JP2000036619A - Iii nitride compound semiconductor light emitting element - Google Patents

Iii nitride compound semiconductor light emitting element

Info

Publication number
JP2000036619A
JP2000036619A JP5635799A JP5635799A JP2000036619A JP 2000036619 A JP2000036619 A JP 2000036619A JP 5635799 A JP5635799 A JP 5635799A JP 5635799 A JP5635799 A JP 5635799A JP 2000036619 A JP2000036619 A JP 2000036619A
Authority
JP
Japan
Prior art keywords
layer
positive electrode
light emitting
thickness
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5635799A
Other languages
Japanese (ja)
Other versions
JP3736181B2 (en
Inventor
Toshiya Kamimura
俊也 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP5635799A priority Critical patent/JP3736181B2/en
Priority to DE19921987A priority patent/DE19921987B4/en
Priority to KR1019990016927A priority patent/KR100341382B1/en
Priority to TW88107776A priority patent/TW419836B/en
Publication of JP2000036619A publication Critical patent/JP2000036619A/en
Priority to US09/559,273 priority patent/US6936859B1/en
Priority to US10/864,495 priority patent/US7109529B2/en
Application granted granted Critical
Publication of JP3736181B2 publication Critical patent/JP3736181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high luminous intensity and a low drive voltage by forming a positive electrode of an alloy containing at least one type or more of silver, rhodium, ruthenium, platinum, and palladium. SOLUTION: A buffer layer 102, a high carrier concentration n+ type layer 103 and a multiple quantum well structure light emitting layer 104 are formed on a sapphire substrate 101, P type layers 105, 106 and a first thin film metal layer 111 of metal vapor deposition are formed thereon, and a negative electrode 140 is formed on the layer 103. In this case, the layer 111 is constituted of a metal layer connected to the layer 106. A positive electrode 120 is formed of a metal layer made of an alloy containing silver, rhodium, ruthenium, platinum and palladium or one or more types of them. Vanadium layer 141, 143, an aluminum layer 142, a nickel layer 144 and a gold layer 145 are sequentially laminated from on a partial exposure part of the layer 103 on the electrode 140 of a multilayer structure. When these metals are formed of the metal layer containing one or more types, its light emitting intensity can be improved by about 10 to 50%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に III族窒
化物系化合物半導体から成る層が積層されたフリップチ
ップ型の発光素子に関し、特に高光度で、駆動電圧の低
いフリップチップ型の発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip type light emitting device in which a layer made of a group III nitride compound semiconductor is laminated on a substrate, and more particularly to a flip-chip type light emitting device having a high luminous intensity and a low driving voltage. Related to the element.

【0002】[0002]

【従来の技術】図7に、フリップチップ型の発光素子4
00の断面図を示す。101はサファイヤ基板、102
はAlN又はGaNより成るバッファ層、103はn型
のGaN層、104は発光層、105はp型のAlGa
N層、106はp型のGaN層、120は正電極、13
0は保護膜、140は多層構造の負電極である。また、
層106に接続されている厚膜の正電極120は、従来
例えば、ニッケル(Ni)またはコバルト(Co)より
成る膜厚3000Åの金属層により形成されている。
2. Description of the Related Art FIG. 7 shows a light emitting device 4 of a flip chip type.
00 shows a sectional view. 101 is a sapphire substrate, 102
Is a buffer layer made of AlN or GaN, 103 is an n-type GaN layer, 104 is a light emitting layer, and 105 is a p-type AlGa
N layer, 106 is a p-type GaN layer, 120 is a positive electrode, 13
0 is a protective film, and 140 is a multilayer structure negative electrode. Also,
The thick-film positive electrode 120 connected to the layer 106 is conventionally formed of a metal layer of, for example, nickel (Ni) or cobalt (Co) and having a thickness of 3000 °.

【0003】[0003]

【発明が解決しようとする課題】発光層104より放出
された光をサファイヤ基板101の側に十分に反射させ
るために、通常フリップチップ型の正電極120には厚
膜の金属電極を用いる。しかし、従来技術においては、
この厚膜の正電極120にニッケル(Ni)やコバルト
(Co)などの金属が用いられていたため、波長が38
0nm〜550nm(青紫、青、緑)の可視光の反射量
が十分ではなく、発光素子として十分な発光強度が確保
できていなかった。
In order to sufficiently reflect the light emitted from the light emitting layer 104 toward the sapphire substrate 101, a thick-film metal electrode is usually used as the flip-chip type positive electrode 120. However, in the prior art,
Since a metal such as nickel (Ni) or cobalt (Co) is used for the thick film positive electrode 120, the wavelength is 38
The reflection amount of visible light of 0 nm to 550 nm (blue violet, blue, green) was not sufficient, and a sufficient light emission intensity as a light emitting element could not be secured.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的は、高光度、低駆動電圧の
発光素子を提供することである。また、他の目的は、高
反射率かつ高耐久性の電極を形成することにより、発光
素子の電極部分の構成を簡略化し、ワイヤボンディング
の不要な発光素子を提供することである。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a light emitting device having a high luminous intensity and a low driving voltage. Another object is to provide a light emitting element which does not require wire bonding by simplifying the configuration of the electrode portion of the light emitting element by forming an electrode having high reflectivity and high durability.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めには、以下の手段が有効である。即ち、第1の手段
は、基板上に III族窒化物系化合物半導体から成る層が
積層されたフリップチップ型の III族窒化物系化合物半
導体発光素子において、p型半導体層に接続され、光を
基板側へ反射する正電極を銀(Ag)、ロジウム(R
h)、ルテニウム(Ru)、白金(Pt)、パラジウム
(Pd)、または、これらの金属を少なくとも1種類以
上含んだ合金より形成することである。ただし、これら
の金属または合金より形成される正電極の膜厚は、10
0Å以上、5μm以下であることが望ましい。
In order to solve the above-mentioned problems, the following means are effective. That is, the first means is a flip-chip type group III nitride compound semiconductor light-emitting device in which a layer made of a group III nitride compound semiconductor is stacked on a substrate, and is connected to a p-type semiconductor layer to emit light. Silver (Ag), rhodium (R)
h), ruthenium (Ru), platinum (Pt), palladium (Pd), or an alloy containing at least one of these metals. However, the thickness of the positive electrode formed of these metals or alloys is 10
Desirably, it is not less than 0 ° and not more than 5 μm.

【0006】また、第2の手段は、上記の第1の手段に
おいて、正電極に複数の種類の金属より形成された多層
構造を設けることである。ただし、この多層より成る正
電極の内の少なくとも下位層(p型半導体層に比較的近
い層)が、銀(Ag)、ロジウム(Rh)、ルテニウム
(Ru)、白金(Pt)、パラジウム(Pd)、また
は、これらの金属を少なくとも1種類以上含んだ合金よ
り形成されていれば、本発明の作用により本発明の効果
を得ることができる。より望ましくは、最下位層を含ん
で正電極の下位1000Å以内に位置する正電極の各金
属層の内の殆ど全ての層をそれぞれ上記の金属または合
金より形成することが好ましい。
A second means is that, in the first means, the positive electrode is provided with a multilayer structure formed of a plurality of kinds of metals. However, at least the lower layer (layer relatively close to the p-type semiconductor layer) of the multilayer positive electrode is composed of silver (Ag), rhodium (Rh), ruthenium (Ru), platinum (Pt), and palladium (Pd). ) Or an alloy containing at least one of these metals, the effect of the present invention can be obtained by the operation of the present invention. More preferably, it is preferable that almost all of the metal layers of the positive electrode located within the lower 1000 ° of the positive electrode including the lowermost layer are formed of the above metals or alloys.

【0007】また、第3の手段は、上記の第1の手段ま
たは第2の手段において、p型半導体側層と正電極との
間に、コバルト(Co)、ニッケル(Ni)、または、
これらの金属を少なくとも1種類以上含んだ合金より成
る第1薄膜金属層を備えることである。
[0007] A third means is the method according to the first or second means, wherein cobalt (Co), nickel (Ni), or nickel (Ni) is provided between the p-type semiconductor side layer and the positive electrode.
A first thin-film metal layer made of an alloy containing at least one of these metals is provided.

【0008】また、第4の手段は、上記の第3の手段に
おいて、第1薄膜金属層の膜厚を2Å以上、200Å以
下とすることである。第1薄膜金属層の膜厚は、より望
ましくは、5Å以上、50Å以下がよい。
A fourth means is that, in the above-mentioned third means, the thickness of the first thin-film metal layer is 2 ° or more and 200 ° or less. The thickness of the first thin metal layer is more desirably 5 ° or more and 50 ° or less.

【0009】また、第5の手段は、上記の第3の手段ま
たは第4の手段において、第1薄膜金属層と正電極との
間に、金(Au)または金(Au)を含んだ合金より成
る第2薄膜金属層を備えることである。
A fifth means is the third means or the fourth means, wherein gold (Au) or an alloy containing gold (Au) is provided between the first thin film metal layer and the positive electrode. A second thin-film metal layer comprising:

【0010】更に、第6の手段は、上記の第5の手段に
おいて、第2薄膜金属層の膜厚を10Å以上、500Å
以下とすることである。第2薄膜金属層の膜厚は、より
望ましくは、30Å以上、300Å以下がよい。
A sixth means is the fifth means, wherein the thickness of the second thin metal layer is not less than 10 ° and not more than 500 °.
It is as follows. The thickness of the second thin metal layer is more desirably 30 ° or more and 300 ° or less.

【0011】また、第7の手段は、上記の第1乃至第6
のいずれか1つの手段において、正電極の膜厚、又は、
多層構造の正電極の基板に最も近い最下位層を構成する
正電極第1層の膜厚を0.01〜5μmとすることである。正
電極第1層の膜厚は、望ましくは0.02〜2μmであり、よ
り望ましくは0.05〜1μmである。
Further, the seventh means includes the first to sixth means.
In any one of the means, the thickness of the positive electrode, or
The thickness of the first positive electrode layer constituting the lowest layer closest to the substrate of the positive electrode having the multilayer structure is set to 0.01 to 5 μm. The thickness of the first positive electrode layer is preferably 0.02 to 2 μm, and more preferably 0.05 to 1 μm.

【0012】また、第8の手段は、上記の第1乃至第7
のいずれか1つの手段において、正電極、又は、正電極
第1層の上に金(Au)から成る正電極第2層を形成するこ
とである。
[0012] The eighth means may include the first to seventh aspects.
In any one of the methods, a positive electrode or a positive electrode second layer made of gold (Au) is formed on the positive electrode first layer.

【0013】また、第9の手段は、上記の第8の手段に
おいて、正電極第2層の膜厚を0.1〜5μmとすることで
ある。正電極第2層の膜厚は、望ましくは0.2〜3μmで
あり、より望ましくは0.5〜2μmである。
A ninth means is that, in the above-mentioned eighth means, the thickness of the second layer of the positive electrode is 0.1 to 5 μm. The thickness of the positive electrode second layer is desirably 0.2 to 3 μm, and more desirably 0.5 to 2 μm.

【0014】また、第10の手段は、上記の第1乃至第
9のいずれか1つの手段において、正電極、正電極第1
層、又は、正電極第2層の上にチタン(Ti)、クロム(C
r)、または、これらの金属を少なくとも1種類以上含ん
だ合金から成る正電極第3層を形成することである。
The tenth means may be any one of the first to ninth means according to the first to ninth means.
Titanium (Ti), chromium (C
r) or forming a third positive electrode layer made of an alloy containing at least one of these metals.

【0015】また、第11の手段は、上記の第10の手
段において、正電極第3層の膜厚を5〜1000Åとするこ
とである。正電極第3層の膜厚は、望ましくは10〜500
Åであり、より望ましくは15〜100Åである。
An eleventh means is that, in the tenth means, the thickness of the positive electrode third layer is 5 to 1000 °. The thickness of the positive electrode third layer is desirably 10 to 500.
、, and more preferably 15 to 100Å.

【0016】また、第12の手段は、上記の第1の手段
において、正電極をロジウム(Rh)、ルテニウム(R
u)又はこれらの金属を少なくとも1種類以上含んだ合
金より形成し、かつ、この正電極をp型半導体層に直接
接合することである。
In a twelfth aspect, according to the first aspect, the positive electrode is formed of rhodium (Rh) or ruthenium (R).
u) or an alloy containing at least one of these metals, and directly joining this positive electrode to the p-type semiconductor layer.

【0017】また、第13の手段は、上記の第2、第1
0又は第11の手段において、正電極の多層構造をロジ
ウム(Rh)、ルテニウム(Ru)又はこれらの金属を
少なくとも1種類以上含んだ合金より形成された正電極
第1層と、正電極第1層の上に直接積層される、金(Au)
より形成された正電極第2層と、正電極第2層の上に直
接積層される、チタン(Ti)、クロム(Cr)又はこれらの金
属を少なくとも1種類以上含んだ合金より形成された正
電極第3層の計3層より成る3層構造とし、正電極第1
層をp型半導体層に直接接合することである。
Further, the thirteenth means includes the above-mentioned second and first means.
In the zeroth or eleventh means, the multilayer structure of the positive electrode includes a first positive electrode layer formed of rhodium (Rh), ruthenium (Ru), or an alloy containing at least one of these metals; Gold (Au) laminated directly on the layer
And a positive electrode formed of titanium (Ti), chromium (Cr), or an alloy containing at least one of these metals, which is directly laminated on the positive electrode second layer. It has a three-layer structure consisting of a total of three layers of the third electrode, and the first positive electrode
Joining the layer directly to the p-type semiconductor layer.

【0018】また、第14の手段は、上記の第10又は
第13の手段において、正電極第1層の膜厚を0.02〜2
μmとし、正電極第2層の膜厚を0.2〜3μmとし、かつ、
正電極第3層の膜厚を10〜500Åとすることである。
In a fourteenth aspect, in the tenth or thirteenth aspect, the thickness of the first layer of the positive electrode is set to 0.02 to 2.0.
μm, the thickness of the positive electrode second layer is 0.2 to 3 μm, and
The thickness of the third positive electrode layer is set to 10 to 500 °.

【0019】更に、第15の手段は、上記の第10、第
11、第13又は第14の手段において、正電極第3層
の上に、酸化珪素(SiO2)、窒化珪素(SixNy)、チタ
ン化合物(Tixy等)、或いは、ポリイミドなどから
成る絶縁性保護膜を直接積層することである。以上の手
段により、前記の課題を解決することができる。
Further, a fifteenth means according to the tenth, eleventh, thirteenth, or fourteenth means, wherein silicon oxide (SiO 2 ), silicon nitride (Si x N y), the titanium compound (Ti x N y, etc.), or is to laminating the insulating protective film made of polyimide directly. With the above means, the above-mentioned problem can be solved.

【0020】[0020]

【作用および発明の効果】銀(Ag)、ロジウム(R
h)、ルテニウム(Ru)、白金(Pt)、パラジウム
(Pd)は、波長が380nm〜550nm(青紫、
青、緑)の可視光に対する光の反射率Rが非常に大きい
金属(0.6<R<1.0)であるため、これらの金
属、または、これらの金属を少なくとも1種類以上含ん
だ合金を正電極、又は、正電極第1層に用いることによ
り、これらの可視光の正電極による反射量を十分大きく
くする事ができ、よって、発光素子として十分な発光強
度を確保することができるようになる。
Function and Effect of the Invention Silver (Ag), rhodium (R
h), ruthenium (Ru), platinum (Pt), and palladium (Pd) have wavelengths of 380 nm to 550 nm (blue purple,
Blue, green) because the metal has a very high light reflectance R with respect to visible light (0.6 <R <1.0), and therefore, these metals or alloys containing at least one or more of these metals Is used for the positive electrode or the positive electrode first layer, the amount of reflection of these visible lights by the positive electrode can be made sufficiently large, and therefore, a sufficient light emission intensity as a light emitting element can be secured. Become like

【0021】これらの正電極、又は、正電極第1層に用
いられる金属元素の特性を纏めた一覧表を図6に示す。
本一覧表については、後で詳しく説明するが、上記の5
種類の金属元素は、これらの多面的な実験結果(図6)
より、上記正電極、又は、正電極第1層に用いる金属と
して最も優れた元素であることが判っている。
FIG. 6 is a table summarizing the characteristics of the metal elements used for the positive electrode or the first layer of the positive electrode.
This list will be described in detail later,
The kinds of metal elements are the results of these multifaceted experiments (Fig. 6)
Accordingly, it has been found that the element is the most excellent element as a metal used for the positive electrode or the first layer of the positive electrode.

【0022】例えば、上記の金属または合金は、仕事関
数が大きい等の理由により、p型半導体層との接触抵抗
が小さいので、これらの金属を用いれば、同時に低駆動
電圧の発光素子を実現することができる。また、上記の
金属は、貴金属若しくは白金族元素であるため、これら
の金属を用いれば、例えば水分等に対する経時的な耐蝕
性が良好となり、信頼性の高い電極を形成することがで
きるという効果も同時に得られる。
For example, the above-mentioned metals or alloys have a low contact resistance with the p-type semiconductor layer because of a large work function or the like. Therefore, if these metals are used, a light emitting element with a low driving voltage can be realized at the same time. be able to. In addition, since the above-mentioned metals are noble metals or platinum group elements, the use of these metals improves the corrosion resistance over time with respect to moisture and the like, and also has the effect that a highly reliable electrode can be formed. Obtained at the same time.

【0023】また、特に、ロジウム(Rh)は、反射率
の面で若干銀(Ag)には劣るものの、その他の物性で
は、いずれも他の金属よりも優れた特性、若しくは、同
等以上の特性を示すため、総合的に見れば、正電極又は
正電極第1層に用いる金属元素としては、最適の材料で
ある。
In particular, rhodium (Rh) is slightly inferior to silver (Ag) in terms of reflectivity, but in all other physical properties, is superior to other metals, or has properties equal to or higher than those of other metals. Therefore, when viewed comprehensively, it is an optimal material as a metal element used for the positive electrode or the first layer of the positive electrode.

【0024】また、ルテニウム(Ru)は、物性上ロジ
ウム(Rh)と酷似又は類似の性質を持つので、正電
極、又は、正電極第1層に用いる金属元素としては、ロ
ジウム(Rh)と略同様に良い材料である。
Since ruthenium (Ru) has properties very similar to or similar to rhodium (Rh) in physical properties, the metal element used for the positive electrode or the first layer of the positive electrode is substantially the same as rhodium (Rh). A good material as well.

【0025】更に、第1薄膜金属層を設けることによ
り、正電極のp型半導体層に対する密着性が向上し、発
光素子の構造をより強固にすることができる。この第1
薄膜金属層の膜厚は、2Å以上、200Å以下が良い。
この膜厚を2Å以下にすると膜厚が薄すぎて、十分な密
着性を得ることができず、この膜厚を200Å以上にす
ると、膜厚正電極を形成する銀(Ag)、ロジウム(R
h)、ルテニウム(Ru)、白金(Pt)、パラジウム
(Pd)またはこれらの合金の作用による高い反射率を
得ることができなくなる。
Further, by providing the first thin-film metal layer, the adhesion of the positive electrode to the p-type semiconductor layer is improved, and the structure of the light emitting element can be further strengthened. This first
The thickness of the thin metal layer is preferably 2 ° or more and 200 ° or less.
If the thickness is less than 2 °, the thickness is too small to obtain sufficient adhesion. If the thickness is more than 200 °, silver (Ag) and rhodium (R
h), ruthenium (Ru), platinum (Pt), palladium (Pd), or a high reflectance due to the action of these alloys cannot be obtained.

【0026】また、第2薄膜金属層を設けることによ
り、正電極のp型半導体層に対する密着性が、より更に
向上し、発光素子の構造をより一層強固にすることがで
きる。この第2薄膜金属層の膜厚は、10Å以上、50
0Å以下が良い。この膜厚を10Å以下にすると、膜厚
が薄すぎて強固な密着性を得ることができず、500Å
以上にすると上記の金属または合金の作用による高い反
射率を得ることができなくなる。
By providing the second thin film metal layer, the adhesion of the positive electrode to the p-type semiconductor layer is further improved, and the structure of the light emitting device can be further strengthened. The thickness of the second thin film metal layer is 10 ° or more, 50
0 ° or less is good. If this film thickness is less than 10 °, the film thickness is too thin to obtain strong adhesion,
In this case, it becomes impossible to obtain a high reflectance by the action of the metal or alloy.

【0027】また、上記の正電極第1層の膜厚を0.01μ
m以上、5μm以下とする理由は、次の通りである。即
ち、この膜厚を0.01μm以下にすると膜厚が薄すぎて、
反射されない透過光を生じ、この膜厚を5μm以上にする
と、電極形成に多大な時間を要することとなり、生産性
の面で好ましくないためである。
Further, the positive electrode first layer has a thickness of 0.01 μm.
The reason for setting the length to not less than m and not more than 5 μm is as follows. That is, if this film thickness is 0.01μm or less, the film thickness is too thin,
If transmitted light that is not reflected is generated, and if the film thickness is 5 μm or more, a large amount of time is required for electrode formation, which is not preferable in terms of productivity.

【0028】また、金(Au)から成る正電極第2層を設け
ることにより、正電極の抵抗値を上げることなく膜厚の
正電極とすることができる。また、正電極上に後工程で
形成されるバンプ材、金ボール、或いは、ワイヤーボン
ディングの形成工程における熱履歴による特性への悪影
響を防ぐためには、正電極の膜厚は少なくとも0.1μm以
上とすることが望ましい。金(Au)は、形成が容易な耐蝕
材であり、また、バンプ材、金ボール、或いは、ワイヤ
ーボンディングとの接合強度が高いため、正電極第2層
として非常に望ましい。
Further, by providing the positive electrode second layer made of gold (Au), a positive electrode having a film thickness can be obtained without increasing the resistance value of the positive electrode. The thickness of the positive electrode should be at least 0.1 μm or more in order to prevent adverse effects on characteristics due to heat history in the step of forming a bump material, a gold ball, or wire bonding on the positive electrode in a later step. It is desirable. Gold (Au) is a corrosion-resistant material that can be easily formed, and has high bonding strength with a bump material, a gold ball, or wire bonding. Therefore, it is highly desirable as the positive electrode second layer.

【0029】この正電極第2層の膜厚は、0.1μm以上5
μm以下であることが望ましい。0.1μm以下にすると膜
厚が薄すぎて効果が薄く、この膜厚を5μm以上にする
と、電極形成に多大な時間を要することとなる。或い
は、また、この膜厚を5μm以上にすると、第3実施例で
後述するバンプ形成または金ボール形成等の加工工程に
おける都合により、負電極の膜厚も不必要に厚くするこ
とになり、好ましくない。
The thickness of the second layer of the positive electrode is 0.1 μm or more.
It is desirable that it is not more than μm. If the thickness is less than 0.1 μm, the film thickness is too thin and the effect is small. If the thickness is more than 5 μm, much time is required for electrode formation. Alternatively, if this film thickness is 5 μm or more, the film thickness of the negative electrode is also unnecessarily thickened due to the convenience of processing steps such as bump formation or gold ball formation described later in the third embodiment, which is preferable. Absent.

【0030】また、チタン(Ti)又はクロム(Cr)から成る
正電極第3層を設けることにより、基板面の反対側に並
ぶ正電極と負電極との間に、例えば酸化珪素膜(SiO2)、
窒化珪素膜(SiNx)、或いはポリイミドから成る絶縁層を
設けた際、絶縁層の正電極からの剥離を抑えることがで
きる。これにより、バンプを形成する際に、バンプ材に
よる短絡を防ぐことができる。この第3薄膜金属層の膜
厚は、5Å以上、1000Å以下が良い。この膜厚を5Å以下
にすると、膜厚が薄すぎて絶縁層との強固な密着性を得
ることができず、1000Å以上にするとバンプ材や金ボー
ル等の接続部材との強固な密着性を得ることができなく
なるため、好ましくない。
Further, by providing a positive electrode third layer made of titanium (Ti) or chromium (Cr), for example, a silicon oxide film (SiO 2 ) is provided between the positive electrode and the negative electrode arranged on the opposite side of the substrate surface. ),
When an insulating layer made of a silicon nitride film (SiN x ) or polyimide is provided, peeling of the insulating layer from the positive electrode can be suppressed. This can prevent a short circuit due to the bump material when forming the bump. The thickness of the third thin metal layer is preferably 5 ° or more and 1000 ° or less. If the thickness is less than 5 mm, the thickness is too small to obtain a strong adhesion with the insulating layer.If the thickness is more than 1000 mm, the strong adhesion with a connecting member such as a bump material or a gold ball is obtained. It is not preferable because it cannot be obtained.

【0031】以上のような構成により形成された多層構
造の正電極は、光の反射率が高く、水分等の浸入に対し
ても耐久性が高いので、保護層を簡略化でき、結果ワイ
ヤボンディングを使用しないで外部電極と接続すること
も可能となる。
The multi-layered positive electrode formed as described above has a high light reflectivity and a high durability against intrusion of moisture and the like, so that the protective layer can be simplified, and as a result, wire bonding can be performed. It is also possible to connect to an external electrode without using.

【0032】[0032]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。なお、本発明は、以下の実施例に限
定されるものではない。 (第1実施例)図1に、 本発明によるフリップチップ
型の半導体発光素子100の模式的断面図を示す。サフ
ァイヤ基板101の上には窒化アルミニウム(AlN) から
成る膜厚約200Åのバッファ層102が設けられ、そ
の上にシリコン(Si)ドープのGaN から成る膜厚約4.0 μ
mの高キャリア濃度n+ 層103が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. Note that the present invention is not limited to the following embodiments. (First Embodiment) FIG. 1 is a schematic sectional view of a flip-chip type semiconductor light emitting device 100 according to the present invention. On the sapphire substrate 101, a buffer layer 102 of aluminum nitride (AlN) having a thickness of about 200 ° is provided, and a buffer layer 102 of silicon (Si) doped GaN of about 4.0 μm is formed thereon.
An m + high carrier concentration n + layer 103 is formed.

【0033】そして、n+ 層103の上にGaNとGa
0.8 In0.2 Nからなる多重量子井戸構造(MQW)の
発光層104が形成されている。発光層104の上には
マグネシウム(Mg)ドープのAl0.15Ga0.85N から成る
膜厚約600Åのp型層105が形成されている。さら
に、層105の上にはマグネシウム(Mg)ドープのGa
N から成る膜厚約1500Åのp型層106が形成され
ている。
Then, GaN and Ga are formed on the n + layer 103.
A light emitting layer 104 having a multiple quantum well structure (MQW) made of 0.8 In 0.2 N is formed. On the light emitting layer 104, a p-type layer 105 made of magnesium (Mg) doped Al 0.15 Ga 0.85 N and having a thickness of about 600 ° is formed. Further, a magnesium (Mg) -doped Ga
A p-type layer 106 made of N and having a thickness of about 1500 ° is formed.

【0034】又、層106の上には金属蒸着による第1
薄膜金属層111が、n+ 層103上には負電極140
が形成されている。第1薄膜金属層111は、層106
に接合する膜厚約10Åのコバルト(Co)またはニッケル
(Ni)より成る金属層で構成されている。正電極12
0は、膜厚約3000Åの銀(Ag)、ロジウム(R
h)、ルテニウム(Ru)、白金(Pt)、パラジウム
(Pd)、または、これらの金属を少なくとも1種類以
上含んだ合金より成る金属層により構成されている。
The first layer 106 is formed on the layer 106 by metal evaporation.
A thin metal layer 111 has a negative electrode 140 on the n + layer 103.
Are formed. The first thin-film metal layer 111 comprises a layer 106
And a metal layer made of cobalt (Co) or nickel (Ni) and having a thickness of about 10 °. Positive electrode 12
0 is silver (Ag) and rhodium (R
h), ruthenium (Ru), platinum (Pt), palladium (Pd), or a metal layer made of an alloy containing at least one of these metals.

【0035】多層構造の負電極140は、膜厚約175
Åのバナジウム(V) 層141と、膜厚約1000Åのア
ルミニウム(Al)層142と、膜厚約500Åのバナジウ
ム(V) 層143と、膜厚約5000Åのニッケル(Ni)層
144と膜厚約8000Åの金(Au)層145とを高
キャリア濃度n+ 層103の一部露出された部分の上か
ら順次積層させることにより構成されている。また最上
部には、SiO2 膜より成る保護膜130が形成されて
いる。上記のように、正電極120を銀(Ag)、ロジ
ウム(Rh)、ルテニウム(Ru)、白金(Pt)、パ
ラジウム(Pd)、または、これらの金属を少なくとも
1種類以上含んだ合金より成る金属層により構成するこ
とにより、図3の表中の項番1、項番2に示す従来技術
による半導体発光素子400よりも約10%〜50%発
光強度を向上することができた。
The negative electrode 140 having a multilayer structure has a thickness of about 175
A vanadium (V) layer 141, an aluminum (Al) layer 142 with a thickness of about 1000, a vanadium (V) layer 143 with a thickness of about 500, and a nickel (Ni) layer 144 with a thickness of about 5000 A gold (Au) layer 145 of about 8000 ° is sequentially laminated on a part of the high carrier concentration n + layer 103 which is partially exposed. A protective film 130 made of a SiO 2 film is formed on the uppermost portion. As described above, the positive electrode 120 is made of silver (Ag), rhodium (Rh), ruthenium (Ru), platinum (Pt), palladium (Pd), or a metal made of an alloy containing at least one of these metals. By using the layers, it is possible to improve the luminous intensity by about 10% to 50% compared to the semiconductor light emitting device 400 according to the related art shown in No. 1 and No. 2 in the table of FIG.

【0036】(第2実施例)図2に、本発明によるフリ
ップチップ型の半導体発光素子200の模式的断面図を
示す。本発光素子200は、第1実施例における発光素
子100に第2薄膜金属層112を追加したものであ
り、その他の点では発光素子100となんら変わってい
ない。この第2薄膜金属層112は、膜厚約150Åの
金(Au)より成る金属層により構成されており、膜厚
約10Åのコバルト(Co)またはニッケル(Ni)よ
り成る第1薄膜金属層111を積層後、第1薄膜金属層
111と同様に金属蒸着により形成されたものである。
この第2薄膜金属層112を第1薄膜金属層111と正
電極120との間に形成することにより、より一層強固
に正電極120を層106に接続することができる。
(Second Embodiment) FIG. 2 is a schematic sectional view of a flip-chip type semiconductor light emitting device 200 according to the present invention. The light emitting device 200 is obtained by adding the second thin film metal layer 112 to the light emitting device 100 of the first embodiment, and is not different from the light emitting device 100 in other respects. The second thin-film metal layer 112 is formed of a metal layer made of gold (Au) with a thickness of about 150 °, and the first thin-film metal layer 111 made of cobalt (Co) or nickel (Ni) with a thickness of about 10 °. And then formed by metal vapor deposition in the same manner as the first thin film metal layer 111.
By forming the second thin metal layer 112 between the first thin metal layer 111 and the positive electrode 120, the positive electrode 120 can be more firmly connected to the layer 106.

【0037】図3に、フリップチップ型の半導体発光素
子100、200および400の性能比較表を示す。
尚、この表には、第1実施例において、正電極120を
銀(Ag)、或いは、ロジウム(Rh)で構成し、第1
薄膜金属層111の構成を省略した、特に本発明の請求
項1及び請求項12に該当する場合の実施例も合わせて
掲載した(項番3、及び、項番3.1)。この表からも判
るように、本発明による半導体発光素子100または2
00の構成によれば、正電極120を銀(Ag)、ロジ
ウム(Rh)、ルテニウム(Ru)、白金(Pt)、パ
ラジウム(Pd)、または、これらの金属を少なくとも
1種類以上含んだ合金より成る金属層で形成することに
より、発光強度を従来技術による半導体発光素子400
(項番1、項番2)よりも約10%〜50%向上するこ
とができる。
FIG. 3 shows a performance comparison table of the flip-chip type semiconductor light emitting devices 100, 200 and 400.
The table shows that the positive electrode 120 is made of silver (Ag) or rhodium (Rh) in the first embodiment.
Embodiments in which the configuration of the thin-film metal layer 111 is omitted, and particularly in cases corresponding to claims 1 and 12 of the present invention, are also shown (items 3 and 3.1). As can be seen from this table, the semiconductor light emitting device 100 or 2 according to the present invention.
According to the configuration of No. 00, the positive electrode 120 is made of silver (Ag), rhodium (Rh), ruthenium (Ru), platinum (Pt), palladium (Pd), or an alloy containing at least one of these metals. The light emitting intensity of the conventional semiconductor light emitting device 400
(Item No. 1, Item No. 2) can be improved by about 10% to 50%.

【0038】尚、項番1、2の発光素子400におい
て、第1薄膜金属層が設けられていないのは、正電極1
20自身が、既に第1薄膜金属層の構成金属元素である
コバルト(Co)またはニッケル(Ni)により形成さ
れているためであり、これにより、正電極120と層1
06との間の密着性が、既に十分確保されているためで
ある。図3において正電極120がコバルト(Co)ま
たはニッケル(Ni)により形成された発光素子400
(項番1、項番2)の相対光度が低いのは、膜厚正電極
120を構成する金属元素の反射率が小さいためであっ
て、第1薄膜金属層111の有無は、図3における相対
光度の優劣をもたらす要因とは成っていない。
In the light emitting elements 400 of Nos. 1 and 2, the first thin metal layer is not provided because the positive electrode 1
20 itself is already formed of cobalt (Co) or nickel (Ni) which is a constituent metal element of the first thin-film metal layer.
This is because the adhesiveness with No. 06 has already been sufficiently ensured. In FIG. 3, light emitting element 400 in which positive electrode 120 is formed of cobalt (Co) or nickel (Ni)
The reason why the relative luminous intensity of (Item No. 1 and Item No. 2) is low is that the reflectance of the metal element constituting the positive electrode 120 is small, and the presence or absence of the first thin film metal layer 111 is as shown in FIG. It does not contribute to the relative brightness.

【0039】むしろ逆に、銀(Ag)、ロジウム(R
h)、ルテニウム(Ru)、白金(Pt)、パラジウム
(Pd)、または、これらの金属を少なくとも1種類以
上含んだ合金より正電極120を形成する場合には、図
3の項番3と項番4とを比較しても判るように、第1薄
膜金属層111または第2薄膜金属層112が無い方
が、より大きな発光強度を得ることができる。即ち、こ
のような構成によれば、正電極120と層106との間
の密着性についてはいくらか劣るものの、発光光度の面
ではより優れた値を示す。これは、第1薄膜金属層11
1または第2薄膜金属層112による光の吸収が無くな
るためである。
Rather, on the contrary, silver (Ag) and rhodium (R
h), ruthenium (Ru), platinum (Pt), palladium (Pd), or when the positive electrode 120 is formed of an alloy containing at least one of these metals, the item 3 and the item in FIG. As can be seen from comparison with No. 4, a higher emission intensity can be obtained without the first thin-film metal layer 111 or the second thin-film metal layer 112. That is, according to such a configuration, although the adhesion between the positive electrode 120 and the layer 106 is somewhat inferior, it shows a better value in terms of luminous intensity. This is because the first thin film metal layer 11
This is because light absorption by the first or second thin film metal layer 112 is eliminated.

【0040】また、特に、図3項番3.1の第1及び第2
薄膜金属層を積層せずに、直接p型のGaN層106の
上に膜厚約3000Åのロジウム(Rh)より成る正電極1
20を形成した発光素子400では、項番8の発光素子
200と略同量の光度と、同等以上に強固なGaN層1
06との密着性を得ることができた。これは、ロジウム
(Rh)の持つ高い反射率、及び、GaN層との強固な
密着性に依るものであり、項番3.1の発光素子400
は、これらの両面で項番5の発光素子100よりも優れ
ている。即ち、項番3.1の発光素子400を製造すれ
ば、ロジウム(Rh)の持つ特性により、第1及び第2
薄膜金属層を積層せずに、光度、密着性等が十分に良好
な発光素子を提供できる。従って、この項番3.1の構成
によれば、第1及び第2薄膜金属層の積層工程を省略し
て、生産性の高い、量産に最適な発光素子400を製造
することも可能となる。
Further, in particular, the first and second parts in FIG.
A positive electrode 1 made of rhodium (Rh) having a thickness of about 3000 ° is directly formed on the p-type GaN layer 106 without laminating a thin film metal layer.
In the light emitting device 400 in which the light emitting device 20 is formed, the luminous intensity is substantially the same as that of the light emitting device 200 of item 8 and the GaN layer
06 could be obtained. This is due to the high reflectivity of rhodium (Rh) and the strong adhesion to the GaN layer.
Are superior to the light-emitting element 100 of No. 5 on both sides. That is, if the light-emitting element 400 having the item number 3.1 is manufactured, the first and second light-emitting elements 400 are produced due to the characteristics of rhodium (Rh).
A light-emitting element having sufficiently good luminous intensity, adhesion, and the like can be provided without laminating a thin metal layer. Therefore, according to the configuration of Item No. 3.1, the lamination process of the first and second thin-film metal layers can be omitted, and the light-emitting element 400 with high productivity and optimal for mass production can be manufactured. .

【0041】上記の実施例では、正電極120の膜厚
は、約3000Åであったが、正電極120の膜厚は、
100Å以上、5μm以下であれば良い。正電極120
の膜厚が100Å未満だと、光を十分に反射することが
できなくなり、5μmを越えると、蒸着時間や材料が必
要以上に掛かり生産コストの面で劣る。
In the above embodiment, the thickness of the positive electrode 120 was about 3000 °, but the thickness of the positive electrode 120 was
The thickness may be 100 ° or more and 5 μm or less. Positive electrode 120
If the film thickness is less than 100 [deg.], Light cannot be sufficiently reflected. If it exceeds 5 [mu] m, the deposition time and material are unnecessarily increased, and the production cost is inferior.

【0042】また、上記の実施例では、第1薄膜金属層
の膜厚は、約10Åであったが、第1薄膜金属層の膜厚
は、2Å以上、200Å以下であればその効果を発揮す
る。第1薄膜金属層111の膜厚は、より望ましくは、
5Å以上、50Å以下がよい。第1薄膜金属層111
は、薄過ぎると層106と正電極120とを強く結合さ
せることができなくなり、厚過ぎると光の吸収が起こ
り、発光光度が落ちる。
Further, in the above embodiment, the thickness of the first thin metal layer was about 10 °, but the effect is exhibited when the thickness of the first thin metal layer is 2 ° or more and 200 ° or less. I do. The film thickness of the first thin-film metal layer 111 is more preferably
5 ° or more and 50 ° or less are preferable. First thin film metal layer 111
If the layer is too thin, the layer 106 and the positive electrode 120 cannot be strongly bonded. If the layer is too thick, light absorption occurs and the luminous intensity decreases.

【0043】また、上記の実施例では、第2薄膜金属層
の膜厚は、約150Åであったが、第2薄膜金属層の膜
厚は、10Å以上、500Å以下であればその効果を発
揮する。第2薄膜金属層112の膜厚は、より望ましく
は、30Å以上、300Å以下がよい。第2薄膜金属層
112は、薄過ぎると第1薄膜金属層111と正電極1
20とを強く結合させることができなくなり、厚過ぎる
と光の吸収が起こり、発光光度が落ちる。
Further, in the above embodiment, the thickness of the second thin metal layer is about 150 °, but the effect is exhibited when the thickness of the second thin metal layer is 10 ° to 500 °. I do. The thickness of the second thin metal layer 112 is more desirably 30 ° or more and 300 ° or less. If the second thin film metal layer 112 is too thin, the first thin film metal layer 111 and the positive electrode 1
20 cannot be strongly bonded, and if it is too thick, light absorption occurs and the luminous intensity decreases.

【0044】また、上記の実施例では、正電極120は
単層構造をしていたが、正電極120は、多層構造を備
えていてもよい。層106、第1薄膜金属層111また
は第2薄膜金属層112の上から、例えば、膜厚約50
00Åの銀(Ag)、膜厚約800Åのニッケル(N
i)、膜厚約8000Åの金(Au)を順次蒸着により
積層することにより、膜厚約1.4μmの正電極を形成
してもよい。このような構成によっても、正電極による
反射効率の十分高い高光度の発光素子を得ることができ
る。
In the above embodiment, the positive electrode 120 has a single-layer structure. However, the positive electrode 120 may have a multilayer structure. From the layer 106, the first thin film metal layer 111 or the second thin film metal layer 112, for example, a film thickness of about 50
00Å silver (Ag), about 800Å nickel (N
i) A positive electrode having a thickness of about 1.4 μm may be formed by sequentially depositing gold (Au) having a thickness of about 8000 ° by vapor deposition. Even with such a configuration, it is possible to obtain a high-luminance light-emitting element having sufficiently high reflection efficiency by the positive electrode.

【0045】(第3実施例)図4に、本発明によるフリ
ップチップ型の半導体発光素子300の模式的断面図を
示す。サファイヤ基板101の上には窒化アルミニウム
(AlN)から成る膜厚約200Åのバッファ層102が設けら
れ、その上にシリコン(Si)ドープのGaNから成る膜厚約
4.0μmの高キャリア濃度n+層103が形成されてい
る。そして、層103の上にGaNとGa0.8In0.2Nからなる
多重量子井戸構造(MQW)の発光層104が形成され
ている。発光層104の上にはマグネシウム(Mg)ドープ
のAl0.15Ga0.85Nから成る膜厚約600Åのp型層105が
形成されている。さらに、p型層105の上にはマグネ
シウム(Mg)ドープのGaNから成る膜厚約1500Åのp型層
106が形成されている。
(Third Embodiment) FIG. 4 is a schematic sectional view of a flip-chip type semiconductor light emitting device 300 according to the present invention. Aluminum nitride on sapphire substrate 101
A buffer layer 102 having a thickness of about 200 ° made of (AlN) is provided, and a buffer layer 102 made of GaN doped with silicon (Si) is formed thereon.
A high carrier concentration n + layer 103 of 4.0 μm is formed. A light emitting layer 104 having a multiple quantum well structure (MQW) made of GaN and Ga 0.8 In 0.2 N is formed on the layer 103. On the light emitting layer 104, a p-type layer 105 made of magnesium (Mg) doped Al 0.15 Ga 0.85 N and having a thickness of about 600 ° is formed. Further, on the p-type layer 105, a p-type layer 106 made of magnesium (Mg) -doped GaN and having a thickness of about 1500 ° is formed.

【0046】また、p型層106の上には金属蒸着によ
る多層構造を有する正電極120(以下、「多重正電極
120」と言う場合がある。)が、n+層103上には
負電極140が形成されている。多重正電極120は、
p型層106に接合する正電極第1層121、正電極第
1層121の上部に形成される正電極第2層122、更
に正電極第2層122の上部に形成される正電極第3層
123の3層構造である。
A positive electrode 120 having a multilayer structure formed by metal deposition (hereinafter, sometimes referred to as a “multiple positive electrode 120”) is provided on the p-type layer 106, and a negative electrode is provided on the n + layer 103. 140 are formed. Multiple positive electrodes 120
The first positive electrode layer 121 bonded to the p-type layer 106, the second positive electrode layer 122 formed on the first positive electrode layer 121, and the third positive electrode layer formed on the second positive electrode layer 122. This is a three-layer structure of the layer 123.

【0047】正電極第1層121は、p型層106に接
合する膜厚約0.1μmのロジウム(Rh)又は白金(Pt)より成
る金属層である。また、正電極第2層122は、膜厚約
1.2μmの金(Au)より成る金属層である。また、正電極第
3層123は、膜厚約20Åのチタン(Ti)より成る金属層
である。
The first positive electrode layer 121 is a metal layer made of rhodium (Rh) or platinum (Pt) having a thickness of about 0.1 μm and joined to the p-type layer 106. The positive electrode second layer 122 has a thickness of about
This is a metal layer made of 1.2 μm gold (Au). The positive electrode third layer 123 is a metal layer made of titanium (Ti) having a thickness of about 20 °.

【0048】多層構造の負電極140は、膜厚約175
Åのバナジウム(V) 層141と、膜厚約1000Åのア
ルミニウム(Al)層142と、膜厚約500Åのバナジウ
ム(V) 層143と、膜厚約5000Åのニッケル(Ni)層
144と膜厚約8000Åの金(Au)層145とを高
キャリア濃度n+ 層103の一部露出された部分の上か
ら順次積層させることにより構成されている。
The negative electrode 140 having a multilayer structure has a thickness of about 175
A vanadium (V) layer 141, an aluminum (Al) layer 142 with a thickness of about 1000, a vanadium (V) layer 143 with a thickness of about 500, and a nickel (Ni) layer 144 with a thickness of about 5000 A gold (Au) layer 145 of about 8000 ° is sequentially laminated on a part of the high carrier concentration n + layer 103 which is partially exposed.

【0049】このように形成された多重正電極120と
負電極140との間にはSiO2膜より成る保護膜130が
形成されている。保護層130は、負電極140を形成
するために露出したn+層103から、エッチングされ
て露出した、発光層104の側面、p型層105の側
面、及びp型層106の側面及び上面の一部、正電極第
1層121、正電極第2層122の側面、正電極第3層
123の上面の一部を覆っている。SiO2膜より成る保護
膜130の正電極第3層123を覆う部分の厚さは0.5
μmである。
A protective film 130 made of a SiO 2 film is formed between the multiple positive electrode 120 and the negative electrode 140 thus formed. The protective layer 130 is formed by etching the side surface of the light emitting layer 104, the side surface of the p-type layer 105, and the side surface and the upper surface of the p-type layer 106, which are exposed by etching from the n + layer 103 exposed to form the negative electrode 140. Partly covers the side surfaces of the positive electrode first layer 121 and the positive electrode second layer 122, and part of the upper surface of the positive electrode third layer 123. The thickness of the portion of the protective film 130 made of SiO 2 covering the positive electrode third layer 123 is 0.5
μm.

【0050】上記のように、多重正電極120をロジウ
ム(Rh)又は白金(Pt)より成る正電極第1層、金(Au)より
成る正電極第2層、チタン(Ti)より成る正電極第3層に
より構成した、本発明による発光素子300の発光光度
を測定し、従来の発光素子400と比較した。結果を図
5に示す。ここから、従来技術による発光素子400に
比較し、本発明により約30%〜40%発光光度を向上する
ことができた。
As described above, the multiple positive electrodes 120 are composed of a first positive electrode layer made of rhodium (Rh) or platinum (Pt), a second positive electrode layer made of gold (Au), and a positive electrode made of titanium (Ti). The luminous intensity of the light emitting device 300 according to the present invention constituted by the third layer was measured and compared with the conventional light emitting device 400. FIG. 5 shows the results. From this, it was possible to improve the luminous intensity by about 30% to 40% according to the present invention as compared with the light emitting device 400 according to the prior art.

【0051】このような構成のフリップチップ型発光素
子300は、高い発光光度と高い耐久性を持ち合わせて
おり、保護層130を大幅に省略でき、外部電極との接
続に際し、正電極、負電極とも広い面積を使用すること
ができる。このため、ハンダ等によるバンプ形成や、直
接正電極、負電極上での金ボール形成により、発光素子
を反転させて回路基板に直接接続することも可能であ
る。或いは、また、外部電極との接続は、ワイヤボンデ
ィングなどによって実施しても良い。
The flip-chip type light emitting device 300 having such a configuration has high luminous intensity and high durability, can largely omit the protective layer 130, and can connect both the positive electrode and the negative electrode to the external electrode. Large areas can be used. For this reason, it is also possible to invert the light emitting element and directly connect it to the circuit board by forming a bump using solder or the like, or forming a gold ball directly on the positive electrode or the negative electrode. Alternatively, the connection with the external electrode may be performed by wire bonding or the like.

【0052】尚、上記の第3実施例では、多重正電極1
20の膜厚は、約1.3μmであったが、この多重正電極1
20の膜厚は、0.11μm以上、10μm以下であれば良い。
この多重正電極120の膜厚が0.11μm未満だと、光を
十分に反射することができなくなり、バンプ材や金ボー
ル等の接続部材との強固な密着が得られなくなる。一
方、10μmを越えると、蒸着時間や材料が必要以上に掛
かり生産コストの面で劣る。
In the third embodiment, the multiple positive electrodes 1
The thickness of the multiple positive electrode 1 was about 1.3 μm.
The film thickness of 20 may be 0.11 μm or more and 10 μm or less.
If the thickness of the multiple positive electrode 120 is less than 0.11 μm, light cannot be sufficiently reflected, and strong adhesion to a connecting member such as a bump material or a gold ball cannot be obtained. On the other hand, if the thickness exceeds 10 μm, the deposition time and the material will be longer than necessary, and the production cost will be inferior.

【0053】また、上記の第3実施例では、正電極第1
層121の膜厚は、0.1μmであったが、正電極第1層の
膜厚は、0.01〜5μmであればその効果を発揮する。正電
極第1層の膜厚は望ましくは0.02〜2μmであり、より望
ましくは0.05〜1μmである。正電極第1層121は、薄
過ぎると光の反射が不十分となり、厚過ぎると蒸着時間
や材料が必要以上に掛かり、生産コストの面で劣る。
In the third embodiment, the positive electrode
Although the thickness of the layer 121 was 0.1 μm, the effect is exhibited if the thickness of the first positive electrode layer is 0.01 to 5 μm. The thickness of the positive electrode first layer is desirably 0.02 to 2 μm, and more desirably 0.05 to 1 μm. If the positive electrode first layer 121 is too thin, light reflection will be insufficient, and if too thick, the deposition time and material will be unnecessarily long, and the production cost will be inferior.

【0054】また、第3実施例では、正電極第2層12
2の膜厚は、1.2μmであったが、正電極第2層の膜厚
は、0.1〜5μmであればその効果を発揮する。正電極第
2層122の膜厚は望ましくは0.2〜3μmであり、より
望ましくは0.5〜2μmである。正電極第2層122は、
薄過ぎると、バンプ材や金ボール等の接続部材との強固
な密着が得られなくなる。一方、厚過ぎると負電極14
0のバランスをとる必要上、正電極第2層122と負電
極140の両方で蒸着時間や材料が必要以上に掛かり、
好ましくない。
In the third embodiment, the positive electrode second layer 12
The film thickness of No. 2 was 1.2 μm, but the effect is exhibited if the film thickness of the second positive electrode layer is 0.1 to 5 μm. The thickness of the positive electrode second layer 122 is desirably 0.2 to 3 μm, and more desirably 0.5 to 2 μm. The positive electrode second layer 122 includes:
If it is too thin, it will not be possible to obtain strong adhesion with connection members such as bump materials and gold balls. On the other hand, if too thick, the negative electrode 14
0, the deposition time and the material take longer than necessary for both the positive electrode second layer 122 and the negative electrode 140,
Not preferred.

【0055】また、第3実施例では、正電極第3層12
3の膜厚は、20Åであったが、正電極第3層の膜厚は、
5〜1000Åであればその効果を発揮する。正電極第3層
123の膜厚は望ましくは10〜500Åであり、より望ま
しくは15〜100Åである。正電極第3層123は、薄過
ぎると保護層との密着性が悪くなり、厚過ぎると抵抗値
が高くなり、好ましくない。
In the third embodiment, the positive electrode third layer 12
The thickness of the third layer of the positive electrode was
If it is 5 to 1000 mm, the effect is exhibited. The thickness of the positive electrode third layer 123 is desirably 10 to 500 °, more desirably 15 to 100 °. When the positive electrode third layer 123 is too thin, the adhesion to the protective layer deteriorates, and when too thick, the resistance value increases, which is not preferable.

【0056】また、第3実施例では、正電極第3層とし
てチタン(Ti)を使用したが、正電極第3層としては、チ
タン(Ti)、クロム(Cr)、または、これらの金属を少なく
とも1種類以上含んだ合金を使用してもよい。
In the third embodiment, titanium (Ti) is used as the third layer of the positive electrode. However, titanium (Ti), chromium (Cr), or a metal thereof is used as the third layer of the positive electrode. An alloy containing at least one or more kinds may be used.

【0057】図6に、正電極、又は、正電極第1層に用
いられる金属元素の特性を纏めた一覧表を示す。本一覧
表の各評価項目〜は、以下の通りである。 反射率:発光層104からの所定量の発光に対する、
波長が380nm〜550nm(青紫、青、緑)の可視
光の反射量による評価。 接触抵抗(駆動電圧):GaN層との接触抵抗に対す
る発光素子の駆動電圧による評価。 GaN層との密着性:所定の耐久テストにおける不具
合箇所の発生頻度による評価。 耐蝕性:各元素の物性値、及び、性質による評価。 Au積層後の特性安定性:発光素子300における金
(Au)より成る正電極第2層122積層後の駆動電圧の上
昇、及び、上記可視光の反射量の劣化による評価。 総合評価(商用量産可否):発光素子の量産を前提と
した、上記の評価項目〜を基とする総合的考察によ
る評価。
FIG. 6 shows a list in which the characteristics of the metal elements used for the positive electrode or the first layer of the positive electrode are summarized. Each evaluation item to in this list is as follows. Reflectance: for a predetermined amount of light emission from the light emitting layer 104
Evaluation based on the reflection amount of visible light having a wavelength of 380 nm to 550 nm (blue violet, blue, green). Contact resistance (drive voltage): Evaluation of the contact resistance with the GaN layer by the drive voltage of the light emitting element. Adhesion with GaN layer: Evaluation based on the frequency of occurrence of defective portions in a predetermined durability test. Corrosion resistance: Evaluation based on physical properties and properties of each element. Characteristic stability after Au lamination: gold in light emitting element 300
Evaluation based on an increase in drive voltage after the lamination of the positive electrode second layer 122 made of (Au) and a deterioration in the amount of visible light reflection. Comprehensive evaluation (whether commercial mass production is possible): Evaluation based on comprehensive consideration based on the above-mentioned evaluation items (1) and (2) on the premise of mass production of light emitting elements.

【0058】特に、フリップチップ型の化合物半導体発
光素子の場合、上記の評価項目、における評価が共
に良(○)以上であることが、製品としての必要条件と
なるため、本発明の有効性が、図6の一覧表より判る。
In particular, in the case of a flip-chip type compound semiconductor light-emitting device, it is a necessary condition for a product that the evaluation in the above evaluation items is both good (良) or more. 6 can be seen from the list shown in FIG.

【0059】また、特に、ロジウム(Rh)は、反射
率の面で若干銀(Ag)には劣るものの、その他の評価
項目〜では、いずれも他の金属よりも優れた特性、
若しくは、同等以上の特性を示しており、正電極、又
は、正電極第1層に用いる金属元素としては、最適の材
料であることが判る。
In particular, rhodium (Rh) is slightly inferior to silver (Ag) in terms of reflectivity, but all of the other evaluation items 1 to 6 have characteristics superior to other metals.
Alternatively, the material has the same or better characteristics, and it can be seen that the metal element used for the positive electrode or the first layer of the positive electrode is an optimal material.

【0060】また、ルテニウム(Ru)は、物性上ロジ
ウム(Rh)と酷似又は類似の性質を持つので、正電
極、又は、正電極第1層に用いる金属元素としては、ロ
ジウム(Rh)と略同様に良い材料である。
Since ruthenium (Ru) has properties very similar to or similar to rhodium (Rh) in physical properties, the metal element used for the positive electrode or the first layer of the positive electrode is substantially the same as rhodium (Rh). A good material as well.

【0061】尚、上記の第1乃至第3実施例における発
光素子の各層の構成は、あくまでも各層を形成する際の
物理的または化学的構成であって、その後、より強固な
密着性を得るために、あるいは、コンタクト抵抗の値を
下げる等の目的で実施される例えば熱処理などのような
物理的または化学的処理によって各層間では、固溶ある
いは化合物形成が起きていることは言うまでもない。
The structure of each layer of the light emitting device in the above-described first to third embodiments is a physical or chemical structure when each layer is formed. It goes without saying that a solid solution or a compound is formed between the layers by a physical or chemical treatment such as a heat treatment performed for the purpose of lowering the value of the contact resistance or the like.

【0062】また、上記の第1乃至第3実施例では、発
光素子の発光層104はMQW構造としたが、発光層1
04の構造は、SQW構造やホモ接合構造でもよい。ま
た、本発明の発光素子を形成するIII族窒化物系化合物
半導体層はバッファ層をも含み、これらの層は任意の混
晶比の4元、3元、2元系のAlxGayIn1-x-yN(0≦x≦
1,0≦y≦1,0≦x+y≦1)としても良い。
In the first to third embodiments, the light emitting layer 104 of the light emitting element has the MQW structure.
The structure of 04 may be an SQW structure or a homozygous structure. The group III nitride compound semiconductor layer forming the light emitting device of the present invention also includes a buffer layer, and these layers are quaternary, ternary, and binary Al x Ga y In 1-xy N (0 ≦ x ≦
1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1).

【0063】また、バッファ層には、上記のIII族窒化
物系化合物半導体の他にも、窒化チタン(TiN) 、窒化ハ
フニウム(HfN) 等の金属窒化物や、酸化亜鉛(ZnO) 、酸
化マグネシウム(MgO) 、酸化マンガン(MnO) 等の金属酸
化物を用いてもよい。
The buffer layer may be made of a metal nitride such as titanium nitride (TiN), hafnium nitride (HfN), zinc oxide (ZnO), magnesium oxide, etc., in addition to the above group III nitride compound semiconductor. Metal oxides such as (MgO) and manganese oxide (MnO) may be used.

【0064】また、p型不純物としては、マグネシウム
(Mg)の他、ベリリウム(Be)、亜鉛(Zn)等の2族元素を用
いることができる。また、これらがドープされたp型半
導体層をより低抵抗にするためには、更に、電子線照射
やアニーリングなどの活性化処理を行っても良い。
As the p-type impurity, magnesium is used.
In addition to (Mg), Group 2 elements such as beryllium (Be) and zinc (Zn) can be used. Further, in order to lower the resistance of the doped p-type semiconductor layer, activation treatment such as electron beam irradiation or annealing may be further performed.

【0065】また、上記の実施例では、高キャリア濃度
+ 層103は、シリコン(Si)ドープの窒化ガリウム(G
aN)より形成したが、これらのn型半導体層は、上記の
III族窒化物系化合物半導体に、シリコン(Si)、ゲルマ
ニウム(Ge)等のIV族元素、又は、VI族元素をドープする
ことにより形成しても良い。
In the above embodiment, the high carrier concentration n + layer 103 is formed of silicon (Si) -doped gallium nitride (G
aN), these n-type semiconductor layers are
A group III nitride compound semiconductor may be formed by doping a group IV element such as silicon (Si) or germanium (Ge) or a group VI element.

【0066】また、結晶成長の基板には、サファイヤの
他に、炭化珪素(SiC)、酸化亜鉛(ZnO) 、酸化マグネシ
ウム(MgO) 、酸化マンガン(MnO) 等を使用しても良い。
For the substrate for crystal growth, other than sapphire, silicon carbide (SiC), zinc oxide (ZnO), magnesium oxide (MgO), manganese oxide (MnO) or the like may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるフリップチップ型の半導体発光素
子100の模式的断面図。
FIG. 1 is a schematic cross-sectional view of a flip-chip type semiconductor light emitting device 100 according to the present invention.

【図2】本発明によるフリップチップ型の半導体発光素
子200の模式的断面図。
FIG. 2 is a schematic sectional view of a flip-chip type semiconductor light emitting device 200 according to the present invention.

【図3】フリップチップ型の半導体発光素子100、2
00、400の性能比較表。
FIG. 3 shows flip-chip type semiconductor light emitting devices 100 and 2
00, 400 performance comparison table.

【図4】本発明によるフリップチップ型の半導体発光素
子300の模式的断面図。
FIG. 4 is a schematic sectional view of a flip-chip type semiconductor light emitting device 300 according to the present invention.

【図5】フリップチップ型の半導体発光素子300、4
00の発光光度を示す表。
FIG. 5 shows flip-chip type semiconductor light emitting devices 300 and 4
A table showing the luminous intensity of 00.

【図6】正電極、又は、正電極第1層に用いられる金属
元素の特性を纏めた一覧表。
FIG. 6 is a table summarizing characteristics of a metal element used for the positive electrode or the first layer of the positive electrode.

【図7】フリップチップ型の半導体発光素子400の模
式的断面図。
FIG. 7 is a schematic cross-sectional view of a flip-chip type semiconductor light emitting device 400.

【符号の説明】[Explanation of symbols]

101 … サファイヤ基板 102 … AlNバッファ層 103 … n型のGaN層 104 … 発光層 105 … p型のAlGaN層 106 … p型のGaN層 111 … 第1薄膜金属層 112 … 第2薄膜金属層 120 … 正電極 121 … 正電極第1層 122 … 正電極第2層 123 … 正電極第3層 130 … 保護膜 140 … 多層構造の負電極 Reference Signs List 101 sapphire substrate 102 AlN buffer layer 103 n-type GaN layer 104 light-emitting layer 105 p-type AlGaN layer 106 p-type GaN layer 111 first thin metal layer 112 second thin metal layer 120 Positive electrode 121 ... Positive electrode first layer 122 ... Positive electrode second layer 123 ... Positive electrode third layer 130 ... Protective film 140 ... Multilayer negative electrode

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 基板上に III族窒化物系化合物半導体か
ら成る層が積層されたフリップチップ型の発光素子にお
いて、 p型半導体層に接続され、光を基板側へ反射する正電極
を銀(Ag)、ロジウム(Rh)、ルテニウム(R
u)、白金(Pt)、パラジウム(Pd)、または、こ
れらの金属を少なくとも1種類以上含んだ合金より形成
したことを特徴とする III族窒化物系化合物半導体発光
素子。
In a flip-chip type light emitting device in which a layer made of a group III nitride compound semiconductor is laminated on a substrate, a positive electrode connected to a p-type semiconductor layer and reflecting light toward the substrate is formed of silver ( Ag), rhodium (Rh), ruthenium (R
u), platinum (Pt), palladium (Pd), or an alloy containing at least one of these metals.
【請求項2】 前記正電極は、 複数の種類の金属より形成された多層構造を有すること
を特徴とする請求項1に記載の III族窒化物系化合物半
導体発光素子。
2. The group III nitride compound semiconductor light emitting device according to claim 1, wherein the positive electrode has a multilayer structure formed of a plurality of types of metals.
【請求項3】 前記p型半導体層と前記正電極との間
に、コバルト(Co)、ニッケル(Ni)、または、こ
れらの金属を少なくとも1種類以上含んだ合金より成る
第1薄膜金属層を備えたことを特徴とする請求項1また
は請求項2に記載の III族窒化物系化合物半導体発光素
子。
3. A first thin-film metal layer made of cobalt (Co), nickel (Ni), or an alloy containing at least one of these metals, between the p-type semiconductor layer and the positive electrode. The group III nitride compound semiconductor light-emitting device according to claim 1, wherein the light-emitting device is provided.
【請求項4】 前記第1薄膜金属層の膜厚は、2Å以
上、200Å以下であることを特徴とする請求項3に記
載の III族窒化物系化合物半導体発光素子。
4. The group III nitride compound semiconductor light emitting device according to claim 3, wherein the thickness of the first thin metal layer is 2 ° or more and 200 ° or less.
【請求項5】 前記第1薄膜金属層と前記正電極との間
に、金(Au)または金(Au)を含んだ合金より成る
第2薄膜金属層を備えたことを特徴とする請求項3また
は請求項4に記載の III族窒化物系化合物半導体発光素
子。
5. The semiconductor device according to claim 1, further comprising a second thin-film metal layer made of gold (Au) or an alloy containing gold (Au) between the first thin-film metal layer and the positive electrode. The group III nitride compound semiconductor light emitting device according to claim 3 or 4.
【請求項6】 前記第2薄膜金属層の膜厚は、10Å以
上、500Å以下であることを特徴とする請求項5に記
載の III族窒化物系化合物半導体発光素子。
6. The group III nitride compound semiconductor light emitting device according to claim 5, wherein the thickness of the second thin film metal layer is 10 ° or more and 500 ° or less.
【請求項7】 前記正電極の膜厚、又は、 前記基板に最も近い、前記多層構造の最下位層を構成す
る正電極第1層の膜厚が、0.01〜5μmであることを特徴
とする請求項1乃至請求項6のいずれか1項に記載のII
I族窒化物系化合物半導体発光素子。
7. The film thickness of the positive electrode or the thickness of the first positive electrode layer closest to the substrate and constituting the lowermost layer of the multilayer structure is 0.01 to 5 μm. II according to any one of claims 1 to 6
Group I nitride compound semiconductor light emitting device.
【請求項8】 前記正電極、又は、前記正電極第1層の
上に金(Au)から成る正電極第2層を形成したことを特徴
とする請求項1乃至請求項7のいずれか1項に記載のII
I族窒化物系化合物半導体発光素子。
8. The positive electrode or a positive electrode second layer made of gold (Au) is formed on the positive electrode first layer. II described in section
Group I nitride compound semiconductor light emitting device.
【請求項9】 前記正電極第2層の膜厚が、0.1〜5μm
であることを特徴とする請求項8に記載のIII族窒化物
系化合物半導体発光素子。
9. The positive electrode second layer has a thickness of 0.1 to 5 μm.
9. The group III nitride compound semiconductor light emitting device according to claim 8, wherein
【請求項10】 前記正電極、前記正電極第1層、又
は、前記正電極第2層の上にチタン(Ti)、クロム(Cr)、
または、これらの金属を少なくとも1種類以上含んだ合
金から成る正電極第3層を形成したことを特徴とする請
求項1乃至請求項9のいずれか1項に記載のIII族窒化
物系化合物半導体発光素子。
10. The positive electrode, the first positive electrode layer, or the second positive electrode layer, titanium (Ti), chromium (Cr),
The group III nitride compound semiconductor according to any one of claims 1 to 9, wherein a positive electrode third layer made of an alloy containing at least one of these metals is formed. Light emitting element.
【請求項11】 前記正電極第3層の膜厚が、5〜1000
Åであることを特徴とする請求項10に記載のIII族窒
化物系化合物半導体発光素子。
11. The positive electrode third layer has a thickness of 5 to 1000.
The group III nitride-based compound semiconductor light emitting device according to claim 10, wherein?
【請求項12】 前記正電極は、 ロジウム(Rh)、ルテニウム(Ru)、または、これ
らの金属を少なくとも1種類以上含んだ合金より成り、
かつ、 前記p型半導体層に直接接合されていることを特徴とす
る請求項1に記載の III族窒化物系化合物半導体発光素
子。
12. The positive electrode is made of rhodium (Rh), ruthenium (Ru), or an alloy containing at least one of these metals.
The III-nitride-based compound semiconductor light-emitting device according to claim 1, wherein the III-nitride-based compound semiconductor light-emitting device is directly connected to the p-type semiconductor layer.
【請求項13】 前記多層構造は、 ロジウム(Rh)、ルテニウム(Ru)、または、これ
らの金属を少なくとも1種類以上含んだ合金より形成さ
れた正電極第1層と、 前記正電極第1層の上に直接積層される、金(Au)より形
成された正電極第2層と、 前記正電極第2層の上に直接積層される、チタン(Ti)、
クロム(Cr)、または、これらの金属を少なくとも1種類
以上含んだ合金より形成された正電極第3層の3層より
成る3層構造であり、 前記正電極第1層は、前記p型半導体層に直接接合され
ていることを特徴とする請求項2、請求項10又は請求
項11に記載の III族窒化物系化合物半導体発光素子。
13. The positive electrode first layer formed of rhodium (Rh), ruthenium (Ru), or an alloy containing at least one of these metals, and the positive electrode first layer A positive electrode second layer formed of gold (Au), which is directly laminated on; a titanium (Ti), which is directly laminated on the positive electrode second layer,
A three-layer structure of three positive electrode layers formed of chromium (Cr) or an alloy containing at least one of these metals, wherein the first positive electrode layer is the p-type semiconductor; The group III nitride compound semiconductor light emitting device according to claim 2, which is directly bonded to the layer.
【請求項14】 前記正電極第1層の膜厚は、0.02〜2
μmであり、 前記正電極第2層の膜厚は、0.2〜3μmであり、かつ、
前記正電極第3層の膜厚は、10〜500Åであることを特
徴とする請求項10又は請求項13に記載のIII族窒化
物系化合物半導体発光素子。
14. The positive electrode first layer has a thickness of 0.02 to 2
μm, the thickness of the positive electrode second layer is 0.2 to 3 μm, and
14. The group III nitride compound semiconductor light emitting device according to claim 10, wherein the thickness of the third layer of the positive electrode is 10 to 500 [deg.].
【請求項15】 前記正電極第3層の上に、酸化珪素
(SiO2)、窒化珪素(SixNy)、チタン化合物(Tix
y等)、或いは、ポリイミドなどから成る絶縁性保護膜
が、直接積層されていることを特徴とする請求項10、
請求項11、請求項13又は請求項14に記載のIII族
窒化物系化合物半導体発光素子。
15. A semiconductor device comprising: a silicon oxide (SiO 2 ), a silicon nitride (Si x N y ), and a titanium compound (Ti x N
y, etc.) or an insulating protective film made of polyimide or the like is directly laminated.
The group III nitride compound semiconductor light emitting device according to claim 11, 13 or 14.
JP5635799A 1998-05-13 1999-03-04 Group III nitride compound semiconductor light emitting device Expired - Fee Related JP3736181B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5635799A JP3736181B2 (en) 1998-05-13 1999-03-04 Group III nitride compound semiconductor light emitting device
DE19921987A DE19921987B4 (en) 1998-05-13 1999-05-12 Light-emitting semiconductor device with group III element-nitride compounds
KR1019990016927A KR100341382B1 (en) 1998-05-13 1999-05-12 Ⅲ Group nitride-based compound semiconductor emitting elements
TW88107776A TW419836B (en) 1998-05-13 1999-05-13 Flip tip type of light-emitting semiconductor device using group III nitride compound
US09/559,273 US6936859B1 (en) 1998-05-13 2000-04-27 Light-emitting semiconductor device using group III nitride compound
US10/864,495 US7109529B2 (en) 1998-05-13 2004-06-10 Light-emitting semiconductor device using group III nitride compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-150532 1998-05-13
JP15053298 1998-05-13
JP5635799A JP3736181B2 (en) 1998-05-13 1999-03-04 Group III nitride compound semiconductor light emitting device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004205464A Division JP2004363621A (en) 1998-05-13 2004-07-13 Group iii nitride compound semiconductor light-emitting device
JP2005254835A Division JP2006005378A (en) 1998-05-13 2005-09-02 Group iii nitride compound semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JP2000036619A true JP2000036619A (en) 2000-02-02
JP3736181B2 JP3736181B2 (en) 2006-01-18

Family

ID=26397309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5635799A Expired - Fee Related JP3736181B2 (en) 1998-05-13 1999-03-04 Group III nitride compound semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JP3736181B2 (en)
KR (1) KR100341382B1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340514A (en) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd Flip-chip optical semiconductor element
JP2002246649A (en) * 2001-02-21 2002-08-30 Sony Corp Semiconductor light-emitting device, its manufacturing method, and connection structure of electrode layer
KR100438890B1 (en) * 2001-10-26 2004-07-02 학교법인 포항공과대학교 Gallium nitride-based Ⅲ-Ⅴ group compound semiconductor device and method of producing the same
JP2004260048A (en) * 2003-02-27 2004-09-16 Korai Kagi Kofun Yugenkoshi Micro-type light emitting device
JP2004336021A (en) * 2003-05-07 2004-11-25 Samsung Electronics Co Ltd Thin-film electrode and method of manufacturing the same
JP2005011857A (en) * 2003-06-17 2005-01-13 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2005084634A (en) * 2003-09-11 2005-03-31 Seiko Epson Corp Light source device, manufacturing method for light source device, and projection type display device
JP2005117040A (en) * 2003-10-08 2005-04-28 Samsung Electronics Co Ltd Nitride-based light emitting element and manufacturing method therefor
JP2005123631A (en) * 2003-10-16 2005-05-12 Samsung Electronics Co Ltd Nitride system light-emitting device and manufacturing method therefor
JP2005142544A (en) * 2003-10-14 2005-06-02 Showa Denko Kk Gallium nitride-based compound semiconductor light emitting element, its positive electrode, light emitting diode using it, and lamp using it
JP2005197687A (en) * 2004-01-06 2005-07-21 Samsung Electronics Co Ltd Low-resistance electrode of compound semiconductor light-emitting element, and compound semiconductor light-emitting element using the same
WO2005069389A1 (en) * 2004-01-15 2005-07-28 Seoul Opto-Device Co., Ltd. Gallium nitride-based iii-v group compound semiconductor device and method of manufacturing the same
US6924515B2 (en) 2002-06-06 2005-08-02 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
JP2006506827A (en) * 2002-11-16 2006-02-23 エルジー イノテック カンパニー リミテッド Optical device and manufacturing method thereof
WO2006043422A1 (en) 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
US7049160B2 (en) 2003-09-16 2006-05-23 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device and method of manufacturing the same
JP2006229187A (en) * 2005-02-16 2006-08-31 Samsung Electro Mech Co Ltd Reflecting electrode, and compound semiconductor light emitting device having same
KR100650992B1 (en) 2005-03-21 2006-11-29 주식회사 이츠웰 GaN-based Semiconductor Light Emitting Diode containing Nickel forming part of n-type ohmic metal
JP2007081333A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element and manufacturing method thereof
JP2007081088A (en) * 2005-09-14 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element
US7285857B2 (en) 2003-10-27 2007-10-23 Samsung Electronics Co., Ltd. GaN-based III—V group compound semiconductor device and p-type electrode for the same
WO2007120016A1 (en) * 2006-04-18 2007-10-25 Seoul Opto-Device Co., Ltd. Method for forming ohmic electrode and semiconductor light emitting element
WO2007123289A1 (en) * 2006-04-21 2007-11-01 Wavenics Inc. High efficiency led with multi-layer reflector structure and method for fabricating the same
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
KR100778820B1 (en) 2006-04-25 2007-11-22 포항공과대학교 산학협력단 METHOD FOR FORMING METAL ELECTRODE AND MANUFACTURING SEMICONDUCTOR LIGHT EMITTING ELEMENT AND GaN COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT
CN100383992C (en) * 2005-09-21 2008-04-23 南茂科技股份有限公司 Light-emitting diode and its manufacturing method
JP2008103674A (en) * 2006-10-18 2008-05-01 Samsung Electro Mech Co Ltd Multilayer reflection film electrode and compound semiconductor light emitting device with same
JP2009231356A (en) * 2008-03-19 2009-10-08 Nichia Corp Semiconductor light emitting device and method of manufacturing the same
JP2010034543A (en) * 2008-06-26 2010-02-12 Kyocera Corp Semiconductor light-emitting element and method of manufacturing the same
US8115212B2 (en) 2004-07-29 2012-02-14 Showa Denko K.K. Positive electrode for semiconductor light-emitting device
JP2012069959A (en) * 2004-07-27 2012-04-05 Cree Inc Extremely thin ohmic contact for p type nitride light-emitting device and formation method thereof
US8410510B2 (en) 2007-07-03 2013-04-02 Nichia Corporation Semiconductor light emitting device and method for fabricating the same
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
JP2014078711A (en) * 2012-10-10 2014-05-01 Advanced Optoelectronic Technology Inc Light emission diode and manufacturing method of the same
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024994B2 (en) * 2000-06-30 2007-12-19 株式会社東芝 Semiconductor light emitting device
KR100413435B1 (en) * 2001-04-02 2003-12-31 엘지전자 주식회사 Light Emitting Diode and Fabrication Method for the same
KR20030073054A (en) * 2002-03-08 2003-09-19 에피밸리 주식회사 Semiconductor LED device and method thereof
KR100467316B1 (en) 2002-03-20 2005-01-24 학교법인 포항공과대학교 P-type ohmic electrode in gallium nitride based optical device and fabrication method thereof
KR100826424B1 (en) * 2003-04-21 2008-04-29 삼성전기주식회사 Semiconductor type light emitting diode and manufacturing method thereof
KR100960762B1 (en) * 2003-06-17 2010-06-01 엘지전자 주식회사 Laser emitting diode, and method for manufacturing the same
KR100624411B1 (en) 2003-08-25 2006-09-18 삼성전자주식회사 light emitting device and method of manufacturing the same
KR100571816B1 (en) 2003-09-08 2006-04-17 삼성전자주식회사 light emitting device and method of manufacturing the same
KR100799857B1 (en) * 2003-10-27 2008-01-31 삼성전기주식회사 Electrode structure and semiconductor light-emitting device provided with the same
KR100601971B1 (en) * 2003-12-22 2006-07-18 삼성전자주식회사 Top emitting light emitting device and method of manufacturing thereof
KR100621871B1 (en) * 2005-02-21 2006-09-19 광주과학기술원 ?-nitride compound flip chip semiconductor light emitting diode
JP5030398B2 (en) * 2005-07-04 2012-09-19 昭和電工株式会社 Gallium nitride compound semiconductor light emitting device
US7759690B2 (en) 2005-07-04 2010-07-20 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
CN102246326B (en) 2008-12-15 2015-01-07 丰田合成株式会社 Semiconductor light emission element
KR101693859B1 (en) * 2010-07-07 2017-01-06 엘지이노텍 주식회사 The light emitting apparatus, the method for manufacturing the same, and the light system

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49149679U (en) * 1973-04-27 1974-12-25
JPH0529661A (en) * 1991-07-19 1993-02-05 Ricoh Co Ltd Printer light source
JPH05275739A (en) * 1991-12-27 1993-10-22 American Teleph & Telegr Co <Att> Improved light-emitting diode
JPH05291621A (en) * 1992-04-10 1993-11-05 Nichia Chem Ind Ltd Electrode material of gallium nitride compound semiconductor
JPH05347430A (en) * 1991-07-17 1993-12-27 Ricoh Co Ltd Semiconductor light-emitting device
JPH0669546A (en) * 1992-08-21 1994-03-11 Asahi Chem Ind Co Ltd Light-emitting diode
JPH06152072A (en) * 1992-11-16 1994-05-31 Asahi Chem Ind Co Ltd Semiconductor laser
JPH06314822A (en) * 1993-04-28 1994-11-08 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element and electrode formation thereof
JPH07161712A (en) * 1993-12-02 1995-06-23 Fujitsu Ltd Pattern forming method
JPH07288340A (en) * 1994-04-19 1995-10-31 Mitsubishi Cable Ind Ltd Light emitting element and manufacture thereof
JPH08250768A (en) * 1995-03-13 1996-09-27 Toyoda Gosei Co Ltd Semiconductor optical element
JPH098403A (en) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd Nitride semiconductor element and manufacture thereof
JPH0964421A (en) * 1995-08-25 1997-03-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
JPH09129932A (en) * 1995-10-30 1997-05-16 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JPH09232632A (en) * 1995-12-22 1997-09-05 Toshiba Corp Semiconductor light-emitting element and manufacture thereof
JPH09293904A (en) * 1996-04-26 1997-11-11 Nichia Chem Ind Ltd Led package
JPH09320984A (en) * 1996-05-31 1997-12-12 Toyoda Gosei Co Ltd Electrode pad in p-conductive-type iii-group nitride semiconductor, element with electrode pad, and its manufacturing method
JPH1012567A (en) * 1996-06-18 1998-01-16 Toyoda Gosei Co Ltd Electrode for iii group nitride semiconductor and device having the same
JPH1056206A (en) * 1996-06-05 1998-02-24 Toshiba Corp Compound semiconductor light emitting element and fabrication thereof
JPH10135519A (en) * 1996-09-09 1998-05-22 Toshiba Corp Semiconductor light emitting element and its manufacturing method
JPH10190066A (en) * 1996-12-27 1998-07-21 Nichia Chem Ind Ltd Light emitting diode and led display using the same
JPH10209494A (en) * 1997-01-24 1998-08-07 Rohm Co Ltd Semiconductor light emitting device
JPH10233395A (en) * 1997-02-19 1998-09-02 Sony Corp Wiring of semiconductor device and its manufacture
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
JPH10303504A (en) * 1997-04-25 1998-11-13 Sharp Corp Gan compound semiconductor device and its manufacture
JPH11186598A (en) * 1997-12-15 1999-07-09 Hewlett Packard Co <Hp> Nitride semiconductor light-emitting device having reflecting p-electrode, its manufacture and semiconductor optical electronic device
JPH11191641A (en) * 1997-10-14 1999-07-13 Matsushita Electron Corp Semiconductor light-emitting element, semiconductor light-emitting device using the same and manufacture thereof
JP2000183400A (en) * 1998-12-17 2000-06-30 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009095B2 (en) * 1995-10-27 2000-02-14 日亜化学工業株式会社 Nitride semiconductor light emitting device

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49149679U (en) * 1973-04-27 1974-12-25
JPH05347430A (en) * 1991-07-17 1993-12-27 Ricoh Co Ltd Semiconductor light-emitting device
JPH0529661A (en) * 1991-07-19 1993-02-05 Ricoh Co Ltd Printer light source
JPH05275739A (en) * 1991-12-27 1993-10-22 American Teleph & Telegr Co <Att> Improved light-emitting diode
JPH05291621A (en) * 1992-04-10 1993-11-05 Nichia Chem Ind Ltd Electrode material of gallium nitride compound semiconductor
JPH0669546A (en) * 1992-08-21 1994-03-11 Asahi Chem Ind Co Ltd Light-emitting diode
JPH06152072A (en) * 1992-11-16 1994-05-31 Asahi Chem Ind Co Ltd Semiconductor laser
JPH06314822A (en) * 1993-04-28 1994-11-08 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element and electrode formation thereof
JPH07161712A (en) * 1993-12-02 1995-06-23 Fujitsu Ltd Pattern forming method
JPH07288340A (en) * 1994-04-19 1995-10-31 Mitsubishi Cable Ind Ltd Light emitting element and manufacture thereof
JPH08250768A (en) * 1995-03-13 1996-09-27 Toyoda Gosei Co Ltd Semiconductor optical element
JPH098403A (en) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd Nitride semiconductor element and manufacture thereof
JPH0964421A (en) * 1995-08-25 1997-03-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting diode
JPH09129932A (en) * 1995-10-30 1997-05-16 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JPH09232632A (en) * 1995-12-22 1997-09-05 Toshiba Corp Semiconductor light-emitting element and manufacture thereof
JPH09293904A (en) * 1996-04-26 1997-11-11 Nichia Chem Ind Ltd Led package
JPH09320984A (en) * 1996-05-31 1997-12-12 Toyoda Gosei Co Ltd Electrode pad in p-conductive-type iii-group nitride semiconductor, element with electrode pad, and its manufacturing method
JPH1056206A (en) * 1996-06-05 1998-02-24 Toshiba Corp Compound semiconductor light emitting element and fabrication thereof
JPH1012567A (en) * 1996-06-18 1998-01-16 Toyoda Gosei Co Ltd Electrode for iii group nitride semiconductor and device having the same
JPH10135519A (en) * 1996-09-09 1998-05-22 Toshiba Corp Semiconductor light emitting element and its manufacturing method
JPH10190066A (en) * 1996-12-27 1998-07-21 Nichia Chem Ind Ltd Light emitting diode and led display using the same
JPH10209494A (en) * 1997-01-24 1998-08-07 Rohm Co Ltd Semiconductor light emitting device
JPH10233395A (en) * 1997-02-19 1998-09-02 Sony Corp Wiring of semiconductor device and its manufacture
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
JPH10303504A (en) * 1997-04-25 1998-11-13 Sharp Corp Gan compound semiconductor device and its manufacture
JPH11191641A (en) * 1997-10-14 1999-07-13 Matsushita Electron Corp Semiconductor light-emitting element, semiconductor light-emitting device using the same and manufacture thereof
JPH11186598A (en) * 1997-12-15 1999-07-09 Hewlett Packard Co <Hp> Nitride semiconductor light-emitting device having reflecting p-electrode, its manufacture and semiconductor optical electronic device
JP2000183400A (en) * 1998-12-17 2000-06-30 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting element

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340514A (en) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd Flip-chip optical semiconductor element
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
JP2002246649A (en) * 2001-02-21 2002-08-30 Sony Corp Semiconductor light-emitting device, its manufacturing method, and connection structure of electrode layer
KR100438890B1 (en) * 2001-10-26 2004-07-02 학교법인 포항공과대학교 Gallium nitride-based Ⅲ-Ⅴ group compound semiconductor device and method of producing the same
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
US6924515B2 (en) 2002-06-06 2005-08-02 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element
JP2006506827A (en) * 2002-11-16 2006-02-23 エルジー イノテック カンパニー リミテッド Optical device and manufacturing method thereof
JP2004260048A (en) * 2003-02-27 2004-09-16 Korai Kagi Kofun Yugenkoshi Micro-type light emitting device
JP2004336021A (en) * 2003-05-07 2004-11-25 Samsung Electronics Co Ltd Thin-film electrode and method of manufacturing the same
JP2005011857A (en) * 2003-06-17 2005-01-13 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2005084634A (en) * 2003-09-11 2005-03-31 Seiko Epson Corp Light source device, manufacturing method for light source device, and projection type display device
JP4661038B2 (en) * 2003-09-11 2011-03-30 セイコーエプソン株式会社 LIGHT SOURCE DEVICE, LIGHT SOURCE DEVICE MANUFACTURING METHOD, PROJECTION TYPE DISPLAY DEVICE
US7193247B2 (en) 2003-09-16 2007-03-20 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device
US7049160B2 (en) 2003-09-16 2006-05-23 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device and method of manufacturing the same
JP2005117040A (en) * 2003-10-08 2005-04-28 Samsung Electronics Co Ltd Nitride-based light emitting element and manufacturing method therefor
JP2005142544A (en) * 2003-10-14 2005-06-02 Showa Denko Kk Gallium nitride-based compound semiconductor light emitting element, its positive electrode, light emitting diode using it, and lamp using it
JP2005123631A (en) * 2003-10-16 2005-05-12 Samsung Electronics Co Ltd Nitride system light-emitting device and manufacturing method therefor
US7285857B2 (en) 2003-10-27 2007-10-23 Samsung Electronics Co., Ltd. GaN-based III—V group compound semiconductor device and p-type electrode for the same
US7960746B2 (en) 2004-01-06 2011-06-14 Samsung Led Co., Ltd. Low resistance electrode and compound semiconductor light emitting device including the same
CN100442548C (en) * 2004-01-06 2008-12-10 三星电子株式会社 Low resistance electrode and compound semiconductor light emitting device including the same
JP2005197687A (en) * 2004-01-06 2005-07-21 Samsung Electronics Co Ltd Low-resistance electrode of compound semiconductor light-emitting element, and compound semiconductor light-emitting element using the same
WO2005069389A1 (en) * 2004-01-15 2005-07-28 Seoul Opto-Device Co., Ltd. Gallium nitride-based iii-v group compound semiconductor device and method of manufacturing the same
US8323999B2 (en) 2004-01-15 2012-12-04 Seoul Opto Device Co., Ltd. Gallium nitride-based III-V group compound semiconductor device and method of manufacturing the same
US7859109B2 (en) 2004-01-15 2010-12-28 Seoul Opto-Device Co., Ltd. Gallium nitride-based III-V group compound semiconductor device and method of manufacturing the same
JP2012069959A (en) * 2004-07-27 2012-04-05 Cree Inc Extremely thin ohmic contact for p type nitride light-emitting device and formation method thereof
US8759868B2 (en) 2004-07-27 2014-06-24 Cree, Inc. Ultra-thin ohmic contacts for p-type nitride light emitting devices
US8115212B2 (en) 2004-07-29 2012-02-14 Showa Denko K.K. Positive electrode for semiconductor light-emitting device
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
WO2006043422A1 (en) 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
JP2006229187A (en) * 2005-02-16 2006-08-31 Samsung Electro Mech Co Ltd Reflecting electrode, and compound semiconductor light emitting device having same
KR100650992B1 (en) 2005-03-21 2006-11-29 주식회사 이츠웰 GaN-based Semiconductor Light Emitting Diode containing Nickel forming part of n-type ohmic metal
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device
JP2007081088A (en) * 2005-09-14 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element
JP2007081333A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element and manufacturing method thereof
CN100383992C (en) * 2005-09-21 2008-04-23 南茂科技股份有限公司 Light-emitting diode and its manufacturing method
US8263997B2 (en) 2006-04-18 2012-09-11 Seoul Opto Device Co., Ltd. Method for forming ohmic electrode and semiconductor light emitting element
US8921885B2 (en) 2006-04-18 2014-12-30 Seoul Viosys Co., Ltd. Method for forming ohmic electrode and semiconductor light emitting element
WO2007120016A1 (en) * 2006-04-18 2007-10-25 Seoul Opto-Device Co., Ltd. Method for forming ohmic electrode and semiconductor light emitting element
WO2007123289A1 (en) * 2006-04-21 2007-11-01 Wavenics Inc. High efficiency led with multi-layer reflector structure and method for fabricating the same
KR100778820B1 (en) 2006-04-25 2007-11-22 포항공과대학교 산학협력단 METHOD FOR FORMING METAL ELECTRODE AND MANUFACTURING SEMICONDUCTOR LIGHT EMITTING ELEMENT AND GaN COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT
US9219198B2 (en) 2006-04-25 2015-12-22 Seoul Viosys Co., Ltd. Method for forming metal electrode, method for manufacturing semiconductor light emitting elements and nitride based compound semiconductor light emitting elements
JP2008103674A (en) * 2006-10-18 2008-05-01 Samsung Electro Mech Co Ltd Multilayer reflection film electrode and compound semiconductor light emitting device with same
US8916401B2 (en) 2007-07-03 2014-12-23 Nichia Corporation Method for fabricating semiconductor light emitting device
US8410510B2 (en) 2007-07-03 2013-04-02 Nichia Corporation Semiconductor light emitting device and method for fabricating the same
JP2009231356A (en) * 2008-03-19 2009-10-08 Nichia Corp Semiconductor light emitting device and method of manufacturing the same
JP2010034543A (en) * 2008-06-26 2010-02-12 Kyocera Corp Semiconductor light-emitting element and method of manufacturing the same
JP2014078711A (en) * 2012-10-10 2014-05-01 Advanced Optoelectronic Technology Inc Light emission diode and manufacturing method of the same

Also Published As

Publication number Publication date
KR19990088218A (en) 1999-12-27
KR100341382B1 (en) 2002-06-21
JP3736181B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP3736181B2 (en) Group III nitride compound semiconductor light emitting device
US7109529B2 (en) Light-emitting semiconductor device using group III nitride compound
JP5045336B2 (en) Semiconductor light emitting device
JP3912044B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JP3847477B2 (en) Group III nitride compound semiconductor light emitting device
JP5305790B2 (en) Semiconductor light emitting device
US8552455B2 (en) Semiconductor light-emitting diode and a production method therefor
US6794690B2 (en) Group III nitride compound semiconductor light-emitting element
JP5470673B2 (en) Semiconductor light emitting device and semiconductor light emitting element
US7868344B2 (en) Nitride semiconductor light emitting device including electrodes of a multilayer structure
JP4449405B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP4856870B2 (en) Low resistance electrode of compound semiconductor light emitting device and compound semiconductor light emitting device using the same
JP5780242B2 (en) Nitride semiconductor light emitting device
JP2009049267A (en) Semiconductor light-emitting device and method of manufacturing the same
JP2000294837A (en) Gallium nitride compound semiconductor light emitting element
JPH09129919A (en) Nitride semiconductor light emitting device
JP2007258323A (en) Semiconductor light emitting element
JPH0864871A (en) Gallium nitride compound semiconductor element
JP4925512B2 (en) Wavelength conversion type semiconductor device
JP5609607B2 (en) Nitride semiconductor light emitting device
TWI568024B (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2004349301A (en) Light emitting diode element electrode and light emitting diode element
JP2004363621A (en) Group iii nitride compound semiconductor light-emitting device
KR100764450B1 (en) Flip chip type nitride semiconductor light emitting diode
JP2006005378A (en) Group iii nitride compound semiconductor light-emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees