JP2000021605A - Ptc composition - Google Patents

Ptc composition

Info

Publication number
JP2000021605A
JP2000021605A JP10196787A JP19678798A JP2000021605A JP 2000021605 A JP2000021605 A JP 2000021605A JP 10196787 A JP10196787 A JP 10196787A JP 19678798 A JP19678798 A JP 19678798A JP 2000021605 A JP2000021605 A JP 2000021605A
Authority
JP
Japan
Prior art keywords
resistivity
ptc
temperature
polymer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10196787A
Other languages
Japanese (ja)
Inventor
Okikuni Takahata
興邦 高畑
Shinobu Anpo
忍 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10196787A priority Critical patent/JP2000021605A/en
Publication of JP2000021605A publication Critical patent/JP2000021605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a PTC composition (element) in which resistivity in a stationary state (room temperature) is sufficiently low, temperature does not increase abnormally when a current is made to flow, increase in resistivity at each operation is low, and operating temperature can be set arbitrarily. SOLUTION: By using powder of metal boride as conductive material to polymer based PTC composition, a stable PTC composition which shows sufficiently low resistivity at a normal temperature can be obtained. Especially, by compounding and using polyethylene whose melting point is at least 100 deg.C and copolymer whose melting point is at most 100 deg.C as polymer, PTC composite where resistivity in a stationary state is sufficiently low, temperature does not increase abnormally when a current is made to flow, increase in resistivity at each operation is low and an operation temperature can be arbitrarily set can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、PTC(Positive
Temperature Coefficent:正温度係数)と略称され
る、電気抵抗が正の温度係数を有する電気抵抗体を構成
する組成物に関係し、特に、主要成分として高分子材料
(ポリマー)と導電性物質を用いた、電気抵抗が正の温
度係数を持つ有機導電性組成物(以下、高分子PTC組
成物と称す)に関する。
TECHNICAL FIELD The present invention relates to a PTC (Positive
Temperature Coefficent, which is abbreviated as "positive temperature coefficient", relates to a composition of an electric resistor having an electric resistance having a positive temperature coefficient. In particular, a polymer material (polymer) and a conductive substance are used as main components. And an organic conductive composition having an electric resistance having a positive temperature coefficient (hereinafter, referred to as a polymer PTC composition).

【0002】[0002]

【従来の技術】PTC組成物は、一般に電子部品とし
て、電池、電子機器の異常発生時に流れる過電流を防止
する過電流保護素子や、発熱体素子等として用いられ
る。
2. Description of the Related Art A PTC composition is generally used as an electronic component as an overcurrent protection element for preventing an overcurrent flowing when an abnormality occurs in a battery or an electronic device, a heating element, or the like.

【0003】従来から、PTC特性を有するものとし
て、セラミックス系のY23を微量含有したBaTiO
3等の無機導電性組成物や、高分子系のポリエチレン等
のような結晶性高分子にカーボンブラックの微粒子等の
ような導電性をもつ粉末を混練した有機導電性組成物が
知られている。
Conventionally, BaTiO containing a small amount of ceramic Y 2 O 3 has been proposed as having PTC characteristics.
Organic conductive compositions obtained by kneading an inorganic conductive composition such as 3 or a crystalline polymer such as a high molecular weight polyethylene with a conductive powder such as carbon black fine particles are known. .

【0004】PTC組成物で構成される抵抗体素子(以
下、PTC素子と称す)に電流が流されると、その素子
の抵抗値Rと、素子に流された電流値Iに依存するいわ
ゆるジュール熱(I2R)が発生し、この熱により加熱され
PTC素子は昇温する。素子自信の昇温により、素子の
電気抵抗(抵抗率)の温度係数が正であるため、電気抵
抗は上昇する。
When a current flows through a resistor element (hereinafter, referred to as a PTC element) composed of a PTC composition, a so-called Joule heat which depends on a resistance value R of the element and a current value I flowing through the element is obtained. (I 2 R) is generated, and the PTC element is heated by this heat and the temperature rises. As the temperature rise of the element itself, the electric resistance increases because the temperature coefficient of the electric resistance (resistivity) of the element is positive.

【0005】そのため、PTC素子に比較的大きな電流
が流れると、発熱が急に起こり、抵抗値(抵抗率)が急
に上昇し、電流を抑制する働きがある。この特性を利用
して、PTC組成物は、定温保持ができる安全な発熱体
や、過電流を阻止する過電流保護素子等に使用されてい
る。また、この過電流保護素子等のPTC素子に要求さ
れる特性は、室温で概ね2Ω・cm以下程度の、十分小
さな抵抗率であることである。
Therefore, when a relatively large current flows through the PTC element, heat is suddenly generated, the resistance value (resistivity) rises abruptly, and there is a function of suppressing the current. Utilizing this property, the PTC composition is used for a safe heating element capable of maintaining a constant temperature, an overcurrent protection element for preventing overcurrent, and the like. A characteristic required of the PTC element such as the overcurrent protection element is that it has a sufficiently small resistivity of about 2 Ω · cm or less at room temperature.

【0006】[0006]

【発明が解決しようとする課題】しかし、PTC素子に
は、室温において、低抵抗で大きな電流を流すことがで
き、温度上昇と共に抵抗が増大して電流を制限する特性
が要求される。従って、過電流保護素子等に使用する場
合、セラミックス系のPTC組成物等では、室温状態で
の抵抗率が100Ω・cm程度と高いため、数アンペア
(A)程度の比較的大きな電流を流すことができないた
め、電池、電子機器の異常発生時に流れる過電流を防止
する過電流保護素子として、使用出来ないという問題が
ある。
However, the PTC element is required to have a characteristic of allowing a large current to flow with a low resistance at room temperature and increasing the resistance with the rise in temperature to limit the current. Therefore, when used in an overcurrent protection element, a relatively large current of about several amperes (A) must be applied to a ceramic PTC composition or the like since the resistivity at room temperature is as high as about 100 Ω · cm. Therefore, there is a problem that it cannot be used as an overcurrent protection element for preventing an overcurrent flowing when an abnormality occurs in a battery or an electronic device.

【0007】また、所望形状に成形加工することは、複
雑な工程を必要とし、困難であるとともに、耐衝撃性に
も問題があるため、発熱体としては使い難いという問題
がある。
[0007] Forming into a desired shape requires complicated steps and is difficult, and also has a problem in impact resistance, so that it is difficult to use it as a heating element.

【0008】これに対して、結晶性高分子(ポリマー)
を用いる高分子系のPTC組成物は、室温抵抗を低く設
定できること、成形加工が容易であること、耐衝撃性に
優れていることから、過電流保護素子や面状発熱体等に
広く用いられている。
On the other hand, crystalline polymers (polymers)
Polymer-based PTC compositions are widely used for overcurrent protection elements and sheet heating elements because of their ability to set low room temperature resistance, easy molding and excellent impact resistance. ing.

【0009】例えば、半導体素子では、温度上昇と共に
抵抗が小さくなるので、半導体素子使用回路では、周辺
で異常が発生し昇温した時、過電流が流れ易くなる。ま
た、回路に過電流が流れた場合、素子周囲の温度を更に
上昇し、素子を破損する恐れがあるため、このような回
路では、過電流保護素子により回路の破損を防止してい
る。従って、常温状態で、低い抵抗率を持ち、温度上昇
と共に、急激に抵抗値が上昇し、増加する電流を抑制す
ることが出来るPTC組成物が要求される。
For example, in a semiconductor device, since the resistance decreases as the temperature rises, in a circuit using the semiconductor device, when an abnormality occurs in the periphery and the temperature rises, an overcurrent easily flows. Further, when an overcurrent flows through the circuit, the temperature around the element may be further increased and the element may be damaged. Therefore, in such a circuit, the circuit is prevented from being damaged by an overcurrent protection element. Accordingly, there is a need for a PTC composition that has a low resistivity at room temperature, and whose resistance value sharply increases as the temperature rises, and that can suppress an increasing current.

【0010】一般に、従来の高分子系PTC組成物は、
カーボンブラックの粉末等の比較的粒径の小さな導電性
粒子を用いており、ポリマーマトリックスの結晶融点よ
り低い温度にある間は、導電性粒子がポリマーマトリッ
クスの非晶質領域にのみ存在し、導電性粒子相互に接続
されたネットワークを通って移動する電子により低い抵
抗率を示す。温度が上昇するにつれてポリマーマトリッ
クスが融解し始めると、ポリマーマトリックスの粘度を
保ったまま非結晶相の体積が相対的に増加し、更に進行
すると、非晶質領域にのみ存在した導電性粒子が、マト
リックス全体に拡散する。そのため、導電性粒子間のネ
ットワークが切断され、抵抗率が急激に上昇する。即
ち、抵抗率が正の温度特性を持つことになる。その後、
PTC組成物の温度が常温に戻ると、再び、導電性粒子
は、ポリマーマトリックスの非晶質領域に集中し、粒子
間ネットワークが再編成されるため、低い抵抗率を示
す。
Generally, conventional polymer-based PTC compositions include:
Uses conductive particles of relatively small particle size, such as carbon black powder.During the temperature lower than the crystal melting point of the polymer matrix, the conductive particles exist only in the amorphous region of the polymer matrix, Electrons traveling through a network of interconnected interconnected particles exhibit lower resistivity. When the polymer matrix begins to melt as the temperature increases, the volume of the non-crystalline phase relatively increases while maintaining the viscosity of the polymer matrix, and further progresses, the conductive particles existing only in the amorphous region, Spread throughout the matrix. Therefore, the network between the conductive particles is cut, and the resistivity sharply increases. That is, the resistivity has a positive temperature characteristic. afterwards,
When the temperature of the PTC composition returns to room temperature, the conductive particles again exhibit a low resistivity because they are concentrated in the amorphous regions of the polymer matrix and the interparticle network is rearranged.

【0011】この高分子系のPTC組成物で、室温にお
ける抵抗率を低下させるには、PTC組成物に分散させ
る導電性粉末の分散量を増加させる必要がある。しか
し、室温の抵抗率を低下させるために、高分子系PTC
組成物中に粒径の小さな導電性粒子の分散量を増加させ
ると、ポリマーマトリックスの非晶質領域での部分的な
導電性粉末の凝集がおき、抵抗率の低い部分的な導電経
路が形成される。そこへ比較的大きな電流が流れると、
高分子PTC組成物の温度上昇、高分子PTC組成
物の平均抵抗率が上昇、導電性粒子の凝縮した部分的
な導電経路へ電流が集中、或いは凝集部で絶縁破壊、
部分的な異常発熱から異常に昇温、のステップで高分子
系のPTC組成物から成るPTC素子が焼損する恐れが
考えられる。
In order to lower the resistivity at room temperature in this polymer-based PTC composition, it is necessary to increase the amount of conductive powder dispersed in the PTC composition. However, in order to lower the room temperature resistivity, a polymer-based PTC
Increasing the amount of small conductive particles dispersed in the composition causes partial agglomeration of the conductive powder in the amorphous regions of the polymer matrix, forming partial conductive paths with low resistivity Is done. When a relatively large current flows there,
The temperature of the polymer PTC composition increases, the average resistivity of the polymer PTC composition increases, current concentrates on the partial conductive path where the conductive particles are condensed, or dielectric breakdown occurs at the aggregated portion,
It is conceivable that the PTC element made of the polymer-based PTC composition may be burned out in the step of raising the temperature from partial abnormal heating to abnormal temperature.

【0012】他の室温の抵抗率を低下させる方法として
は、高分子系PTC組成物に分散させる導電性粉末を抵
抗率の低い粉末に置き換えることが考えられる。例え
ば、金属粉末の抵抗率は、カーボンブラックの約1/1
000程度である。しかし、PTC組成物に導電性粉末
として金属粉末を分散させた場合、通常は金属粉末自体
の凝集が起こり、前述と同様の理由で、PTC組成物に
比較的大きな電流が流れた場合に異常昇温が生じる。ま
た、金属導電性粉末を分散させたPTC組成物は、繰り
返し動作毎に室温抵抗率が上昇するという傾向がある。
これは、金属導電性粉末を分散させた高分子PTC組成
物では、繰り返し使用に耐えないという問題があること
を意味している。
As another method for lowering the resistivity at room temperature, it is conceivable to replace the conductive powder dispersed in the polymer PTC composition with a powder having a low resistivity. For example, the resistivity of metal powder is about 1/1 of that of carbon black.
It is about 000. However, when a metal powder is dispersed as a conductive powder in the PTC composition, the metal powder itself usually agglomerates. For the same reason as described above, when a relatively large current flows through the PTC composition, an abnormal rise occurs. Temperature develops. Further, the PTC composition in which the metal conductive powder is dispersed has a tendency that the room temperature resistivity increases with each repetitive operation.
This means that the polymer PTC composition in which the metal conductive powder is dispersed has a problem that it cannot withstand repeated use.

【0013】更に、高分子PTC組成物の抵抗率が急激
に立ち上がる温度(過電流保護素子では動作温度)は、
一般的に、高分子マトリックスの融点によって決定され
る。即ち、高分子PTC組成物の動作温度を変えるに
は、高分子マトリックス自体を変えなければならない。
これは、高分子PTC組成物の動作温度を任意に設定す
ることが、事実上、不可能なことを意味している。
Further, the temperature at which the resistivity of the polymer PTC composition rapidly rises (operating temperature in the case of an overcurrent protection element) is:
Generally, it is determined by the melting point of the polymer matrix. That is, to change the operating temperature of the polymer PTC composition, the polymer matrix itself must be changed.
This means that it is virtually impossible to arbitrarily set the operating temperature of the polymer PTC composition.

【0014】従って、本発明の課題は、定常状態(室
温)での抵抗率が十分低く、電流を流したときに異常昇
温せず、動作毎の抵抗率の上昇が少なく、動作温度を任
意に設定可能なPTC組成物を提供することにある。
Accordingly, an object of the present invention is to provide a semiconductor device having a sufficiently low resistivity in a steady state (room temperature), no abnormal temperature rise when a current is applied, a small increase in resistivity at each operation, and an optional operating temperature. It is an object of the present invention to provide a PTC composition which can be set to:

【0015】[0015]

【課題を解決するための手段】以上の問題を解決するた
めに、本発明者らは、種々検討を行った結果、高分子系
PTC組成物の導電性物質の粉末として、金属硼化物の
粉末を分散させることが有効であることを見出した。
In order to solve the above problems, the present inventors have conducted various studies and found that a metal boride powder was used as a conductive material powder of a polymer-based PTC composition. Has been found to be effective.

【0016】金属硼化物の粉末を使用した場合、従来の
カーボンブラックの粉末等を使用した場合と同様なPT
C特性が得られる。また、金属硼化物物の粉末を分散さ
せた場合、金属硼化物の粉末がポリマーマトリクスの非
晶質領域で集中せず、また、金属硼化物の粉末自体の凝
集が生じないので、室温での抵抗率を低下させるために
加える導電性粉末の分散量を増加させても、部分的な導
電経路が形成されることなく、大きな電流が流れた際の
異常昇温が生じない。また、金属硼化物の粉末を分散さ
せた高分子PTC組成物は、繰り返し動作させても室温
抵抗率の顕著な上昇が観られない。
When a metal boride powder is used, the same PT is used as when a conventional carbon black powder or the like is used.
C characteristics are obtained. Further, when the metal boride powder is dispersed, the metal boride powder does not concentrate in the amorphous region of the polymer matrix, and the metal boride powder itself does not aggregate. Even if the amount of dispersion of the conductive powder added to reduce the resistivity is increased, a partial conductive path is not formed, and abnormal temperature rise when a large current flows does not occur. Further, in the polymer PTC composition in which the metal boride powder is dispersed, no remarkable increase in the room temperature resistivity is observed even when the composition is repeatedly operated.

【0017】また、高分子系PTC組成物のポリマーと
して、融点が100℃以上のポリエチレンと、融点が1
00℃未満のコポリマーとを複合させ、これに金属硼化
物の粉末を分散させた場合、ポリエチレンとコポリマー
との複合割合に応じて、動作温度を約20℃乃至約13
0℃程度の範囲で、自由に設定する事が可能である。
Further, as the polymer of the high molecular weight PTC composition, polyethylene having a melting point of 100 ° C. or more,
When a copolymer with a copolymer having a temperature of less than 00 ° C. is mixed and a metal boride powder is dispersed therein, an operating temperature of about 20 ° C. to about 13 ° C. depends on the composite ratio of the polyethylene and the copolymer.
It can be set freely within the range of about 0 ° C.

【0018】即ち、本発明は、主な構成要素として、
ポリマーと、導電性物質の粉末から成るPTC(電気抵
抗が正の温度係数を持つ)組成物において、導電性物質
として金属硼化物を用い、この金属硼化物の含有量が組
成物全体の10vol%以上60vol%以下の範囲で
あるPTC組成物である。
That is, the present invention comprises, as main components,
In a PTC (electrical resistance has a positive temperature coefficient) composition comprising a polymer and a powder of a conductive substance, a metal boride is used as the conductive substance, and the content of the metal boride is 10 vol% of the entire composition. The PTC composition has a range of 60 vol% or less.

【0019】また、本発明は、上記のPTC組成物
において、前記金属硼化物としてTiB2、WB、Cr
B、ZrB2、NbB2、TaB2、MoB、または、L
aB6のうち、少なくとも何れか一つを含有するPTC
組成物である。
Further, the present invention provides the above PTC composition, wherein the metal boride is TiB 2 , WB, Cr.
B, ZrB 2, NbB 2, TaB 2, MoB , or,, L
PTC containing at least one of aB 6
A composition.

【0020】更に、本発明は、上記、またはの何
れかに記載のPTC組成物において、ポリマーとして、
融点が100℃以上のポリエチレンと、融点が100℃
未満のコポリマーとを複合して用い、コポリマーの含有
量がポリエチレンの含有量に対して80vol%以下
(0を含まず)の範囲であるPTC組成物である。
Further, the present invention provides the PTC composition as described above or any one of the above, wherein
Polyethylene having a melting point of 100 ° C or higher, and a melting point of 100 ° C
A PTC composition in which the copolymer content is less than 80 vol% (not including 0) based on the polyethylene content.

【0021】[0021]

【発明の実施の形態】本発明は、ポリマーと、導電性物
質の粉末を主な構成要素とし、導電性物質として金属硼
化物を用いた高分子系のPTC組成物で、この金属硼化
物の含有量が組成物全体の10vol%以上60vol
%以下の範囲で含有するPTC組成物である。また、前
記金属硼化物としてTiB2、WB、CrB、ZrB
2、NbB2、TaB2、MoB、または、LaB6の
うち、少なくとも何れか一つを含有するPTC組成物で
ある。更に、ポリマーとして、融点が100℃以上のポ
リエチレンと、融点が100℃未満のコポリマーを、コ
ポリマーの含有量がポリエチレンの含有量に対して80
vol%以下(0を含まず)の範囲で複合して用いたP
TC組成物である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polymer-based PTC composition comprising a polymer and a conductive substance powder as main constituents and a metal boride as a conductive substance. The content is 10 vol% or more and 60 vol of the whole composition.
% Of the PTC composition. Further, TiB2, WB, CrB, ZrB may be used as the metal boride.
2, a PTC composition containing at least one of NbB2, TaB2, MoB, and LaB6. Further, as the polymer, a polyethylene having a melting point of 100 ° C. or more and a copolymer having a melting point of less than 100 ° C. are used, wherein the content of the copolymer is 80 to the content of the polyethylene.
P used in combination within the range of vol% or less (excluding 0)
It is a TC composition.

【0022】以上のように、本発明は、高分子系PTC
組成物に導電性物質として、金属硼化物の粉末を使用す
ることにより、常温で、十分低い抵抗率を示し、安定し
たPTC組成物が得られ、特に、ポリマーとして、融点
が100℃以上のポリエチレンと、融点が100℃未満
のコポリマーとを複合して使用することによって、定常
状態での抵抗値が十分低く、電流を流したときに異常昇
温せず、動作毎の抵抗率の上昇が少なく、動作温度を任
意に設定可能なPTC組成物が得られる。
As described above, the present invention provides a polymer-based PTC
By using a metal boride powder as a conductive material in the composition, a sufficiently low resistivity at room temperature can be obtained, and a stable PTC composition can be obtained. In particular, as a polymer, polyethylene having a melting point of 100 ° C. or more is used. And a copolymer having a melting point of less than 100 ° C. are used in combination, so that the resistance value in a steady state is sufficiently low, the temperature does not rise abnormally when a current is applied, and the resistivity rise at each operation is small. As a result, a PTC composition whose operating temperature can be arbitrarily set can be obtained.

【0023】[0023]

【実施例】以下、本発明を、実施例により、図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below by way of embodiments with reference to the drawings.

【0024】図1は、本発明の実施例、及び比較例のP
TC組成物の抵抗率の温度依存特性を示す図、図2は、
本発明の他の実施例、及び比較例の50V、10Aを繰
り返し加えて動作させたとき、抵抗率の動作回数依存特
性を示す図である。
FIG. 1 is a graph showing P and P of Examples of the present invention and Comparative Examples.
FIG. 2 shows a temperature-dependent characteristic of the resistivity of the TC composition, and FIG.
FIG. 10 is a diagram showing the number-of-operations-dependent characteristics of resistivity when repeatedly operating at 50 V and 10 A according to another embodiment of the present invention and a comparative example.

【0025】まず、ポリマーとして、融点が約130℃
の結晶性高密度ポリエチレンに、融点が約70℃のエチ
レン系コポリマーを、ポリエチレン総量に対して、体積
比で、0乃至80vol%となるように秤量し、これを
ロールミルで加熱混練し、複合ポリマーを作成した。得
られた複合ポリマーに、金属硼化物の粉末をポリマーに
対して10乃至65vol%となるようにロールミルで
加熱混練し、高分子系のPTC組成物を得た。金属硼化
物の粉末としては、各々粒径が約1乃至5μm程度のT
iB2、WB、CrB、ZrB2、NbB2、TaB2、M
oB、LaB6を用いた。
First, as a polymer, the melting point is about 130 ° C.
The crystalline high-density polyethylene is weighed with an ethylene copolymer having a melting point of about 70 ° C. in a volume ratio of 0 to 80 vol% with respect to the total amount of polyethylene, and the mixture is heated and kneaded with a roll mill to obtain a composite polymer. It was created. The resulting composite polymer was heated and kneaded with a metal boride powder in a roll mill so as to have a content of 10 to 65 vol% with respect to the polymer to obtain a polymer-based PTC composition. As the metal boride powder, T particles each having a particle size of about 1 to 5 μm are used.
iB 2 , WB, CrB, ZrB 2 , NbB 2 , TaB 2 , M
oB, using the LaB 6.

【0026】得られた混練物を粉末化した後、金属箔の
間に挟んだ状態で100乃至200℃程度の温度で加熱
圧縮成型することにより、厚さ1mmの成型体を得、外
径15mm、内径10.6mmのリング状に打ち抜き高
分子系PTC組成物から成るPTC素子を得た。
After the obtained kneaded material is powdered, it is heated and compression molded at a temperature of about 100 to 200 ° C. while being sandwiched between metal foils to obtain a molded body having a thickness of 1 mm and an outer diameter of 15 mm. A PTC element made of a polymer-based PTC composition was punched out into a ring having an inner diameter of 10.6 mm.

【0027】また、比較のため、同様の方法で、カーボ
ンブラックを導電性物質の粉末として使用した比較例の
高分子PTC素子を作製した。
For comparison, a polymer PTC element of a comparative example using carbon black as a conductive material powder was prepared in the same manner.

【0028】ここで、実施例の高分子PTC組成物の目
標特性を、室温の抵抗率が前述のように、2Ω・cm以
下であること、抵抗率が急激に上昇した後(スイッチン
グ後)の抵抗率と室温での抵抗率の比(スイッチング後
のR/室温のR)が、過電流保護素子として十分動作
し、かつ、面状発熱体として十分使用可能である104
以上であることとした。また、高分子PTC組成物の繰
り返しスイッチングさせた際の室温抵抗率目標値は、5
00回スイッチング後にも2Ω・cmを上回らないこと
とした。
Here, the target characteristics of the polymer PTC composition of the example are as follows: the resistivity at room temperature is 2 Ω · cm or less, as described above, and the resistivity after a sharp rise in the resistivity (after switching). The ratio of the resistivity to the resistivity at room temperature (R after switching / R at room temperature) is 10 4 which sufficiently operates as an overcurrent protection element and can be sufficiently used as a sheet heating element.
That is all. The target value of the room temperature resistivity when the polymer PTC composition is repeatedly switched is 5
It was determined that the value did not exceed 2 Ω · cm even after switching 100 times.

【0029】実施例と比較例の高分子PTC組成物から
成るPTC素子の温度と抵抗率の測定結果を図1に示し
た。測定は、オイルバス中で、4端子法を用いた。図1
から分かるように、実施例の高密度ポリエチレンに金属
硼化物の粉末を分散させたPTC素子(図1中2)は、
室温での抵抗率が2Ω・cm以下と目標をクリアしてい
る。かつ、抵抗率−温度曲線の挙動は、ポリエチレンに
カーボンブラックのみを分散させた比較例のPTC素子
(図1中1)とほぼ同等で、抵抗率の比は、(スイッチ
ング後のR/室温R)>108と目標を大きく上回って
いる。
FIG. 1 shows the measurement results of the temperature and the resistivity of the PTC devices comprising the polymer PTC compositions of the examples and the comparative examples. The measurement used the four-terminal method in the oil bath. FIG.
As can be seen from FIG. 1, the PTC element (2 in FIG. 1) in which the metal boride powder is dispersed in the high-density polyethylene of the example is:
The resistivity at room temperature is 2Ω · cm or less, meeting the target. Further, the behavior of the resistivity-temperature curve is almost equivalent to that of the PTC element of Comparative Example (1 in FIG. 1) in which only carbon black is dispersed in polyethylene, and the ratio of the resistivity is (R after switching / R at room temperature R). )> 10 8 , greatly exceeding the target.

【0030】また、ポリマーを高密度ポリエチレンとエ
チレン系コポリマーの複合ポリマーとした実施例のPT
C素子(図1中3、4、5)の場合、エチレン系コポリ
マーの組成比の増加に伴い、PTC素子の動作温度が低
下していることが分かる。このことは即ち、ポリエチレ
ンとコポリマーの複合比により、高分子系PTC組成物
より成るPTC素子の動作温度が自由に設定できること
を示している。
The PT of the embodiment in which the polymer is a composite polymer of high-density polyethylene and an ethylene copolymer is used.
In the case of the C element (3, 4, and 5 in FIG. 1), it can be seen that the operating temperature of the PTC element decreases as the composition ratio of the ethylene copolymer increases. This indicates that the operating temperature of the PTC element made of the polymer-based PTC composition can be freely set depending on the composite ratio of the polyethylene and the copolymer.

【0031】次に、前述のようにして得られた実施例と
比較例のPTC素子に、10A(50V)の電流を繰り
返し通電した際の動作後の抵抗率の変化を図2に示し
た。図2から分かるように、カーボンブラックを20v
ol%分散させた比較例のPTC素子(図2中6)は、
繰り返し通電後の抵抗率の変化は少ないが、室温の抵抗
率が目標値より高い。
Next, FIG. 2 shows a change in resistivity after operation when a current of 10 A (50 V) was repeatedly applied to the PTC elements of the example and the comparative example obtained as described above. As can be seen from FIG.
The PTC element of Comparative Example (6 in FIG. 2) in which
Although the change in resistivity after repeated energization is small, the resistivity at room temperature is higher than the target value.

【0032】カーボンブラックのみを30vol%分散
させた比較例のPTC素子(図2中7)は、初期の室温
抵抗は2Ω・cm以下であるが、1回目の通電で発火点
に達する昇温をした。これに対して、金属硼化物の粉末
を50vol%分散させた実施例のPTC素子(図2中
8)では、室温抵抗率は2Ω・cm以下と目標値をクリ
ア出来、かつ、繰り返し通電後も2Ω・cm以下と室温
抵抗目標値以内を維持した。
The PTC element (7 in FIG. 2) of the comparative example in which only carbon black was dispersed at 30 vol% had an initial room temperature resistance of 2 Ω · cm or less, but the temperature rose to the ignition point by the first energization. did. On the other hand, in the PTC element of the embodiment (8 in FIG. 2) in which the metal boride powder is dispersed by 50 vol%, the room temperature resistivity can be cleared to the target value of 2 Ω · cm or less, and even after repeated energization. The resistance was kept at 2 Ω · cm or less and within the target value of the room temperature resistance.

【0033】次に、表1に、PTC組成物における金属
硼化物粉末分散量、及びポリエチレンに対するコポリマ
ー複合比を変化させた場合の高分子系PTC組成物から
成るPTC素子を、スイッチング[10A(50V)通
電]させた際の特性を示した。
Next, Table 1 shows that a PTC element composed of a polymer-based PTC composition in the case where the dispersion amount of the metal boride powder in the PTC composition and the copolymer composite ratio with respect to polyethylene was changed, was switched [10A (50 V). ) Energization].

【0034】 [0034]

【0035】表1から分かるように、導電性粉末の分散
量が10vol%未満の場合、室温抵抗率が目標に達し
ないため、本発明の範囲から除外される。また、導電性
粉末の分散量が60vol%を上回ると、室温の抵抗率
が著しく低下し、通電時のPTC素子のスイッチング動
作の現象がみられなくなるため、本発明の範囲から除外
される。コポリマーの複合比が80vol%を上回る
と、室温の抵抗率が目標に達しないため、本発明の範囲
から除外される。なお、ポリエチレンのみの場合(複合
比0vol%)でも、本発明の目的を達成していること
は明らかである。
As can be seen from Table 1, when the dispersion amount of the conductive powder is less than 10 vol%, the room temperature resistivity does not reach the target, and is excluded from the scope of the present invention. Further, when the dispersion amount of the conductive powder exceeds 60 vol%, the resistivity at room temperature is remarkably reduced, and the phenomenon of the switching operation of the PTC element at the time of energization is not observed, so that it is excluded from the scope of the present invention. If the composite ratio of the copolymer exceeds 80 vol%, the resistivity at room temperature does not reach the target, and is excluded from the scope of the present invention. It is clear that the object of the present invention has been achieved even with polyethylene alone (composite ratio 0 vol%).

【0036】表2に、導電性物質として各金属硼化物を
単独で使用した場合の、高分子PTC組成物の特性を示
した。
Table 2 shows the characteristics of the polymer PTC composition when each metal boride was used alone as the conductive substance.

【0037】 [0037]

【0038】表2から分かるように、いずれの金属硼化
物粉末を用いても、目標を達成した高分子PTC組成物
が得られていることが分かる。また、上記は、各金属硼
化物を単独で含有する場合について示したが、これらを
組み合わせて含有させても、同様の効果が得られる。そ
の配合比の選択は、ポリマーとの組み合わせの相性や、
特性とコストの相関より選択される。
As can be seen from Table 2, it can be seen that a polymer PTC composition which achieved the target was obtained using any of the metal boride powders. In the above description, the case where each metal boride is contained alone is shown. However, the same effect can be obtained even if these are combined and contained. The selection of the compounding ratio depends on the compatibility with the polymer,
It is selected from the correlation between characteristics and cost.

【0039】[0039]

【発明の効果】以上、説明したように、本発明によれ
ば、ポリマーとして融点が100℃以上のポリエチレン
と、融点が100℃未満のコポリマーとを複合させ、導
電性粉末として金属硼化物粉末を分散させることによっ
て、定常状態での抵抗値が十分低く、電流を流したとき
に異常な昇温をせず、動作毎の抵抗上昇が少なく、動作
温度を任意に設定可能な高分子系のPTC組成物が得ら
れる。
As described above, according to the present invention, as a polymer, a polyethylene having a melting point of 100 ° C. or more and a copolymer having a melting point of less than 100 ° C. are combined, and a metal boride powder is used as a conductive powder. By dispersing, a polymer PTC whose resistance value in a steady state is sufficiently low, does not cause abnormal temperature rise when a current is applied, has a small resistance rise at each operation, and can arbitrarily set an operation temperature A composition is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例、及び比較例のPTC組成物の
抵抗率の温度依存特性を示す図。
FIG. 1 is a graph showing the temperature dependence of the resistivity of PTC compositions of Examples of the present invention and Comparative Examples.

【図2】本発明の実施例、及び比較例の50V、10A
を繰り返し加え動作させたときの抵抗率の動作回数依存
特性を示す図。
FIG. 2 shows 50 V and 10 A of an example of the present invention and a comparative example.
FIG. 6 is a graph showing the number-of-operations-dependent characteristics of the resistivity when the operation is repeatedly performed.

【符号の説明】[Explanation of symbols]

1 ポリエチレンのみにカーボンブラック含有のPT
C素子の抵抗率の温度依存特性曲線 2 ポリエチレンのみに金属硼化物粉末含有のPTC
素子の抵抗率の温度依存特性曲線 3 (ポリエチレン80+コポリマー20)に金属硼
化物粉末含有のPTC素子の抵抗率の温度依存特性曲線 4 (ポリエチレン60+コポリマー40)に金属硼
化物粉末含有のPTC素子の抵抗率の温度依存特性曲線 5 (ポリエチレン40+コポリマー60)に金属硼
化物粉末含有のPTC素子の抵抗率の温度依存特性曲線 6 20vol%カーボンブラック含有PTC素子の
抵抗率の動作回数依存特性曲線 7 30vol%カーボンブラック含有PTC素子の
抵抗率の動作回数依存特性曲線 8 50vol%金属硼化物粉末含有PTC素子の抵
抗率の動作回数依存特性曲線
1 PT containing carbon black only in polyethylene
Temperature dependence characteristic curve of resistivity of element C 2 PTC containing metal boride powder only in polyethylene
Temperature-dependent characteristic curve of resistivity of element 3 Temperature-dependent characteristic curve of resistivity of PTC element containing metal boride powder in (polyethylene 80 + copolymer 20) 4 PTC element containing metal boride powder in (polyethylene 60 + copolymer 40) Temperature-dependent characteristic curve of resistivity 5 Temperature-dependent characteristic curve of resistivity of PTC element containing metal boride powder in (polyethylene 40 + copolymer 60) 6 Characteristic curve of operation number dependence of resistivity of PTC element containing 20 vol% carbon black 7 30 vol % Operation characteristic curve of the resistivity of the PTC element containing 50% by volume of carbon black.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主な構成要素として、ポリマーと、導電
性物質の粉末から成るPTC(電気抵抗が正の温度係数
を持つ)組成物において、導電性物質として金属硼化物
を用い、この金属硼化物の含有量が組成物全体の10v
ol%以上60vol%以下の範囲であることを特徴と
するPTC組成物。
1. A PTC (electrical resistance has a positive temperature coefficient) composition comprising a polymer and a powder of a conductive material as main constituents, wherein a metal boride is used as the conductive material. Content of 10 v of the entire composition
The PTC composition is in a range of not less than ol% and not more than 60 vol%.
【請求項2】 請求項1記載のPTC組成物において、
前記金属硼化物としてTiB2、WB、CrB、Zr
2、NbB2、TaB2、MoB、または、LaB6のう
ち、少なくとも何れか一つを含有することを特徴とする
PTC組成物。
2. The PTC composition according to claim 1, wherein
TiB 2 , WB, CrB, Zr as the metal boride
B 2, NbB 2, TaB 2 , MoB , or of LaB 6, PTC composition characterized by containing at least any one.
【請求項3】 請求項1、または請求項2の何れかに記
載のPTC組成物において、ポリマーとして、融点が1
00℃以上のポリエチレンと、融点が100℃未満のコ
ポリマーとを複合して用い、コポリマーの含有量がポリ
エチレンの含有量に対して80vol%以下(0を含ま
ず)の範囲であることを特徴とするPTC組成物。
3. The PTC composition according to claim 1, wherein the polymer has a melting point of 1%.
It is characterized in that a polyethylene having a temperature of at least 00 ° C. and a copolymer having a melting point of less than 100 ° C. are used in combination, and the content of the copolymer is in the range of 80 vol% or less (not including 0) with respect to the content of the polyethylene. PTC composition.
JP10196787A 1998-06-26 1998-06-26 Ptc composition Pending JP2000021605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10196787A JP2000021605A (en) 1998-06-26 1998-06-26 Ptc composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10196787A JP2000021605A (en) 1998-06-26 1998-06-26 Ptc composition

Publications (1)

Publication Number Publication Date
JP2000021605A true JP2000021605A (en) 2000-01-21

Family

ID=16363645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10196787A Pending JP2000021605A (en) 1998-06-26 1998-06-26 Ptc composition

Country Status (1)

Country Link
JP (1) JP2000021605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773634B2 (en) 2000-02-01 2004-08-10 Ube Industries, Ltd. Conductive polymer composition and PTC element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773634B2 (en) 2000-02-01 2004-08-10 Ube Industries, Ltd. Conductive polymer composition and PTC element

Similar Documents

Publication Publication Date Title
US8653932B2 (en) Conductive composite material with positive temperature coefficient of resistance and overcurrent protection component
US6090313A (en) High temperature PTC device and conductive polymer composition
JP3333913B2 (en) Conductive polymer composition and PTC device
US6074576A (en) Conductive polymer materials for high voltage PTC devices
CN103904294A (en) Lithium ion battery and electrode structure thereof
KR20070019542A (en) Over-current protection device
WO2003019578A1 (en) Conductive polymer having positive temperature coefficient, method of controlling positive temperature coefficient property of the same and electrical device using the same
US20020137831A1 (en) Polymeric PTC composition and circuit protection device made therefrom
JP2000331804A (en) Ptc composition
GB2569532A (en) Improved positive temperature coefficient ink composition without negative temperature coefficient effect
JP2003163104A (en) Organic ptc composition
WO2001064785A1 (en) Ptc conductive polymer compositions, method of controlling the same and electrical device containing the same
JP2000021605A (en) Ptc composition
US20020128333A1 (en) Low switching temperature polymer positive temperature coefficient device
JPH11329675A (en) Ptc composition
US6396383B1 (en) Protective element
JP3168262B2 (en) Circuit protection device
US6579931B1 (en) Low resistivity polymeric PTC compositions
JPH115915A (en) Conductive composition
EP3477678B1 (en) Pptc composition and device having thermal degradation resistance
JPH1126206A (en) Ptc composition, ptc element, and overcurrent protective element using the ptc element
JP2000080216A (en) Ptc composition, ptc element and overcurrent protecting element using the element
WO1994006128A1 (en) An electric device which utilizes conductive polymers having a positive temperature coefficient characteristic
CN113826174A (en) PPTC compositions and devices with low thermal deration and low process jump
EP0932166B1 (en) Polymeric PTC composition and circuit protection device made therefrom

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees