JP2000000439A - Hollow fiber membrane type filter membrane module - Google Patents

Hollow fiber membrane type filter membrane module

Info

Publication number
JP2000000439A
JP2000000439A JP16706598A JP16706598A JP2000000439A JP 2000000439 A JP2000000439 A JP 2000000439A JP 16706598 A JP16706598 A JP 16706598A JP 16706598 A JP16706598 A JP 16706598A JP 2000000439 A JP2000000439 A JP 2000000439A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
fiber membrane
filter member
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16706598A
Other languages
Japanese (ja)
Other versions
JP3924926B2 (en
JP2000000439A5 (en
Inventor
Yoshinari Fujii
能成 藤井
Kenji Sakai
憲司 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16706598A priority Critical patent/JP3924926B2/en
Publication of JP2000000439A publication Critical patent/JP2000000439A/en
Publication of JP2000000439A5 publication Critical patent/JP2000000439A5/ja
Application granted granted Critical
Publication of JP3924926B2 publication Critical patent/JP3924926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely remove foreign matter including pathogenic protozoa, etc., in spite of the rupture of hollow fiber membranes by building a filter member consisting of a filter material having the pore diameter larger than the pore diameter of the hollow fiber membranes into a membrane permeation side to filter the permeated liquid of the hollow fiber membranes. SOLUTION: Hollow fiber membranes 2 bundled to a U shape are inserted into an outer cylinder 1 of a membrane module and a bundle of the hollow fiber membranes 2 is adhered and fixed by a potting material 3 at the end of the outer cylinder 1. A filter member 5 consisting of the filter material having the pore diameter larger than the pore diameter of the hollow fiber membranes 2 is built into the outer cylinder by bringing the same into contact with aperture end faces 4 of the hollow fiber membranes 2. A module cap 8 for collecting the filtrate is them mounted at the end faces. The raw water contg. pollutants from raw water supply nozzles 10A and 10B is introduced into a membrane module and is permeated through the membranes from the outer side to the inner side of the hollow fiber membranes 2. The membrane filtrate is passed to the filter member 5 and is taken out to the outside of the membrane module from a permeated water outlet nozzle 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流体分離用中空糸膜
モジュールに関するものである。さらに詳しくは、工業
用水や水道水の浄水処理に使用する中空糸膜モジュール
に関し、特に水道浄水処理に使用する空糸膜モジュール
に関するものである。
The present invention relates to a hollow fiber membrane module for fluid separation. More specifically, the present invention relates to a hollow fiber membrane module used for water purification treatment of industrial water or tap water, and particularly to an empty fiber membrane module used for water purification treatment.

【0002】[0002]

【従来の技術】膜分離法は、省エネルギー、省スペー
ス、省力化および製品の品質向上等の特徴を有するた
め、適用分野を拡大しながら普及している技術である。
膜分離法には、逆浸透、限外ろ過、精密ろ過、ガス分
離、血液浄化、およびパーベーパレーション等の方法が
ある。また、分離膜の形態には、中空糸膜、平膜、およ
び管状膜等があり、上記の各分離対象物の性質や特徴に
応じて使い分けられている。
2. Description of the Related Art Membrane separation is a technology that has become widespread while expanding its application fields because it has features such as energy saving, space saving, labor saving and improvement of product quality.
Membrane separation methods include methods such as reverse osmosis, ultrafiltration, microfiltration, gas separation, blood purification, and pervaporation. In addition, the form of the separation membrane includes a hollow fiber membrane, a flat membrane, a tubular membrane, and the like, which are properly used depending on the properties and characteristics of each of the above-mentioned separation objects.

【0003】従来、精密ろ過の分野では、小型のディス
クフィルターや平膜プリーツ型カートリッジフィルター
として比較的小容量の処理の、かつ比較的清澄な水溶液
を分離・ろ過する目的のものが使用されてきている。ま
た、限外ろ過の分野では、超純水の製造や食品製造およ
び清涼飲料の製造等に平膜ろ過装置や中空糸型膜モジュ
ールが使用されてきた。
Hitherto, in the field of microfiltration, small disc filters and flat membrane pleated cartridge filters which have been used for the purpose of separating and filtering relatively small volume aqueous solutions and relatively clear aqueous solutions have been used. I have. In the field of ultrafiltration, flat membrane filtration devices and hollow fiber membrane modules have been used in the production of ultrapure water, food, and soft drinks.

【0004】近年、このような精密ろ過や限外ろ過の中
空糸膜を、河川水や地下水から工業用水や水道水を製造
する浄水処理プロセスに適用しようとする研究が進めら
れ、比較的濁質分の多い原水に対して長期間使用するこ
のような分野に精密ろ過や限外ろ過の技術が適用されは
じめている。
In recent years, studies have been made to apply such microfiltration or ultrafiltration hollow fiber membranes to a water purification process for producing industrial water or tap water from river water or groundwater. The technology of microfiltration and ultrafiltration has begun to be applied to such a field which is used for a long time for raw water which is often used.

【0005】多孔質の中空糸膜を使用した中空糸膜モジ
ュールは、単位体積当りのろ過面積を非常に大きくとれ
ること、膜処理すべき原液と膜透過液とを隔てるシール
機構が単純であること、水質が優れていること、運転管理
が容易であることなどの種々の利点を有している。
A hollow fiber membrane module using a porous hollow fiber membrane has a very large filtration area per unit volume, and a simple sealing mechanism for separating a stock solution to be treated and a membrane permeate. It has various advantages such as excellent water quality and easy operation management.

【0006】特に水道浄水処理プロセスの分野では、水
質が従来の凝集沈殿・砂ろ過法より優れていて、自動化
が容易で省力化を図ることができるところが注目され、
積極的に導入がすすめられつつある。さらに、クリプト
スポリジウムのような塩素殺菌に対して強い耐性を持つ
病原性原虫に汚染された水道原水に対しても、病原性原
虫を確実に除去できる技術として注目され、このような
原水に対する処理方法として推奨されている。
In particular, in the field of tap water purification processing, attention is paid to the fact that the water quality is superior to the conventional coagulation sedimentation / sand filtration method, and that automation is easy and labor saving can be achieved.
It is being actively introduced. Furthermore, even for tap water contaminated with pathogenic protozoa having strong resistance to chlorine disinfection such as Cryptosporidium, attention has been paid to a technology that can reliably remove pathogenic protozoa. As recommended.

【0007】しかし、このような目的で使用される場
合、中空糸膜モジュールには中空糸膜が破談断して原水
が膜ろ過粋に混入する可能性が存在する。通常の水質の
評価項目、例えば、濁度に対しては多少の中空糸膜が破
断してもほとんど問題になる恐れはないが、クリプトス
ポリジウムの場合には、その強い感染力のために極く少
数の中空糸膜が破断しても問題となることがある。
However, when the hollow fiber membrane module is used for such a purpose, there is a possibility that the hollow fiber membrane is broken and the raw water is mixed into the membrane. For normal water quality evaluation items, for example, turbidity, there is almost no problem even if some hollow fiber membranes break, but in the case of Cryptosporidium, its strong infectivity is extremely low. Even if a small number of hollow fiber membranes are broken, a problem may occur.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、この
ような従来の中空糸膜型モジュールのもつ欠点を解決し
た、中空糸膜が破断してもクリプトスポリジウムに代表
される病原性原虫などの微生物がもれ込むことのない中
空糸膜型ろ過膜モジュールおよび工業用または水道水用
の水の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the conventional hollow fiber membrane type module, such as a pathogenic protozoan represented by cryptosporidium even if the hollow fiber membrane is broken. It is an object of the present invention to provide a hollow fiber membrane type filtration membrane module in which microorganisms do not leak and a method for producing water for industrial use or tap water.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するために、以下に述べる構成からなる。すなわち、
中空糸膜型ろ過膜モジュールにおいて、膜透過側に該中
空糸膜の細孔径より孔径の大きいろ過材料からなるフィ
ルター部材を組み入れて、中空糸膜ろ過液を該フィルタ
ー部材で濾過されるように構成したことを特徴とするも
ので、次の好ましい実施態様を有している。 (1)中空糸膜型ろ過膜モジュールが外圧式中空糸膜モ
ジュールであり、膜ろ過水を取り出す中空糸膜ポッティ
ング部中空糸膜開口端面に精密ろ過膜からなるフィルタ
ー部材を装着したことを特徴とする中空糸膜型ろ過膜モ
ジュールであること。 (2)精密ろ過膜からなるフィルター部材が、ポッティ
ング部中空糸膜開口端面と精密ろ過膜とを液密に密接さ
せる機構と、精密ろ過膜および該精密ろ過膜の変形を防
止する押さえ部材、およびフィルター部材と膜ろ過液集
水用モジュールキャップとを液密に密接させる機構とか
らなること。 (3)フィルター部材が高分子膜からなること。 (4)フィルター部材が高分子焼結体の多孔質体からな
ること。 (5)フィルター部材が焼結金属の多孔質体からなるこ
と。 (6)フィルター部材がセラミックスの多孔質体からな
ること。 (7)フィルター部材がガラス多孔質体からなること。 (8)ろ過材料の平均孔径が、0.03μm以上4.0
μm以下であること、好ましくは0.05μm以上2.
0μm以下であること、さらに好ましくは0.1μm以
上1.0μm以下であること。
The present invention has the following construction to attain the above object. That is,
In the hollow fiber membrane type filtration membrane module, a filter member made of a filtration material having a pore size larger than the pore size of the hollow fiber membrane is incorporated on the membrane permeation side, so that the hollow fiber membrane filtrate is filtered by the filter member. The present invention has the following preferred embodiment. (1) The hollow fiber membrane-type filtration membrane module is an external pressure type hollow fiber membrane module, and a filter member made of a microfiltration membrane is mounted on an end face of a hollow fiber membrane potting portion of a hollow fiber membrane for taking out filtered water. To be a hollow fiber membrane type filtration membrane module. (2) a mechanism in which the filter member made of the microfiltration membrane makes the opening end face of the hollow fiber membrane in the potting portion and the microfiltration membrane in close contact with each other in a liquid-tight manner; A mechanism for bringing the filter member and the module cap for collecting the membrane filtrate into liquid tight contact with each other. (3) The filter member is made of a polymer film. (4) The filter member is made of a porous polymer sintered body. (5) The filter member is made of a porous body of a sintered metal. (6) The filter member is made of a porous ceramic body. (7) The filter member is made of a porous glass body. (8) The average pore size of the filtration material is 0.03 μm or more and 4.0.
μm or less, preferably 0.05 μm or more.
0 μm or less, more preferably 0.1 μm or more and 1.0 μm or less.

【0010】また、本発明においては、原水を中空糸膜
に通じて得られたろ過液を、前記中空糸膜の平均細孔径
よりも大きい平均孔径を有するフィルター部材を通過さ
せることにより工業用水または水道水用の水の製造方法
を提供するものであり、前記いずれかの中空糸膜型モジ
ュールの中空糸膜に原水を通じ、フィルター部材から透
過した水を取り出すことを特徴とする工業用または水道
水の水の製造方法を提供するものである。
[0010] In the present invention, the filtrate obtained by passing raw water through a hollow fiber membrane is passed through a filter member having an average pore diameter larger than the average pore diameter of the hollow fiber membrane to obtain industrial water or water. It is intended to provide a method for producing water for tap water, wherein raw water is passed through a hollow fiber membrane of any one of the hollow fiber membrane type modules, and water permeated from a filter member is taken out. Water production method.

【0011】[0011]

【発明の実施の形態】図1〜3は本発明の中空糸膜モジ
ュールの一例を示すものである。図4〜6はろ過材料か
らなるフィルター部材を装着した本発明の中空糸膜型ろ
過膜モジュールのポッティング部の断面を模式的に示し
た図で、中空糸膜型ろ過膜モジュールの膜透過側に該中
空糸膜の細孔径より孔径の大きいろ過材料からなるフィ
ルター部材を組み入れて、中空糸膜ろ過液を該フィルタ
ー部材で濾過するように構成されていることを示してい
る。
1 to 3 show an example of a hollow fiber membrane module according to the present invention. 4 to 6 are diagrams schematically showing a cross section of a potting portion of the hollow fiber membrane type filtration membrane module of the present invention equipped with a filter member made of a filtration material. This shows that a filter member made of a filtration material having a pore diameter larger than the pore diameter of the hollow fiber membrane is incorporated, and the hollow fiber membrane filtrate is filtered by the filter member.

【0012】図1は、U字型に束ねた中空糸膜2を、膜
モジュールの外筒1に挿入し、外筒の端部で中空糸膜束
をポッティング材3で接着・固定し、中空糸膜の開口部
端面4に接して、フィルター部材5を組み入れて膜ろ過
水の集水用のモジュールキャップ8を取り付けた構造を
した中空糸膜型ろ過膜モジュールの例を示している。図
1に示した中空糸膜型ろ過膜モジュールの使用方法の1
例は、次の通りである。すなわち、濁質分を含む原水
は、原水供給ノズル10から膜モジュールに導入され、
中空糸膜の外側から内側に膜を透過してろ過される。ろ
過された膜ろ過水は中空糸膜の中空部内を流れて開口部
端面4から集水部7を通って膜モジュールの膜ろ過水出
口ノズル6から取り出される。原水中の濁質は中空糸膜
の外表面上に捕捉され堆積する。中空糸膜の外表面上に
堆積した濁質のケーク層が厚くなってろ過抵抗が増大
し、ろ過に要する差圧が所定の値に達したらば、原水の
供給を停止して、必要に応じて、一定量のろ過水をノズ
ル6から逆流させて逆圧洗浄し、さらにノズル11から
空気を導入して空気の泡と泡の上昇に伴なって発生する
水の上昇流で中空糸膜を揺動させて濁質分からなるケー
ク層を物理的に除去する。膜ろ過水は、中空糸膜の開口
部から集水部に出た所に置かれた中空糸膜の細孔径より
孔径の大きいろ過材料からなるフィルター部材5を通過
して膜モジュールの透過水出口ノズル6から、膜モジュ
ールの外部に取り出される。
FIG. 1 shows a state in which a hollow fiber membrane 2 bundled in a U-shape is inserted into an outer cylinder 1 of a membrane module, and the hollow fiber membrane bundle is bonded and fixed with a potting material 3 at an end of the outer cylinder. This shows an example of a hollow fiber membrane type filtration membrane module having a structure in which a filter member 5 is incorporated and a module cap 8 for collecting membrane filtration water is attached in contact with the opening end face 4 of the fiber membrane. Method 1 of using hollow fiber membrane type filtration membrane module shown in FIG.
An example is as follows. That is, raw water containing turbid matter is introduced from the raw water supply nozzle 10 into the membrane module,
The hollow fiber membrane is filtered through the membrane from outside to inside. The filtered membrane filtered water flows through the hollow portion of the hollow fiber membrane, passes through the water collecting part 7 from the opening end face 4 and is taken out from the membrane filtered water outlet nozzle 6 of the membrane module. The turbidity in the raw water is captured and deposited on the outer surface of the hollow fiber membrane. When the turbid cake layer deposited on the outer surface of the hollow fiber membrane becomes thicker and the filtration resistance increases, and the differential pressure required for filtration reaches a predetermined value, the supply of raw water is stopped, and if necessary, Then, a certain amount of filtered water is flowed backward from the nozzle 6 for back pressure washing, and air is introduced from the nozzle 11 to oscillate the hollow fiber membrane with air bubbles and the upward flow of water generated as the bubbles rise. To physically remove the cake layer consisting of turbid matter. The membrane filtered water passes through a filter member 5 made of a filtering material having a pore diameter larger than the pore diameter of the hollow fiber membrane placed at the place where the water exits from the opening of the hollow fiber membrane to the water collecting part, and the permeated water outlet of the membrane module From the nozzle 6, it is taken out of the membrane module.

【0013】図2は、中空糸膜束12を膜モジュールの
外筒20に挿入し、外筒の両端部で中空糸膜束をポッテ
ィング材13および13’で接着・固定し、中空糸膜の
開口部端面14および14’に接して、フィルター部材
15および15’を組み入れて膜ろ過水の集水用のモジ
ュールキャップ18および18’を取り付けた構造をし
た中空糸膜型ろ過膜モジュールの例を示している。図2
に示した中空糸膜型ろ過膜モジュールの使用方法の1例
は、次の通りである。すなわち、濁質分を含む原水は、
原水供給ノズル20および/または20’から膜モジュ
ールに導入され、中空糸膜の外側から内側に膜を透過し
てろ過される。ろ過された膜透過水は中空糸膜の中空部
内を流れて開口部端面14および/または14’から集
水部16および/または16’を通って膜モジュールの
透過水出口ノズル17および/または17’から取り出
される。原水の供給は、中空糸膜型ろ過膜モジュールの
下方に位置する中空糸膜束を接着・固定したポッティン
グ部に複数の通路をポッティング部に貫通させて設け
て、この原水通路から中空糸膜束内に可及的に均一化し
て供給する構造としてもよい。原水中の濁質は中空糸膜
の外表面上に捕捉され堆積する。中空糸膜の外表面上に
堆積した濁質のケーク層が厚くなってろ過抵抗が増大
し、ろ過に要する差圧が所定の値に達したらば、原水の
供給を停止して、必要に応じて、一定量のろ過水をノズ
ル17および/または17’から逆流させて逆圧洗浄
し、さらにノズル20’から空気を導入して空気の泡と
泡の上昇流で中空糸膜を揺動させて濁質分からなるケー
ク層を物理的に除去する。ポッティング部に貫通させて
設けた複数の原水供給通路がある構造の中空糸膜型ろ過
膜モジュールの場合には、この原水供給通路から加圧し
た空気を出して泡および泡の上昇に伴なって発生する水
の上昇流で中空糸膜を揺動させて濁質分からなるケーク
層を物理的に除去する。膜ろ過水は、中空糸膜の開口部
から集水部に出た所に置かれた中空糸膜の細孔径より孔
径の大きいろ過材料からなるフィルター部材15および
/または15’を通過して膜モジュールの透過水出口ノ
ズル17および/または17’から、膜モジュールの外
部に取り出される。図3は図2と同様の構成の膜モジュ
ールであるが、膜モジュールの一端部の中空糸膜の全て
が封止された閉塞端部からなる例を示している。32は
閉塞端部を示し、33は物理洗浄の空気を放散する小孔
を複数設けた中心パイプを示している。34は物理洗浄
空気の導入孔である。
FIG. 2 shows a state in which the hollow fiber membrane bundle 12 is inserted into the outer cylinder 20 of the membrane module, and the hollow fiber membrane bundle is bonded and fixed at both ends of the outer cylinder with potting materials 13 and 13 '. An example of a hollow fiber membrane-type filtration membrane module having a structure in which filter members 15 and 15 'are incorporated in contact with opening end surfaces 14 and 14' and module caps 18 and 18 'for collecting membrane filtered water are attached. Is shown. FIG.
The following is an example of the method of using the hollow fiber membrane type filtration membrane module shown in FIG. That is, raw water containing turbid matter is
It is introduced into the membrane module from the raw water supply nozzle 20 and / or 20 ′, and is filtered through the membrane from outside to inside the hollow fiber membrane. The filtered permeated water flows in the hollow portion of the hollow fiber membrane, passes from the opening end surface 14 and / or 14 'through the water collecting portion 16 and / or 16', and the permeated water outlet nozzle 17 and / or 17 of the membrane module. 'Taken from. The raw water is supplied by providing a plurality of passages through the potting section in the potting section to which the hollow fiber membrane bundle located below the hollow fiber membrane type filtration membrane module is adhered and fixed. It may be configured to supply as uniformly as possible. The turbidity in the raw water is captured and deposited on the outer surface of the hollow fiber membrane. When the turbid cake layer deposited on the outer surface of the hollow fiber membrane becomes thicker and the filtration resistance increases, and the differential pressure required for filtration reaches a predetermined value, the supply of raw water is stopped, and if necessary, Then, a fixed amount of filtered water is caused to flow backward from the nozzle 17 and / or 17 ′ to perform back pressure washing, and air is introduced from the nozzle 20 ′ to oscillate the hollow fiber membrane with air bubbles and upward flow of the bubbles. The cake layer consisting of turbid matter is physically removed. In the case of a hollow fiber membrane type filtration membrane module having a structure in which a plurality of raw water supply passages are provided penetrating through the potting portion, pressurized air is discharged from the raw water supply passages, and bubbles and bubbles rise. The hollow fiber membrane is oscillated by the generated upward flow of water to physically remove the cake layer composed of turbid matter. The membrane filtered water passes through the filter member 15 and / or 15 ′ made of a filtration material having a pore diameter larger than the pore diameter of the hollow fiber membrane placed at the place where the water exits from the opening of the hollow fiber membrane to the water collecting part. From the permeate outlet nozzle 17 and / or 17 'of the module, it is taken out of the membrane module. FIG. 3 shows an example of a membrane module having the same configuration as that of FIG. 2, but an example in which all of the hollow fiber membranes at one end of the membrane module are made up of closed end portions that are sealed. Reference numeral 32 denotes a closed end portion, and reference numeral 33 denotes a central pipe provided with a plurality of small holes for dispersing air for physical cleaning. Numeral 34 is a physical cleaning air introduction hole.

【0014】フィルター部材を構成するろ過材料は、通
常、限外ろ過膜材料または精密ろ過膜材料が使用され
る。本発明の目的と効果からすれば、精密ろ過膜材料が
好ましい。フィルター部材の構成は、図4に示す構成の
もの、あるいは図5、またさらに、図6に示すリーフデ
ィスクフィルターを複数組み合わせたフィルター部材等
のいずれでもよい。図4は、中空糸膜束37の開口部端
面40にパッキン39−1を置いてろ過材料41と密接
させ、該ろ過材料とろ過圧による該ろ過材料の変形を防
止する押さえ部材42とパッキン39−2で密接させ、
膜モジュールの集水用キャップを押さえ部材42とパッ
キン39−3を介して密接させた構造をしている。図5
に示す構成は、フィルター部材がろ過材料54と押さえ
部材53とが一体に成形加工された構造のフィルター部
材を組み込んだ例を示している。51はろ過材料54と
押さえ部材53とを一体に固着しているフランジであ
り、ろ過材料54と押さえ部材53とを液密に密接さ
せ、中空糸膜束48の開口部端面52の外縁部および膜
モジュールキャップ57とフィルター部材とを液密に密
接させている。ろ過材料41または54がプリーツ型に
加工されていてもよく、液密にシールされていれば有効
膜面積を大きくとれるのでむしろ好ましい。図6はろ過
材料がリーフディスクフィルター状に加工されているフ
ィルター部材を中心パイプに複数枚固定したフィルター
部材を示している。64がリーフディスクフィルターを
示し、65はリーフディスクフィルター間のスペーサー
であり、66はフィルター部材と膜モジュールキャップ
とを液密に固定するO-リングである。フィルターろ過
水は中心の集水パイプ67から取り出される。
As the filtration material constituting the filter member, usually, an ultrafiltration membrane material or a microfiltration membrane material is used. In view of the objects and effects of the present invention, a microfiltration membrane material is preferred. The configuration of the filter member may be any one of the configuration shown in FIG. 4 or a filter member in which a plurality of leaf disk filters shown in FIG. 5 and FIG. 6 are further combined. FIG. 4 shows a packing 39-1 placed on the end face 40 of the opening of the hollow fiber membrane bundle 37 so as to be in close contact with the filtering material 41, and a pressing member 42 and a packing 39 for preventing the filtering material and the filtering material from being deformed by the filtering pressure. -2
The water collecting cap of the membrane module is structured to be in close contact with the pressing member 42 via the packing 39-3. FIG.
1 shows an example in which the filter member incorporates a filter member having a structure in which the filtering material 54 and the pressing member 53 are integrally formed. Reference numeral 51 denotes a flange that integrally fixes the filtering material 54 and the pressing member 53, and makes the filtering material 54 and the pressing member 53 come into close contact with each other in a liquid-tight manner, and the outer edge of the opening end face 52 of the hollow fiber membrane bundle 48 and The membrane module cap 57 and the filter member are brought into liquid-tight contact. The filtering material 41 or 54 may be processed into a pleated shape, and it is rather preferable that the filtering material 41 or 54 is sealed in a liquid-tight manner because the effective membrane area can be increased. FIG. 6 shows a filter member in which a plurality of filter members each having a filtering material processed into a leaf disk filter shape are fixed to a central pipe. 64 is a leaf disk filter, 65 is a spacer between the leaf disk filters, and 66 is an O-ring that fixes the filter member and the membrane module cap in a liquid-tight manner. The filtered water is taken out from the central collecting pipe 67.

【0015】フィルター部材を構成するろ過材料には、
高分子材料、金属製膜材料、セラミックス膜材料、ガラ
ス膜材料など、ろ過材料として所定のろ過精度と透過速
度および耐久性を持つものであれば、いずれの素材のろ
過材料でも使用することができる。
The filtering material constituting the filter member includes:
Any filtration material, such as a polymer material, a metal membrane material, a ceramic membrane material, and a glass membrane material, can be used as long as it has a predetermined filtration accuracy, permeation speed, and durability as a filtration material. .

【0016】高分子材料としては、ポリエチレン、エチ
レン-テトラフルオロエチレン共重合体、ポリクロロト
リフルオロエチレン、ポリテトラフルオロエチレン、ポ
リビニルフルオライド、テトラフルオロエチレン-ヘキ
サフルオロプロピレン共重合体、テトラフルオロエチレ
ン-パーフルオロアルキルビニルエーテル共重合体、お
よびクロロトリフルオロエチレン-エチレン共重合体、
ポリフッ化ビニリデン、ポリスルホンおよびポリエーテ
ルスルホン等のの限外ろ過膜または精密ろ過膜が使用で
きる。さらに、これらの高分子の焼結体からなるろ材も
好ましく使用することができる。
As the polymer material, polyethylene, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer, and chlorotrifluoroethylene-ethylene copolymer,
Ultrafiltration or microfiltration membranes such as polyvinylidene fluoride, polysulfone and polyethersulfone can be used. Further, a filter medium made of a sintered body of these polymers can be preferably used.

【0017】金属製膜材料としては焼結金属製精密ろ過
膜がこのましく使用できる。金属材料としてはSUS3
04またはSUS316等の微粒子を焼結した焼結金属
ろ材および焼結金属繊維製精密ろ過膜が特に好ましく使
用できる。
As the metal membrane material, a sintered metal microfiltration membrane can be preferably used. SUS3 as metal material
A sintered metal filter obtained by sintering fine particles such as 04 or SUS316 and a microfiltration membrane made of a sintered metal fiber can be particularly preferably used.

【0018】セラミックスおよびガラス製ろ過材料とし
ては、それらの焼結多孔質体が使用できる。
As the ceramic and glass filtration materials, their sintered porous bodies can be used.

【0019】このようなろ過材料の孔径としては0.0
3μm以上4.0μm以下、好ましくは0.05μm以
上2.0μm以下、さらに好ましくは0.1μm以上
1.0μm以下の範囲の孔径を有するろ過材料が使用さ
れる。孔径を決める条件の一つは、万一中空糸膜が破断
した時に混入する濁質分または微生物等のなかで塩素殺
菌等で消毒ないし殺滅できない特定のものを除去して、
膜モジュールの信頼性を確実にすることができることで
ある。他はフィルター部材の装着によって膜モジュール
によるろ過差圧が長期にわたって著しく増加せずに使用
できることである。すなわち、ろ過材料の透水性能が1
000L/(m2・h)/(100kPa)以上、好ま
しくは10000L/(m2・h)/(100kPa)
以上であるろ過材料からなるフィルター部材が使用され
る。透水性能の上限は高いほどフィルター部材による圧
力損失が小さくて済むが、実際にはろ過材料のろ過精度
とトレードオフの関係にあり、ろ過精度を小さくとれば
透水性能も小さくなるので、およそ100000L/
(m2・h)/(100kPa)以下、より好ましいろ
過精度に対しては約10000L/(m2・h)/(1
00kPa)程度となる。以上のような観点からろ過材
料とろ過精度とを検討した結果、上記の孔径範囲が好ま
しく使用できる。
The pore size of such a filter material is 0.0
A filtration material having a pore diameter in the range of 3 μm to 4.0 μm, preferably 0.05 μm to 2.0 μm, more preferably 0.1 μm to 1.0 μm is used. One of the conditions for determining the pore size is to remove specific substances that cannot be disinfected or killed by chlorine sterilization or the like among turbid components or microorganisms mixed in the event that the hollow fiber membrane breaks,
That is, the reliability of the membrane module can be ensured. Another is that the filter member can be used without a significant increase in filtration differential pressure over a long period of time due to the installation of the filter member. That is, the permeability of the filtration material is 1
000L / (m 2 · h) / (100kPa) or higher, preferably 10000L / (m 2 · h) / (100kPa)
A filter member made of the above-mentioned filtration material is used. The higher the upper limit of the water permeability, the smaller the pressure loss due to the filter member is. However, in practice, there is a trade-off relationship with the filtration accuracy of the filter material.
(M 2 · h) / (100 kPa) or less, and about 10,000 L / (m 2 · h) / (1
00 kPa). As a result of examining the filtering material and the filtering accuracy from the above viewpoints, the above-mentioned pore size range can be preferably used.

【0020】[0020]

【実施例】以下、本発明の構成、効果を実施例を用いて
さらに詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and effects of the present invention will be described below in more detail with reference to embodiments.

【0021】本発明の効果の確認は次の方法で行なっ
た。クリプトスポリジウムを使った実験は非常に困難な
ので、通常、所定の粒子の除去性で評価すればよいと言
われている。通常、人への感染で問題になるクリプトス
ポリジウムには2種類あって、楕円体状をしている。小
型のもので、(4.5〜5.4)〜(4.2〜5.0)μm、大型の種類
で(6.6〜7.9)〜(5.3〜6.5)μmと報告されており、4〜
6μmのポリスチレンビーズの除去性で評価することが
できるとされている。しかし、10-6〜10-7の除去率
を実用規模の膜モジュールについてポリスチレンビーズ
で評価するのも、極めて大量の試験水を必要とするの
で、実際的ではないため、ここでは原水中に存在する微
粒子を計測して評価した。また、従来の凝集沈殿砂ろ過
法に対しては、濁度0.1以下に管理することがクリプ
トスポリジウムに対する暫定指針とされているので、参
考に濁度の比較も行なった。
The effect of the present invention was confirmed by the following method. It is said that an experiment using Cryptosporidium is very difficult, so that it is usually sufficient to evaluate the removability of predetermined particles. Usually, there are two types of Cryptosporidium which are problematic in human infection, and have an ellipsoidal shape. It is reported as (4.5-5.4)-(4.2-5.0) μm for small types, (6.6-7.9)-(5.3-6.5) μm for large types,
It is said that it can be evaluated by the removability of polystyrene beads of 6 μm. However, it is not practical to evaluate a removal rate of 10 -6 to 10 -7 with a polystyrene bead for a practical-scale membrane module, because it requires an extremely large amount of test water. The fine particles were measured and evaluated. Also, compared to the conventional coagulated sedimentation sand filtration method, turbidity was controlled as 0.1 or less as a provisional guideline for Cryptosporidium, and turbidity was compared for reference.

【0022】実施例1 外径680μm、内径400μm、平均細孔径0.01
μmのポリアクリロニトリル多孔質中空糸膜3500本
からなる中空糸膜束をU字状に束ね、その両端部を外径
110mm、内径104mmの硬質塩化ビニルパイプの
ハウジング内に挿入して、片端部を接着剤で固定した
後、その接着固定部の一部を切断して中空糸膜の内部を
開口させた。そして、図5に示すような構造に、SUS
304焼結ステンレス鋼繊維からなるろ過精度1.0μ
mのプリーツ加工をしたろ過材料と押さえ部材と一体に
成形された構造のディスクフィルター部材を使用して、
中空糸膜型ろ過膜モジュールを製作した。
Example 1 Outer diameter 680 μm, inner diameter 400 μm, average pore diameter 0.01
A hollow fiber membrane bundle consisting of 3500 μm polyacrylonitrile porous hollow fiber membranes is bundled in a U-shape, and both ends are inserted into a housing of a hard vinyl chloride pipe having an outer diameter of 110 mm and an inner diameter of 104 mm, and one end is inserted. After fixing with an adhesive, a part of the adhesive fixing portion was cut to open the inside of the hollow fiber membrane. Then, the structure shown in FIG.
Filtration accuracy 1.0μ made of 304 sintered stainless steel fiber
Using a filter material with a structure that is integrally molded with the filter material and the holding member that have been pleated,
A hollow fiber membrane type filtration membrane module was manufactured.

【0023】この中空糸型ろ過膜モジュールの一本の中
空糸膜をポッティング部近傍で300本切断して本発明
の試験用膜モジュールとした。他の1本は、フィルター
部材を装着せずに中空糸膜を300本切断して比較対象
試験用とした。
One hollow fiber membrane of this hollow fiber type filtration membrane module was cut in the vicinity of a potting portion into 300 pieces to obtain a test membrane module of the present invention. The other one was used for comparison test by cutting 300 hollow fiber membranes without attaching a filter member.

【0024】これらの中空糸膜モジュールを使用して、
濁度6.9、直径4μm以上の粒子を8.2×108個
/ml含有する原水を8.3l/分の流量で全量ろ過さ
せて、透過水中の濁度と微粒子を測定した。その結果、
フィルター部材を装着せずに中空糸膜を300本切断し
た膜モジュールでは、透過水の濁度が1.4で直径4μ
m以上の粒子が1.6×108個/ml検出された。こ
れに対して焼結ステンレス鋼繊維製フィルター部材を装
着した膜モジュールでは、濁度が0.02で、直径4μ
m以上の粒子は10個/ml以下で、中空糸膜を切断し
ていない膜モジュールと同等の値を示し、中空糸切断部
から漏れ込んだ粒子はフィルター部材で実質的に除去さ
れていた。
Using these hollow fiber membrane modules,
The raw water containing 8.2 × 108 particles / ml having a turbidity of 6.9 and a diameter of 4 μm or more was completely filtered at a flow rate of 8.3 l / min, and the turbidity and fine particles in the permeated water were measured. as a result,
In a membrane module in which 300 hollow fiber membranes were cut without mounting a filter member, the turbidity of permeated water was 1.4 and the diameter was 4 μm.
m × 1.6 particles / ml were detected. In contrast, the membrane module equipped with a sintered stainless steel fiber filter member had a turbidity of 0.02 and a diameter of 4 μm.
The number of particles of m or more was 10 / ml or less, which was equivalent to that of a membrane module in which the hollow fiber membrane was not cut, and the particles leaking from the cut portion of the hollow fiber were substantially removed by the filter member.

【0025】なお、膜モジュールのろ過差圧はフィルタ
ー部材を装着した膜モジュールが50kPaで、フィル
ター部材を装着していない膜モジュールは25kPa
で、差圧の上昇率には差異はなく、問題無く運転するこ
とができた。
The filtration pressure difference of the membrane module is 50 kPa for the membrane module equipped with the filter member, and 25 kPa for the membrane module without the filter member.
Thus, there was no difference in the rate of increase of the differential pressure, and the vehicle could be operated without any problem.

【0026】実施例2 外径680μm、内径400μm、平均細孔径0.01
μmのポリアクリロニトリル多孔質中空糸膜7400本
からなる長さ約1000mmの中空糸膜束を塩ビ製の外
筒に挿入してその両端部を接着固定し、端部を切断して
中空糸膜の内部を両端部で開口させた形状の図2に示し
たような中空糸型ろ過膜モジュールを製作した。1本の
膜モジュールはノズル20の近傍で中空糸膜を10本切
断し、膜モジュールの両開口部端面には、ろ過精度0.
6μmの焼結ステンレス鋼繊維をプリーツ加工したディ
スクフィルター部材を装着した。他の膜モジュールでは
ノズル20の近傍で中空糸膜を10本切断し、焼結ステ
ンレス鋼繊維からなるフィルター部材を装着しなかっ
た。
Example 2 Outer diameter 680 μm, inner diameter 400 μm, average pore diameter 0.01
A hollow fiber membrane bundle of about 1000 mm in length consisting of 7400 μm polyacrylonitrile porous hollow fiber membranes is inserted into an outer cylinder made of PVC, and both ends thereof are adhered and fixed. A hollow fiber type filtration membrane module as shown in FIG. 2 having an internal opening at both ends was manufactured. One membrane module cuts ten hollow fiber membranes in the vicinity of the nozzle 20, and a filtration accuracy of 0.
A disk filter member obtained by pleating 6 μm sintered stainless steel fiber was mounted. In other membrane modules, ten hollow fiber membranes were cut in the vicinity of the nozzle 20, and no filter member made of sintered stainless steel fiber was attached.

【0027】実施例1と同様に、濁度5.2、4μm以
上の粒子6.2×108個/mlを含む原水を使用して
上記両膜モジュールの透過水の濁度および粒子数を比較
した。その結果、フィルター部材を装着しなかった膜モ
ジュールでは、透過水の濁度が0.035、直径4μm
以上の粒子が4.0×106個/ml検出された。これ
に対して焼結ステンレス鋼繊維からなるフィルター部材
を装着した膜モジュールでは濁度は0.01以下で、4
μm以上の粒子数は10個/ml以下で、中空糸膜を切
断していない膜モジュールと差のない結果であった。両
者のろ過差圧の差は27kPa以下で、差圧の上昇率に
は差異はなく、運転上の問題は認められなかった。
In the same manner as in Example 1, the turbidity and the number of permeated water of both membrane modules were compared using raw water containing 5.2 × 108 particles / ml of particles having a turbidity of 5.2 and 4 μm or more. did. As a result, in the membrane module without the filter member, the turbidity of the permeated water was 0.035 and the diameter was 4 μm.
The above particles were detected at 4.0 × 10 6 particles / ml. On the other hand, in the case of a membrane module equipped with a filter member made of sintered stainless steel fiber,
The number of particles having a particle size of μm or more was 10 particles / ml or less, which was not different from that of the membrane module in which the hollow fiber membrane was not cut. The difference between the two filtration pressure differences was 27 kPa or less, and there was no difference in the rate of increase in the pressure difference, and no operational problems were observed.

【0028】比較例3 実施例1と同様に、ポリアクリロニトリル多孔質中空糸
膜3500本からなる中空糸膜束をU字状に束ね、硬質
塩化ビニルパイプのハウジング内に挿入して、片端部を
接着剤で固定し、その接着固定部の一部を切断して中空
糸膜の内部を開口させた形状の膜モジュールを製作し
た。膜モジュールの1本は、中空糸膜のポッティング部
近傍で約10本切断して、図6に示したような焼結ステ
ンレス鋼繊維の3枚のリーフディスクフィルターからな
るフィルター部材を装着した。フィルターのろ過精度は
0.3μmであった。他の膜モジュールは中空糸膜10
本を切断して、フィルター部材を装着せずに作製した。
Comparative Example 3 In the same manner as in Example 1, a hollow fiber membrane bundle composed of 3500 polyacrylonitrile porous hollow fiber membranes was bundled in a U-shape, inserted into a housing of a rigid polyvinyl chloride pipe, and one end was cut. A membrane module having a shape in which the inside of the hollow fiber membrane was opened by fixing with an adhesive and cutting a part of the adhesive fixing portion was manufactured. One of the membrane modules was cut in the vicinity of the potting portion of the hollow fiber membrane, and a filter member composed of three leaf disc filters of sintered stainless steel fiber as shown in FIG. 6 was mounted. The filtration accuracy of the filter was 0.3 μm. Another membrane module is hollow fiber membrane 10
The book was cut and produced without a filter member attached.

【0029】実施例2と同様に濁度5.2の原水を使っ
て4.2ml/分で供給し全量ろ過して、透過水の濁度
と粒子数を測定した。フィルター部材を装着していない
膜モジュールの透過水の濁度が0.035、直径4μm
以上の粒子が4.0×106個/ml検出された。これ
に対してフィルター部材を装着した膜モジュールでは濁
度は0.01以下で、4μm以上の粒子数は数個/ml
以下で、中空糸膜を切断していない膜モジュールと差の
ない結果であった。なお、両者のろ過差圧は60kPa
で、差圧の上昇率には差異はなく、問題なく運転するこ
とができた。
In the same manner as in Example 2, raw water having a turbidity of 5.2 was supplied at a flow rate of 4.2 ml / min, the whole amount was filtered, and the turbidity of the permeated water and the number of particles were measured. The turbidity of the permeated water of the membrane module without the filter member is 0.035 and the diameter is 4 μm.
The above particles were detected at 4.0 × 10 6 particles / ml. On the other hand, in the membrane module equipped with the filter member, the turbidity is 0.01 or less, and the number of particles of 4 μm or more is several particles / ml.
Below, the result was not different from the membrane module in which the hollow fiber membrane was not cut. The filtration pressure difference between the two is 60 kPa
Thus, there was no difference in the rate of increase of the differential pressure, and the vehicle could be operated without any problem.

【0030】[0030]

【発明の効果】上述したように本発明によれば、水道浄
水処理プロセス等の分野で使用する中空糸膜型ろ過膜モ
ジュールにおいて、万一中空糸膜が破断しても、クリプ
トすポリジウムのような塩素殺菌に対して耐性のある病
原性現虫類をはじめとする異物を確実に除去することが
できる。
As described above, according to the present invention, in a hollow fiber membrane type filtration membrane module used in the field of a water purification treatment process or the like, even if the hollow fiber membrane breaks, the hollow fiber membrane can be used like a polyploid of cryptography. It is possible to reliably remove foreign substances such as pathogenic insects that are resistant to various chlorine sterilization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】中空糸型ろ過膜モジュールの1例の全体構造の
断面図
FIG. 1 is a cross-sectional view of the overall structure of one example of a hollow fiber type filtration membrane module.

【図2】中空糸型ろ過膜モジュールの1例の全体構造の
断面図
FIG. 2 is a cross-sectional view of the overall structure of one example of a hollow fiber type filtration membrane module.

【図3】中空糸型ろ過膜モジュールの1例の全体構造の
断面図
FIG. 3 is a sectional view of the overall structure of one example of a hollow fiber type filtration membrane module.

【図4】中空糸型ろ過膜モジュールのフィルター部材装
着部の断面図
FIG. 4 is a cross-sectional view of a filter member mounting portion of the hollow fiber type filtration membrane module.

【図5】中空糸型ろ過膜モジュールのフィルター部材装
着部の断面図
FIG. 5 is a cross-sectional view of a filter member mounting portion of the hollow fiber type filtration membrane module.

【図6】中空糸型ろ過膜モジュールのフィルター部材装
着部の断面図
FIG. 6 is a sectional view of a filter member mounting portion of the hollow fiber type filtration membrane module.

【符号の説明】[Explanation of symbols]

1:中空糸型ろ過膜モジュール外筒 2:中空糸膜 3:接着固定部(ポッティング部) 4:中空糸膜ポッティング部中空糸膜開口端面 5:フィルター部材 6:膜ろ過水取り出し口 7:膜ろ過水集水部 8:膜ろ過水集水用モジュールキャップ 9:パッキン 10A:物理洗浄空気放出ノズル 10B:原水供給ノズル 11:物理洗浄空気導入口 12:中空糸膜 13:接着固定部(ポッティング部) 14:中空糸膜ポッティング部中空糸膜開口端面 15:フィルター部材 16:膜ろ過水集水部 17:膜ろ過水取り出し口 18:膜ろ過水集水用モジュールキャップ 19:パッキン 20:ノズル 21:中空糸型ろ過膜モジュール外筒 22:中空糸膜 23:接着固定部(ポッティング部) 24:中空糸膜ポッティング部中空糸膜開口端面 25:フィルター部材 26:膜ろ過水集水部 27:膜ろ過水取り出し口 28:膜ろ過水集水用モジュールキャップ 29:パッキン 30および30’:ノズル 31:中空糸型ろ過膜モジュール外筒 32:閉塞端部 33:物理洗浄用エアー吹出し孔付き中心パイプ 34:物理洗浄用エアー導入孔 35:中空糸型ろ過膜モジュール外筒 36ノズル 37:中空糸膜 38:接着固定部(ポッティング部) 39−1:パッキン 39−2:パッキン 39−3:パッキン 40:中空糸膜ポッティング部中空糸膜開口端面 41:ろ過材料 42:押さえ部材 43:膜ろ過水集水部 44:膜ろ過水取り出し口 45:膜ろ過水集水用モジュールキャップ 46:中空糸型ろ過膜モジュール外筒 47:ノズル 48:中空糸膜 49:接着固定部(ポッティング部) 50−1:パッキン 50−2:パッキン 51:フランジ 52:中空糸膜ポッティング部中空糸膜開口端面 53:押さえ部材 54:ろ過材料 55:膜ろ過水取り出し口 56:膜ろ過水集水部 57:膜ろ過水集水用モジュールキャップ 58:中空糸型ろ過膜モジュール外筒 59:ノズル 60:中空糸膜 61:接着固定部(ポッティング部) 62:O―リング 63:中空糸膜ポッティング部中空糸膜開口端面 64:リーフディスクフィルター 65:リーフディスクフィルター用スペーサー 66:O―リング 67:リーフディスクフィルター固定・集水用中心パイ
プ 68:膜ろ過水集水用モジュールキャップ
1: Outer cylinder of hollow fiber type filtration membrane module 2: Hollow fiber membrane 3: Adhesion fixing part (potting part) 4: End face of hollow fiber membrane potting part hollow fiber membrane opening 5: Filter member 6: Membrane filtration water outlet 7: Membrane Filtration water collecting part 8: Module cap for collecting membrane filtration water 9: Packing 10A: Physical cleaning air discharge nozzle 10B: Raw water supply nozzle 11: Physical cleaning air inlet 12: Hollow fiber membrane 13: Adhesive fixing part (potting part) 14: Hollow fiber membrane potting part hollow fiber membrane opening end face 15: Filter member 16: Membrane filtered water collecting part 17: Membrane filtered water collecting port 18: Membrane filtered water collecting module cap 19: Packing 20: Nozzle 21: Hollow fiber type filtration membrane module outer cylinder 22: Hollow fiber membrane 23: Adhesive fixing part (potting part) 24: Hollow fiber membrane potting part Hollow fiber membrane opening end face 25 : Filter member 26: Membrane filtered water collecting section 27: Membrane filtered water collecting port 28: Membrane filtered water collecting module cap 29: Packing 30 and 30 ′: Nozzle 31: Hollow fiber type filtration membrane module outer cylinder 32: Blockage End 33: Central pipe with air outlet for physical cleaning 34: Air inlet for physical cleaning 35: Hollow fiber type filtration membrane module outer cylinder 36 Nozzle 37: Hollow fiber membrane 38: Adhesive fixing part (potting part) 39-1 : Packing 39-2: packing 39-3: packing 40: hollow fiber membrane potting part hollow fiber membrane open end face 41: filtration material 42: holding member 43: membrane filtration water collecting part 44: membrane filtration water outlet 45: membrane Module cap for filtered water collecting 46: Hollow fiber type filtration membrane module outer tube 47: Nozzle 48: Hollow fiber membrane 49: Adhesive fixing part (potting part) 50-1: Packing 50-2: Packing 51: Flange 52: Hollow fiber membrane potting part hollow fiber membrane opening end face 53: Holding member 54: Filtration material 55: Membrane filtration water outlet 56: Membrane filtration water collecting part 57: Module cap for collecting membrane filtered water 58: Hollow fiber type filtration membrane module outer tube 59: Nozzle 60: Hollow fiber membrane 61: Adhesive fixing part (potting part) 62: O-ring 63: Hollow fiber membrane Potting part hollow fiber membrane Open end face 64: Leaf disc filter 65: Spacer for leaf disc filter 66: O-ring 67: Center pipe for fixing and collecting the leaf disc filter 68: Module cap for collecting membrane filtered water

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA02 HA03 HA06 HA07 HA19 HA95 JA18Z JA30A JA30C JA31A KA43 KA52 KA55 KA57 KB14 KC03 KC13 KC14 MC39 PA01 PB02 PB06 PC51 PC54  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA06 GA07 HA02 HA03 HA06 HA07 HA19 HA95 JA18Z JA30A JA30C JA31A KA43 KA52 KA55 KA57 KB14 KC03 KC13 KC14 MC39 PA01 PB02 PB06 PC51 PC54

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】中空糸膜型ろ過膜モジュールにおいて、膜
透過側に該中空糸膜の細孔径より孔径の大きいろ過材料
からなるフィルター部材を組み入れて、中空糸膜ろ過液
を該フィルター部材で濾過されるように構成したことを
特徴とする中空糸膜型ろ過膜モジュール。
In a hollow fiber membrane type filtration membrane module, a filter member made of a filtration material having a pore size larger than the pore size of the hollow fiber membrane is incorporated on the membrane permeation side, and the hollow fiber membrane filtrate is filtered by the filter member. A hollow fiber membrane-type filtration membrane module characterized in that it is configured to be operated.
【請求項2】中空糸膜型ろ過膜モジュールが外圧式中空
糸膜モジュールであり、膜ろ過水を取り出す中空糸膜ポ
ッティング部中空糸膜開口端面に精密ろ過膜からなるフ
ィルター部材を装着したことを特徴とする請求項1記載
の中空糸膜型ろ過膜モジュール。
2. The method according to claim 1, wherein the hollow fiber membrane type filtration membrane module is an external pressure type hollow fiber membrane module, and a filter member made of a microfiltration membrane is mounted on the hollow fiber membrane opening end face of the hollow fiber membrane potting portion for taking out the filtered water. The hollow fiber membrane type filtration membrane module according to claim 1, wherein:
【請求項3】精密ろ過膜からなるフィルター部材が、ポ
ッティング部中空糸膜開口端面と精密ろ過膜とを液密に
密接させる機構と、精密ろ過膜および該精密ろ過膜の変
形を防止する押さえ部材、およびフィルター部材と膜ろ
過液集水用モジュールキャップとを液密に密接させる機
構とからなることを特徴とする請求項2記載の中空糸膜
型ろ過膜モジュール。
3. A mechanism for making a filter member comprising a microfiltration membrane a liquid-tight contact between an opening end face of a hollow fiber membrane in a potting part and the microfiltration membrane, a microfiltration membrane and a holding member for preventing deformation of the microfiltration membrane. 3. The hollow fiber membrane type filtration membrane module according to claim 2, further comprising a mechanism for bringing the filter member and the module cap for collecting the membrane filtrate into liquid tight contact.
【請求項4】フィルター部材が高分子膜からなることを
特徴とする請求項1〜3いずれかの記載の中空糸膜型ろ
過膜モジュール。
4. The hollow fiber membrane type filtration membrane module according to claim 1, wherein the filter member comprises a polymer membrane.
【請求項5】フィルター部材が高分子焼結体、燒結金
属、セラミックスおよびガラスから選ばれる1種以上の
多孔質体からなることを特徴とする請求項1〜3いずれ
かの記載の中空糸膜型ろ過膜モジュール。
5. The hollow fiber membrane according to claim 1, wherein the filter member is made of at least one porous body selected from a sintered polymer, a sintered metal, ceramics and glass. Type filtration membrane module.
【請求項6】原水を中空糸膜に通じて得られたろ過液
を、前記中空糸膜の平均細孔径よりも大きい平均孔径を
有するフィルター部材を通過させることを特徴とする工
業用水または水道水用の水の製造方法。
6. Industrial water or tap water characterized in that a filtrate obtained by passing raw water through a hollow fiber membrane is passed through a filter member having an average pore size larger than the average pore size of the hollow fiber membrane. Water production method.
【請求項7】請求項1〜6いずれかの中空糸膜型モジュ
ールの中空糸膜に原水を通じ、フィルター部材から透過
した水を取り出すことを特徴とする工業用または水道用
の水の製造方法。
7. A method for producing water for industrial or tap water, wherein raw water is passed through the hollow fiber membrane of the hollow fiber membrane type module according to any one of claims 1 to 6, and water permeated from the filter member is taken out.
JP16706598A 1998-06-15 1998-06-15 Hollow fiber membrane filtration membrane module Expired - Fee Related JP3924926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16706598A JP3924926B2 (en) 1998-06-15 1998-06-15 Hollow fiber membrane filtration membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16706598A JP3924926B2 (en) 1998-06-15 1998-06-15 Hollow fiber membrane filtration membrane module

Publications (3)

Publication Number Publication Date
JP2000000439A true JP2000000439A (en) 2000-01-07
JP2000000439A5 JP2000000439A5 (en) 2004-08-19
JP3924926B2 JP3924926B2 (en) 2007-06-06

Family

ID=15842762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16706598A Expired - Fee Related JP3924926B2 (en) 1998-06-15 1998-06-15 Hollow fiber membrane filtration membrane module

Country Status (1)

Country Link
JP (1) JP3924926B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003038A1 (en) * 2003-07-08 2005-01-13 Mitsubishi Rayon Co., Ltd. Water purifier and method of cleaning the same
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
KR101303993B1 (en) 2013-06-14 2013-09-10 한국정수공업 주식회사 Hollow fiber membrane filter with screen
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN113694734A (en) * 2021-09-09 2021-11-26 河北森斯环保科技有限公司 Device for extracting gluconic acid by membrane method
US11752470B2 (en) 2016-08-29 2023-09-12 Emd Millipore Corporation Fixed rigid wall device for compressed pleat configuration filters

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
WO2005003038A1 (en) * 2003-07-08 2005-01-13 Mitsubishi Rayon Co., Ltd. Water purifier and method of cleaning the same
CN100347097C (en) * 2003-07-08 2007-11-07 三菱丽阳株式会社 Water purifier and method of cleaning the same
JPWO2005003038A1 (en) * 2003-07-08 2006-08-10 三菱レイヨン株式会社 Water purifier and cleaning method thereof
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
KR101303993B1 (en) 2013-06-14 2013-09-10 한국정수공업 주식회사 Hollow fiber membrane filter with screen
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US11752470B2 (en) 2016-08-29 2023-09-12 Emd Millipore Corporation Fixed rigid wall device for compressed pleat configuration filters
CN113694734A (en) * 2021-09-09 2021-11-26 河北森斯环保科技有限公司 Device for extracting gluconic acid by membrane method

Also Published As

Publication number Publication date
JP3924926B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3924926B2 (en) Hollow fiber membrane filtration membrane module
KR100240857B1 (en) Disposable membrane module with low-dead volume
US4547289A (en) Filtration apparatus using hollow fiber membrane
US4707268A (en) Hollow fiber potted microfilter
JPH03504820A (en) Spiral-wound reverse osmosis membrane cell
Aptel et al. Categories of membrane operations
CA2000055A1 (en) Microfilter device
US20160346739A1 (en) Filtration apparatus
EP0315048B1 (en) Microporous filter
JPH0365222A (en) Tubular filter element
JPS6274408A (en) Filter cartridge utilizing hollow yarn
EP0122920A1 (en) Filter
GB2573352A (en) Hollow fiber membrane for filtration of liquids
JP2000015062A (en) Membrane filter
JP2000070683A (en) Hollow fiber membrane type permeation membrane module
JP2000079329A (en) Filter membrane module
JP7391887B2 (en) Filtration systems and methods of filtering water
JPS6397203A (en) Cartridge for filtration
JPH0679147A (en) Filtration method
JPH11137974A (en) Spiral membrane element
JPH04190834A (en) Cross-flow type filter
US20170291144A1 (en) Point-of-use water purifier with polysulfone hollow fibres
JPH0824590A (en) Method for filtering concentrated organic solution
JPH10230144A (en) Method for cleaning spiral membrane element and operation method thereof
JPH10165780A (en) Spiral membrane element and its operation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

LAPS Cancellation because of no payment of annual fees