半導体からなる
色素増感電極であり、多孔質TiO2半導体膜の表面に
ルテニウム金属錯体色素が担持されて構成されている。
また、34はポリピロール電解重合薄膜からなるホール
移動層であり、該ホール移動層34上にはAu電極35
が設けられている。
FIG. 6 is a sectional view showing the structure of such a conventional dye-sensitized photoelectric conversion element. In FIG. 6, reference numeral 31 denotes a glass substrate, and 32 denotes an F-doped substrate formed on the surface of the glass substrate 31. It is a light-transmitting conductive film such as SnO 2 or ITO. Reference numeral 33 denotes a dye-sensitized electrode made of a semiconductor having a surface on which a dye is supported. The dye-sensitized electrode 33 is formed by supporting a ruthenium metal complex dye on the surface of a porous TiO 2 semiconductor film.
Reference numeral 34 denotes a hole transfer layer made of a polypyrrole electropolymerized thin film, and an Au electrode 35 is provided on the hole transfer layer 34.
Is provided.

【0009】斯かる構造の光電変換素子によれば、液体
の電解質の代わりに固体のホール移動層34を用いるの
で液漏れが生じることがなく、信頼性が向上すると共に
取扱も容易となる。
According to the photoelectric conversion element having such a structure, since the solid hole moving layer 34 is used instead of the liquid electrolyte, no liquid leakage occurs, and the reliability is improved and the handling is easy.

【0010】また、固体のホール移動層を用いた色素増
感型光電変換素子としては、上述のように固体中の電子
伝導を利用したもの以外に固体イオン伝導性材料を用い
たものも知られており、0.5%程度の光電変換効率が
得られている(SolidState Ionics,
89,263(1996))。
Further, as a dye-sensitized photoelectric conversion device using a solid hole transfer layer, a device using a solid ion conductive material is also known in addition to the device utilizing the electron conduction in a solid as described above. And a photoelectric conversion efficiency of about 0.5% has been obtained (SolidState Ionics,
89, 263 (1996)).

【0011】ところで、以上のような構成の色素増感型
の光電変換素子によれば、色素がTiO2半導体膜の多
孔質表面に吸着しているので色素の吸着面積が光電変換
素子の見かけの表面積よりも大幅に増大している。
According to the dye-sensitized photoelectric conversion device having the above-described structure, the dye is adsorbed on the porous surface of the TiO2 semiconductor film. Has increased significantly.

【0012】然し乍ら、より高い光電変換効率を得るた
めには未だ担持色素増感電極中の色素数が充分でない。
そこで、色素増感電極の表面に凹凸を設けることにより
担持される色素の数を増大させることも検討されている
(特開平7−176773号)。
However, in order to obtain higher photoelectric conversion efficiency, the number of dyes in the supported dye-sensitized electrode is not yet sufficient.
Therefore, it has been studied to increase the number of dyes to be carried by providing irregularities on the surface of the dye-sensitized electrode (Japanese Patent Application Laid-Open No. Hei 7-176773).

【0013】[0013]

【発明が解決しようとする課題】然し乍ら、斯かる従来
技術においても凹凸のサイズは約8μmという色素増感
電極の膜厚に対してわずか0.4μm程度に過ぎず、未
だ担持色素増感電極中の色素数は十分でない。また、上
記従来技術のいずれにおいても色素増感電極を構成する
多孔質TiO2半導体膜が多数の微粒子の集合体から構
成されているために、色素を層厚方向に浸透させ全ての
微粒子の表面に色素を担持させるには長時間を要し(1
昼夜程度)、スループットが低下する、という課題があ
った。
However, even in the prior art, the size of the unevenness is only about 0.4 μm with respect to the thickness of the dye-sensitized electrode of about 8 μm, and the size of the unevenness in the supported dye-sensitized electrode is still small. Is not sufficient. Further, in any of the above prior arts, since the porous TiO 2 semiconductor film constituting the dye-sensitized electrode is composed of an aggregate of a large number of fine particles, the dye penetrates in the layer thickness direction and the surface of all the fine particles is exposed. It takes a long time to carry the dye on (1)
There is a problem that the throughput is reduced.

【0014】さらに、液体のホール移動層の代わりに固
体のホール移動層を用いた光電変換素子においてはその
光電変換効率が0.5%程度と極めて低い、といった課
題があった。これは、固体のホール移動層を用いた光電
変換素子にあっては、ホール移動層を色素増感電極中に
浸透させ色素増感電極内部の微粒子との間で電気的な接
触をとることが困難なため、ホール移動層と色素増感電
極との接触面積が減少することに因り光電変換効率が低
下するものと考えられる。
Further, in a photoelectric conversion element using a solid hole moving layer instead of a liquid hole moving layer, there is a problem that the photoelectric conversion efficiency is extremely low, about 0.5%. This is because, in the case of a photoelectric conversion element using a solid hole transfer layer, the hole transfer layer can penetrate into the dye-sensitized electrode and make electrical contact with fine particles inside the dye-sensitized electrode. Due to the difficulty, it is considered that the photoelectric conversion efficiency is reduced due to the reduced contact area between the hole transfer layer and the dye-sensitized electrode.

【0015】[0015]

【課題を解決するための手段】斯かる課題を解決するた
めに、本発明光電変換素子は、表面に、層厚方向に連続
して設けられた複数個の柱状の穴を有する半導体層と、
該半導体層の表面に形成された光吸収層とからなる第1
の電極と、前記光吸収層と対向して設けられた第2の電
極と、前記第1及び第2の電極間に設けられたキャリア
移動層と、を備えたことを特徴とする。
Means for Solving the Problems In order to solve the above problems, a photoelectric conversion element of the present invention comprises a semiconductor layer having a plurality of columnar holes continuously provided in a layer thickness direction on a surface;
A light absorbing layer formed on the surface of the semiconductor layer;
, A second electrode provided to face the light absorbing layer, and a carrier transfer layer provided between the first and second electrodes.

【0016】また、前記複数個の穴が互いに略同一の平
面形状を有しており、且つ互いに略等間隔に規則正しく
配置されていることを特徴とする。
Further, the plurality of holes have substantially the same planar shape as each other, and are arranged regularly at substantially equal intervals from each other.

【0017】加えて、前記光吸収層とキャリア移動層と
の間に介挿された絶縁層または半絶縁層を備えることを
特徴とする。
In addition, an insulating layer or a semi-insulating layer is provided between the light absorbing layer and the carrier transfer layer.

【0018】さらに、前記光吸収層が色素からなるこ
と、或いは可視光に対する光感度を有する半導体からな
ることを特徴とする。
Further, the light absorbing layer is made of a dye or a semiconductor having a light sensitivity to visible light.

【0019】[0019]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0020】図1は本発明の実施形態に係る光電変換素
子の素子構造断面図である。
FIG. 1 is a sectional view showing the structure of a photoelectric conversion element according to an embodiment of the present invention.

【0021】同図において、1はガラス等の透光性の材
料からなる基板であり、2は該基板1上にスパッタ法、
CVD法等の方法により形成されたFドープSnO2
或いはITO膜等の透光性導電膜である。3は表面に光
吸収層3Aを有する多孔質TiO2等の半導体層3Bか
らなる第1の電極であり、4はポリピロールからなるキ
ャリア移動層、5はAu,Pt等からなる第2の電極で
ある。
In FIG. 1, reference numeral 1 denotes a substrate made of a light-transmitting material such as glass, and 2 denotes a sputtering method on the substrate 1.
A light-transmitting conductive film such as an F-doped SnO 2 film or an ITO film formed by a method such as a CVD method. Reference numeral 3 denotes a first electrode made of a semiconductor layer 3B such as porous TiO 2 having a light absorbing layer 3A on the surface, 4 denotes a carrier transfer layer made of polypyrrole, and 5 denotes a second electrode made of Au, Pt or the like. is there.

【0022】而して本発明の特徴は、上記厚さ10μm
程度の半導体層3Bの表面に、その層厚方向に連続する
直径数nm〜数100nm、深さ7μm程度の柱状の穴
10…が複数個設けられている点にある。
The feature of the present invention is that the thickness is 10 μm.
The point is that a plurality of columnar holes 10 having a diameter of several nm to several 100 nm and a depth of about 7 μm are provided continuously on the surface of the semiconductor layer 3B.

【0023】斯かる本発明の第1の電極について、図2
に示す要部拡大断面図によりさらに詳細に説明する。
FIG. 2 shows the first electrode of the present invention.
This will be described in more detail with reference to an enlarged sectional view of a main part shown in FIG.

【0024】前述のように、半導体層3Bを構成する多
孔質TiO2は多数のTiO2の微粒子20…の集合体か
ら構成されている。従って、本発明によれば半導体層3
Bに色素等からなる光吸収体を担持させるにあたって、
光吸収体が穴10を介して微粒子20…間の間隙を通じ
半導体層3Bの内部に浸透することとなる。このため、
本発明の構成によれば色素等の光吸収体を微粒子20…
表面に担持させるのに要する時間を従来よりも短縮する
ことができ、且つ半導体層3B内部の微粒子20…にも
光吸収体を担持させることができるため、光吸収体の担
持数を増大させることも可能となる。斯かる本願の効果
は、図1に示したような固体のキャリア移動層を用いる
ものに限らず、液体のキャリア移動層を用いた光電変換
素子に対しても有効なものである。
As described above, the porous TiO 2 constituting the semiconductor layer 3B is composed of an aggregate of a large number of TiO 2 fine particles 20. Therefore, according to the present invention, the semiconductor layer 3
When carrying a light absorber made of a dye or the like on B,
The light absorber penetrates into the inside of the semiconductor layer 3B through the gaps between the fine particles 20 through the holes 10. For this reason,
According to the configuration of the present invention, the light absorber such as a dye is used as the fine particles 20.
It is possible to reduce the time required for supporting on the surface as compared with the conventional case, and also to support the light absorber on the fine particles 20 inside the semiconductor layer 3B. Is also possible. Such an effect of the present application is not limited to the one using the solid carrier moving layer as shown in FIG. 1, but is also effective for a photoelectric conversion element using a liquid carrier moving layer.

【0025】さらに、固体のキャリア移動層を用いた場
合にあっては、キャリア移動層4は穴10…の内面にお
いても光吸収層3Aとの電気的に接触するため、光吸収
層3Aとキャリア移動層4との接触面積を増大でき、こ
の結果光電変換特性の向上を図ることができる。
Further, when a solid carrier moving layer is used, the carrier moving layer 4 is in electrical contact with the light absorbing layer 3A even on the inner surfaces of the holes 10. The contact area with the moving layer 4 can be increased, and as a result, the photoelectric conversion characteristics can be improved.

【0026】また、以上のような効果を奏するために
は、穴10の深さは深ければ深いほど良いが、少なくと
も半導体層3Bの膜厚の半分以上の深さを有しておれば
良い。また、半導体層3B中に均一に色素等の光吸収体
を浸透させるためには、穴の断面積を略同一とし、互い
に略等間隔で規則正しく配置することが好ましい。尚、
穴10の平面形状については特に限定するものでなく、
円形、四角形、三角形等如何なる平面形状であっても良
い。また、穴10…は図1、2に示した如く垂直方向に
連続するものに限らず、斜め方向に連続するものであっ
ても良い。
In order to achieve the above-described effects, it is better that the depth of the hole 10 is deeper, but it is sufficient that the hole 10 has a depth of at least half the thickness of the semiconductor layer 3B. In order to uniformly penetrate the light absorber such as a dye into the semiconductor layer 3B, it is preferable that the cross-sectional areas of the holes are substantially the same and the holes are regularly arranged at substantially equal intervals. still,
The planar shape of the hole 10 is not particularly limited,
Any planar shape such as a circle, a square, and a triangle may be used. Further, the holes 10 are not limited to those continuous in the vertical direction as shown in FIGS. 1 and 2, but may be continuous in an oblique direction.

【0027】以下に、実施例につき説明する。Hereinafter, embodiments will be described.

【0028】図3は本発明光電変換素子の製造工程を説
明するための、工程別素子構造断面図である。尚、同図
において図1と同一の機能を呈する部分には同一の符号
を付している。
FIG. 3 is a sectional view of the element structure for each step, for explaining the manufacturing steps of the photoelectric conversion element of the present invention. In the figure, the parts having the same functions as those in FIG. 1 are denoted by the same reference numerals.

【0029】まず、同図(A)に示す工程においては、
厚さ0.3mmのAlシートの表面を溶液中で電解研磨
し、次いで0.3mol/lの硫酸溶液中で陽極酸化す
ることにより、規則正しく配列された複数個の穴12…
を有するポーラスアルミナ11を形成する。
First, in the step shown in FIG.
The surface of an Al sheet having a thickness of 0.3 mm is electropolished in a solution, and then anodized in a 0.3 mol / l sulfuric acid solution to form a plurality of regularly arranged holes 12.
Is formed.

【0030】次に、同図(B)に示す工程においては、
ポーラスアルミナ11の穴12…に減圧下でメチルメタ
クリレートモノマーを浸透させ、加熱して重合させた後
に、10wt.%のNaOH水溶液を用いてポーラスア
ルミナを溶解させ、複数の柱状部13…を有する重合体
PMMA14を形成する。
Next, in the step shown in FIG.
After permeating the methyl methacrylate monomer into the holes 12 of the porous alumina 11 under reduced pressure and heating to polymerize, 10 wt. % NaOH aqueous solution is used to dissolve the porous alumina to form a polymer PMMA 14 having a plurality of columnar portions 13.

【0031】次いで、同図(C)に示す工程において
は、重合体14における柱状部13…側の表面にTi
(O−i−Pr)4を含む溶剤3’を塗布すると共に、
この塗布された溶剤3’を介して、FドープSnO2
からなる透光性導電膜2が形成されたガラス基板1を透
光性導電膜2を溶剤3’側として載置する。
Next, in the step shown in FIG. 2C, the surface of the polymer 14 on the side of the columnar portions 13.
While applying a solvent 3 ′ containing (Oi-Pr) 4,
The glass substrate 1 on which the light-transmitting conductive film 2 made of the F-doped SnO 2 film is formed is placed with the light-transmitting conductive film 2 as the solvent 3 ′ via the applied solvent 3 ′.

【0032】さらに、同図(D)に示す工程において
は、溶剤を乾燥させてTiO2微粒子からなる半導体層
3Bを形成し、そしてPMMA14を溶解すると共に4
50℃程度の温度で加熱し、有機物を除去する。
Further, in the step shown in FIG. 2D, the solvent is dried to form a semiconductor layer 3B made of TiO 2 fine particles, and the PMMA 14 is dissolved and
Heat at a temperature of about 50 ° C. to remove organic matter.

【0033】以上の工程により、ガラス基板1表面に形
成された透光性導電膜2上に、複数個の柱状の穴10…
を有する半導体層3Bが形成される。
Through the above steps, a plurality of columnar holes 10 are formed on the translucent conductive film 2 formed on the surface of the glass substrate 1.
Is formed.

【0034】そして、同図(E)に示す工程において
は、上記半導体層3Bをローズベンガル色素10-4mo
l/lエタノール溶液に室温で2時間程度浸漬し半導体
層3Bの表面に色素を担持させ、光吸収層3Aを形成す
る。尚、色素としてはここで示したローズベンガル色素
以外に、ローダミン,キナクリドン,スクアリリウム,
フタロシアニン系色素,クロロフィル,ルテニウムビピ
リジン錯体等、又はこれらを組合わせて用いることがで
きる。複数の色素を組合わせて用いることにより、吸収
できる光の波長範囲を拡大することが可能となる。
Then, in the step shown in FIG. 3E, the semiconductor layer 3B is coated with the rose bengal dye 10 -4 mo.
The light absorbing layer 3A is formed by immersing in a 1 / l ethanol solution at room temperature for about 2 hours to carry a dye on the surface of the semiconductor layer 3B. In addition to the rose bengal dye shown here, rhodamine, quinacridone, squarylium,
Phthalocyanine dyes, chlorophyll, ruthenium bipyridine complexes and the like, or a combination thereof can be used. By using a plurality of dyes in combination, the wavelength range of light that can be absorbed can be expanded.

【0035】さらに、同図(F)に示す工程において
は、0.3mol/lのピロール及び0.1mol/l
LiBF4を含むアセトニトリル溶液中に浸漬して電
解重合させることにより、光吸収層3A上にポリピロー
ルからなるキャリア移動層4を形成する。尚、LiBF
4の他にLiCiO4,LiAsF6、或いはトルエンス
ルホン酸ナトリウムを用いても良い。
Further, in the step shown in FIG. 5F, 0.3 mol / l of pyrrole and 0.1 mol / l
The carrier transfer layer 4 made of polypyrrole is formed on the light absorption layer 3A by immersing in an acetonitrile solution containing LiBF4 and performing electrolytic polymerization. In addition, LiBF
Other 4 LiCiO 4, LiAsF 6, or may be used sodium toluene sulfonate.

【0036】さらに、上記ホール移動層4上に蒸着法或
いはスパッタ法等を用いてAuからなる第2の電極5を
形成することにより図1の構造の光電変換素子が製造さ
れる。尚、第2の電極5の材料としては、Au以外にP
t,Ag,Cu,Al等の金属や、TiN,TiCなど
の金属化合物或いはこれらの積層膜や合金膜を用いても
良い。
Further, a second electrode 5 made of Au is formed on the hole transfer layer 4 by using a vapor deposition method or a sputtering method, whereby the photoelectric conversion element having the structure shown in FIG. 1 is manufactured. In addition, as a material of the second electrode 5, besides Au, P
A metal such as t, Ag, Cu, or Al, a metal compound such as TiN or TiC, or a laminated film or an alloy film thereof may be used.

【0037】以上の工程により製造した本発明光電変換
素子にAM1.5,100mW/cm2の光を照射して
光電変換特性を測定した。この結果を表1に示す。尚、
同表には直達光を照射した場合と散乱光を照射した場合
の2種類の光電変換特性を示している。
The photoelectric conversion device of the present invention manufactured by the above process was irradiated with light of AM 1.5, 100 mW / cm 2 to measure the photoelectric conversion characteristics. Table 1 shows the results. still,
The table shows two types of photoelectric conversion characteristics in the case of direct light irradiation and the case of scattered light irradiation.

【0038】[0038]

【表1】 [Table 1]

【0039】同表から明らかに、従来の固体のホール移
動層を用いた光電変換素子の変換効率は僅か0.5%程
度に過ぎなかったのに対し、本発明による光電変換素子
の方が高い光電変換特性が得られた。これは、本発明に
より従来よりもキャリア移動層と光吸収層との間の接触
面積を拡大できたことに因るものと考えられる。
As is apparent from the table, the conversion efficiency of the conventional photoelectric conversion element using the solid hole transfer layer was only about 0.5%, whereas the photoelectric conversion element according to the present invention was higher. The photoelectric conversion characteristics were obtained. This is considered to be due to the fact that the contact area between the carrier transfer layer and the light absorbing layer could be increased by the present invention as compared with the related art.

【0040】さらには、直達光を照射した場合よりも散
乱光を照射して測定した場合の方が高い光電変換特性が
得られた。
Furthermore, higher photoelectric conversion characteristics were obtained when the measurement was performed by irradiating the scattered light than when the measurement was performed by irradiating the direct light.

【0041】これは、直達光の場合平行光が素子に照射
されるのに対し、散乱光の場合様々な角度を有する光が
素子に照射されるため、穴の部分において光閉じ込め効
果が生じ、この結果短絡電流が増大したことによるもの
と考えられる。通常の使用時においては平行光が素子に
照射されることは殆どなく、様々な角度を有する光が照
射されることが通常であるので、この結果は本発明の光
電変換素子が実際の使用の上で高い光電変換特性を有す
ることを意味する。
This is because, in the case of direct light, parallel light is applied to the device, whereas in the case of scattered light, light having various angles is applied to the device. As a result, it is considered that the short-circuit current increased. In ordinary use, parallel light is rarely irradiated on the element, and light having various angles is usually irradiated. Therefore, this result indicates that the photoelectric conversion element of the present invention is used in actual use. It means having high photoelectric conversion characteristics.

【0042】尚、以上の発明においては半導体層として
TiO2を用いたが、これに限らずZnO2,Fe2
3,NbO,SnO2,InO,InSnO等可視光領
域での光吸収係数が小さく、適度な導電性を有する半導
体材料を用いることができる。
In the above invention, TiO 2 is used as the semiconductor layer. However, the present invention is not limited to this, and ZnO 2 , Fe 2
It is possible to use a semiconductor material such as O 3 , NbO, SnO 2 , InO, and InSnO, which has a small light absorption coefficient in a visible light region and has appropriate conductivity.

【0043】さらに、本発明における光吸収層には上述
した色素に限らず、Si,Ge,GaAs,InP,C
dTe,GaSb,CuInSe等の可視光に対して光
感度を有する半導体を用いることができる。
Further, the light absorbing layer in the present invention is not limited to the dyes described above, but may be Si, Ge, GaAs, InP, C
Semiconductors having photosensitivity to visible light, such as dTe, GaSb, and CuInSe, can be used.

【0044】次に、本発明の別の実施形態に係る光電変
換素子について図4に示す素子構造断面図を参照して説
明する。尚、図4において図1と同様の機能を呈する部
分には同一の符号を付している。
Next, a photoelectric conversion element according to another embodiment of the present invention will be described with reference to the element structure sectional view shown in FIG. In FIG. 4, the same reference numerals are given to portions having the same functions as those in FIG.

【0045】本実施形態に係る光電変換素子が前述の光
電変換素子と異なる点は、キャリア移動層4をAg,A
l等の可視光で高い反射率を有する金属から構成し、加
えてこれらの金属からなるキャリア移動層4と光吸収層
3Aとの間に薄膜の絶縁層6を設けた点にある。即ち本
実施形態によれば、絶縁層6を設けたことにより、光吸
収層3Aで吸収した光エネルギーによりキャリア移動層
4を構成する金属のプラズモンを励起することを抑制で
き、光電変換素子として作用させることができる。尚、
本実施形態にあっては上記絶縁層6は、半絶縁性の物質
から構成しても良い。
The difference between the photoelectric conversion device according to the present embodiment and the above-described photoelectric conversion device is that the carrier transfer layer 4 is made of Ag, A
1 and the like, and is characterized in that a thin insulating layer 6 is provided between the carrier moving layer 4 and the light absorbing layer 3A made of a metal having a high reflectance with visible light such as 1. That is, according to the present embodiment, by providing the insulating layer 6, it is possible to suppress the excitation of the plasmon of the metal forming the carrier moving layer 4 by the light energy absorbed by the light absorbing layer 3A, and the device functions as a photoelectric conversion element. Can be done. still,
In the present embodiment, the insulating layer 6 may be made of a semi-insulating substance.

【0046】ところで、一般に光電変換素子の出力電圧
は数V程度と小さいことから、実際に電子機器等の電源
として用いるにあたっては複数の光電変換素子を電気的
に直列接続した集積型の光電変換装置として使用され
る。
In general, since the output voltage of a photoelectric conversion element is as small as about several volts, an integrated photoelectric conversion device in which a plurality of photoelectric conversion elements are electrically connected in series when actually used as a power supply for an electronic device or the like. Used as

【0047】図5はこの例を示す構造断面図であり、図
1と同一の機能を呈する部分には同一の符号を付してい
る。
FIG. 5 is a structural sectional view showing this example, and portions having the same functions as those in FIG. 1 are denoted by the same reference numerals.

【0048】同図において、20は図1に示した光電変
換素子であり、ガラスからなる基板1上に複数個配置さ
れている。また、25は絶縁層である。斯かる構成によ
れば、隣接する光電変換素子20,20のうち一方の光
電変換素子20の第2の電極5が他方の光電変換素子2
0の透光性導電膜2にまで延在することにより互いに直
列接続されている。従って、本発明光電変換素子によれ
ば容易に集積型の光電変換装置を構成できる。
In the figure, reference numeral 20 denotes the photoelectric conversion element shown in FIG. 1, and a plurality of photoelectric conversion elements are arranged on the substrate 1 made of glass. Reference numeral 25 denotes an insulating layer. According to such a configuration, the second electrode 5 of one photoelectric conversion element 20 of the adjacent photoelectric conversion elements 20 and 20 is connected to the other photoelectric conversion element 2.
0 are connected in series by extending to the light-transmitting conductive film 2. Therefore, according to the photoelectric conversion device of the present invention, an integrated photoelectric conversion device can be easily configured.

【0049】[0049]

【発明の効果】以上説明した如く、本発明光電変換素子
によれば、光吸収層は半導体層の表面に形成された複数
個の柱状の穴を介して半導体層の全体に浸透することが
でき、色素等の光吸収体を担持させるために要する時間
を短縮することができ、且つ光吸収体の担持数を増大さ
せることができる。斯かる本願の効果は、固体のキャリ
ア移動層を用いるものに限らず、液体のキャリア移動層
を用いた光電変換素子に対しても有効なものである。
As described above, according to the photoelectric conversion device of the present invention, the light absorption layer can penetrate the entire semiconductor layer through the plurality of columnar holes formed on the surface of the semiconductor layer. In addition, the time required for supporting a light absorber such as a dye can be reduced, and the number of light absorbers supported can be increased. The effect of the present invention is not limited to the one using the solid carrier moving layer, but is also effective for the photoelectric conversion element using the liquid carrier moving layer.

【0050】さらに、固体のキャリア移動層を用いた場
合にあっては、キャリア移動層は穴の内面においても光
吸収層との電気的に接触するため、光吸収層とキャリア
移動層との接触面積を増大でき、この結果光電変換特性
の向上を図ることができる。
Further, when a solid carrier moving layer is used, the carrier moving layer is in electrical contact with the light absorbing layer even on the inner surface of the hole. The area can be increased, and as a result, the photoelectric conversion characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る光電変換素子の素子
構造断面図である。
FIG. 1 is a sectional view of an element structure of a photoelectric conversion element according to an embodiment of the present invention.

【図2】第1の電極の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of a first electrode.

【図3】本発明の実施の形態に係る光電変換素子の製造
工程を示す工程別素子構造断面図である。
FIG. 3 is a sectional view of an element structure in each step showing a manufacturing step of the photoelectric conversion element according to the embodiment of the present invention.

【図4】本発明の別の実施形態に係る発光素子の素子構
造断面図である。
FIG. 4 is a sectional view of an element structure of a light emitting element according to another embodiment of the present invention.

【図5】本発明光電変換素子を用いた集積型の光電変換
装置の断面図である。
FIG. 5 is a cross-sectional view of an integrated photoelectric conversion device using the photoelectric conversion element of the present invention.

【図6】従来の色素増感型の光電変換素子の素子構造断
面図である。
FIG. 6 is a sectional view of an element structure of a conventional dye-sensitized photoelectric conversion element.

【符号の説明】[Explanation of symbols]

1…基板、2…透光性導電膜、3…第1の電極、3A…
光吸収層、3B…半導体層、4…キャリア移動層、5…
第2の電極
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Translucent conductive film, 3 ... 1st electrode, 3A ...
Light absorption layer, 3B ... semiconductor layer, 4 ... carrier transfer layer, 5 ...
Second electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に、層厚方向に連続して設けられた
複数個の柱状の穴を有する半導体層と、該半導体層の表
面に形成された光吸収層とからなる第1の電極と、 前記光吸収層と対向して設けられた第2の電極と、 前記第1及び第2の電極間に設けられたキャリア移動層
と、 を備えたことを特徴とする光電変換素子。
1. A first electrode comprising a semiconductor layer having a plurality of columnar holes continuously provided in a layer thickness direction on a surface thereof, and a light absorbing layer formed on a surface of the semiconductor layer. A photoelectric conversion element, comprising: a second electrode provided to face the light absorption layer; and a carrier transfer layer provided between the first and second electrodes.
【請求項2】 前記複数個の穴が互いに略同一の断面積
を有しており、且つ互いに略等間隔に規則正しく配置さ
れていることを特徴とする請求項1記載の光電変換素
子。
2. The photoelectric conversion element according to claim 1, wherein said plurality of holes have substantially the same cross-sectional area as each other, and are regularly arranged at substantially equal intervals.
【請求項3】 前記光吸収層とキャリア移動層との間に
介挿された絶縁層または半絶縁層を備えることを特徴と
する請求項1又は2に記載の光電変換素子。
3. The photoelectric conversion device according to claim 1, further comprising an insulating layer or a semi-insulating layer interposed between the light absorbing layer and the carrier transfer layer.
【請求項4】 前記光吸収層が色素からなることを特徴
とする請求項1乃至3のいずれかに記載の光電変換素
子。
4. The photoelectric conversion device according to claim 1, wherein the light absorption layer is made of a dye.
【請求項5】 前記光吸収層が可視光に対する光感度を
有する半導体からなることを特徴とする請求項1乃至3
のいずれかに記載の光電変換素子。
5. The light absorption layer according to claim 1, wherein the light absorption layer is made of a semiconductor having a light sensitivity to visible light.
The photoelectric conversion element according to any one of the above.
JP21802998A 1998-07-31 1998-07-31 Method for manufacturing photoelectric conversion element Expired - Fee Related JP3695950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21802998A JP3695950B2 (en) 1998-07-31 1998-07-31 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21802998A JP3695950B2 (en) 1998-07-31 1998-07-31 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2000049373A true JP2000049373A (en) 2000-02-18
JP3695950B2 JP3695950B2 (en) 2005-09-14

Family

ID=16713531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21802998A Expired - Fee Related JP3695950B2 (en) 1998-07-31 1998-07-31 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3695950B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128507A (en) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh Semiconductor chip for emitting electromagnetic beam and its manufacturing method
JP2008053615A (en) * 2006-08-28 2008-03-06 Canon Inc Photoelectric conversion element, and its manufacturing method
JP2010027794A (en) * 2008-07-17 2010-02-04 Fujifilm Corp Photoelectric converting device
JP2010153185A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Solar cell, and manufacturing method thereof
JP2010258449A (en) * 2009-04-27 2010-11-11 Sharp Corp Multijunction photovoltaic structure having three-dimensional subcell, and method thereof
KR101017141B1 (en) 2008-09-09 2011-02-25 영남대학교 산학협력단 3-Dimensional Junction Solar Cell and Method of Manufacturing Thereof
JP2014212322A (en) * 2006-05-15 2014-11-13 スティオン コーポレイション Method and structure for thin-film photovoltaic materials using semiconductor materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128507A (en) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh Semiconductor chip for emitting electromagnetic beam and its manufacturing method
JP4623953B2 (en) * 2002-09-30 2011-02-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor chip emitting electromagnetic beam and method of manufacturing the same
JP2014212322A (en) * 2006-05-15 2014-11-13 スティオン コーポレイション Method and structure for thin-film photovoltaic materials using semiconductor materials
JP2008053615A (en) * 2006-08-28 2008-03-06 Canon Inc Photoelectric conversion element, and its manufacturing method
JP2010027794A (en) * 2008-07-17 2010-02-04 Fujifilm Corp Photoelectric converting device
KR101017141B1 (en) 2008-09-09 2011-02-25 영남대학교 산학협력단 3-Dimensional Junction Solar Cell and Method of Manufacturing Thereof
JP2010153185A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Solar cell, and manufacturing method thereof
JP2010258449A (en) * 2009-04-27 2010-11-11 Sharp Corp Multijunction photovoltaic structure having three-dimensional subcell, and method thereof

Also Published As

Publication number Publication date
JP3695950B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
Kumara et al. Dye-sensitized solid-state solar cells: use of crystal growth inhibitors for deposition of the hole collector
Oskam et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells
Nogueira et al. Polymers in dye sensitized solar cells: overview and perspectives
EP1562205B1 (en) Method of manufacturing a dye-sensitized solar cell
Wang et al. Highly efficient poly (3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode
JP2014042082A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
Qian et al. P3HT as hole transport material and assistant light absorber in CdS quantum dots-sensitized solid-state solar cells
JP2006518471A (en) Electrode system manufacturing method, electrode system manufactured therefrom, and electric element including the same
KR20070056581A (en) Electrode for a solar cell, manufacturing method thereof and a solar cell comprising the same
US20130237006A1 (en) Dye-sensitized solar cell and method of fabricating the same
JP4881600B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2000243466A (en) Photoelectric transducer
JP4665426B2 (en) Dye-sensitized solar cell and method for producing the same
US8110740B2 (en) Photoelectrode substrate of dye sensitizing solar cell, and method for producing same
Hao et al. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells
JP2004319661A (en) Photoelectric conversion device, its manufacturing method substrate therefor, and its manufacturing method
JP3695950B2 (en) Method for manufacturing photoelectric conversion element
JP4561073B2 (en) Photoelectric conversion element and electronic device
Micaroni et al. Photoelectrochemistry of poly (3-methylthiophene), I: Surface morphology and thickness effect
JP2004319873A (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized photoelectric conversion device
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Thanihaichelvan et al. Cadmium sulfide interface layer for improving the performance of titanium dioxide/poly (3-hexylthiophene) solar cells by extending the spectral response
JP4155431B2 (en) Photoelectric conversion element
JP2010177197A (en) Method of manufacturing dye-sensitized photoelectric conversion element
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees