JP2000019398A - Large aperture ratio inner focus type telephoto zoom lens - Google Patents

Large aperture ratio inner focus type telephoto zoom lens

Info

Publication number
JP2000019398A
JP2000019398A JP10199713A JP19971398A JP2000019398A JP 2000019398 A JP2000019398 A JP 2000019398A JP 10199713 A JP10199713 A JP 10199713A JP 19971398 A JP19971398 A JP 19971398A JP 2000019398 A JP2000019398 A JP 2000019398A
Authority
JP
Japan
Prior art keywords
lens
group
lens group
focal length
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10199713A
Other languages
Japanese (ja)
Other versions
JP3491136B2 (en
Inventor
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP19971398A priority Critical patent/JP3491136B2/en
Publication of JP2000019398A publication Critical patent/JP2000019398A/en
Application granted granted Critical
Publication of JP3491136B2 publication Critical patent/JP3491136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a telephoto zoom lens whose telephoto end focal distance, variable power ratio and f-number are respectively set to specified values while maintaining excellent optical performance by moving a rear group in a 1st lens group along the optical axis, performing focusing and constituting the zoom lens so as to satisfy a specified condition. SOLUTION: Focusing is performed by moving a rear group G1R in a 1st lens group G1 along the optical axis. Then, when the focal distance of a front group G1F in the 1st lens group G1 is f1F, the focal distance of the rear group G1R is f1R and a distance along the optical axis between the surface of the front group G1F nearest to an image side and the surface of the rear group G1R nearest to an object side in the focusing state of an infinity object is D1, this lens is constituted to satisfy the condition expressed by expression; 0.005<f1 R/(f1F.D1)<0.055. By such constitution, the weight and the focusing moving amount of a focusing lens group are made small, the telephoto end focal distance is made >=180 mm, the variable power ratio is made >=2 times and the f-number is made <=3 while maintaining the excellent optical performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は大口径比内焦式望遠
ズームレンズに関し、特に一眼レフレックスカメラや電
子スチルカメラなどに好適な合焦用対物レンズに関する
ものである。さらに詳細には、望遠端焦点距離が180
mm以上で、変倍比が2倍以上で、且つFナンバーが3
よりも小さい、いわゆる大口径比内焦式望遠ズームレン
ズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-aperture-ratio inner focus telephoto zoom lens, and more particularly to a focusing objective lens suitable for a single-lens reflex camera, an electronic still camera, and the like. More specifically, the focal length at the telephoto end is 180
mm or more, the zoom ratio is 2 times or more, and the F-number is 3
The present invention relates to a so-called large-aperture-ratio inner-focus telephoto zoom lens which is smaller than the above.

【0002】[0002]

【従来の技術】従来より、最も物体側に配置された第1
レンズ群を移動させて焦点合わせ(合焦)を行う、いわ
ゆる1群繰り出し合焦方式の大口径比望遠ズームレンズ
が、一眼レフレックスカメラや電子スチルカメラなどに
用いられている。この種の1群繰り出し合焦方式の大口
径比望遠ズームレンズでは、合焦に際して光軸に沿って
移動する合焦レンズ群(第1レンズ群)の有効径が大き
く且つその重量が大きいため、自動合焦(AF:オート
フォーカス)の際に駆動用のモーターに対する負荷が大
きくなる。その結果、1群繰り出し合焦方式の大口径比
望遠ズームレンズを用いたカメラでは、電池消費量が過
大になり、電池寿命が短くなるという欠点があった。ま
た、合焦に伴う合焦レンズ群の移動量(合焦移動量)も
大きいため、AF駆動時間が長くなり、迅速な撮影に不
向きであるという欠点があった。
2. Description of the Related Art Conventionally, a first object disposed closest to an object side has been disclosed.
2. Description of the Related Art A large-aperture-ratio telephoto zoom lens of a so-called single-unit extension focusing system that performs focusing by moving a lens group is used in a single-lens reflex camera, an electronic still camera, and the like. In such a large-aperture-ratio telephoto zoom lens of the one-group extension focusing system, the effective diameter and the weight of the focusing lens group (first lens group) that moves along the optical axis during focusing are large. During automatic focusing (AF: auto focus), the load on the driving motor increases. As a result, a camera using a large-aperture-ratio telephoto zoom lens of the one-group extension focusing system has a disadvantage that the battery consumption becomes excessive and the battery life is shortened. In addition, since the amount of movement of the focusing lens unit (focusing movement amount) associated with focusing is large, the AF driving time becomes long, which is not suitable for quick shooting.

【0003】上述の欠点を解決するために、特開平6−
51202号公報には、変倍中固定の第1レンズ群を正
屈折力の前群と正屈折力の後群とに2分割し、合焦レン
ズ群として後群を光軸方向に移動させる合焦方式が提案
されている。また、上述の欠点を解決するために、特開
平7−294816号公報に開示されたズームレンズで
は、特開平6−51202号公報の後群に相当する部分
を広角端焦点距離状態から望遠端焦点距離状態への変倍
に際して像側へ移動させ、且つ合焦に際しても単独で光
軸方向に移動させている。
In order to solve the above-mentioned drawbacks, Japanese Patent Laid-Open No.
No. 51202 discloses that a first lens group fixed during zooming is divided into a front group having a positive refractive power and a rear group having a positive refractive power, and the rear group is moved in the optical axis direction as a focusing lens group. A focus method has been proposed. Further, in order to solve the above-mentioned drawbacks, in the zoom lens disclosed in JP-A-7-294816, a portion corresponding to the rear group of JP-A-6-51202 is changed from a wide-angle end focal length state to a telephoto end focal length state. The lens is moved toward the image side when changing the magnification to the distance state, and is also moved independently in the optical axis direction when focusing.

【0004】[0004]

【発明が解決しようとする課題】特開平6−51202
号公報に開示された望遠ズームレンズでは、合焦レンズ
群を1枚の正レンズで構成することにより合焦レンズ群
の軽量化には成功しているが、合焦最至近距離が望遠端
焦点距離状態で8.3m〜8.4mと非常に大きく一般
撮影レンズとしては不十分である。仮に、本発明が目的
としている撮影距離(1.5m)まで合焦レンズ群を移
動させると、合焦レンズ群の所要合焦移動量が16.6
mm〜18.7mmと大きくなり、迅速なAF駆動を行
うことができない。また、合焦レンズ群に1枚の正レン
ズしか使用していないため、合焦レンズ群の球面収差が
良好に補正されていない。その結果、望遠端焦点距離状
態での合焦による球面収差の至近変動が大きすぎて、や
はり一般撮影レンズとしては使い物にならない。
Problems to be Solved by the Invention
In the telephoto zoom lens disclosed in Japanese Patent Application Laid-Open Publication No. H10-209, the weight of the focusing lens group has been successfully reduced by forming the focusing lens group with one positive lens, but the closest focusing distance is at the telephoto end. The distance is very large, ranging from 8.3 m to 8.4 m, which is insufficient for a general photographing lens. If the focusing lens group is moved to the shooting distance (1.5 m) targeted by the present invention, the required focusing movement amount of the focusing lens group is 16.6.
mm to 18.7 mm, which makes it impossible to perform quick AF driving. Further, since only one positive lens is used in the focusing lens group, the spherical aberration of the focusing lens group is not satisfactorily corrected. As a result, the closest variation of spherical aberration due to focusing at the telephoto end focal length state is too large, which is also unusable as a general photographing lens.

【0005】一方、特開平7−294816号公報に開
示されたズームレンズでは、上述の構成により合焦レン
ズ群の有効径を小さくすることができるため、合焦レン
ズ群の軽量化が可能になっている。また、合焦レンズ群
の移動量も8.3mm〜13.4mmと比較的小さくす
ることに成功している。更に、合焦レンズ群をメニスカ
ス負レンズとメニスカス正レンズとの2群2枚で構成す
ることにより、合焦レンズ群の球面収差を良好に補正す
ることが可能となり、合焦による球面収差の至近変動
(特に望遠端焦点距離状態)を軽減している。
On the other hand, in the zoom lens disclosed in Japanese Patent Application Laid-Open No. 7-294816, the effective diameter of the focusing lens group can be reduced by the above-described configuration, so that the focusing lens group can be reduced in weight. ing. In addition, the amount of movement of the focusing lens group has been successfully reduced to a relatively small value of 8.3 mm to 13.4 mm. Furthermore, by forming the focusing lens group with two groups of a negative meniscus lens and a positive meniscus lens, it is possible to satisfactorily correct the spherical aberration of the focusing lens group, and the spherical aberration due to focusing is very close. Fluctuations (especially at the telephoto end focal length) are reduced.

【0006】しかしながら、特開平7−294816号
公報に開示のズームレンズでは、変倍に際して合焦レン
ズ群を移動させているので、合焦レンズ群の合焦移動量
が焦点距離に依存して変化することになる。これは、こ
の光学系が実際にはズームレンズではなくバリフォーカ
ルレンズになっていることを示している。したがって、
この光学系をあたかもズームレンズのごとく扱うことが
できるように構成するには、合焦用移動筒と変倍用カム
筒とを変倍に際して連動させるための連動部材を付加し
なければならない。その結果、AF駆動用モーターが駆
動すべき合焦レンズ群の重量(金物重量まで含めた)に
は、合焦レンズ群用の金物の重量の他に変倍レンズ群と
の連動部材の重量も加わるため、AF駆動用モーターの
負担が全体的にかなり重いものとなってしまう。
However, in the zoom lens disclosed in Japanese Patent Application Laid-Open No. 7-294816, since the focusing lens group is moved during zooming, the amount of focusing movement of the focusing lens group changes depending on the focal length. Will do. This indicates that this optical system is not actually a zoom lens but a varifocal lens. Therefore,
In order to treat this optical system as if it were a zoom lens, an interlocking member for interlocking the moving tube for focusing and the cam tube for zooming at the time of zooming must be added. As a result, the weight of the focusing lens group to be driven by the AF drive motor (including the weight of hardware) includes not only the weight of the hardware for the focusing lens group but also the weight of the interlocking member with the variable power lens group. In addition, the burden on the AF driving motor becomes considerably heavy as a whole.

【0007】また、特開平7−294816号公報の開
示技術をレンズ組み立ての観点から考察すれば、テレフ
ォトタイプの前群(ここでは変倍レンズ群よりも前にあ
るレンズ群)の一部である合焦レンズ群が偏芯すると結
像面が大きく倒れる傾向にあるにもかかわらず、合焦レ
ンズ群のガタが合焦のための可動部分のガタと変倍レン
ズ群との連結ガタとの総和になるため、合焦レンズ群の
の偏芯量が非常に大きな偏芯量となってしまい、実製品
において結像面の平坦性を維持することが非常に困難と
なっている。
Further, considering the technology disclosed in Japanese Patent Application Laid-Open No. 7-294816 from the viewpoint of lens assembly, it can be seen that a part of the front group of the telephoto type (here, the lens group located before the variable power lens group) is used. Despite the fact that when a certain focusing lens group is decentered, the image forming surface tends to be greatly inclined, the play of the focusing lens group is caused by the play of the movable part for focusing and the connection play of the variable magnification lens group. Because of the sum, the amount of eccentricity of the focusing lens group becomes extremely large, and it is extremely difficult to maintain the flatness of the imaging surface in an actual product.

【0008】本発明は、前述の課題に鑑みてなされたも
のであり、優れた光学性能を維持しつつ、合焦レンズ群
の重量および合焦移動量が小さく、望遠端焦点距離が1
80mm以上で、変倍比が2倍以上で、Fナンバーが3
以下の大口径比内焦式望遠ズームレンズを提供すること
を目的とする。また、第2レンズ群および第3レンズ群
の有効径を小さくして、第1レンズ群の有効径との径周
りの段差部分にAF駆動用モーターを配置することので
きる大口径比内焦式望遠ズームレンズを提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a small weight and a small focusing movement amount while maintaining excellent optical performance, and has a focal length at the telephoto end of 1 mm.
80mm or more, magnification ratio is 2 times or more, F-number is 3
It is an object to provide the following large-aperture-ratio inner focus telephoto zoom lens. A large-aperture-ratio inner-focus telephoto system in which the effective diameters of the second lens unit and the third lens unit are reduced, and an AF drive motor can be disposed at a step around the effective diameter of the first lens unit. It is an object to provide a zoom lens.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明では、物体側から順に、正の屈折力を有する
第1レンズ群G1と、負の屈折力を有する第2レンズ群
G2と、正の屈折力を有する第3レンズ群G3と、正の
屈折力を有する第4レンズ群G4とを備え、前記第2レ
ンズ群G2および前記第3レンズ群G3を光軸に沿って
移動させて変倍を行う望遠ズームレンズにおいて、前記
第1レンズ群G1は、物体側から順に、正の屈折力を有
する前群G1Fと、該前群G1Fよりも強い正の屈折力を有
する後群G1Rとから構成され、前記第1レンズ群G1中
の前記後群G1Rは、物体側から順に、物体側に凸面を向
けたメニスカス負レンズと、正レンズ成分とから構成さ
れ、前記第1レンズ群G1中の前記後群G1Rを光軸に沿
って移動させて合焦を行い、前記第1レンズ群G1中の
前記前群G1Fの焦点距離をf1Fとし、前記第1レンズ群
G1中の前記後群G1Rの焦点距離をf1Rとし、無限遠物
体合焦状態における前記前群G1Fの最も像側の面と前記
後群G1Rの最も物体側の面との間の光軸に沿った距離を
D1としたとき、 0.005<f1R/(f1F・D1)<0.055 の条件を満足することを特徴とする大口径比内焦式望遠
ズームレンズを提供する。
In order to solve the above problems, according to the present invention, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power are arranged in order from the object side. And a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power, and moving the second lens group G2 and the third lens group G3 along the optical axis. In the telephoto zoom lens that performs zooming by performing zooming, the first lens group G1 includes, in order from the object side, a front group G1F having a positive refractive power, and a rear group having a stronger positive refractive power than the front group G1F. G1R, and the rear group G1R in the first lens group G1 is composed of, in order from the object side, a meniscus negative lens having a convex surface facing the object side, and a positive lens component. The rear group G1R in G1 is moved along the optical axis to focus. The focal length of the front group G1F in the first lens group G1 is set to f1F, the focal length of the rear group G1R in the first lens group G1 is set to f1R, and the front group in an infinity object focus state is set. When the distance along the optical axis between the most image-side surface of G1F and the most object-side surface of the rear unit G1R is D1, 0.005 <f1R / (f1F · D1) <0.055. Provided is a large-aperture-ratio inner-focus telephoto zoom lens that satisfies the conditions.

【0010】本発明の好ましい態様によれば、前記第1
レンズ群G1の焦点距離をf1とし、前記第2レンズ群
G2の焦点距離をf2とし、前記第4レンズ群G4の焦
点距離をf4とし、前記第2レンズ群G2と前記第3レ
ンズ群G3との合成焦点距離をf23とし、広角端焦点距
離状態におけるズームレンズ全系の焦点距離をFWと
し、無限遠物体から最至近距離(望遠端焦点距離の7.
5倍)の物体への合焦に伴う前記後群G1Rの光軸方向の
移動量を△D1としたとき、 0.04<(|f23|・FW)/(f1・f4・ΔD
1)<0.13 2×10-3<|f2|/(f1・FW)<3.8×10
-3 の条件を満足する。
According to a preferred embodiment of the present invention, the first
The focal length of the lens group G1 is f1, the focal length of the second lens group G2 is f2, the focal length of the fourth lens group G4 is f4, and the second lens group G2 and the third lens group G3 are Is set to f23, the focal length of the entire zoom lens system in the wide-angle end focal length state is set to FW, and the closest distance from an object at infinity (the focal length at the telephoto end of 7.0).
When the amount of movement of the rear group G1R in the optical axis direction due to focusing on an object of (5 ×) is ΔD1, 0.04 <(| f23 | · FW) / (f1 · f4 · ΔD)
1) <0.13 2 × 10 −3 <| f2 | / (f1 · FW) <3.8 × 10
Satisfies condition -3 .

【0011】[0011]

【発明の実施の形態】本発明では、物体側から順に、正
屈折力の第1レンズ群G1と、負屈折力の第2レンズ群
G2と、正屈折力の第3レンズ群G3と、正屈折力の第
4レンズ群G4とを備えている。そして、第2レンズ群
G2および第3レンズ群G3を光軸に沿って移動させる
ことによって、広角端焦点距離状態から望遠端焦点距離
状態までの変倍を行う。また、第1レンズ群G1は、物
体側から順に、正屈折力の前群G1Fと、この前群G1Fよ
りも強い正屈折力を有する後群G1Rとから構成されてい
る。さらに、第1レンズ群G1中の後群G1Rは、物体側
から順に、物体側に凸面を向けたメニスカス負レンズ
と、正レンズ成分とから構成されている。また、合焦方
式として、第1レンズ群G1中の後群G1Rを光軸に沿っ
て移動させて合焦を行う、いわゆる内焦式が採用されて
いる。以下、本発明の各条件式を参照しながら、本発明
の構成をさらに詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, A fourth lens group G4 having a refractive power. Then, by moving the second lens group G2 and the third lens group G3 along the optical axis, zooming from the wide-angle end focal length state to the telephoto end focal length state is performed. The first lens group G1 includes, in order from the object side, a front group G1F having a positive refractive power, and a rear group G1R having a stronger positive refractive power than the front group G1F. Further, the rear group G1R in the first lens group G1 includes, in order from the object side, a meniscus negative lens having a convex surface facing the object side, and a positive lens component. Further, as a focusing method, a so-called inner focus method is employed in which the rear group G1R in the first lens group G1 is moved along the optical axis to perform focusing. Hereinafter, the configuration of the present invention will be described in more detail with reference to the conditional expressions of the present invention.

【0012】まず、本発明においては、以下の条件式
(1)を満足する。 0.005<f1R/(f1F・D1)<0.055 (1) ここで、f1Fは、第1レンズ群G1中の前群G1Fの焦点
距離である。また、f1Rは、第1レンズ群G1中の後群
G1Rの焦点距離である。さらに、D1は、無限遠物体合
焦状態における前群G1Fの最も像側の面と後群G1Rの最
も物体側の面との間の光軸に沿った距離、すなわち前群
G1Fと後群G1Rとの間の軸上空気間隔である。
First, in the present invention, the following conditional expression (1) is satisfied. 0.005 <f1R / (f1F.D1) <0.055 (1) Here, f1F is the focal length of the front group G1F in the first lens group G1. F1R is the focal length of the rear group G1R in the first lens group G1. Further, D1 is the distance along the optical axis between the most image-side surface of the front group G1F and the most object-side surface of the rear group G1R in the in-focus state of an object at infinity, that is, the front group G1F and the rear group G1R. Between the on-axis air gaps.

【0013】条件式(1)の上限値を上回ると、合焦レ
ンズ群である後群G1Rの有効径および所要合焦移動量が
大きくなりすぎて、本発明が目的とする優れたAF性能
を達成することができなくなる。一方、条件式(1)の
下限値を下回ると、合焦による球面収差の至近変動が大
きくなりすぎて、本発明が目的とする優れた光学性能を
達成することができなくなる。なお、AF性能と合焦に
よる球面収差の至近変動とのバランスを更に良好に確保
するには、条件式(1)の上限値を0.05とし、下限
値を0.015とすることが好ましい。
When the value exceeds the upper limit of conditional expression (1), the effective diameter and the required focusing movement of the rear group G1R, which is the focusing lens unit, become too large, and the excellent AF performance aimed at by the present invention is not achieved. Can not be achieved. On the other hand, when the value goes below the lower limit value of the conditional expression (1), the closest variation of the spherical aberration due to focusing becomes too large, so that the excellent optical performance aimed at by the present invention cannot be achieved. In order to ensure a better balance between AF performance and the closest variation of spherical aberration due to focusing, it is preferable to set the upper limit of conditional expression (1) to 0.05 and the lower limit to 0.015. .

【0014】また、本発明においては、更に良好なAF
性能および結像性能を得るとともに携帯性を良好にする
ために、以下の条件式(2)および(3)を満足するこ
とが望ましい。 0.04<(|f23|・FW)/(f1・f4・ΔD1)<0.13 (2) 2×10-3<|f2|/(f1・FW)<3.8×10-3 (3) ここで、f1は第1レンズ群G1の焦点距離であり、f
2は第2レンズ群G2の焦点距離であり、f4は第4レ
ンズ群G4の焦点距離である。また、f23は第2レンズ
群G2と第3レンズ群G3との合成焦点距離であり、F
Wは広角端焦点距離状態におけるズームレンズ全系の焦
点距離である。さらに、△D1は、無限遠物体から最至
近距離(望遠端焦点距離の7.5倍)の物体への合焦に
伴う後群G1Rの光軸方向の移動量(合焦移動量)であ
る。
Further, in the present invention, a more favorable AF
In order to obtain performance and imaging performance and to improve portability, it is desirable to satisfy the following conditional expressions (2) and (3). 0.04 <(| f23 | · FW) / (f1 · f4 · ΔD1) <0.13 (2) 2 × 10 −3 <| f2 | / (f1 · FW) <3.8 × 10 −3 ( 3) Here, f1 is the focal length of the first lens group G1, and f1
2 is the focal length of the second lens group G2, and f4 is the focal length of the fourth lens group G4. F23 is a composite focal length of the second lens group G2 and the third lens group G3, and F23
W is the focal length of the entire zoom lens system in the wide-angle end focal length state. Further, △ D1 is the movement amount (focus movement amount) of the rear group G1R in the optical axis direction upon focusing from an infinitely distant object to an object at the shortest distance (7.5 times the focal length at the telephoto end). .

【0015】条件式(2)の上限値を上回ると、第2レ
ンズ群G2および第3レンズ群G3の有効径が大きくな
りすぎて、第1レンズ群G1の有効径との径周りの段差
部分にAF駆動用モーターを内蔵することができなくな
るので好ましくない。一方、条件式(2)の下限値を下
回ると、合焦移動量が大きくなりすぎて、AF作動が遅
くなるので好ましくない。なお、更に良好なAF性能を
得るには、条件式(2)の下限値を0.055とするこ
とが好ましい。
When the value exceeds the upper limit of conditional expression (2), the effective diameters of the second lens group G2 and the third lens group G3 become too large, and a step portion around the effective diameter of the first lens group G1 is formed. It is not preferable because a motor for driving the AF cannot be built in the camera. On the other hand, when the value goes below the lower limit value of the conditional expression (2), the focusing movement amount becomes too large, and the AF operation becomes slow. In order to obtain better AF performance, it is preferable to set the lower limit of conditional expression (2) to 0.055.

【0016】条件式(3)の上限値を上回ると、第2レ
ンズ群G2の有効径が大きくなりすぎて、AF駆動用モ
ーターを内蔵することができなくなるので好ましくな
い。一方、条件式(3)の下限値を下回ると、ぺッツバ
ール和が負方向に大きくなりすぎて、像面湾曲が正に大
きくなるので好ましくない。なお、更に良好な結像面の
平坦性を得るには、条件式(3)の下限値を3×10-3
とすることが好ましい。
If the value exceeds the upper limit of conditional expression (3), the effective diameter of the second lens group G2 becomes too large, and it becomes impossible to incorporate a motor for driving the AF. On the other hand, when the value goes below the lower limit of conditional expression (3), the Petzval sum becomes too large in the negative direction, and the field curvature becomes undesirably large. In order to obtain even better image plane flatness, the lower limit of conditional expression (3) should be set to 3 × 10 −3.
It is preferable that

【0017】また、本発明においては、第1レンズ群G
1中の前群G1Fを、物体側から順に、物体側に凸面を向
けたメニスカス負レンズと物体側に凸面を向けたメニス
カス正レンズとの接合正レンズと、正レンズ成分とから
構成し、以下の条件式(4)を満足することが望まし
い。 0<(R2−R1)/(R2+R1)<1 (4) ここで、R1は、前群G1F中の接合正レンズの物体側の
面の曲率半径である。また、R2は、前群G1F中の接合
正レンズの像側の面の曲率半径である。
In the present invention, the first lens group G
The front group G1F in 1 comprises, in order from the object side, a cemented positive lens of a meniscus negative lens having a convex surface facing the object side and a meniscus positive lens having a convex surface facing the object side, and a positive lens component. It is desirable to satisfy the conditional expression (4). 0 <(R2-R1) / (R2 + R1) <1 (4) Here, R1 is a radius of curvature of the object-side surface of the cemented positive lens in the front group G1F. R2 is the radius of curvature of the image-side surface of the cemented positive lens in the front group G1F.

【0018】条件式(4)は、前群G1F中の接合正レン
ズのレンズ形状について規定している。条件式(4)の
上限値を上回ると、合焦による球面収差の変動が大きく
なるので好ましくない。一方、条件式(4)の下限値を
下回ると、所要合焦移動量が大きくなりすぎて、AF作
動が遅くなるので好ましくない。なお、合焦による球面
収差の変動をさらに少なくするとともにAF性能をさら
に良好にするには、条件式(4)の上限値を0.95と
し、下限値を0.25とすることが好ましい。
Conditional expression (4) defines the lens shape of the cemented positive lens in the front group G1F. Exceeding the upper limit of conditional expression (4) is not preferable because the fluctuation of spherical aberration due to focusing increases. On the other hand, when the value goes below the lower limit value of the conditional expression (4), the required focusing movement amount becomes too large, and the AF operation becomes slow. In order to further reduce the fluctuation of spherical aberration due to focusing and to further improve the AF performance, it is preferable to set the upper limit of conditional expression (4) to 0.95 and the lower limit to 0.25.

【0019】また、本発明においては、色収差をさらに
良好に補正するために、第3レンズ群G3を、物体側か
ら順に、正レンズ成分と、正レンズ成分と負レンズ成分
との接合正レンズとから構成し、以下の条件式(5)お
よび(6)を満足することが望ましい。 1.4<Np3<1.6 (5) 62<νp3<100 (6) ここで、Np3は、第3レンズ群G3を構成する正レンズ
成分のd線(λ=587.6nm)に対する屈折率であ
る。また、νp3は、第3レンズ群G3を構成する正レン
ズ成分のアッベ数である。
Further, in the present invention, in order to more appropriately correct chromatic aberration, the third lens group G3 includes, in order from the object side, a positive lens component, and a cemented positive lens of a positive lens component and a negative lens component. And it is desirable to satisfy the following conditional expressions (5) and (6). 1.4 <Np3 <1.6 (5) 62 <νp3 <100 (6) where Np3 is the refractive index of the positive lens component constituting the third lens group G3 with respect to the d-line (λ = 587.6 nm). It is. Νp3 is the Abbe number of the positive lens component constituting the third lens group G3.

【0020】条件式(5)の上限値を上回ると、正レン
ズとしては2次の色収差が悪くなる光学硝子しか使うこ
とができなくなるので好ましくない。また、条件式
(5)の下限値は、現存する可視光線用の光学硝子の限
界値であり、この下限値を下回ると本発明の利用分野か
ら大きく外れるので好ましくない。
If the value exceeds the upper limit of conditional expression (5), it is not preferable because only an optical glass having a poor secondary chromatic aberration can be used as a positive lens. The lower limit of the conditional expression (5) is the limit of the existing optical glass for visible light. If the lower limit of the conditional expression (5) is less than the lower limit, the range greatly deviates from the field of application of the present invention.

【0021】条件式(6)の上限値は、条件式(5)と
組み合わせて考慮すれば、現存する可視光線用の光学硝
子の限界値であり、この上限値を上回ると本発明の利用
分野から大きく外れるので好ましくない。一方、条件式
(6)の下限値を下回ると、正レンズとしては2次の色
収差が悪くなる光学硝子しか使うことができなくなるの
で好ましくない。
The upper limit of conditional expression (6) is the limit value of existing optical glass for visible light when considered in combination with conditional expression (5). , Which is not preferable. On the other hand, when the value goes below the lower limit value of the conditional expression (6), it is not preferable because only the optical glass whose secondary chromatic aberration deteriorates can be used as the positive lens.

【0022】また、本発明においては、更に良好な光学
性能を得るために、以下の条件式(7)〜(9)を満足
することが望ましい。 0.25<Nn1−Np1<0.55 (7) 65<νp1<100 (8) 20<νn1<30 (9) ここで、Np1およびνp1は、第1レンズ群G1中の後群
G1Rを構成する正レンズ成分のd線に対する屈折率およ
びアッベ数である。また、Nn1およびνn1は、第1レン
ズ群G1中の後群G1Rを構成するメニスカス負レンズの
d線に対する屈折率およびアッベ数である。
In the present invention, it is desirable to satisfy the following conditional expressions (7) to (9) in order to obtain better optical performance. 0.25 <Nn1-Np1 <0.55 (7) 65 <vp1 <100 (8) 20 <vn1 <30 (9) Here, Np1 and vp1 constitute the rear group G1R in the first lens group G1. Are the refractive index and Abbe number of the positive lens component with respect to the d-line. Nn1 and vn1 are the refractive index and Abbe number for the d-line of the negative meniscus lens constituting the rear group G1R in the first lens group G1.

【0023】条件式(7)は、第1レンズ群G1中の後
群G1Rの球面収差を良好に補正するための条件式であ
る。条件式(7)の上限値を上回る可視光用光学硝子
は、現在では存在しない。一方、条件式(7)の下限値
を下回ると、正レンズ成分とメニスカス負レンズとの屈
折率差が小さくなりすぎて、球面収差の曲がりが大きく
なるので好ましくない。なお、更に良好な光学性能を得
るには、条件式(7)の上限値を0.45とし、下限値
を0.35とすることが好ましい。
Conditional expression (7) is a conditional expression for favorably correcting the spherical aberration of the rear group G1R in the first lens group G1. There is no optical glass for visible light exceeding the upper limit of conditional expression (7) at present. On the other hand, when the value goes below the lower limit of conditional expression (7), the refractive index difference between the positive lens component and the negative meniscus lens becomes too small, and the curvature of spherical aberration becomes large. In order to obtain better optical performance, it is preferable to set the upper limit of conditional expression (7) to 0.45 and the lower limit to 0.35.

【0024】条件式(8)の上限値は、現存する可視光
線用の光学硝子の限界値であり、この上限値を上回ると
本発明の利用分野から大きく外れるので好ましくない。
一方、条件式(8)の下限値を下回ると、2次色収差が
十分に補正しきれなくなるので、好ましくない。なお、
更に良好な光学性能を得るには、条件式(8)の下限値
を70とすることが好ましい。また、更にコストダウン
を行いつつ良好な光学性能を得るには、条件式(8)の
上限値を85とすることが好ましい。
The upper limit of conditional expression (8) is the limit of existing optical glass for visible light. Exceeding this upper limit is not preferable because it greatly departs from the field of application of the present invention.
On the other hand, when the value goes below the lower limit of conditional expression (8), it is not preferable because the secondary chromatic aberration cannot be sufficiently corrected. In addition,
In order to obtain better optical performance, it is preferable to set the lower limit of conditional expression (8) to 70. In order to obtain good optical performance while further reducing the cost, it is preferable to set the upper limit of conditional expression (8) to 85.

【0025】条件式(9)の上限値は、条件式(7)と
組み合わせて考慮すれば、現存する可視光線用の光学硝
子の限界値であり、この上限値を上回ると本発明の利用
分野から大きく外れるので好ましくない。また、条件式
(9)の下限値も現存する可視光線用の光学硝子の限界
値であり、あえてこの下限値を下回ったとしても2次色
収差が十分に補正しきれなくなるので好ましくない。な
お、更に良好な光学性能を得るには、条件式(9)の下
限値を25とすることが好ましい。
The upper limit of the conditional expression (9) is a limit value of the existing optical glass for visible light when considered in combination with the conditional expression (7). , Which is not preferable. The lower limit of conditional expression (9) is also the limit of the existing optical glass for visible light. Even if the lower limit of this condition is not reached, the secondary chromatic aberration cannot be sufficiently corrected. In order to obtain even better optical performance, it is preferable to set the lower limit of conditional expression (9) to 25.

【0026】[0026]

【実施例】以下、本発明の実施例を、添付図面に基づい
て説明する。各実施例において、本発明の大口径比内焦
式望遠ズームレンズは、物体側から順に、正の屈折力を
有する第1レンズ群G1と、負の屈折力を有する第2レ
ンズ群G2と、正の屈折力を有する第3レンズ群G3
と、正の屈折力を有する第4レンズ群G4とから構成さ
れている。そして、第1レンズ群G1は、物体側から順
に、正の屈折力を有する前群G1Fと、この前群G1Fより
も強い正の屈折力を有する後群G1Rとから構成されてい
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In each embodiment, the large-aperture-ratio inner-focus telephoto zoom lens according to the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group. Third lens group G3 having a refractive power of
And a fourth lens group G4 having a positive refractive power. The first lens group G1 includes, in order from the object side, a front group G1F having a positive refractive power and a rear group G1R having a stronger positive refractive power than the front group G1F.

【0027】また、第1レンズ群G1中の後群G1Rは、
物体側から順に、物体側に凸面を向けたメニスカス負レ
ンズと、正レンズ成分とから構成されている。さらに、
広角端焦点距離状態から望遠端焦点距離状態への変倍に
際して、第2レンズ群G2は像側へ移動し、第3レンズ
群G3は物体側に向かって凹形状の軌跡に沿って移動
(すなわち一旦像側へ移動した後に物体側へ移動)し、
第1レンズ群G1および第4レンズ群G4は変倍中固定
である。また、無限遠物体から近距離物体への合焦に際
して、第1レンズ群G1中の後群G1Rは物体側へ移動す
る。
The rear group G1R in the first lens group G1 is
In order from the object side, it is composed of a meniscus negative lens having a convex surface facing the object side and a positive lens component. further,
Upon zooming from the wide-angle end focal length state to the telephoto end focal length state, the second lens group G2 moves toward the image side, and the third lens group G3 moves along the concave locus toward the object side (ie, Once to the image side and then to the object side)
The first lens group G1 and the fourth lens group G4 are fixed during zooming. In focusing from an object at infinity to an object at a short distance, the rear group G1R in the first lens group G1 moves to the object side.

【0028】〔第1実施例〕図1は、本発明の第1実施
例にかかる大口径比内焦式望遠ズームレンズの構成を示
す図であって、広角端焦点距離状態での無限遠合焦状態
における各レンズ群の位置を示している。図1の内焦式
望遠ズームレンズにおいて、第1レンズ群G1中の前群
G1Fは、物体側から順に、物体側に凸面を向けたメニス
カス負レンズと物体側に凸面を向けたメニスカス正レン
ズとの接合正レンズL11、および物体側に凸面を向けた
メニスカス正レンズL12から構成されている。また、第
1レンズ群G1中の後群G1Rは、物体側から順に、物体
側に凸面を向けたメニスカス負レンズL13、および物体
側に凸面を向けたメニスカス正レンズL14から構成され
ている。
FIG. 1 is a view showing the configuration of a large-aperture-ratio inner-focus telephoto zoom lens according to a first embodiment of the present invention, and focuses on infinity at the wide-angle end focal length. The position of each lens group in the state is shown. In the inner focus telephoto zoom lens shown in FIG. 1, the front group G1F in the first lens group G1 includes, in order from the object side, a meniscus negative lens having a convex surface facing the object side and a meniscus positive lens having a convex surface facing the object side. And a meniscus positive lens L12 having a convex surface facing the object side. The rear group G1R in the first lens group G1 includes, in order from the object side, a negative meniscus lens L13 having a convex surface facing the object side and a positive meniscus lens L14 having a convex surface facing the object side.

【0029】さらに、第2レンズ群G2は、物体側から
順に、物体側に凸面を向けたメニスカス負レンズL21、
両凹レンズと両凸レンズとの接合正レンズL22、および
物体側に強い曲率の凹面を向けた両凹レンズL23から構
成されている。また、第3レンズ群G3は、物体側から
順に、両凸レンズL31、および両凸レンズと物体側に凹
面を向けたメニスカス負レンズとの接合正レンズL32か
ら構成されている。さらに、第4レンズ群G4は、物体
側から順に、物体側に凸面を向けたメニスカス正レンズ
L41、物体側に凸面を向けたメニスカス正レンズと物体
側に凸面を向けたメニスカス負レンズとの接合負レンズ
L42、大きな間隔を隔てて配置された両凸レンズL43、
物体側に凹面を向けたメニスカス負レンズL44、および
両凸レンズL45から構成されている。なお、第3レンズ
群G3と第4レンズ群G4との間には開口絞りSが設け
られ、この開口絞りSは第4レンズ群G4とともに変倍
中固定である。
Further, the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a convex surface facing the object side.
It is composed of a cemented positive lens L22 composed of a biconcave lens and a biconvex lens, and a biconcave lens L23 having a concave surface with a strong curvature directed to the object side. The third lens group G3 is composed of, in order from the object side, a biconvex lens L31, and a cemented positive lens L32 of a biconvex lens and a meniscus negative lens having a concave surface facing the object side. Further, the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a convex surface facing the object side, a cemented positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. A negative lens L42, a biconvex lens L43 arranged at a large interval,
It comprises a negative meniscus lens L44 having a concave surface facing the object side, and a biconvex lens L45. An aperture stop S is provided between the third lens group G3 and the fourth lens group G4, and the aperture stop S is fixed together with the fourth lens group G4 during zooming.

【0030】次の表(1)に、本発明の第1実施例の諸
元の値を掲げる。表(1)において、Fはズームレンズ
全系の焦点距離を、FNOはFナンバーを、βは撮影倍率
を、Bfはバックフォーカスを、D0 は物体からレンズ
系の最も物体側のレンズ面(第1レンズ群G1中の接合
正レンズL11の物体側の面)までの光軸に沿った距離
(物体距離)をそれぞれ表している。また、面番号は物
体側からの各レンズ面の順序を、rは各レンズ面の曲率
半径を、dは各レンズ面間隔を、nおよびνはそれぞれ
d線(λ=587.6nm)に対する屈折率およびアッ
ベ数を示している。さらに、Φ1Fは前群G1Fにおいて最
も物体側に配置された接合正レンズL11の有効径を、Φ
1Rは後群G1Rにおいて最も物体側に配置されたメニスカ
ス負レンズL13の有効径を、Φ2は第2レンズ群G2に
おいて最も物体側に配置されたメニスカス負レンズL21
の有効径を、Φ3は第3レンズ群G3において最も物体
側に配置された両凸レンズL31の有効径をそれぞれ表し
ている。
Table 1 below summarizes data values of the first embodiment of the present invention. In Table (1), F is the focal length of the entire zoom lens system, FNO is the F number, β is the photographing magnification, Bf is the back focus, and D0 is the lens surface of the lens system closest to the object (from the object). The distance (object distance) along the optical axis to the object-side surface of the cemented positive lens L11 in one lens group G1 is shown. The surface number indicates the order of each lens surface from the object side, r indicates the radius of curvature of each lens surface, d indicates the distance between the lens surfaces, and n and ν indicate refraction with respect to the d line (λ = 587.6 nm). The rates and Abbe numbers are shown. Further, Φ1F is the effective diameter of the cemented positive lens L11 disposed closest to the object side in the front group G1F,
1R is the effective diameter of the negative meniscus lens L13 located closest to the object side in the rear group G1R, and Φ2 is the negative meniscus lens L21 located closest to the object side in the second lens group G2.
Represents the effective diameter of the biconvex lens L31 disposed closest to the object side in the third lens group G3.

【0031】[0031]

【表1】 F=81.55〜194.00 FNO=2.9 面番号 r d ν n Φ 1 97.0939 3.8000 25.41 1.805182 Φ1F= 71.5 2 72.6165 10.4000 82.52 1.497820 3 268.0849 0.1000 4 157.7721 5.3000 82.52 1.497820 5 894.9563 (d5=可変) 6 50.7516 2.2000 23.82 1.846660 Φ1R= 56.0 7 44.4939 1.8100 8 53.1452 9.0000 70.41 1.487490 9 17654.5990 (d9= 可変) 10 365.8054 1.5000 45.37 1.796681 Φ2= 34.8 11 33.8586 7.5200 12 -51.2952 1.8000 70.41 1.487490 13 45.0578 6.0000 23.82 1.846660 14 -287.2535 2.1100 15 -60.5102 1.8000 45.37 1.796681 16 8969.2140 (d16=可変) 17 165.9894 4.5000 82.52 1.497820 Φ3= 36.8 18 -106.8038 0.2000 19 772.1751 7.1000 82.52 1.497820 20 -40.2253 2.0000 45.00 1.744000 21 -100.1483 (d21=可変) 22 ∞ 1.0000 (開口絞りS) 23 78.6671 3.5000 47.47 1.787971 24 216.2251 0.2000 25 39.9627 6.0000 82.52 1.497820 26 168.8230 4.4000 36.27 1.620040 27 38.2994 30.5000 28 272.2610 5.0000 48.97 1.531721 29 -62.3609 14.8000 30 -36.5028 1.9000 33.89 1.803840 31 -160.6086 0.2000 32 137.3427 4.6000 49.45 1.772789 33 -111.8713 (Bf) 〔合焦および変倍における可変間隔〕 無限遠合焦状態 広角端焦点距離 中間焦点距離 望遠端焦点距離 F 81.5500 135.0000 194.0000 D0 ∞ ∞ ∞ d5 17.08501 17.08501 17.08501 d9 1.99906 16.04981 22.87155 d16 32.05530 18.13596 1.61457 d21 3.43076 3.29935 12.99901 Bf 57.01947 57.01947 57.01947 至近距離合焦状態 広角端焦点距離 中間焦点距離 望遠端焦点距離 β -0.06776 -0.11218 -0.16286 D0 1245.1704 1245.1704 1245.1704 d5 8.48886 8.48886 8.48886 d9 10.60231 24.65306 31.47480 d16 32.05530 18.13596 1.61457 d21 3.43076 3.29935 12.99901 Bf 57.01947 57.01947 57.01947 〔条件式対応値〕 f1=92.4694 f2=−27.4621 f3=105.4937 f4=98.3299 f23=−88.5687 f1F=206.1071 f1R=142.2645 FW=81.5500 D1=17.0850 ΔD1=8.5962 (1)f1R/(f1F・D1)=0.040 (2)(|f23|・FW)/(f1・f4・ΔD1)=0.09 (3)|f2|/(f1・FW)=3.6×10-3 (4)(R2−R1)/(R2+R1)=0.47 (5)Np3=1.4978(L31およびL32) (6)νp3=82.52(L31およびL32) (7)Nn1−Np1=0.36 (8)νp1=70.41 (9)νn1=23.82[Table 1] F = 81.55 to 194.00 FNO = 2.9 Face number rd ν n Φ 1 97.0939 3.8000 25.41 1.805182 Φ1F = 71.5 2 72.6165 10.4000 82.52 1.497820 3 268.0849 0.1000 4 157.7721 5.3000 82.52 1.497820 5 894.9563 (d5 = Variable) 6 50.7516 2.2000 23.82 1.846660 Φ1R = 56.0 7 44.4939 1.8100 8 53.1452 9.0000 70.41 1.487490 9 17654.5990 (d9 = variable) 10 365.8054 1.5000 45.37 1.796681 Φ2 = 34.8 11 33.8586 7.5200 12 -51.2952 1.8000 70.41 1.487490 13.4 6000. 287.2535 2.1100 15 -60.5102 1.8000 45.37 1.796681 16 8969.2140 (d16 = variable) 17 165.9894 4.5000 82.52 1.497820 Φ3 = 36.8 18 -106.8038 0.2000 19 772.1751 7.1000 82.52 1.497820 20 -40.2253 2.0000 45.00 1.744000 21 -100.1483 (d21 = variable) 22 ∞ 1.0000 Aperture stop S) 23 78.6671 3.5000 47.47 1.787971 24 216.2251 0.2000 25 39.9627 6.0000 82.52 1.497820 26 168.8230 4.4000 36.27 1.620040 27 38.2994 30.5000 28 272.2610 5.0000 48.97 1.531721 29 -62.3609 14.8000 30 -36.5028 1.9000 33.8 9 1.803840 31 -160.6086 0.2000 32 137.3427 4.6000 49.45 1.772789 33 -111.8713 (Bf) [Variable spacing in focusing and zooming] Infinity in-focus condition Wide-angle end focal length Intermediate focal length Telephoto end focal length F 81.5500 135.0000 194.0000 D0 ∞ ∞ ∞ d5 17.08501 17.08501 17.08501 d9 1.99906 16.04981 22.87155 d16 32.05530 18.13596 1.61457 d21 3.43076 3.29935 12.99901 Bf 57.01947 57.01947 57.01947 Closest focus wide-angle end focal length Intermediate focal length Telephoto end focal length β -0.06776 -0.1121245.16 8.48886 8.48886 d9 10.60231 24.65306 31.47480 d16 32.05530 18.13596 1.61457 d21 3.43076 3.29935 12.99901 Bf 57.01947 57.01947 57.01947 [Values corresponding to the conditional expressions] f1 = 92.4694 f2 = -27.4621 f3 = 105.4937 f4 = 98.3299 f. 5687 f1F = 206.1071 f1R = 142.2645 FW = 81.5500 D = 17.0850 ΔD1 = 8.5962 (1) f1R / (f1F · D1) = 0.040 (2) (| f23 | · FW) / (f1 · f4 · ΔD1) = 0.09 (3) | f2 | / (F1.FW) = 3.6 × 10 −3 (4) (R2−R1) / (R2 + R1) = 0.47 (5) Np3 = 1.4978 (L31 and L32) (6) νp3 = 82 0.52 (L31 and L32) (7) Nn1-Np1 = 0.36 (8) vp1 = 70.41 (9) vn1 = 23.82

【0032】表(1)を参照すると、第1実施例では、
第1レンズ群G1中の後群G1Rの有効径Φ1Rは、第1レ
ンズ群G1中の前群G1Fとの有効径比で8割以下の5
6.0mmであり、非常にコンパクトな設計となってい
ることがわかる。また、無限遠物体から最至近距離物体
への合焦に伴う合焦レンズ群(後群G1R)の合焦移動量
ΔD1は約8.60mmと非常に少ないことがわかる。
図2〜図7は、第1実施例の諸収差図である。すなわ
ち、図2は広角端焦点距離状態での無限遠合焦状態にお
ける諸収差図であり、図3は中間焦点距離状態での無限
遠合焦状態における諸収差図であり、図4は望遠端焦点
距離状態での無限遠合焦状態における諸収差図である。
また、図5は広角端焦点距離状態での至近距離(撮影距
離R=1500mm)合焦状態における諸収差図であ
り、図6は中間焦点距離状態での至近距離(R=150
0mm)合焦状態における諸収差図であり、図7は望遠
端焦点距離状態での至近距離(R=1500mm)合焦
状態における諸収差図である。
Referring to Table (1), in the first embodiment,
The effective diameter Φ1R of the rear group G1R in the first lens group G1 is equal to or less than 80% of the effective diameter ratio of the front lens group G1F in the first lens group G1.
6.0 mm, which indicates that the design is very compact. In addition, it can be seen that the focusing movement amount ΔD1 of the focusing lens unit (the rear group G1R) associated with focusing from an object at infinity to an object at the closest distance is very small, about 8.60 mm.
2 to 7 are diagrams illustrating various aberrations of the first example. That is, FIG. 2 is a diagram of various aberrations at the infinity in-focus condition at the wide-angle end focal length state, FIG. 3 is a diagram of various aberrations at the infinity in-focus condition at the intermediate focal length state, and FIG. FIG. 4 is a diagram illustrating various aberrations in a focusing state at infinity in a focal length state.
FIG. 5 is a diagram showing various aberrations in a focusing state at a close distance (photographing distance R = 1500 mm) in the focal length state at the wide angle end, and FIG. 6 is a drawing showing a close distance (R = 150 in the intermediate focal length state).
FIG. 7 is a diagram of various aberrations in a focusing state at a close distance (R = 1500 mm) in a focal length state at a telephoto end.

【0033】各収差図において、FNOはFナンバーを、
NAは開口数を、Yは像高を、dはd線(λ=587.
6nm)を、gはg線(λ=435.8nm)を、Cは
C線(λ=656.3nm)を、FはF線(λ=48
6.1nm)をそれぞれ示している。また、非点収差を
示す収差図において、実線はサジタル像面を示し、破線
はメリディオナル像面を示している。さらに、倍率色収
差を示す収差図は、d線を基準として示されている。各
収差図から明らかなように、第1実施例では、各焦点距
離状態において無限遠合焦状態から至近距離合焦状態に
亘って諸収差が良好に補正され、優れた結像性能が確保
されていることがわかる。
In each aberration diagram, FNO represents an F number,
NA is the numerical aperture, Y is the image height, and d is the d-line (λ = 587.
6 nm), g is a g-line (λ = 435.8 nm), C is a C-line (λ = 656.3 nm), F is an F-line (λ = 48
6.1 nm). In the aberration diagram showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. Further, the aberration diagram showing the chromatic aberration of magnification is shown based on the d-line. As is clear from the aberration diagrams, in the first embodiment, various aberrations are satisfactorily corrected in each focal length state from an infinity in-focus state to a close distance in-focus state, and excellent imaging performance is secured. You can see that it is.

【0034】〔第2実施例〕図8は、本発明の第2実施
例にかかる大口径比内焦式望遠ズームレンズの構成を示
す図であって、広角端焦点距離状態での無限遠合焦状態
における各レンズ群の位置を示している。図8の内焦式
望遠ズームレンズにおいて、第1レンズ群G1中の前群
G1Fは、物体側から順に、物体側に凸面を向けたメニス
カス負レンズと物体側に凸面を向けたメニスカス正レン
ズとの接合正レンズL11、および物体側に凸面を向けた
メニスカス正レンズL12から構成されている。また、第
1レンズ群G1中の後群G1Rは、物体側から順に、物体
側に凸面を向けたメニスカス負レンズL13、および物体
側に曲率の強い凸面を向けた両凸レンズL14から構成さ
れている。
[Second Embodiment] FIG. 8 is a view showing the configuration of a large aperture ratio inner focus telephoto zoom lens according to a second embodiment of the present invention, and focuses on infinity at the wide-angle end focal length. The position of each lens group in the state is shown. 8, the front group G1F in the first lens group G1 includes, in order from the object side, a meniscus negative lens having a convex surface facing the object side and a meniscus positive lens having a convex surface facing the object side. And a meniscus positive lens L12 having a convex surface facing the object side. The rear group G1R in the first lens group G1 includes, in order from the object side, a meniscus negative lens L13 having a convex surface facing the object side and a biconvex lens L14 having a convex surface having a strong curvature facing the object side. .

【0035】さらに、第2レンズ群G2は、物体側から
順に、物体側に凸面を向けたメニスカス負レンズL21、
両凹レンズと両凸レンズとの接合正レンズL22、および
物体側に強い曲率の凹面を向けたメニスカス負レンズL
23から構成されている。また、第3レンズ群G3は、物
体側から順に、両凸レンズL31、および物体側に凹面を
向けたメニスカス正レンズと物体側に凹面を向けたメニ
スカス負レンズとの接合正レンズL32から構成されてい
る。さらに、第4レンズ群G4は、物体側から順に、物
体側に凸面を向けたメニスカス正レンズL41、物体側に
凸面を向けたメニスカス正レンズと物体側に凸面を向け
たメニスカス負レンズとの接合負レンズL42、大きな間
隔を隔てて配置された両凸レンズL43、物体側に凹面を
向けたメニスカス負レンズL44、および物体側に凸面を
向けたメニスカス正レンズL45から構成されている。な
お、第3レンズ群G3と第4レンズ群G4との間には開
口絞りSが設けられ、この開口絞りSは第4レンズ群G
4とともに変倍中固定である。
Further, the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side.
A cemented positive lens L22 composed of a biconcave lens and a biconvex lens, and a meniscus negative lens L having a concave surface with a strong curvature directed to the object side
Consists of 23. The third lens group G3 includes, in order from the object side, a biconvex lens L31 and a cemented positive lens L32 of a meniscus positive lens having a concave surface facing the object side and a meniscus negative lens having a concave surface facing the object side. I have. Further, the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a convex surface facing the object side, a cemented positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. It comprises a negative lens L42, a biconvex lens L43 arranged at a large distance, a negative meniscus lens L44 having a concave surface facing the object side, and a positive meniscus lens L45 having a convex surface facing the object side. An aperture stop S is provided between the third lens group G3 and the fourth lens group G4.
4 and fixed during zooming.

【0036】次の表(2)に、本発明の第2実施例の諸
元の値を掲げる。表(2)において、Fはズームレンズ
全系の焦点距離を、FNOはFナンバーを、βは撮影倍率
を、Bfはバックフォーカスを、D0 は物体からレンズ
系の最も物体側のレンズ面(第1レンズ群G1中の接合
正レンズL11の物体側の面)までの光軸に沿った距離
(物体距離)をそれぞれ表している。また、面番号は物
体側からの各レンズ面の順序を、rは各レンズ面の曲率
半径を、dは各レンズ面間隔を、nおよびνはそれぞれ
d線(λ=587.6nm)に対する屈折率およびアッ
ベ数を示している。さらに、Φ1Fは前群G1Fにおいて最
も物体側に配置された接合正レンズL11の有効径を、Φ
1Rは後群G1Rにおいて最も物体側に配置されたメニスカ
ス負レンズL13の有効径を、Φ2は第2レンズ群G2に
おいて最も物体側に配置されたメニスカス負レンズL21
の有効径を、Φ3は第3レンズ群G3において最も物体
側に配置された両凸レンズL31の有効径をそれぞれ表し
ている。
Table 2 below summarizes data values of the second embodiment of the present invention. In Table (2), F is the focal length of the entire zoom lens system, FNO is the F-number, β is the imaging magnification, Bf is the back focus, and D0 is the object-to-object-side lens surface of the lens system. The distance (object distance) along the optical axis to the object-side surface of the cemented positive lens L11 in one lens group G1 is shown. The surface number indicates the order of each lens surface from the object side, r indicates the radius of curvature of each lens surface, d indicates the distance between the lens surfaces, and n and ν indicate refraction with respect to the d line (λ = 587.6 nm). The rates and Abbe numbers are shown. Further, Φ1F is the effective diameter of the cemented positive lens L11 disposed closest to the object side in the front group G1F,
1R is the effective diameter of the negative meniscus lens L13 located closest to the object side in the rear group G1R, and Φ2 is the negative meniscus lens L21 located closest to the object side in the second lens group G2.
Represents the effective diameter of the biconvex lens L31 disposed closest to the object side in the third lens group G3.

【0037】[0037]

【表2】 F=81.55〜194.00 FNO=2.9 面番号 r d ν n Φ 1 95.6835 2.8000 25.41 1.805182 Φ1F= 69.8 2 69.9345 9.0000 82.52 1.497820 3 419.6538 0.1000 4 145.4966 5.0000 82.52 1.497820 5 311.1124 (d5=可変) 6 50.6221 2.2000 23.82 1.846660 Φ1R= 56.3 7 44.8400 1.7000 8 54.5779 9.0000 70.41 1.487490 9 -15627.6829 (d9= 可変) 10 168.4621 1.5000 46.54 1.804109 Φ2= 34.8 11 30.5148 8.0000 12 -54.1893 1.5000 70.41 1.487490 13 40.4579 5.6000 23.82 1.846660 14 -544.2645 2.4000 15 -50.7200 1.5000 46.54 1.804109 16 -290.4023 (d16=可変) 17 151.0644 3.5000 67.87 1.593189 Φ3= 37.2 18 -168.9103 0.2000 19 -1957.4846 6.7000 82.52 1.497820 20 -38.3700 1.5000 39.61 1.804540 21 -77.5643 (d21=可変) 22 ∞ 1.0000 (開口絞りS) 23 75.8673 3.9000 46.54 1.804109 24 159.3674 0.1000 25 38.5965 7.1000 82.52 1.497820 26 282.4316 4.2000 36.27 1.620040 27 41.0820 28.4000 28 107.1704 6.2000 51.35 1.526820 29 -77.1837 14.8000 30 -34.2661 1.9000 33.89 1.803840 31 -90.1631 0.1000 32 90.4748 4.6000 49.52 1.744429 33 608.1616 (Bf) 〔合焦および変倍における可変間隔〕 無限遠合焦状態 広角端焦点距離 中間焦点距離 望遠端焦点距離 F 81.5500 135.0000 194.0000 D0 ∞ ∞ ∞ d5 18.29019 18.29019 18.29019 d9 1.83871 16.27602 23.30105 d16 32.56913 19.09128 3.04815 d21 4.16373 3.20427 12.22237 Bf 52.22757 52.22757 52.22756 至近距離合焦状態 広角端焦点距離 中間焦点距離 望遠端焦点距離 β -0.06733 -0.11146 -0.16182 D0 1256.8485 1256.8485 1256.8485 d5 9.64204 9.64204 9.64204 d9 10.48686 24.92417 31.94920 d16 32.56913 19.09128 3.04815 d21 4.16373 3.20427 12.22237 Bf 52.22757 52.22757 52.22756 〔条件式対応値〕 f1=90.9065 f2=−27.4554 f3=105.9381 f4=97.1867 f23=−88.0836 f1F=211.8000 f1R=142.2492 FW=81.5500 D1=18.2902 ΔD1=8.6482 (1)f1R/(f1F・D1)=0.037 (2)(|f23|・FW)/(f1・f4・ΔD1)=0.09 (3)|f2|/(f1・FW)=3.7×10-3 (4)(R2−R1)/(R2+R1)=0.63 (5)Np3=1.5932(L31)、1.4978(L32) (6)νp3=67.87(L31)、82.52(L32) (7)Nn1−Np1=0.36 (8)νp1=70.41 (9)νn1=23.82[Table 2] F = 81.55 to 194.00 FNO = 2.9 Surface number rd ν n Φ 1 95.6835 2.8000 25.41 1.805182 Φ1F = 69.8 2 69.9345 9.0000 82.52 1.497820 3 419.6538 0.1000 4 145.4966 5.0000 82.52 1.497820 5 311.1124 (d5 = Variable) 6 50.6221 2.2000 23.82 1.846660 Φ1R = 56.3 7 44.8400 1.7000 8 54.5779 9.0000 70.41 1.487490 9 -15627.6829 (d9 = variable) 10 168.4621 1.5000 46.54 1.804109 Φ2 = 34.8 11 30.5148 8.0000 12 -54.1893 1.5000 70.41 1.487490 13.6000 5.6000 -544.2645 2.4000 15 -50.7200 1.5000 46.54 1.804109 16 -290.4023 (d16 = variable) 17 151.0644 3.5000 67.87 1.593189 Φ3 = 37.2 18 -168.9103 0.2000 19 -1957.4846 6.7000 82.52 1.497820 20 -38.3700 1.5000 39.61 1.804540 21 -77.5643 (d21 = variable) 22 ∞ 1.0000 (Aperture stop S) 23 75.8673 3.9000 46.54 1.804109 24 159.3674 0.1000 25 38.5965 7.1000 82.52 1.497820 26 282.4316 4.2000 36.27 1.620040 27 41.0820 28.4000 28 107.1704 6.2000 51.35 1.526820 29 -77.1837 14.8000 30 -34.2661 1.9000 33. 89 1.803840 31 -90.1631 0.1000 32 90.4748 4.6000 49.52 1.744429 33 608.1616 (Bf) [Variable spacing for focusing and zooming] Infinity in-focus condition Wide-angle end focal length Intermediate focal length Telephoto end focal length F 81.5500 135.0000 194.0000 D0 ∞ ∞ ∞ d5 18.29019 18.29019 18.29019 d9 1.83871 16.27602 23.30105 d16 32.56913 19.09128 3.04815 d21 4.16373 3.20427 12.22237 Bf 52.22757 52.22757 52.22756 Close focal length Wide-angle end focal length Intermediate focal length Telephoto end focal length 9.64204 d9 10.48686 24.92417 31.94920 d16 32.56913 19.09128 3.04815 d21 4.16373 3.20427 12.22237 Bf 52.22757 52.22757 52.22756 [Values corresponding to the conditional expressions] f1 = 90.9065 f2 = -27.4554 f3 = 105.9381 f4 = 97.1867836. f1F = 211.88000 f1R = 142.2492 FW = 81.5500 D1 18.2902 ΔD1 = 8.6482 (1) f1R / (f1F · D1) = 0.037 (2) (| f23 | · FW) / (f1 · f4 · ΔD1) = 0.09 (3) | f2 | /(F1.FW)=3.7×10 −3 (4) (R2−R1) / (R2 + R1) = 0.63 (5) Np3 = 1.5932 (L31), 1.4978 (L32) (6) ) Vp3 = 67.87 (L31), 82.52 (L32) (7) Nn1-Np1 = 0.36 (8) vp1 = 70.41 (9) vn1 = 23.82

【0038】表(2)を参照すると、第2実施例では、
第1レンズ群G1中の後群G1Rの有効径Φ1Rは、第1レ
ンズ群G1中の前群G1Fとの有効径比で8割以下の5
6.3mmであり、第1実施例と同様に非常にコンパク
トな設計となっていることがわかる。また、無限遠物体
から最至近距離物体への合焦に伴う合焦レンズ群(後群
G1R)の合焦移動量ΔD1は約8.65mmと非常に少
ないことがわかる。図9〜図14は、第2実施例の諸収
差図である。すなわち、図9は広角端焦点距離状態での
無限遠合焦状態における諸収差図であり、図10は中間
焦点距離状態での無限遠合焦状態における諸収差図であ
り、図11は望遠端焦点距離状態での無限遠合焦状態に
おける諸収差図である。また、図12は広角端焦点距離
状態での至近距離(撮影距離R=1500mm)合焦状
態における諸収差図であり、図13は中間焦点距離状態
での至近距離(R=1500mm)合焦状態における諸
収差図であり、図14は望遠端焦点距離状態での至近距
離(R=1500mm)合焦状態における諸収差図であ
る。
Referring to Table (2), in the second embodiment,
The effective diameter Φ1R of the rear group G1R in the first lens group G1 is equal to or less than 80% of the effective diameter ratio of the front lens group G1F in the first lens group G1.
6.3 mm, which indicates that the design is very compact as in the first embodiment. Further, it can be seen that the focusing movement amount ΔD1 of the focusing lens group (the rear group G1R) associated with focusing from an object at infinity to an object at the closest distance is very small, about 8.65 mm. 9 to 14 are diagrams illustrating various aberrations of the second example. That is, FIG. 9 is a diagram showing various aberrations at the infinity in-focus condition at the wide-angle end focal length state, FIG. 10 is a diagram showing various aberrations at the infinity in-focus condition at the intermediate focal length state, and FIG. FIG. 4 is a diagram illustrating various aberrations in a focusing state at infinity in a focal length state. FIG. 12 is a diagram of various types of aberration in a close distance (photographing distance R = 1500 mm) focus state in a wide-angle end focal length state, and FIG. 13 is a close distance (R = 1500 mm) focus state in an intermediate focal length state. FIG. 14 is a diagram of various types of aberration at the closest focal length (R = 1500 mm) in the focal length state at the telephoto end.

【0039】各収差図において、FNOはFナンバーを、
NAは開口数を、Yは像高を、dはd線(λ=587.
6nm)を、gはg線(λ=435.8nm)を、Cは
C線(λ=656.3nm)を、FはF線(λ=48
6.1nm)をそれぞれ示している。また、非点収差を
示す収差図において、実線はサジタル像面を示し、破線
はメリディオナル像面を示している。さらに、倍率色収
差を示す収差図は、d線を基準として示されている。各
収差図から明らかなように、第2実施例においても第1
実施例と同様に、各焦点距離状態において無限遠合焦状
態から至近距離合焦状態に亘って諸収差が良好に補正さ
れ、優れた結像性能が確保されていることがわかる。
In each aberration diagram, FNO represents an F number,
NA is the numerical aperture, Y is the image height, and d is the d-line (λ = 587.
6 nm), g is a g-line (λ = 435.8 nm), C is a C-line (λ = 656.3 nm), F is an F-line (λ = 48
6.1 nm). In the aberration diagram showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. Further, the aberration diagram showing the chromatic aberration of magnification is shown based on the d-line. As is clear from the aberration diagrams, the first embodiment also has the first
As in the example, it can be seen that various aberrations are satisfactorily corrected in each focal length state from an infinity in-focus state to a close distance in-focus state, and excellent imaging performance is secured.

【0040】〔第3実施例〕図15は、本発明の第3実
施例にかかる大口径比内焦式望遠ズームレンズの構成を
示す図であって、広角端焦点距離状態での無限遠合焦状
態における各レンズ群の位置を示している。図15の内
焦式望遠ズームレンズにおいて、第1レンズ群G1中の
前群G1Fは、物体側から順に、物体側に凸面を向けたメ
ニスカス負レンズと物体側に凸面を向けたメニスカス正
レンズとの接合正レンズL11、および物体側に凸面を向
けたメニスカス正レンズL12から構成されている。ま
た、第1レンズ群G1中の後群G1Rは、物体側から順
に、物体側に凸面を向けたメニスカス負レンズL13、お
よび物体側に凸面を向けたメニスカス正レンズL14から
構成されている。
[Third Embodiment] FIG. 15 is a view showing the configuration of a large-aperture-ratio inner focus telephoto zoom lens according to a third embodiment of the present invention, and focuses on infinity at the wide-angle end focal length. The position of each lens group in the state is shown. In the inner focus telephoto zoom lens shown in FIG. 15, the front group G1F in the first lens group G1 includes, in order from the object side, a meniscus negative lens having a convex surface facing the object side and a meniscus positive lens having a convex surface facing the object side. And a meniscus positive lens L12 having a convex surface facing the object side. The rear group G1R in the first lens group G1 includes, in order from the object side, a negative meniscus lens L13 having a convex surface facing the object side and a positive meniscus lens L14 having a convex surface facing the object side.

【0041】さらに、第2レンズ群G2は、物体側から
順に、物体側に凸面を向けたメニスカス負レンズL21、
両凹レンズと両凸レンズとの接合正レンズL22、および
物体側に強い曲率の凹面を向けた両凹レンズL23から構
成されている。また、第3レンズ群G3は、物体側から
順に、両凸レンズL31、および両凸レンズと物体側に凹
面を向けたメニスカス負レンズとの接合正レンズL32か
ら構成されている。さらに、第4レンズ群G4は、物体
側から順に、物体側に凹面を向けたメニスカス正レンズ
L41、両凸レンズと両凹レンズとの接合正レンズL42、
大きな間隔を隔てて配置された両凸レンズL43、物体側
に凹面を向けたメニスカス負レンズL44、および両凸レ
ンズL45から構成されている。なお、第3レンズ群G3
と第4レンズ群G4との間には開口絞りSが設けられ、
この開口絞りSは第4レンズ群G4とともに変倍中固定
である。
Further, the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side.
It is composed of a cemented positive lens L22 composed of a biconcave lens and a biconvex lens, and a biconcave lens L23 having a concave surface with a strong curvature directed to the object side. The third lens group G3 is composed of, in order from the object side, a biconvex lens L31, and a cemented positive lens L32 of a biconvex lens and a meniscus negative lens having a concave surface facing the object side. Further, the fourth lens group G4 includes, in order from the object side, a meniscus positive lens L41 having a concave surface facing the object side, a cemented positive lens L42 of a biconvex lens and a biconcave lens,
It comprises a biconvex lens L43 arranged at a large distance, a negative meniscus lens L44 having a concave surface facing the object side, and a biconvex lens L45. Note that the third lens group G3
An aperture stop S is provided between the zoom lens and the fourth lens group G4.
The aperture stop S is fixed during zooming together with the fourth lens group G4.

【0042】次の表(3)に、本発明の第3実施例の諸
元の値を掲げる。表(3)において、Fはズームレンズ
全系の焦点距離を、FNOはFナンバーを、βは撮影倍率
を、Bfはバックフォーカスを、D0 は物体からレンズ
系の最も物体側のレンズ面(第1レンズ群G1中の接合
正レンズL11の物体側の面)までの光軸に沿った距離
(物体距離)をそれぞれ表している。また、面番号は物
体側からの各レンズ面の順序を、rは各レンズ面の曲率
半径を、dは各レンズ面間隔を、nおよびνはそれぞれ
d線(λ=587.6nm)に対する屈折率およびアッ
ベ数を示している。さらに、Φ1Fは前群G1Fにおいて最
も物体側に配置された接合正レンズL11の有効径を、Φ
1Rは後群G1Rにおいて最も物体側に配置されたメニスカ
ス負レンズL13の有効径を、Φ2は第2レンズ群G2に
おいて最も物体側に配置されたメニスカス負レンズL21
の有効径を、Φ3は第3レンズ群G3において最も物体
側に配置された両凸レンズL31の有効径をそれぞれ表し
ている。
Table 3 below summarizes the data values of the third embodiment of the present invention. In Table (3), F is the focal length of the entire zoom lens system, FNO is the F number, β is the photographing magnification, Bf is the back focus, and D0 is the lens surface of the lens system closest to the object (No. The distance (object distance) along the optical axis to the object-side surface of the cemented positive lens L11 in one lens group G1 is shown. The surface number indicates the order of each lens surface from the object side, r indicates the radius of curvature of each lens surface, d indicates the distance between the lens surfaces, and n and ν indicate refraction with respect to the d line (λ = 587.6 nm). The rates and Abbe numbers are shown. Further, Φ1F is the effective diameter of the cemented positive lens L11 disposed closest to the object side in the front group G1F,
1R is the effective diameter of the negative meniscus lens L13 located closest to the object side in the rear group G1R, and Φ2 is the negative meniscus lens L21 located closest to the object side in the second lens group G2.
Represents the effective diameter of the biconvex lens L31 disposed closest to the object side in the third lens group G3.

【0043】[0043]

【表3】 F=81.55〜194.00 FNO=2.9 面番号 r d ν n Φ 1 103.0304 3.8000 25.41 1.805182 Φ1F= 70.0 2 75.9319 10.4000 82.52 1.497820 3 2098.0323 0.1000 4 98.3401 5.3000 82.52 1.497820 5 112.4831 (d5=可変) 6 50.6238 2.2000 23.82 1.846660 Φ1R= 55.6 7 44.6607 1.8100 8 53.8307 9.0000 70.41 1.487490 9 54805.0040 (d9= 可変) 10 567.2324 1.5000 45.37 1.796681 Φ2= 33.4 11 32.7801 7.5200 12 -48.3877 1.8000 82.52 1.497820 13 42.6565 6.0000 23.82 1.846660 14 -319.5118 2.1100 15 -59.3823 1.8000 45.37 1.796681 16 2391.4031 (d16=可変) 17 559.3605 5.0000 64.10 1.516800 Φ3= 36.4 18 -120.6075 0.2000 19 164.0804 9.0000 95.25 1.433852 20 -40.1294 2.0000 45.37 1.796681 21 -74.7207 (d21=可変) 22 ∞ 2.0000 (開口絞りS) 23 -309.4489 3.5000 47.47 1.787971 24 -119.7066 0.2000 25 58.1442 8.0000 82.52 1.497820 26 -101.2693 4.4000 36.27 1.620040 27 124.9247 30.5000 28 244.9041 5.0000 48.97 1.531721 29 -65.6297 14.8000 30 -40.8352 1.9000 33.89 1.803840 31 -124.0269 0.2000 32 322.3504 5.5000 49.45 1.772789 33 -158.3912 (Bf) 〔合焦および変倍における可変間隔〕 無限遠合焦状態 広角端焦点距離 中間焦点距離 望遠端焦点距離 F 81.5500 135.0000 194.0000 D0 ∞ ∞ ∞ d5 19.67023 19.67023 19.67023 d9 2.00000 17.94895 25.98066 d16 25.01804 15.90695 4.24008 d21 12.67257 5.83471 9.46987 Bf 69.71305 69.71305 69.71305 至近距離合焦状態 広角端焦点距離 中間焦点距離 望遠端焦点距離 β -0.06928 -0.11470 -0.16652 D0 1225.3861 1225.3861 1225.3861 d5 10.14062 10.14062 10.14062 d9 11.52962 27.47857 35.51028 d16 25.01804 15.90695 4.24008 d21 12.67257 5.83471 9.46987 Bf 69.71305 69.71305 69.71305 〔条件式対応値〕 f1=97.5593 f2=−25.0000 f3=106.6982 f4=91.0312 f23=−63.9706 f1F=230.0000 f1R=142.0000 FW=81.5500 D1=19.6702 ΔD1=9.5296 (1)f1R/(f1F・D1)=0.031 (2)(|f23|・FW)/(f1・f4・ΔD1)=0.06 (3)|f2|/(f1・FW)=3.1×10-3 (4)(R2−R1)/(R2+R1)=0.91 (5)Np3=1.5168(L31)、1.4339(L32) (6)νp3=64.10(L31)、95.25(L32) (7)Nn1−Np1=0.36 (8)νp1=70.41 (9)νn1=23.82[Table 3] F = 81.55 to 194.00 FNO = 2.9 Surface number rd ν n Φ 1 103.0304 3.8000 25.41 1.805182 Φ1F = 70.0 2 75.9319 10.4000 82.52 1.497820 3 2098.0323 0.1000 4 98.3401 5.3000 82.52 1.497820 5 112.4831 (d5 (Variable) 6 50.6238 2.2000 23.82 1.846660 Φ1R = 55.6 7 44.6607 1.8100 8 53.8307 9.0000 70.41 1.487490 9 54805.0040 (d9 = variable) 10 567.2324 1.5000 45.37 1.796681 Φ2 = 33.4 11 32.7801 7.5200 12 -48.3877 1.8000 82.52 1.497820 13 4.2.6565 6.0000 23.82.82 319.5118 2.1100 15 -59.3823 1.8000 45.37 1.796681 16 2391.4031 (d16 = variable) 17 559.3605 5.0000 64.10 1.516800 Φ3 = 36.4 18 -120.6075 0.2000 19 164.0804 9.0000 95.25 1.433852 20 -40.1294 2.0000 45.37 1.796681 21 -74.7207 (d21 = variable) 22 ∞ 2.0000 Aperture stop S) 23 -309.4489 3.5000 47.47 1.787971 24 -119.7066 0.2000 25 58.1442 8.0000 82.52 1.497820 26 -101.2693 4.4000 36.27 1.620040 27 124.9247 30.5000 28 244.9041 5.0000 48.97 1.531721 29 -65.6297 14.8000 30 -40.8352 1.9000 33.89 1.803840 31 -124.0269 0.2000 32 322.3504 5.5000 49.45 1.772789 33 -158.3912 (Variable spacing for focusing and zooming) Infinity in-focus condition Wide-angle end focal length Intermediate focal length Telephoto end focal length F 81.5500 135.0000 194.0000 D0 ∞ ∞ ∞ d5 19.67023 19.67023 19.67023 d9 2.00000 17.94895 25.98066 d16 25.01804 15.90695 4.24008 d21 12.67257 5.83471 9.46987 Bf 69.71305 69.71305 69.71305 Focus at close range Wide-angle end focal length Intermediate focal length Telephoto end focal length 10.14062 10.14062 d9 11.52962 27.47857 35.51028 d16 25.01804 15.90695 4.24008 d21 12.67257 5.83471 9.46987 Bf 69.71305 69.71305 69.71305 [Values corresponding to conditional expressions] f1 = 97.5933 f2 = −25.0000 f3 = 106.6982 f4 = 91.1032 f. 9706 f1F = 230.0000 f1R = 142.0000 FW = 81.550 D1 = 19.6702 ΔD1 = 9.5296 (1) f1R / (f1F · D1) = 0.031 (2) (| f23 | · FW) / (f1 · f4 · ΔD1) = 0.06 (3) | f2 | / (f1.FW) = 3.1 × 10 −3 (4) (R2−R1) / (R2 + R1) = 0.91 (5) Np3 = 1.5168 (L31), 1.4339 (L32) (6) vp3 = 64.10 (L31), 95.25 (L32) (7) Nn1-Np1 = 0.36 (8) vp1 = 70.41 (9) vn1 = 23.82

【0044】表(3)を参照すると、第3実施例では、
第1レンズ群G1中の後群G1Rの有効径Φ1Rは、第1レ
ンズ群G1中の前群G1Fとの有効径比で8割以下の5
5.6mmであり、第1実施例および第2実施例と同様
に非常にコンパクトな設計となっていることがわかる。
また、無限遠物体から最至近距離物体への合焦に伴う合
焦レンズ群(後群G1R)の合焦移動量ΔD1は約9.5
3mmと非常に少ないことがわかる。図16〜図21
は、第3実施例の諸収差図である。すなわち、図16は
広角端焦点距離状態での無限遠合焦状態における諸収差
図であり、図17は中間焦点距離状態での無限遠合焦状
態における諸収差図であり、図18は望遠端焦点距離状
態での無限遠合焦状態における諸収差図である。また、
図19は広角端焦点距離状態での至近距離(撮影距離R
=1500mm)合焦状態における諸収差図であり、図
20は中間焦点距離状態での至近距離(R=1500m
m)合焦状態における諸収差図であり、図21は望遠端
焦点距離状態での至近距離(R=1500mm)合焦状
態における諸収差図である。
Referring to Table (3), in the third embodiment,
The effective diameter Φ1R of the rear group G1R in the first lens group G1 is equal to or less than 80% of the effective diameter ratio of the front lens group G1F in the first lens group G1.
It is 5.6 mm, which indicates that the design is very compact as in the first and second embodiments.
The focusing movement amount ΔD1 of the focusing lens unit (rear group G1R) associated with focusing from an object at infinity to an object at the closest distance is about 9.5.
It turns out that it is very small, 3 mm. 16 to 21
FIG. 9 is a diagram illustrating various aberrations of the third example. That is, FIG. 16 is a diagram of various aberrations at the infinity in-focus condition at the wide-angle end focal length state, FIG. 17 is a diagram of various aberrations at the infinity in-focus condition at the intermediate focal length state, and FIG. FIG. 4 is a diagram illustrating various aberrations in a focusing state at infinity in a focal length state. Also,
FIG. 19 shows the closest distance (photographing distance R in the wide-angle end focal length state).
FIG. 20 is a diagram illustrating various aberrations in a focused state. FIG. 20 illustrates a close distance (R = 1500 m) in an intermediate focal length state.
m) Various aberration diagrams in a focused state, and FIG. 21 is a diagram of various aberrations in a short-distance (R = 1500 mm) focused state in a focal length state at a telephoto end.

【0045】各収差図において、FNOはFナンバーを、
NAは開口数を、Yは像高を、dはd線(λ=587.
6nm)を、gはg線(λ=435.8nm)を、Cは
C線(λ=656.3nm)を、FはF線(λ=48
6.1nm)をそれぞれ示している。また、非点収差を
示す収差図において、実線はサジタル像面を示し、破線
はメリディオナル像面を示している。さらに、倍率色収
差を示す収差図は、d線を基準として示されている。各
収差図から明らかなように、第3実施例においても第1
実施例および第2実施例と同様に、各焦点距離状態にお
いて無限遠合焦状態から至近距離合焦状態に亘って諸収
差が良好に補正され、優れた結像性能が確保されている
ことがわかる。
In each aberration diagram, FNO represents the F number,
NA is the numerical aperture, Y is the image height, and d is the d-line (λ = 587.
6 nm), g is a g-line (λ = 435.8 nm), C is a C-line (λ = 656.3 nm), F is an F-line (λ = 48
6.1 nm). In the aberration diagram showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. Further, the aberration diagram showing the chromatic aberration of magnification is shown based on the d-line. As is clear from the aberration diagrams, the first embodiment also has the first
As in the example and the second example, various aberrations are favorably corrected in each focal length state from an infinity in-focus state to a close distance in-focus state, and excellent imaging performance is secured. Understand.

【0046】図22は、本発明の各実施例にかかる大口
径比内焦式望遠ズームレンズのAF駆動メカ構成および
ズームメカ構成を概略的に示す模式図である。なお、図
22では、第1実施例のズームレンズを例示的に用いて
いるが、他の実施例に対しても同様である。図22にお
いて、第1レンズ群G1の前群G1Fおよび第4レンズ群
G4は、それぞれレンズ固定筒R1Fおよびレンズ固定筒
R4を介して、固定部Kに取り付けられている。また、
第2レンズ群G2および第3レンズ群G3は、レンズ固
定筒R2およびレンズ固定筒R3を介して、固定部Kに
より支持されたズームカム筒Zに取り付けられている。
さらに、第1レンズ群G1の後群G1Rは、レンズ固定筒
R1Rを介して、フォーカスカム筒Fに取り付けられてい
る。フォーカスカム筒Fは、固定部Kにより支持された
円環型モーターMによって光軸周りに回転駆動されるよ
うに構成されている。
FIG. 22 is a schematic diagram schematically showing an AF drive mechanism and a zoom mechanism of a large-aperture-ratio inner focus telephoto zoom lens according to each embodiment of the present invention. In FIG. 22, the zoom lens of the first embodiment is exemplarily used, but the same applies to other embodiments. In FIG. 22, a front group G1F and a fourth lens group G4 of the first lens group G1 are attached to a fixed portion K via a lens fixed barrel R1F and a lens fixed barrel R4, respectively. Also,
The second lens group G2 and the third lens group G3 are attached to the zoom cam barrel Z supported by the fixed part K via the lens fixed barrel R2 and the lens fixed barrel R3.
Further, the rear group G1R of the first lens group G1 is attached to the focus cam barrel F via a lens fixing barrel R1R. The focus cam barrel F is configured to be driven to rotate around the optical axis by an annular motor M supported by a fixed part K.

【0047】図22に示すように、本発明の大口径比内
焦式望遠ズームレンズでは、変倍機構と合焦機構とが互
いに独立しているので、AF駆動メカ構成およびズーム
メカ構成をそれぞれ簡素化することができ、振動や落下
による衝撃にも強い構造とすることが容易である。この
ように、本発明の大口径比内焦式望遠ズームレンズで
は、第2レンズ群および第3レンズ群の有効径を小さく
して、第1レンズ群の有効径との径周りの段差部分にA
F駆動用モーターを配置することができる。
As shown in FIG. 22, in the large-aperture-ratio inner-focus telephoto zoom lens according to the present invention, since the zoom mechanism and the focusing mechanism are independent of each other, the AF drive mechanism and the zoom mechanism are simplified. And it is easy to provide a structure that is strong against vibrations and shocks caused by falling. As described above, in the large-aperture-ratio inner-focal telephoto zoom lens according to the present invention, the effective diameters of the second lens unit and the third lens unit are reduced, and a step around the effective diameter of the first lens unit is set to A.
An F drive motor can be arranged.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
優れた光学性能を維持しつつ、合焦レンズ群の重量およ
び合焦移動量が小さく、望遠端焦点距離が180mm以
上で、変倍比が2倍以上で、Fナンバーが3以下の大口
径比内焦式望遠ズームレンズを実現することができる。
したがって、本発明の大口径比内焦式望遠ズームレンズ
は、特に一眼レフレックスカメラや電子スチルカメラな
どに好適である。なお、本発明では、合焦レンズ群の有
効径が大口径比内焦式望遠ズームレンズとしては小さい
ため、合焦レンズ群を軽量化することができる。また、
本発明では、合焦移動量が少ないにも関わらず、無限遠
合焦状態から至近距離合焦状態に亘って優れた結像性能
を維待することができる。
As described above, according to the present invention,
While maintaining excellent optical performance, the weight and focusing movement of the focusing lens group are small, the focal length at the telephoto end is 180 mm or more, the zoom ratio is 2 times or more, and the F-number is 3 or less. A focus telephoto zoom lens can be realized.
Therefore, the large-aperture-ratio inner focus telephoto zoom lens of the present invention is particularly suitable for a single-lens reflex camera, an electronic still camera, and the like. In the present invention, the effective diameter of the focusing lens group is small for a large-aperture-ratio inner-focus telephoto zoom lens, so that the focusing lens group can be reduced in weight. Also,
According to the present invention, excellent imaging performance can be maintained from a focusing state at infinity to a focusing state at a close distance, even though the focusing movement amount is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例にかかる大口径比内焦式望
遠ズームレンズの構成を示す図であって、広角端焦点距
離状態での無限遠合焦状態における各レンズ群の位置を
示している。
FIG. 1 is a diagram showing a configuration of a large-aperture-ratio inner-focus telephoto zoom lens according to a first embodiment of the present invention, showing positions of respective lens groups in an infinity in-focus state at a wide-angle end focal length state. ing.

【図2】第1実施例の広角端焦点距離状態での無限遠合
焦状態における諸収差図である。
FIG. 2 is a diagram illustrating various aberrations of the first embodiment at a wide-angle end focal length in an infinity in-focus condition;

【図3】第1実施例の中間焦点距離状態での無限遠合焦
状態における諸収差図である。
FIG. 3 is a diagram illustrating various aberrations of the first embodiment in an infinity in-focus state at an intermediate focal length state;

【図4】第1実施例の望遠端焦点距離状態での無限遠合
焦状態における諸収差図である。
FIG. 4 is a diagram illustrating various aberrations of the first embodiment at a telephoto end focal length in an infinity in-focus condition;

【図5】第1実施例の広角端焦点距離状態での至近距離
合焦状態における諸収差図である。
FIG. 5 is a diagram illustrating various aberrations of the first example in a state of focusing at a close distance in a focal length state at a wide-angle end.

【図6】第1実施例の中間焦点距離状態での至近距離合
焦状態における諸収差図である。
FIG. 6 is a diagram illustrating various aberrations of the first example in an intermediate focal length state and at a close focus state;

【図7】第1実施例の望遠端焦点距離状態での至近距離
合焦状態における諸収差図である。
FIG. 7 is a diagram illustrating various types of aberrations in the focal length state at the telephoto end in the first embodiment in the short-distance in-focus state;

【図8】本発明の第2実施例にかかる大口径比内焦式望
遠ズームレンズの構成を示す図であって、広角端焦点距
離状態での無限遠合焦状態における各レンズ群の位置を
示している。
FIG. 8 is a diagram showing a configuration of a large-aperture-ratio inner-focus telephoto zoom lens according to a second embodiment of the present invention, showing the position of each lens group in an infinity in-focus condition at the wide-angle end focal length. ing.

【図9】第2実施例の広角端焦点距離状態での無限遠合
焦状態における諸収差図である。
FIG. 9 is a diagram of various aberrations in the infinity in-focus condition at the wide-angle end focal length in the second example.

【図10】第2実施例の中間焦点距離状態での無限遠合
焦状態における諸収差図である。
FIG. 10 is a diagram illustrating various aberrations of the second example in an intermediate focal length state and focused on infinity.

【図11】第2実施例の望遠端焦点距離状態での無限遠
合焦状態における諸収差図である。
FIG. 11 is a diagram illustrating various aberrations of the second embodiment at a telephoto end focal length in an infinity in-focus condition;

【図12】第2実施例の広角端焦点距離状態での至近距
離合焦状態における諸収差図である。
FIG. 12 is a diagram illustrating various aberrations of the second example in a state of focusing at a short distance in a focal length state at a wide-angle end.

【図13】第2実施例の中間焦点距離状態での至近距離
合焦状態における諸収差図である。
FIG. 13 is a diagram illustrating various aberrations of the second example in an intermediate focal length state and in a close focusing state;

【図14】第2実施例の望遠端焦点距離状態での至近距
離合焦状態における諸収差図である。
FIG. 14 is a diagram illustrating various aberrations of the second embodiment in a state of focusing on a short distance at a telephoto end focal length.

【図15】本発明の第3実施例にかかる大口径比内焦式
望遠ズームレンズの構成を示す図であって、広角端焦点
距離状態での無限遠合焦状態における各レンズ群の位置
を示している。
FIG. 15 is a diagram showing a configuration of a large-aperture-ratio inner-focus telephoto zoom lens according to a third embodiment of the present invention, showing the position of each lens group in an infinity in-focus condition at the wide-angle end focal length. ing.

【図16】第3実施例の広角端焦点距離状態での無限遠
合焦状態における諸収差図である。
FIG. 16 is a diagram illustrating various aberrations of the third embodiment at a wide-angle end focal length in an infinity in-focus condition;

【図17】第3実施例の中間焦点距離状態での無限遠合
焦状態における諸収差図である。
FIG. 17 is a diagram illustrating various aberrations of the third example in an intermediate focal length state and focused on infinity.

【図18】第3実施例の望遠端焦点距離状態での無限遠
合焦状態における諸収差図である。
FIG. 18 is a diagram illustrating various aberrations of the third embodiment at a telephoto end focal length in an infinity in-focus condition;

【図19】第3実施例の広角端焦点距離状態での至近距
離合焦状態における諸収差図である。
FIG. 19 is a diagram illustrating various aberrations of the third example in the short-distance in-focus state at the wide-angle end focal length state.

【図20】第3実施例の中間焦点距離状態での至近距離
合焦状態における諸収差図である。
FIG. 20 is a diagram illustrating various aberrations of the third example in the intermediate focal length state and in the close focusing state;

【図21】第3実施例の望遠端焦点距離状態での至近距
離合焦状態における諸収差図である。
FIG. 21 is a diagram illustrating various aberrations of the third example in a state of focusing at a short distance in a telephoto end focal length state.

【図22】本発明の各実施例にかかる大口径比内焦式望
遠ズームレンズのAF駆動メカ構成およびズームメカ構
成を概略的に示す模式図である。
FIG. 22 is a schematic diagram schematically showing an AF drive mechanism configuration and a zoom mechanism configuration of a large-aperture-ratio inner-focus telephoto zoom lens according to each embodiment of the present invention.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 G4 第4レンズ群 G1F 第1レンズ群中の前群 G1R 第1レンズ群中の後群 M 円環型モーター Z ズームカム筒 F フォーカスカム筒 K 固定部 R レンズ固定筒 G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G1F Front group in first lens group G1R Rear group in first lens group M Ring motor Z Zoom cam barrel F Focus cam barrel K fixing part R lens fixing cylinder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、正の屈折力を有する第
1レンズ群G1と、負の屈折力を有する第2レンズ群G
2と、正の屈折力を有する第3レンズ群G3と、正の屈
折力を有する第4レンズ群G4とを備え、前記第2レン
ズ群G2および前記第3レンズ群G3を光軸に沿って移
動させて変倍を行う望遠ズームレンズにおいて、 前記第1レンズ群G1は、物体側から順に、正の屈折力
を有する前群G1Fと、該前群G1Fよりも強い正の屈折力
を有する後群G1Rとから構成され、 前記第1レンズ群G1中の前記後群G1Rは、物体側から
順に、物体側に凸面を向けたメニスカス負レンズと、正
レンズ成分とから構成され、 前記第1レンズ群G1中の前記後群G1Rを光軸に沿って
移動させて合焦を行い、 前記第1レンズ群G1中の前記前群G1Fの焦点距離をf
1Fとし、前記第1レンズ群G1中の前記後群G1Rの焦点
距離をf1Rとし、無限遠物体合焦状態における前記前群
G1Fの最も像側の面と前記後群G1Rの最も物体側の面と
の間の光軸に沿った距離をD1としたとき、 0.005<f1R/(f1F・D1)<0.055 の条件を満足することを特徴とする大口径比内焦式望遠
ズームレンズ。
1. A first lens group G1 having a positive refractive power and a second lens group G having a negative refractive power in order from the object side.
2, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power. The second lens group G2 and the third lens group G3 are arranged along the optical axis. In the telephoto zoom lens that performs zooming by moving, the first lens group G1 includes, in order from the object side, a front group G1F having a positive refractive power and a rear group having a positive refractive power stronger than the front group G1F. The rear group G1R in the first lens group G1 is composed of, in order from the object side, a meniscus negative lens having a convex surface facing the object side, and a positive lens component. The rear group G1R in the group G1 is moved along the optical axis to perform focusing, and the focal length of the front group G1F in the first lens group G1 is set to f.
1F, the focal length of the rear group G1R in the first lens group G1 is f1R, and the most image-side surface of the front group G1F and the most object-side surface of the rear group G1R in the in-focus state of an object at infinity. Where a distance along the optical axis between D1 and D1 satisfies the following condition: 0.005 <f1R / (f1F.D1) <0.055.
【請求項2】 前記第1レンズ群G1の焦点距離をf1
とし、前記第2レンズ群G2の焦点距離をf2とし、前
記第4レンズ群G4の焦点距離をf4とし、前記第2レ
ンズ群G2と前記第3レンズ群G3との合成焦点距離を
f23とし、広角端焦点距離状態におけるズームレンズ全
系の焦点距離をFWとし、無限遠物体から最至近距離
(望遠端焦点距離の7.5倍)の物体への合焦に伴う前
記後群G1Rの光軸方向の移動量を△D1としたとき、 0.04<(|f23|・FW)/(f1・f4・ΔD
1)<0.13 2×10-3<|f2|/(f1・FW)<3.8×10
-3 の条件を満足することを特徴とする請求項1に記載の大
口径比内焦式望遠ズームレンズ。
2. The focal length of the first lens group G1 is f1.
The focal length of the second lens group G2 is f2, the focal length of the fourth lens group G4 is f4, the combined focal length of the second lens group G2 and the third lens group G3 is f23, The focal length of the entire zoom lens system at the wide-angle end focal length state is FW, and the optical axis of the rear group G1R upon focusing from an object at infinity to an object at the shortest distance (7.5 times the focal length at the telephoto end) 0.04 <(| f23 | .FW) / (f1.f4..DELTA.D
1) <0.13 2 × 10 −3 <| f2 | / (f1 · FW) <3.8 × 10
3. The large-aperture-ratio inner-focus telephoto zoom lens according to claim 1, wherein the following condition is satisfied.
【請求項3】 前記第1レンズ群G1中の前記前群G1F
は、物体側から順に、物体側に凸面を向けたメニスカス
負レンズと物体側に凸面を向けたメニスカス正レンズと
の接合正レンズと、正レンズ成分とから構成され、 前記前群G1F中の前記接合正レンズの物体側の面の曲率
半径をR1とし、前記 接合正レンズの像側の面の曲率半径をR2としたとき、
0<(R2−R1)/(R2+R1)<1 の条件を満足することを特徴とする請求項1または2に
記載の大口径比内焦式望遠ズームレンズ。
3. The front group G1F in the first lens group G1.
Is composed of, in order from the object side, a cemented positive lens of a meniscus negative lens having a convex surface facing the object side and a meniscus positive lens having a convex surface facing the object side, and a positive lens component. When the radius of curvature of the object-side surface of the cemented positive lens is R1, and the radius of curvature of the image-side surface of the cemented positive lens is R2,
The large-aperture-ratio inner-focus telephoto zoom lens according to claim 1, wherein the following condition is satisfied: 0 <(R2−R1) / (R2 + R1) <1.
【請求項4】 前記第3レンズ群G3は、物体側から順
に、正レンズ成分と、正レンズ成分と負レンズ成分との
接合正レンズとから構成され、 前記第3レンズ群G3を構成する正レンズ成分のd線に
対する屈折率をNp3とし、前記第3レンズ群G3を構成
する正レンズ成分のアッベ数をνp3としたとき、 1.4<Np3<1.6 62<νp3<100 の条件を満足することを特徴とする請求項1乃至3のい
ずれか1項に記載の大口径比内焦式望遠ズームレンズ。
4. The third lens group G3 includes, in order from the object side, a positive lens component and a cemented positive lens of a positive lens component and a negative lens component. When the refractive index of the lens component with respect to the d-line is Np3 and the Abbe number of the positive lens component constituting the third lens group G3 is νp3, the following condition is satisfied: 1.4 <Np3 <1.662 <νp3 <100 The large-aperture-ratio inner-focal telephoto zoom lens according to claim 1, wherein the zoom lens system satisfies the following conditions.
【請求項5】 前記第1レンズ群G1中の前記後群G1R
を構成する前記正レンズ成分のd線に対する屈折率をN
p1とし、前記後群G1Rを構成する前記正レンズ成分のア
ッベ数をνp1とし、前記後群G1Rを構成する前記メニス
カス負レンズのd線に対する屈折率をNn1とし、前記後
群G1Rを構成する前記メニスカス負レンズのアッベ数を
νn1としたとき、 0.25<Nn1−Np1<0.55 65<νp1<100 20<νn1<30 の条件を満足することを特徴とする請求項1乃至4のい
ずれか1項に記載の大口径比内焦式望遠ズームレンズ。
5. The rear group G1R in the first lens group G1.
The refractive index for the d-line of the positive lens component
p1, the Abbe number of the positive lens component constituting the rear group G1R is νp1, the refractive index for the d-line of the meniscus negative lens constituting the rear group G1R is Nn1, and the rear group G1R is constituted. 5. The condition of 0.25 <Nn1−Np1 <0.5565 <νp1 <100 20 <νn1 <30 when the Abbe number of the meniscus negative lens is νn1. 2. The large-aperture-ratio inner-focus telephoto zoom lens according to claim 1.
【請求項6】 広角端焦点距離状態から望遠端焦点距離
状態への変倍に際して、前記第2レンズ群G2は像側へ
移動し、前記第3レンズ群G3は一旦像側へ移動した後
に物体側へ移動し、前記第1レンズ群G1および前記第
4レンズ群G4は光軸に沿って固定であることを特徴と
する請求項1乃至5のいずれか1項に記載の大口径比内
焦式望遠ズームレンズ。
6. When zooming from the wide-angle end focal length state to the telephoto end focal length state, the second lens group G2 moves to the image side, and the third lens group G3 moves to the image side once and then moves to the object side. 6. The large-aperture-ratio internal focusing system according to claim 1, wherein the first lens group G <b> 1 and the fourth lens group G <b> 4 are fixed along the optical axis. 7. Telephoto zoom lens.
JP19971398A 1998-06-30 1998-06-30 Large aperture telephoto zoom lens Expired - Lifetime JP3491136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19971398A JP3491136B2 (en) 1998-06-30 1998-06-30 Large aperture telephoto zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19971398A JP3491136B2 (en) 1998-06-30 1998-06-30 Large aperture telephoto zoom lens

Publications (2)

Publication Number Publication Date
JP2000019398A true JP2000019398A (en) 2000-01-21
JP3491136B2 JP3491136B2 (en) 2004-01-26

Family

ID=16412381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19971398A Expired - Lifetime JP3491136B2 (en) 1998-06-30 1998-06-30 Large aperture telephoto zoom lens

Country Status (1)

Country Link
JP (1) JP3491136B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356381A (en) * 2000-06-16 2001-12-26 Canon Inc Zoom lens with vibration-proof function and optical equipment using the same
JP2002006215A (en) * 2000-06-21 2002-01-09 Sigma Corp Telephoto zoom lens of large aperture ratio
JP2003344766A (en) * 2002-05-27 2003-12-03 Nikon Corp Large aperture ratio internal focus telephoto zoom lens
US6693750B2 (en) 2001-09-19 2004-02-17 Nikon Corporation Zoom lens system
US6867924B2 (en) 2002-09-02 2005-03-15 Olympus Corporation Large-aperture telephoto zoom lens
JP2005284063A (en) * 2004-03-30 2005-10-13 Fujinon Corp Four-group zoom lens with vibration-proof function
US7158315B2 (en) 2004-03-30 2007-01-02 Nikon Corporation Zoom lens system
JP2007212830A (en) * 2006-02-10 2007-08-23 Pentax Corp Telephoto zoom lens system
US8031411B2 (en) 2008-06-05 2011-10-04 Samsung Electronics Co., Ltd. Telephoto zoom lens
US8947791B2 (en) 2011-06-13 2015-02-03 Konica Minolta Advanced Layers, Inc. Large aperture zoom optical system and image pickup apparatus
US9423598B2 (en) 2014-02-12 2016-08-23 Sony Corporation Zoom lens and optical apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538656B1 (en) * 2008-12-24 2015-07-22 삼성전자주식회사 Telephoto Zoom Lens

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630423B2 (en) * 2000-06-16 2011-02-09 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP2001356381A (en) * 2000-06-16 2001-12-26 Canon Inc Zoom lens with vibration-proof function and optical equipment using the same
JP2002006215A (en) * 2000-06-21 2002-01-09 Sigma Corp Telephoto zoom lens of large aperture ratio
JP4653284B2 (en) * 2000-06-21 2011-03-16 株式会社シグマ Large aperture ratio telephoto zoom lens
US6693750B2 (en) 2001-09-19 2004-02-17 Nikon Corporation Zoom lens system
JP2003344766A (en) * 2002-05-27 2003-12-03 Nikon Corp Large aperture ratio internal focus telephoto zoom lens
US6867924B2 (en) 2002-09-02 2005-03-15 Olympus Corporation Large-aperture telephoto zoom lens
US7242532B2 (en) 2004-03-30 2007-07-10 Nikon Corporation Zoom lens system
US7330316B2 (en) 2004-03-30 2008-02-12 Nikon Corporation Zoom lens system
US7158315B2 (en) 2004-03-30 2007-01-02 Nikon Corporation Zoom lens system
JP2005284063A (en) * 2004-03-30 2005-10-13 Fujinon Corp Four-group zoom lens with vibration-proof function
JP2007212830A (en) * 2006-02-10 2007-08-23 Pentax Corp Telephoto zoom lens system
US7289274B1 (en) 2006-02-10 2007-10-30 Pentax Corporation Telescopic zoom lens system
JP4751732B2 (en) * 2006-02-10 2011-08-17 Hoya株式会社 Telephoto zoom lens system
US8031411B2 (en) 2008-06-05 2011-10-04 Samsung Electronics Co., Ltd. Telephoto zoom lens
US8305687B2 (en) 2008-06-05 2012-11-06 Samsung Electronics Co., Ltd. Telephoto zoom lens
US8947791B2 (en) 2011-06-13 2015-02-03 Konica Minolta Advanced Layers, Inc. Large aperture zoom optical system and image pickup apparatus
US9423598B2 (en) 2014-02-12 2016-08-23 Sony Corporation Zoom lens and optical apparatus

Also Published As

Publication number Publication date
JP3491136B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
JP5056184B2 (en) Zoom lens, imaging device, zoom lens zooming method
JP4356040B2 (en) Long zoom lens with anti-vibration function
JPH07270684A (en) Rear focus zoom lens and image pickup system
JP3716418B2 (en) Variable magnification optical system
JP2012113182A (en) Variable power optical system, optical apparatus, and method for manufacturing variable power optical system
JP3849129B2 (en) Zoom lens
JPH08220438A (en) Zoom lens focusable at short distance
JPH11271614A (en) Variable focus distance lens system
JPH07199070A (en) Zoom lens
JPH10104520A (en) Wide angle zoom lens
US6002527A (en) Compact high-zoom-ratio zoom lens
JPH08122640A (en) Zoom lens
JP3491136B2 (en) Large aperture telephoto zoom lens
JPH1048524A (en) Variable power optical system 7
WO2017094665A1 (en) Variable power optical system, optical device, and method for producing variable power optical system
JPH11202202A (en) Zoom lens
JPH1164732A (en) Zoom lens
JPH11160621A (en) Zoom lens
JPH095626A (en) Variable power optical system
JPH0843734A (en) Zoom lens
JP2005292338A (en) Zoom lens
JPH05119260A (en) High-power zoom lens
JPH0727979A (en) Zoom lens
JPH08190052A (en) Zoom lens capable of focusing at short distance
JPH11142738A (en) Variable focal-length lens system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151114

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151114

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151114

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term