JP2000045008A - Production of reduced metal - Google Patents

Production of reduced metal

Info

Publication number
JP2000045008A
JP2000045008A JP11147579A JP14757999A JP2000045008A JP 2000045008 A JP2000045008 A JP 2000045008A JP 11147579 A JP11147579 A JP 11147579A JP 14757999 A JP14757999 A JP 14757999A JP 2000045008 A JP2000045008 A JP 2000045008A
Authority
JP
Japan
Prior art keywords
reduction
raw material
iron
reducing agent
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11147579A
Other languages
Japanese (ja)
Other versions
JP3817969B2 (en
Inventor
Tetsuya Yamamoto
哲也 山本
Yoshitaka Sawa
義孝 澤
Kanji Takeda
幹治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14757999A priority Critical patent/JP3817969B2/en
Publication of JP2000045008A publication Critical patent/JP2000045008A/en
Application granted granted Critical
Publication of JP3817969B2 publication Critical patent/JP3817969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produced a reduced metal in a high efficiency. SOLUTION: At the time of producing a reduced metal by reducing a powdery iron-contg. material, the powdery iron-contg. material is mixed with a powdery reducing material and furthermore with an auxiliary raw material to form into a mixture of 0.4 to 1.3 basicity, which is held on a hearth for a time of >=1/3 of the total time for reducing treatment so as to control the inside temp. of the mixture >=1,200 deg.C and the reducing ratio thereof to 40 to 80%, and next, the mixture after the reduction is melted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鉄、クロム、ニッケ
ル、マンガン等の金属を含有する鉱石やダストあるいは
スラジ等の金属含有物から還元金属を製造するのに好適
な方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method suitable for producing reduced metals from ores and dusts containing metals such as iron, chromium, nickel and manganese, and metal-containing substances such as sludge.

【0002】[0002]

【従来の技術】粗鋼の生産方式としては大別して高炉−
転炉法、電気炉法が知られている。このうち、電気炉は
スクラップや還元鉄を鉄原料として、それらを電気エネ
ルギーで加熱溶解させ、場合によっては精錬し、鋼にし
ている。現状ではスクラップを主な原料としているが、
近年、スクラップの需給のひっ迫、電気炉法での高級製
品の製造の流れから還元鉄の使用が増加しつつある。
2. Description of the Related Art Crude steel production methods are roughly classified into blast furnaces.
The converter method and the electric furnace method are known. Among them, the electric furnace uses scrap or reduced iron as an iron raw material, heats and melts them with electric energy, and in some cases, refines it into steel. At present, scrap is the main raw material,
In recent years, the use of reduced iron has been increasing due to the tight supply and demand of scrap and the flow of manufacturing high-end products by the electric furnace method.

【0003】還元鉄を製造するプロセスのひとつとし
て、例えば、特開昭63−108188号公報には、水
平方向に回転する炉床に鉄鉱石と固体還元剤からなる層
を積み付け、上部より輻射伝熱によって加熱、鉄鉱石を
還元し、還元鉄を製造する方法が開示されている。この
方法は設備の建設費が比較的安価で、操業トラブルが比
較的少なくてすむ等の優位な点がある。多くの場合、水
平に移動する炉床とは図1およびそのA−A断面を示し
た図2の如き回転炉床の形態が取られている。
As one of the processes for producing reduced iron, for example, JP-A-63-108188 discloses that a layer made of iron ore and a solid reducing agent is stacked on a horizontally rotating hearth and radiated from above. A method for producing reduced iron by heating and reducing iron ore by heat transfer is disclosed. This method has such advantages that the construction cost of the equipment is relatively inexpensive and the operation trouble is relatively small. In many cases, the horizontally moving hearth is in the form of a rotary hearth as shown in FIG. 1 and FIG.

【0004】回転炉床1の上には装入口2を通して搬入
された鉄鉱石と固体還元剤からなる層tが積み付けられ
るが、該炉床1は耐火物が張られた炉体3によって覆わ
れ、その内側の上部には熱源としてのバーナー4が設置
されていて、移動床炉1の上で鉄鉱石を還元するように
なっている。炉内温度は1300℃前後にされているの
が普通であり、還元処理の終了後は炉外へ排出してから
の酸化の防止、ハンドリングの容易性を高めるために回
転炉床上で冷却器によって還元鉄を冷却した後、排出口
5から排出、回収するようになっている。
[0004] On the rotary hearth 1, a layer t composed of iron ore and a solid reducing agent carried in through the charging inlet 2 is stacked, and the hearth 1 is covered by a furnace body 3 covered with refractory. A burner 4 as a heat source is installed in the upper part on the inside thereof, so that iron ore is reduced on the moving bed furnace 1. The temperature inside the furnace is usually around 1300 ° C, and after the reduction process is completed, it is cooled by a cooler on the rotary hearth to prevent oxidation after discharging outside the furnace and to improve the ease of handling. After cooling the reduced iron, the reduced iron is discharged from the outlet 5 and collected.

【0005】ところで、鉄鉱石はその産地によって差は
あるものの脈石分を含んでおり、また固体還元剤の代表
例である石炭や石炭チャーには灰分があり、これらが製
品である還元鉄にそのまま残り、次の工程の電気炉(溶
解炉)において溶解、除去されるが、原料鉱石に含まれ
る脈石分や石炭中に含まれる灰分が電気炉に入った場合
には塩基度調整のための石灰の使用量が多くなり、石灰
のコストとともに石灰投入による電力使用量の増加が余
儀なくされているのが現状であった。また、鉄鋼材料の
生産過程においては上記した高炉、転炉、電気炉等のそ
れぞれの過程において発生するガス中のダストや圧延、
表面処理等仕上げ工程でのスケールや研磨、電解等で発
生するスラジ等には鉄に加えてクロム、ニッケル、マン
ガン等の鉄鋼製品に添加されている有用な金属が酸化物
や水酸化物等様々な形態で含有されているが、これらの
ダスト、スラジ類にもSiO2、Al2O3 、CaO や炭素等の不
純物が含まれているため、かかる有用金属の回収は難し
い状況にあった。
[0005] By the way, iron ore contains gangue, though there is a difference depending on the place of production. Coal and coal char, which are typical examples of solid reducing agents, have ash, which is a product of reduced iron. It remains as it is and is melted and removed in the electric furnace (melting furnace) in the next process, but if gangue contained in the raw ore or ash contained in the coal enters the electric furnace, it will be adjusted for basicity. At present, the amount of lime used has increased, and the cost of lime has increased and the amount of power used has to be increased by lime input. Further, in the production process of steel materials, the above-mentioned blast furnace, converter, dust and rolling in gas generated in each process of the electric furnace, etc.
In addition to iron, chrome, nickel, manganese, and other useful metals added to steel products such as oxides and hydroxides are included in sludge generated by scale, polishing, electrolysis, etc. in finishing processes such as surface treatment. However, since these dusts and sludges also contain impurities such as SiO 2 , Al 2 O 3 , CaO, and carbon, it has been difficult to recover such useful metals.

【0006】[0006]

【発明が解決しようとする課題】この発明の目的は、脈
石分や灰分を含む原料鉱石や、種々の不純物を含んでい
るダスト、スラジ等の、金属含有物、とくに、粉状の金
属含有物を使用してもそれら脈石分、灰分、不純物を還
元処理段階で余計な工程を経ることなしに除去できる新
規な方法を提案するところにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a raw material ore containing gangue and ash, and a metal-containing material such as dust and sludge containing various impurities, especially a powdery metal-containing material. It is an object of the present invention to propose a novel method which can remove the gangue, ash, and impurities without using an extra step in the reduction treatment step even when using a substance.

【0007】[0007]

【課題を解決するための手段】この発明は、粉状金属含
有物 (鉄鉱石、ニッケル鉱石、クロム鉱石、マンガン鉱
石等の鉱石類や砂鉄、還元鉄粉、製鉄ダスト、製鉄スラ
ジ等が使用できる) を還元して還元金属を製造するに当
たり、塩基度が0.4〜1.3である粉状金属含有物を
単味で原料とするか、若しくは粉状金属含有物と粉状還
元剤 (石炭粉、石炭チャー、コークス粉等が使用でき
る) および/または粉状副原料 (石灰石粉、生石灰粉、
消石灰粉、ドロマイト粉等が使用できる) を混合して塩
基度を0.4〜1.3に調整したものを原料として用
い、これを炉床上で還元処理にかかる全時間 (加熱を開
始してから溶融帯に入るまでの時間) の1/3以上の時
間の中で該原料の内部温度が1200℃以上、1350
℃以下でその還元率が40〜80%となるように保持
し、ついで還元後の原料 (還元処理を経て溶融帯に入る
直前の原料) を溶融した状態にすることを特徴とする金
属鉄の製造方法であり、炉床上には粉状還元剤層を形成
しこの上に原料を積層するのがよく、また、炉床はそれ
自体が移動する移動炉床とすると原料の還元処理を連続
的に行うようにできる。ここで、還元後の原料を溶融状
態にするためには、上記還元処理を行う時間内で原料を
保持した温度よりもさらに高くするのがよく、この場合
の温度としては1450〜1550℃程度とするのが好
ましいことになる。その理由は、1450℃以上とする
ことにより溶融物の流動性が良好となりスラグ、メタル
分離に適当であり、一方、1550℃を超えるとスラ
グ、メタル分離にはほとんど変化がなく、投入するエネ
ルギーが大きくなりコスト的にも不利となるからであ
る。また、この発明では、炉床上に粉状還元剤を形成し
この上に原料を積層することが好ましい。それは、炉床
上に形成した粉状還元剤は原料中の金属の還元に使用さ
れるのみならず、原料が溶融したときに炉床を形成する
耐火物と直接接触するのを回避するために機能しこれに
よって炉床が溶損するのを防ぐことができるからであ
る。
According to the present invention, powdery metal-containing materials (ores such as iron ore, nickel ore, chromium ore, manganese ore, iron sand, reduced iron powder, iron dust, iron sludge, etc.) can be used. ) To produce a reduced metal, a powdered metal-containing material having a basicity of 0.4 to 1.3 is used as a raw material, or a powdered metal-containing material and a powdery reducing agent ( (Coal powder, coal char, coke powder, etc. can be used) and / or powdered auxiliary material (limestone powder, quick lime powder,
Slaked lime powder, dolomite powder, etc. can be used) and the basicity adjusted to 0.4 to 1.3 is used as a raw material. From the time when the raw material enters the melting zone), the internal temperature of the raw material is 1200 ° C. or more and 1350
The method is characterized in that the reduction ratio is maintained at 40 ° C. or less at 40 ° C. or lower, and the raw material after reduction (the raw material immediately before entering the melting zone after reduction treatment) is in a molten state. It is a manufacturing method, in which a powdery reducing agent layer is formed on the hearth, and the raw material is preferably laminated thereon. In addition, if the hearth is a moving hearth that moves itself, the reduction treatment of the raw material is performed continuously. Can be done. Here, in order to bring the raw material after reduction into a molten state, it is preferable that the temperature is further higher than the temperature at which the raw material is held within the time for performing the above-described reduction treatment. In this case, the temperature is about 1450 to 1550 ° C. Would be preferred. The reason is that by setting the temperature to 1450 ° C. or higher, the fluidity of the molten material becomes good and suitable for slag and metal separation. On the other hand, when the temperature exceeds 1550 ° C., there is almost no change in slag and metal separation, This is because it becomes large and disadvantageous in cost. Further, in the present invention, it is preferable that a powdery reducing agent is formed on the hearth and the raw material is laminated thereon. This is because the powdered reducing agent formed on the hearth is used not only for reducing the metal in the raw material, but also to avoid direct contact with the refractory material forming the hearth when the raw material is melted. This prevents the hearth from being melted.

【0008】さらに、この発明においては、還元後の原
料、その溶融物、あるいはそれらの混在物に粉状還元剤
を供給することによって金属の還元効率の促進を図るこ
とができる。粉状還元剤の供給開始時期は、上記のよう
に還元後であれば原料が溶融する前、また、溶融中(原
料が混在する状態も含む)に行ってもよいし、溶融開始
前から溶融中にかけて行ってもよく、とくに限定はされ
ない。粉状還元剤は還元の進行に伴い、複数回に分けて
添加するのがよい。粉状還元剤としては、炉体の上部に
供給手段を設けて還元後の原料、その溶融物あるいはそ
れらの混在物の上方より供給するようにしてもよい。一
回当たりの供給量としては、断熱層となるのを防ぐため
還元後の原料の重量に対して10%以下とするのが好ま
しい。
Further, in the present invention, the reduction efficiency of metal can be promoted by supplying a powdery reducing agent to the raw material after reduction, its melt, or a mixture thereof. The supply start timing of the powdery reducing agent may be performed before the raw material is melted as long as it is after the reduction as described above, or during the melting (including a state in which the raw materials are mixed), or may be performed before the start of the melting. It may be performed inside, and there is no particular limitation. It is preferred that the powdery reducing agent is added in a plurality of portions as the reduction proceeds. As the powdery reducing agent, a supply means may be provided in the upper part of the furnace body to supply the reduced raw material, its melt, or a mixture thereof from above. The supply amount per time is preferably 10% or less based on the weight of the raw material after reduction in order to prevent a heat insulating layer from being formed.

【0009】ここに、塩基度とは (原料中粉状金属含有物比率×粉状金属含有物中CaO
重量%+原料中粉状還元剤比率×粉状還元剤中CaO重
量%+原料中粉状副原料比率×粉状副原料中CaO重量
%)/ (原料中粉状金属含有物比率×粉状金属含有物中
SiO2 重量%+原料中粉状還元剤比率×粉状還元剤S
iO2 重量%+原料中粉状副原料比率×粉状副原料中S
iO2 重量%) で定義する。なお、上記の式において粉状還元剤あるい
は粉状副原料を添加しなくても還元に必要な炭素量が確
保できる場合や塩基度の調整ができる場合にはそれらの
比率を0として計算することができる。
Here, the basicity is defined as (the ratio of the powdery metal-containing material in the raw material × the CaO in the powdery metal-containing material).
Weight% + powdered reducing agent ratio in the raw material x CaO weight% in the powdered reducing agent + powdered auxiliary material ratio in the raw material x CaO weight% in the powdered auxiliary material) / (ratio of powdered metal content in raw material x powdered) 2 % by weight of SiO2 in metal-containing material + ratio of powdery reducing agent in raw material x powdery reducing agent S
2 % by weight of iO + ratio of powdered auxiliary material in raw material x S in powdered auxiliary material
iO 2 % by weight). In the above formula, when the amount of carbon required for reduction can be ensured or the basicity can be adjusted without adding a powdery reducing agent or a powdery auxiliary material, calculate the ratio as 0. Can be.

【0010】また、上記還元処理とは炉床上の原料を加
熱し、高温に保つことをいうものとし、具体的には10
00℃以上の温度に保持することにより原料内の粉状還
元剤から発生するCO、H2 などの還元性ガスによる鉄
の還元が行われ、また、一部Cと鉄や金属との直接還元
も行われる処理をいう。
[0010] The above-mentioned reduction treatment refers to heating the raw material on the hearth and keeping it at a high temperature.
By maintaining the temperature at not less than 00 ° C., iron is reduced by a reducing gas such as CO and H 2 generated from the powdery reducing agent in the raw material, and a direct reduction of part of C with iron or metal is performed. Also refers to the processing performed.

【0011】[0011]

【発明の実施の形態】還元後の還元金属を溶融させると
脈石や灰分はスラグとなり溶融した金属との比重差によ
って分離されることから脈石、灰分の混入がない還元金
属を得る方法の一つとして極めて有効である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When a reduced metal after reduction is melted, gangue and ash become slag and are separated by a specific gravity difference from the molten metal. One is extremely effective.

【0012】副原料は還元金属、灰分を溶融させる際に
溶融を容易ならしめるために加えられるものであって石
灰石、蛍石、蛇紋岩、ドロマイト、製鋼スラグ等であ
り、成分としてはCaO を含むものである。これらは溶融
する前までに結晶水の蒸発、一部の分解反応(例えば石
灰石の主成分であるCaCO3 はCaO に熱分解される) を起
こしているものの融点が高いため固体の状態を維持して
いる。
Auxiliary materials are added to facilitate melting when reducing metals and ash are melted, and are limestone, fluorite, serpentine, dolomite, steel slag, etc., and contain CaO as a component. It is a thing. These have undergone evaporation of crystallization water and some decomposition reactions (for example, CaCO 3 , the main component of limestone, is thermally decomposed to CaO) before melting, but maintain a solid state due to its high melting point. ing.

【0013】塩基度を調整せずに還元処理を行った場合
には鉱石中の脈石、固体還元剤の灰分は次のような挙動
を示すことになる。まず、鉱石は還元率が低い段階では
鉱石中のFeO と一緒に鉱石に含まれるSiO2、Al2O3等の
脈石分が一たん溶融するが、還元が進行することにより
溶融物中のFeO が低下し融点が上昇するため再度固化し
てしまう。また、粉固体還元剤として用いられた粉石
炭、粉石炭チャー、粉コークスなどからは灰分が残る
が、灰分は主にSiO2、 Al2O3からなり融点が高い。移動
する炉床炉内の温度は通常、1300℃前後であり製鋼
用転炉や電気炉などと比較すると低い温度であるため、
これらの脈石分、灰分を溶融させることはできない。し
たがって還元が進行しても脈石分、灰分が溶融しないた
め、図3に副原料を添加した場合と比較して示したよう
に全体としては固体の状態を維持しており、このため脈
石、灰分を分離した還元鉄を得ることができない。
When the reduction treatment is performed without adjusting the basicity, the gangue in the ore and the ash of the solid reducing agent behave as follows. First, in the ore, at the stage where the reduction rate is low, gangue components such as SiO 2 and Al 2 O 3 contained in the ore are melted together with FeO in the ore, but as the reduction proceeds, the Because FeO decreases and the melting point increases, it solidifies again. Further, ash remains from pulverized coal, pulverized coal char, and coke breeze used as the pulverized solid reducing agent, but the ash is mainly composed of SiO 2 and Al 2 O 3 and has a high melting point. The temperature inside the moving hearth furnace is usually around 1300 ° C, which is lower than that of steelmaking converters and electric furnaces.
These gangues and ash cannot be melted. Therefore, even if the reduction proceeds, the gangue and ash do not melt, and as a result, the solid state is maintained as a whole as shown in comparison with the case where the auxiliary material is added. In addition, reduced iron from which ash has been separated cannot be obtained.

【0014】この発明においては粉状金属含有物、若し
くは粉状金属含有物と粉固体還元剤、粉副原料等を適宜
混合した原料の塩基度を0. 4〜1. 3の範囲に調整す
るが、その理由は、塩基度をこの範囲にすることにより
脈石分、灰分のスラグ化の融点を低下させることができ
るからであり、これによって還元鉄とスラグの溶融分離
が容易になる。
In the present invention, the basicity of the powdered metal-containing material or the raw material obtained by appropriately mixing the powdered metal-containing material with the powdered solid reducing agent, powdered auxiliary material and the like is adjusted to a range of 0.4 to 1.3. However, the reason is that by setting the basicity within this range, the melting point of slag formation of gangue and ash can be lowered, thereby facilitating melt separation of reduced iron and slag.

【0015】炉床上において還元金属の溶融を行うには
熱効率などの観点から、局所加熱によってできる限り短
時間で行われることが必要であるため、スラグの溶融分
離もまた速やかに行われる必要があるが、原料の塩基度
を単に0. 4〜1. 3の範囲に調整して原料中において
スラグ化する成分の溶融温度を単に低下させるだけでは
必ずしも溶融後に還元金属とスラグとに分離することが
できない。
In order to melt the reduced metal on the hearth, from the viewpoint of thermal efficiency, it is necessary to perform the heating by local heating in as short a time as possible, so that the slag must be melted and separated quickly. However, simply adjusting the basicity of the raw material to a range of 0.4 to 1.3 and simply lowering the melting temperature of the component to be slagged in the raw material does not necessarily separate the reduced metal and slag after melting. Can not.

【0016】このためこの発明では還元処理にかかる全
時間の1/3以上の時間の中で原料の内部温度が120
0℃以上に、しかもその際、鉄の還元率が40〜80%
となるように保持する。
For this reason, according to the present invention, the internal temperature of the raw material is reduced to 120% or more during one third or more of the total time required for the reduction treatment.
0 ° C or higher, and at that time, the iron reduction rate is 40 to 80%
Hold so that

【0017】この発明における上記の条件の根拠は以下
の実験結果に基づく。まず粒径3mm以下の粉鉄鉱石、コ
ークス粉、石灰石粉を重量比で7:3:1の割合になる
混合物を作り、これを図4に示すような実験装置で13
00℃に保持しながら重量の連続的な測定を行い、還元
の進行状況を調査した。その結果、粉鉄鉱石の種類や平
均粒径等いろいろ変更することにより図5に示すような
還元挙動の状態が確認され、とくに図5中のa、bのよ
うな還元率の比較的低い段階で還元停滞が生じる場合に
は還元処理の終了後にメタルとスラグがきれいに2層に
分離していたが、cのような初期の還元速度が速く還元
率の高い状態が長く続く場合には還元終了後の観察では
スラグとメタルがほとんど分離しておらずスラグが部分
的に浸み出したメタルと石灰の混合物になっていた。
The basis of the above conditions in the present invention is based on the following experimental results. First, a mixture of iron ore, coke powder, and limestone powder having a particle size of 3 mm or less having a weight ratio of 7: 3: 1 was prepared.
The weight was continuously measured while maintaining the temperature at 00 ° C., and the progress of the reduction was investigated. As a result, the state of the reduction behavior as shown in FIG. 5 was confirmed by variously changing the type of iron ore, the average particle size, and the like. In the case where the reduction stagnation occurs, the metal and slag are clearly separated into two layers after the completion of the reduction process. However, when the initial reduction speed such as c and the high reduction rate continue for a long time, the reduction is terminated. Later observations showed that the slag and metal were hardly separated and the slag was a mixture of partially leached metal and lime.

【0018】このような現象につき種々の検討を加えた
結果、鉄鉱石の還元のパターンには色々な形態がある
が、還元率40%未満および還元率80%を超えた時点
では還元の進行にあまり相違がないが、40%から80
%の間では条件に応じて還元停滞を起こす場合と還元が
速やかに進む場合があることが明らかとなった。図5に
その場合の顕著な例を示すように、還元率40〜80%
の間において還元の進行に停滞を起こす条件下では還元
終了後に得られたメタルとスラグとの分離が生じること
が明らかとなった。すなわち、鉄鉱石の還元速度が速
く、還元率が40〜80%となる時間が短いと混合物中
の石灰分と脈石分、灰分との溶解が十分に進まず石灰と
脈石分、灰分とがスラグ化しないことが判明した。
As a result of various studies on such phenomena, there are various types of reduction patterns of iron ore, but when the reduction rate is less than 40% and the reduction rate exceeds 80%, the reduction progresses. There is not much difference, but 40% to 80
It has been clarified that the reduction may occur depending on the conditions and the reduction may proceed rapidly depending on the conditions. As shown in FIG. 5, a remarkable example in that case is that the reduction rate is 40 to 80%.
It was clarified that under the conditions where the progress of the reduction was stagnant during the period, the metal and slag obtained after the completion of the reduction were separated. That is, if the reduction rate of the iron ore is high and the reduction rate is 40 to 80% for a short time, the lime, gangue, and ash in the mixture do not sufficiently dissolve, and the lime, gangue, and ash are not sufficiently dissolved. Did not turn into slag.

【0019】この現象は鉄の還元率が40〜80%とい
う比較的低い状態において、鉄酸化物はその多くがFeO
として存在するため、このFeO と石灰分、脈石、灰分中
のSiO2、CaO 、Al2O3 とが低融点で粘性の低いスラグ組
成を形成することによるもの、すなわち、還元停滞が生
じる条件においては、FeO が存在する状態で比較的長い
時間保持されることで混合物中の石灰分、脈石、灰分の
溶解が進むのに対し、還元停滞を起こさない条件で還元
が進むと、酸化鉄の還元により生成したFeO と石灰分、
脈石、灰分とが十分に溶解しないうちに還元が進行して
しまい、スラグの粘性低下の効果は十分得られないため
にメタル、スラグの分離にまで至らないものと考えられ
る。原料中の鉄の還元率は、原料中に含まれる鉄を全て
Fe2O3 としたときの鉄と結合する酸素量に対して、実際
に鉄と結合している酸素量の割合を1から差し引いた値
をいう。混合物を化学分析してトータル鉄重量%を(TF
e) 、金属鉄重量%を(MFe) 、2価の鉄重量%を (Fe2+)
としたとき、 1−((TFe)− (MFe)−(Fe2+ ) /3) /(TFe) で表される。
This phenomenon is that when the reduction ratio of iron is relatively low at 40 to 80%, most of the iron oxides are FeO.
For existing as condition the FeO and lime, gangue, due to the fact that SiO 2, CaO in the ash, and the Al 2 O 3 to form a low slag composition viscosity at a low melting point, i.e., the reduction stagnation occurs In, the lime, gangue, and ash components in the mixture are dissolved by holding for a relatively long time in the presence of FeO, whereas when the reduction proceeds under conditions that do not cause reduction stagnation, iron oxide FeO and lime generated by the reduction of
It is considered that the reduction proceeds before the gangue and ash are not sufficiently dissolved, and the effect of lowering the viscosity of the slag is not sufficiently obtained, so that the metal and the slag are not separated. The reduction rate of iron in the raw material is based on the total amount of iron contained in the raw material.
This is a value obtained by subtracting from 1 the ratio of the amount of oxygen actually bonded to iron to the amount of oxygen bonded to iron when Fe 2 O 3 is used. Analyze the mixture for total iron weight% (TF
e), metal iron weight% (MFe), divalent iron weight% (Fe 2+ )
Where, 1 − ((TFe) − (MFe) − (Fe 2+ ) / 3) / (TFe).

【0020】上述のように、還元操作において還元率を
低く保ち、塩基度を0.4〜1.3の範囲に調整した場
合、原料は還元後に速やかに溶融が起こり、さらに、溶
融した状態では金属鉄はメタルとしてスラグから分離す
ることになる。このため、メタル中には脈石由来の不純
物であるSiO2やAl2O3 等が少なく、良質の還元金属を製
造することができる。
As described above, when the reduction rate is kept low in the reduction operation and the basicity is adjusted in the range of 0.4 to 1.3, the raw material immediately melts after the reduction, and further, in the molten state, Metallic iron will be separated from the slag as metal. For this reason, the metal contains few gangue-derived impurities such as SiO 2 and Al 2 O 3 , and a high-quality reduced metal can be produced.

【0021】ここで、原料中の鉄の還元率を40〜80
%となるように制御するには、炉体温度によって還元速
度を調整するか、原料中に配合する固体還元剤の量を調
整することによって実現できる。とくに、原料中の酸化
金属を還元するために必要な還元剤の量よりも少ない量
の還元剤を配合した場合、十分に還元が進行せず、温度
を高く保っても鉄の還元率は低い状態に保持される。
Here, the reduction ratio of iron in the raw material is 40 to 80.
% Can be realized by adjusting the reduction rate according to the furnace body temperature or by adjusting the amount of the solid reducing agent mixed in the raw material. In particular, when a reducing agent in an amount smaller than the amount of the reducing agent necessary to reduce the metal oxide in the raw material is mixed, the reduction does not proceed sufficiently, and the reduction ratio of iron is low even when the temperature is kept high. Held in state.

【0022】還元操作において還元率を低く保った場
合、溶融物にはFeO の状態で鉄酸化物が残存することに
なる。溶融物中の鉄酸化物はスラグと混在しており、溶
融物が還元性雰囲気に保持されていれば、さらに還元が
進行してメタルに移行していくため原料中の鉄分のうち
製品として回収できる金属鉄の割合を増加させることが
できる。また、他の金属酸化物についても、溶融状態で
あるため炭素分との接触界面積が未溶融の場合に比較し
て格段に増大するため速やかに還元が進行することにな
る。
When the reduction rate is kept low in the reduction operation, iron oxide remains in the melt in the form of FeO. The iron oxide in the melt is mixed with the slag, and if the melt is kept in a reducing atmosphere, the reduction proceeds further and shifts to metal, so it is recovered as a product from the iron in the raw material The percentage of metallic iron that can be made can be increased. In addition, since other metal oxides are in a molten state, the area of contact interface with the carbon content is significantly increased as compared with the case where they are not melted, so that reduction proceeds quickly.

【0023】原料の還元操作後に粉状還元剤を供給する
と、さらに還元反応が起こる(以下、これを仕上げ還元
反応という)が、この際に発生するガス(例えば、還元
剤に石炭を使用した場合、COやH2 等のガスが発生す
る)によって溶融物は強く撹拌される。この撹拌によっ
て粉状還元剤は溶融物内に取り込まれて溶融物中の金属
の還元に寄与するが、溶融物表面に粉状の還元剤が多量
に残存した場合、それが断熱層となり炉体からの熱が十
分に溶融物に供給されず、吸熱反応である還元反応に悪
影響を及ぼすことになる。一方、溶融物の表面に粉状還
元剤がわずかでも残っていれば炉内の雰囲気にかかわら
ず溶融物の表面には還元性雰囲気に保たれるため、メタ
ルの再酸化を回避することができる。このためこの発明
においては前述した如く適量ずつ複数回にわたって供給
することが好ましい。
When the powdery reducing agent is supplied after the raw material reduction operation, a further reduction reaction occurs (hereinafter, this is referred to as a finishing reduction reaction), but the gas generated at this time (for example, when coal is used as the reducing agent) , the melt by the gas is produced), such as CO or H 2 is stirred strongly. By this stirring, the powdery reducing agent is taken into the melt and contributes to the reduction of the metal in the melt, but when a large amount of the powdery reducing agent remains on the surface of the melt, it becomes an insulating layer and becomes a heat insulating layer. Is not sufficiently supplied to the melt, which adversely affects the endothermic reduction reaction. On the other hand, if even a small amount of the powdery reducing agent remains on the surface of the melt, a reducing atmosphere is maintained on the surface of the melt regardless of the atmosphere in the furnace, so that reoxidation of the metal can be avoided. . For this reason, in the present invention, it is preferable to supply an appropriate amount a plurality of times as described above.

【0024】[0024]

【実施例】実施例−1 炉床の上部にバーナー4を、また、炉の上部に粉状還元
剤を供給するための装置6を設置し、炉床の上面にアル
ミナ系の耐火物を張った直径が2.2mの回転炉床を備
えた図6、図7(図6のA−A断面)に示すような構成
になる炉(全体を炉体で覆った)を用いて以下の要領で
操業を行い最終製品(還元鉄)の品質を調査した。
EXAMPLE 1 A burner 4 was installed on the upper part of the hearth, and a device 6 for supplying the powdery reducing agent was installed on the upper part of the furnace. An alumina-based refractory was put on the upper surface of the hearth. 6 and 7 (section AA in FIG. 6) equipped with a rotary hearth having a diameter of 2.2 m, and And investigated the quality of the final product (reduced iron).

【0025】図8は上掲図6に示した炉の要部を示した
ものであって、冷却装置によって冷却された製品は排出
口に設けた破砕装置9によって破砕され排出装置10に
よって排出される。回転炉床炉内の混合粉をサンプリン
グするための取り出し口Sは還元帯部分に10ケ所取り
付けてある。還元帯内から取り出した混合粉は化学分析
により還元率を求めることができる。
FIG. 8 shows a main part of the furnace shown in FIG. 6 above. The product cooled by the cooling device is crushed by the crushing device 9 provided at the discharge port and discharged by the discharging device 10. You. Ten outlets S for sampling the mixed powder in the rotary hearth furnace are provided at 10 places in the reduction zone. The reduction ratio of the mixed powder taken out of the reduction zone can be determined by chemical analysis.

【0026】回転炉床炉における粉鉄鉱石(篩い目3mm
以下のもの)、粉固体還元剤(篩い目3mm以下のも
の)、粉石灰石(篩い目3mm以下のもの)の積み付けは
図9のようにし、炉内で還元(還元帯での炉温はバーナ
ーの燃焼制御で前半部分については還元率を制御するた
め1250〜1350℃の間で調整、後半部分については1300℃
に調整) 、溶融 (溶融帯での炉温はバーナーの燃焼制御
により1500℃に調整、燃焼は積み付けた層から発生する
COガスを主とし補助燃料として天然ガス使用、支燃ガス
として空気を使用) 、冷却をおこなった。鉄鉱石の成分
(脈石分(SiO2, Al2O3等を7%以上含有)を表1に、
粉固体還元剤(灰分を5〜11%程度含有)の成分を表
2に示す。副原料としては表3に示したような成分にな
る粉石灰石を用いた。操業条件を表4に、操業結果を表
5にそれぞれ示す。
Fine iron ore (3 mm mesh) in a rotary hearth furnace
The followings), powdered solid reducing agent (with a screen of 3 mm or less), and powdered limestone (with a screen of 3 mm or less) are stacked as shown in FIG. In the combustion control of the burner, the first half is adjusted between 1250 and 1350 ° C to control the reduction rate, and the second half is 1300 ° C
), Melting (The furnace temperature in the melting zone is adjusted to 1500 ° C by combustion control of the burner, combustion occurs from the stacked layers
(Mainly CO gas, natural gas as auxiliary fuel, and air as supporting gas)) and cooling. Table 1 shows the components of iron ore (gangue (containing at least 7% of SiO 2 , Al 2 O 3, etc.)
Table 2 shows the components of the powder solid reducing agent (containing about 5 to 11% of ash). Powdered limestone having the components shown in Table 3 was used as an auxiliary material. The operating conditions are shown in Table 4 and the operating results are shown in Table 5.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】表4において原料(混合粉)の欄では粉固
体還元剤、鉱石、石灰石の合計で100%になるようにな
っており、また、脈石+灰分の欄は原料に対する重量%
であって、脈石+灰分の中には鉱石中の脈石、粉固体還
元剤の灰分の他に石灰石中のCaO 分も含んだものになっ
ている。
In Table 4, in the column of raw material (mixed powder), the total amount of the powdered solid reducing agent, ore, and limestone is 100%, and in the column of gangue + ash, the weight% is based on the raw material.
The gangue + ash contains CaO in limestone in addition to gangue in ore and ash of the powdered solid reducing agent.

【0033】実施番号1〜10はこの発明の範囲内のも
のである。還元帯内の混合粉をサンプリングし、還元処
理にかかる時間(原料が炉体内へ入ってから溶融帯へ入
るまでの時間)の1/3以上の時間で原料の還元率が
0.4〜0.8となり、原料の温度を1200℃以上と
なるように炉上部の温度を調整した。いずれの条件にお
いても還元帯内で粉鉱石は溶融し、還元鉄が脈石、灰分
から分離された状態で回収された。回転炉床炉のうち還
元操作を行う部分を通過する時間の1/2を経た時点で
原料をサンプリングした。この結果、粉石灰石はほとん
ど見当たらず、粉鉱石は部分的に溶融した状態になって
いた。還元帯出側でサンプリングした原料も、粉鉱石は
部分的に溶融した状態になっていた。
The implementation numbers 1 to 10 are within the scope of the present invention. The mixed powder in the reduction zone is sampled, and the reduction rate of the raw material is 0.4 to 0 in a time equal to or more than 1/3 of the time required for the reduction treatment (the time from the time when the raw material enters the furnace to the time when the raw material enters the melting zone). The temperature of the upper part of the furnace was adjusted so that the temperature of the raw material became 1200 ° C. or more. Under either condition, the fine ore was melted in the reduction zone, and the reduced iron was recovered in a state separated from gangue and ash. The raw material was sampled at a point in time when a half of the time required to pass through the portion of the rotary hearth furnace where the reduction operation was performed. As a result, powdered limestone was hardly found, and the powdered ore was in a partially molten state. In the raw material sampled at the reduction zone, the fine ore was in a partially molten state.

【0034】実施番号5〜7は原料の粒径を変えた場合
の実験結果である。原料の粒径を10mm以下とした場合、
還元帯内で溶融している。鉱石粒径が小さい方が、還元
率を確保することが容易であり、炉上部の温度を下げ
る、もしくは回転速度を速くすることができる。したが
って、原料の粒度は小さい方が望ましい。
Examples Nos. 5 to 7 are the experimental results when the particle size of the raw material was changed. If the particle size of the raw material is 10 mm or less,
Melting in the reduction zone. The smaller the ore particle size, the easier it is to secure the reduction rate, and the lower the temperature of the furnace or the higher the rotation speed. Therefore, it is desirable that the particle size of the raw material is small.

【0035】実施番号8〜10は、炉床に積み付ける原
料の層厚を変えた場合の実験結果である。層厚を薄くし
た場合が、還元率を確保することが容易であり、炉上部
の温度を下げる、もしくは回転速度を速くすることがで
きる。
Examples 8 to 10 are the results of experiments when the layer thickness of the raw material to be stacked on the hearth was changed. When the layer thickness is reduced, it is easy to secure the reduction rate, and the temperature of the upper part of the furnace can be reduced or the rotation speed can be increased.

【0036】実施番号11,12は原料の塩基度が0.
4以下もしくは1.3以上になっている。すなわち、こ
の発明外の処理に係るものである。実施番号1〜6同
様、回転炉床炉のうち還元操作を行う部分を通過する時
間の1/2を経た時点で原料混合粉をサンプリングし
た。実施番号11,12では粉石灰石はほとんど溶融し
たスラグに拡散していて見当たらなかった。一方、実施
番号1〜10と異なり、還元帯出側でサンプリングされ
た粉鉄鉱石は再固化した状態になっていた。また、最終
的に回収されて製品は、脈石、灰分がうまく分離されて
おらず、還元率も実施番号1〜10に比べ低くなってい
た。回転炉床炉内での溶融帯部分の温度、保持時間は実
施番号1〜4と同じ条件にしている。この条件では再固
化するような融点の高い脈石分を含んだ還元鉄を溶融さ
せることはできず、また、還元率も低いため高温部に保
持しても還元反応が起り、外部から供給された熱を吸熱
するため混合粉の温度が上昇しにくいと考えられる。
Run Nos. 11 and 12 have the basicity of the raw material of 0.1.
4 or less or 1.3 or more. That is, it relates to processing outside the present invention. As in the execution examples 1 to 6, the raw material mixed powder was sampled at a point in time when a half of the time required to pass through the portion of the rotary hearth furnace in which the reduction operation was performed. In Run Nos. 11 and 12, the powdered limestone was almost not diffused into the molten slag. On the other hand, unlike the execution numbers 1 to 10, the fine iron ore sampled on the reduction zone side was in a re-solidified state. Further, in the finally recovered product, the gangue and ash were not separated well, and the reduction rate was lower than that of Examples 1 to 10. The temperature and the holding time of the melting zone in the rotary hearth furnace were set to the same conditions as those in Examples 1 to 4. Under these conditions, reduced iron containing high-melting gangue that would resolidify cannot be melted, and since the reduction rate is low, a reduction reaction occurs even if it is held in a high-temperature part, and it is supplied from outside. It is considered that the temperature of the mixed powder hardly rises due to the absorption of the heat.

【0037】実施番号13は、回転炉床炉内の還元帯に
おいて原料の還元率が0.4〜0.8となっている時間
が全還元時間の3分の1以下となっている。回転炉床炉
のうち還元操作を行う部分を通過する時間の1/2を経
た時点で原料をサンプリングした結果、粉石灰石はほと
んど最初に添加した時のままであることが分かった。ま
た、還元帯の出側において粉鉱石は実施番号11,12
同様に再固化した状態でサンプリングされた。この方法
でも、回転炉床炉の還元帯内に保持する時間を20分と
した場合、最終的に回収された製品では脈石、灰分がう
まく分離されていなかった。
In the execution number 13, the time during which the reduction ratio of the raw material is 0.4 to 0.8 in the reduction zone in the rotary hearth furnace is less than one third of the total reduction time. As a result of sampling the raw material at a point in time when half of the time passed through the portion of the rotary hearth furnace where the reducing operation was performed, it was found that the powdered limestone was almost as it was when it was first added. On the exit side of the reduction zone, the fine ore was supplied with execution numbers 11 and 12.
Similarly, it was sampled in a re-solidified state. Also in this method, when the time of keeping the material in the reduction zone of the rotary hearth furnace was set to 20 minutes, gangue and ash were not well separated in the finally recovered product.

【0038】実施番号14は移動する炉床内で還元操作
を行う部分を通過する時間の50%は、還元率が0.4
〜0.8となっている。しかし、そのほとんどの部分で
は、原料内部の温度が1200℃以下となっている。す
なわち、この発明外の処理に係るものである。この方法
では、還元途中の鉱石は温度が低く、スラグ等が部分的
に溶融することがない。脈石、灰分を分離した状態で還
元鉄を回収することはできなかった。
[0038] In the working number 14, 50% of the time of passing through the portion where the reducing operation is performed in the moving hearth is reduced to 0.4%.
It is 0.8. However, in most parts, the temperature inside the raw material is 1200 ° C. or less. That is, it relates to processing outside the present invention. In this method, the ore in the middle of reduction has a low temperature, and slag and the like are not partially melted. Reduced iron could not be recovered with gangue and ash separated.

【0039】実施番号15は、還元帯内部において還元
率が0.4〜0.8となり、かつ原料の温度が1200
℃以上になっている時間が全還元時間のうち8%となっ
ている。すなわち、この発明外の処理に係るものであ
る。還元帯内での滞留時間を25min と長くすることに
よって、溶融帯での温度、保持時間を実施番号1〜6と
同じ条件にしても、炉内で還元鉄は溶融し、脈石、灰分
を分離した状態で還元鉄を回収することができた。しか
しながら、同じ炉床面積で操業した場合、還元に要する
時間が長くなることは、生産性が低下したことになる。
Run No. 15 shows that the reduction rate is 0.4 to 0.8 inside the reduction zone and the temperature of the raw material is 1200
The time during which the temperature was higher than 0 ° C. was 8% of the total reduction time. That is, it relates to processing outside the present invention. By increasing the residence time in the reduction zone to 25 min, the reduced iron is melted in the furnace and the gangue and ash are removed even if the temperature and the holding time in the melting zone are the same as those in the execution numbers 1 to 6. Reduced iron could be recovered in a separated state. However, when the operation is performed with the same hearth floor area, the longer time required for the reduction means that the productivity has decreased.

【0040】実施番号16、17はこの発明の範囲内の
結果を示したものである。原料中の還元剤の量は、配合
された鉱石を還元するには若干不足していて還元処理を
終了した段階での還元率は0.8程度となっており還元
率は低い状態ではあるが、何れの条件においても回収さ
れた還元鉄はスラグとメタルが分離された状態であっ
た。
The working numbers 16 and 17 show the results within the scope of the present invention. The amount of the reducing agent in the raw material is slightly insufficient to reduce the blended ore, and the reduction rate at the stage when the reduction process is completed is about 0.8, and although the reduction rate is low, In any of the conditions, the recovered reduced iron was in a state where slag and metal were separated.

【0041】実施番号18は比較例の結果を示したもの
である。この例では、還元剤が十分に配合されており、
原料の粒径も小さいために還元が著しく進行したため還
元帯内での還元率が0.4〜0.8であり、かつ、原料
の内部温度が1200℃以上となる時間の割合が11%
であるために還元帯の出側においても溶融帯出側におい
ても還元鉄が溶融しなかった。
Example No. 18 shows the result of the comparative example. In this example, the reducing agent is sufficiently compounded,
Since the particle diameter of the raw material was small, the reduction proceeded remarkably, so that the reduction rate in the reduction zone was 0.4 to 0.8, and the ratio of the time during which the internal temperature of the raw material was 1200 ° C. or more was 11%.
Therefore, the reduced iron did not melt on the exit side of the reduction zone or on the exit side of the molten zone.

【0042】実施番号19は粉状還元剤を供給するため
の装置6を溶融帯の入側から出側に至るまでの中間位置
に配置して還元剤(炭材)を、上方から還元後の原料に
対しその重量の3%の割合で供給したこの発明の範囲内
のものである。この例では、スラグ中に含まれるFeO 量
がより減少しメタルとして回収される割合が増加するこ
とが確認できた。
In the embodiment No. 19, the device 6 for supplying the powdery reducing agent is arranged at an intermediate position from the entrance side to the exit side of the melting zone to reduce the reducing agent (carbon material) from above. It is within the scope of the present invention that is fed at a rate of 3% by weight of the raw material. In this example, it was confirmed that the amount of FeO contained in the slag was further reduced and the ratio of metal recovered was increased.

【0043】実施番号20は粉状還元剤を供給するため
の装置6を溶融帯の入側から出側に至るまでの中間位置
に配置して還元剤(炭材)を、その上方から還元後の原
料に対しその重量の10%の条件下で供給したこの発明
の範囲内のものである。この例では、原料中に含まれる
固体還元剤の量が少ないため、溶融帯入側での鉄の還元
率が90%程度となっているものの、原料の上方から還
元剤を供給することでメタル、スラグに分離した還元鉄
が得られた。また、メタルとして回収された鉄の割合は
上記の実施番号19と同様に高いものであった。
In the embodiment No. 20, the device 6 for supplying the powdery reducing agent is arranged at an intermediate position from the entrance side to the exit side of the melting zone to reduce the reducing agent (carbon material) from above. The raw material is supplied under the condition of 10% of its weight and falls within the scope of the present invention. In this example, although the amount of the solid reducing agent contained in the raw material is small, the reduction ratio of iron on the melting zone side is about 90%, but the metal is supplied by supplying the reducing agent from above the raw material. Thus, reduced iron separated into slag was obtained. Further, the ratio of iron recovered as metal was as high as in the above-mentioned Example No. 19.

【0044】実施例−2 表6に示す組成になるステンレスダストA、Bを原料と
して、上記実施例−1と同様の設備を使用して表7の条
件もとに操業を行った。その結果を表8に示す。
Example 2 Using stainless steel dusts A and B having the compositions shown in Table 6 as raw materials, operation was carried out under the conditions shown in Table 7 using the same equipment as in Example 1 above. Table 8 shows the results.

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】表8の実施番号21、22はこの発明で規
定する条件の範囲内で操業した結果を示したものであっ
て、この例においては還元鉄の溶融が問題なく達成で
き、かつ製品還元鉄の鉄回収率が良好であるとともに原
料中のクロム、ニッケル等金属成分の回収も可能であっ
た。
The run numbers 21 and 22 in Table 8 show the results of operation under the conditions specified in the present invention. In this example, the melting of reduced iron can be achieved without any problem, and The iron recovery rate of iron was good, and metal components such as chromium and nickel in the raw material could be recovered.

【0049】なお、この実施例−2において使用したス
テンレスダストA、Bは鉄酸化物の他にクロム、ニッケ
ル等の金属酸化物を含むものであり、また、脈石成分と
してSiO2やCaO を含むため粉状副原料を添加せずとも混
合粉の塩基度が0. 4〜1.3の範囲に入るものであっ
て、とくにステンレスダストAについては還元処理に必
要な炭素を有しているため固体還元剤を添加せずとも還
元処理を行うことができ、また、この操業で得られた製
品還元鉄はクロムやニッケルを含むためステンレスの原
料としてとくに好適に使用できるものであった。
The stainless steel dusts A and B used in Example 2 contain metal oxides such as chromium and nickel in addition to iron oxides, and SiO 2 and CaO as gangue components. Therefore, the basicity of the mixed powder falls within the range of 0.4 to 1.3 without adding any powdery auxiliary material, and particularly, stainless dust A has carbon necessary for reduction treatment. Therefore, the reduction treatment can be performed without adding a solid reducing agent, and the reduced iron product obtained in this operation contains chromium and nickel, and thus can be used particularly suitably as a raw material for stainless steel.

【0050】[0050]

【発明の効果】以上の実施例などから、塩基度が0.4
〜1.3である原料を炉床上で、加熱開始から溶融帯に
入るまでの間の1/3以上の時間について、1200〜
1350℃の温度で還元率40〜80%に保持した上で
溶融させることにより原料の溶融が促進され、スラグ、
メタルの分離が良好となる。そのため、鉄鉱石や製鉄ダ
スト等に含まれる脈石や不純物、あるいは固体還元剤に
含まれる灰分等の不純物の混入のない品質の良好な還元
金属を効率よく製造できる。
According to the above examples, the basicity is 0.4
-1.3 on the hearth for more than one-third of the time from the start of heating to entering the melting zone,
By melting at a temperature of 1350 ° C. while maintaining a reduction ratio of 40 to 80%, melting of the raw material is promoted, and slag,
Good metal separation. Therefore, it is possible to efficiently produce a good quality reduced metal free of impurities such as gangue and impurities contained in iron ore and iron making dust, and ash contained in the solid reducing agent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の回転型炉床炉の構成を示した図であ
る。
FIG. 1 is a diagram showing a configuration of a conventional rotary hearth furnace.

【図2】 図1のA−A断面を示した図である。FIG. 2 is a diagram showing a cross section taken along line AA of FIG. 1;

【図3】 鉄鉱石の還元状況を示した図である。FIG. 3 is a diagram showing a reduction situation of iron ore.

【図4】 還元実験装置を模式的に示した図である。FIG. 4 is a diagram schematically showing a reduction experiment apparatus.

【図5】 経過時間と還元率の関係を示したグラフであ
る。
FIG. 5 is a graph showing a relationship between an elapsed time and a reduction rate.

【図6】 本発明を実施するのに用いて好適な回転炉床
炉の構成を示した図である。
FIG. 6 is a diagram showing a configuration of a rotary hearth furnace suitable for carrying out the present invention.

【図7】 図6のA−A断面を示した図である。FIG. 7 is a diagram showing a cross section taken along the line AA of FIG. 6;

【図8】 図6の要部の構成を示した図である。FIG. 8 is a diagram showing a configuration of a main part of FIG. 6;

【図9】 原料の積み付け状況を示した図である。FIG. 9 is a view showing a loading state of raw materials.

【符号の説明】[Explanation of symbols]

1 移動炉床 2 装入装置 3 炉体 4 バーナー 5 排出装置 6 粉状還元剤供給装置 7 粉固体還元剤の単体層 8 粉鉄鉱石と粉石灰石と粉固体還元剤からなる混合物 9 破砕装置 10 排出装置 S サンプリング及び測温口 t 鉄鉱石と固体還元剤からなる層 DESCRIPTION OF SYMBOLS 1 Moving hearth 2 Charging device 3 Furnace body 4 Burner 5 Discharge device 6 Powdery reducing agent supply device 7 Single layer of powdered solid reducing agent 8 Mixture composed of iron ore, powdered limestone and powdered solid reducing agent 9 Crusher 10 Discharge device S Sampling and measuring port t Layer composed of iron ore and solid reducing agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 幹治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mikiharu Takeda 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄分を含む粉状金属含有物を還元して還
元金属を製造する方法において、 塩基度が0.4〜1.3である粉状金属含有物若しくは
粉状金属含有物と粉状還元剤および/または粉状副原料
を混合して塩基度を0.4〜1.3とした混合物を原料
とし、これを炉床上で還元処理にかかる全時間の1/3
以上の時間の中で該原料の内部温度が1200℃以上、
1350℃以下、鉄の還元率が40〜80%となるよう
に保持し、ついで還元後の原料を溶融させることを特徴
とする還元金属の製造方法。
1. A method for producing a reduced metal by reducing a powdery metal-containing material containing iron, comprising: a powdery metal-containing material having a basicity of 0.4 to 1.3; A mixture having a basicity of 0.4 to 1.3 by mixing a powdery reducing agent and / or a powdery auxiliary raw material is used as a raw material, and this is reduced to 1/3 of the total time required for the reduction treatment on the hearth.
In the above time, the internal temperature of the raw material is 1200 ° C. or more,
A method for producing a reduced metal, comprising: maintaining the iron reduction ratio at 1350 ° C. or lower to be 40 to 80%, and then melting the reduced material.
【請求項2】 炉床上に粉状還元剤の層を形成しこの上
に原料を積層する、請求項1記載の還元金属の製造方
法。
2. The method for producing reduced metal according to claim 1, wherein a layer of the powdery reducing agent is formed on the hearth, and the raw material is laminated thereon.
【請求項3】 還元後の原料、その溶融物もしくはそれ
らの混在物の上に粉状還元剤を供給する、請求項1また
は2記載の還元金属の製造方法。
3. The method for producing a reduced metal according to claim 1, wherein a powdery reducing agent is supplied onto the reduced raw material, its melt, or a mixture thereof.
JP14757999A 1998-05-27 1999-05-27 Method for producing reduced metal Expired - Fee Related JP3817969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14757999A JP3817969B2 (en) 1998-05-27 1999-05-27 Method for producing reduced metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-145618 1998-05-27
JP14561898 1998-05-27
JP14757999A JP3817969B2 (en) 1998-05-27 1999-05-27 Method for producing reduced metal

Publications (2)

Publication Number Publication Date
JP2000045008A true JP2000045008A (en) 2000-02-15
JP3817969B2 JP3817969B2 (en) 2006-09-06

Family

ID=26476706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14757999A Expired - Fee Related JP3817969B2 (en) 1998-05-27 1999-05-27 Method for producing reduced metal

Country Status (1)

Country Link
JP (1) JP3817969B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602320B2 (en) 2000-04-10 2003-08-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing reduced iron
US6630010B2 (en) 2000-03-30 2003-10-07 Midrex International B.V. Zurich Branch Method of producing metallic iron
JP2007246958A (en) * 2006-03-14 2007-09-27 Jfe Steel Kk Method for producing reduced metal
US7384450B2 (en) 2001-11-12 2008-06-10 Kobe Steel, Ltd. Method for producing metallic iron
JP2009035820A (en) * 2007-07-10 2009-02-19 Kobe Steel Ltd Carbon composite iron oxide agglomerate, method for producing the agglomerate, and method for producing reduced iron or metal iron
JP2009270198A (en) * 2008-04-10 2009-11-19 Kobe Steel Ltd Titanium oxide-containing agglomerate for producing granular metallic iron
US7628839B2 (en) 2004-12-07 2009-12-08 Iwao Iwasaki Method and system for producing metallic iron nuggets
WO2012066899A1 (en) * 2010-11-15 2012-05-24 株式会社神戸製鋼所 Production method for reduced iron

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630010B2 (en) 2000-03-30 2003-10-07 Midrex International B.V. Zurich Branch Method of producing metallic iron
US6602320B2 (en) 2000-04-10 2003-08-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing reduced iron
US7384450B2 (en) 2001-11-12 2008-06-10 Kobe Steel, Ltd. Method for producing metallic iron
US7628839B2 (en) 2004-12-07 2009-12-08 Iwao Iwasaki Method and system for producing metallic iron nuggets
US7632335B2 (en) 2004-12-07 2009-12-15 Nu-Iron Technology, Llc Method and system for producing metallic iron nuggets
US7641712B2 (en) 2004-12-07 2010-01-05 Nu-Iron Technology, Llc Method and system for producing metallic iron nuggets
US7695544B2 (en) 2004-12-07 2010-04-13 Nu-Iron Technology, Llc Method and system for producing metallic iron nuggets
US8158054B2 (en) 2004-12-07 2012-04-17 Nu-Iron Technology, Llc Method and system for producing metallic iron nuggets
JP2007246958A (en) * 2006-03-14 2007-09-27 Jfe Steel Kk Method for producing reduced metal
JP2009035820A (en) * 2007-07-10 2009-02-19 Kobe Steel Ltd Carbon composite iron oxide agglomerate, method for producing the agglomerate, and method for producing reduced iron or metal iron
JP2009270198A (en) * 2008-04-10 2009-11-19 Kobe Steel Ltd Titanium oxide-containing agglomerate for producing granular metallic iron
WO2012066899A1 (en) * 2010-11-15 2012-05-24 株式会社神戸製鋼所 Production method for reduced iron
JP2012107271A (en) * 2010-11-15 2012-06-07 Kobe Steel Ltd Production method for reduced iron

Also Published As

Publication number Publication date
JP3817969B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP4153281B2 (en) Method for producing titanium oxide-containing slag
WO1999016913A1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
US4072507A (en) Production of blister copper in a rotary furnace from calcined copper-iron concentrates
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
JP3513832B2 (en) Operating method of movable hearth furnace and movable hearth furnace
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
US6136059A (en) Process for reducing the electric steelworks dusts and facility for implementing it
WO2009114155A2 (en) Feed material compostion and handling in a channel induction furnace
JP3817969B2 (en) Method for producing reduced metal
WO2009145348A1 (en) Method for manufacturing pig iron
US7785389B2 (en) Feed material composition and handling in a channel induction furnace
WO2009114159A2 (en) Feed material compostion and handling in a channel induction furnace
JPS60169542A (en) Manufacture of ferrochrome
WO2009114157A2 (en) Feed material compostion and handling in a channel induction furnace
JP2001181719A (en) Method of manufacturing reduced metal from metal- containing material
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
JP2003105452A (en) Method for producing reduced metal
JP3451901B2 (en) Operating method of mobile hearth furnace
JPS61194125A (en) Simultaneous treatment of sludge and steel making slag
US2879158A (en) Method for the separation of impurities from cobalt-containing materials
JPH07252545A (en) Method for melting metallic scrap and apparatus therefor
JPH09241718A (en) Method for recovering zinc oxide from zinc oxide-containing dust
WO2009145672A1 (en) Method for making ferroalloys and a duplex furnace for carrying out said method
JP2009062557A (en) Method for operating mobile hearth furnace
MXPA97008321A (en) Process to reduce powders in electric steel structures and installation for implement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees