ITRM20080425A1 - VARIABLE-SET FLYWHEEL VENTILATOR - Google Patents

VARIABLE-SET FLYWHEEL VENTILATOR

Info

Publication number
ITRM20080425A1
ITRM20080425A1 IT000425A ITRM20080425A ITRM20080425A1 IT RM20080425 A1 ITRM20080425 A1 IT RM20080425A1 IT 000425 A IT000425 A IT 000425A IT RM20080425 A ITRM20080425 A IT RM20080425A IT RM20080425 A1 ITRM20080425 A1 IT RM20080425A1
Authority
IT
Italy
Prior art keywords
wind turbine
flying
variable
propellers
airship
Prior art date
Application number
IT000425A
Other languages
Italian (it)
Inventor
Mauro Marchionni
Original Assignee
Aeroconsult Int Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aeroconsult Int Srl filed Critical Aeroconsult Int Srl
Priority to IT000425A priority Critical patent/ITRM20080425A1/en
Publication of ITRM20080425A1 publication Critical patent/ITRM20080425A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/922Mounting on supporting structures or systems on an airbourne structure kept aloft due to buoyancy effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/923Mounting on supporting structures or systems on an airbourne structure which is a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Eletrric Generators (AREA)

Description

“AEROGENERATORE VOLANTE AD ASSETTO VARIABILE” DESCRIZIONE “VARIABLE FLYING AEROGENERATOR” DESCRIPTION

I problemi principali della generazione eolica di energia sono: The main problems of wind power generation are:

• Basse velocità del vento alle base quote • Low wind speeds at base altitudes

• Funzionamento accettabile delle pale eoliche in un range di velocità del vento abbastanza ristretto; in genere dai 5 ai 20 m/s • Acceptable operation of the wind turbines in a fairly narrow wind speed range; generally from 5 to 20 m / s

• Non costanza della presenza di vento con conseguente scarso numero di ore annue nelle quali l’aerogeneratore produce effettivamente energia; in pratica la effettiva generazione di energia non supera le 1.500 - 1.800 ore annue • Non-constancy of the presence of wind resulting in a low number of hours per year in which the wind turbine actually produces energy; in practice, the actual generation of energy does not exceed 1,500 - 1,800 hours per year

Tutti i problemi ora accennati vengono risolti brillantemente dal presente trovato la cui configurazione generale è la seguente. All inteno di un dirigibile realizzato con struttura reticolare rigida (8) viene ricavato-un tubo di venturi che ospita, nella sua sezione di gola, un opportuno aerogeneratore con elica singola (o doppia contorotante) (6). Il dirigibile viene ancorato a una altezza da terra deh' ordine dei 1000 m in modo tale da non essere ostacolo alla navigazione aerea ma, nel contempo, in modo da poter essere esposto ai venti in quota che, come noto, sono di intensità molto maggiore di quelli al suolo e che, inoltre, soffiano praticamente tutto l’anno, a quella quota, anche se con velocità e direzioni variabili. Le eliche sono meccanicamente collegate a uno o più generatori elettrici (5) contenuti in una ogiva opportunamente sagomata per la minore resistenza aerodinamica. Semplici calcoli mostrano subito che, se si definisce A il rapporto tra il diametro della sezione di imbocco del venturi e quello della sezione di gola, le potenze cinetiche che possono essere ricavate da aerogeneratori posti in tali sezioni sono legate dalla seguente relazione: All the problems mentioned above are brilliantly solved by the present invention, the general configuration of which is the following. Inside an airship made with a rigid reticular structure (8) there is a venturi tube which houses, in its throat section, a suitable wind turbine with single (or double counter-rotating) propeller (6). The airship is anchored at a height from the ground of the order of 1000 m in such a way as not to be an obstacle to air navigation but, at the same time, so as to be exposed to winds at high altitude which, as known, are of much greater intensity. of those on the ground and which, moreover, blow practically all year round, at that altitude, albeit with variable speeds and directions. The propellers are mechanically connected to one or more electric generators (5) contained in a suitably shaped ogive for the lowest aerodynamic resistance. Simple calculations immediately show that, if A is defined as the ratio between the diameter of the inlet section of the venturi and that of the throat section, the kinetic powers that can be obtained from wind turbines placed in these sections are linked by the following relationship:

Ove: Wg= potenza cinetica ricavabile nella sezione di gola; Wj = potenza cinetica ricavabile nella sezione di ingresso; K = coefficiente <1 che tiene conto del coefficiente di Betz e dei vari rendimenti in gioco; A = rapporto tra il diametro della sezione di ingresso e quello della sezione di gola. Tutto ciò vuol dire che se, ad esempio, la sezione di ingresso ha diametro doppio di quella di gola, un aerogeneratore posto in gola potrà generare 16 volte più energia di un analogo generatore (di diametro molto più grande) posto all’ingresso del venturi e il tutto senza contraddire al principio di conservazione dell’energia. Quando la velocità del vento aumenta in modo eccessivo un aerogeneratore tradizionale deve mettere le pale in bandiera e frenare il rotore mentre quello oggetto del presente trovato si limita a variare il suo assetto così come indicato in fig. 2. Where: Wg = kinetic power obtainable in the throat section; Wj = kinetic power obtainable in the input section; K = coefficient <1 which takes into account the Betz coefficient and the various returns involved; A = ratio between the diameter of the inlet section and that of the throat section. All this means that if, for example, the inlet section has twice the diameter of the throat one, a wind turbine placed in the throat will be able to generate 16 times more energy than a similar generator (with a much larger diameter) placed at the entrance to the venturi. and all without contradicting the principle of conservation of energy. When the wind speed increases excessively, a traditional wind turbine must flag the blades and brake the rotor, while the rotor object of the present invention merely varies its attitude as indicated in fig. 2.

Un apposita centralina di rilevazione dati e di controllo posta a.bordo rileva la velocità del ven ed aziona i profili alari mobili (3) e (7) in modo da ridune la superficie di imbocco esposta al vento; riducendo la superficie esposta diminuisce la quantità di aria che entra nel venturi, diminuisce, di conseguenza, anche la velocità del vento relativa alle pale e T aerogeneratore riesce a produrre energia anche con venti di intensità tale che provocherebbe l’arresto dei generatori tradizionali. A special data detection and control unit placed on board detects the speed of the wind and activates the mobile airfoils (3) and (7) so as to reduce the inlet surface exposed to the wind; reducing the exposed surface decreases the amount of air entering the venturi, consequently also decreases the wind speed relative to the blades and the wind generator is able to produce energy even with winds of such intensity that it would cause traditional generators to stop.

In altre parole, quindi, Taerogeneratore volante ad assetto variabile qui rivendicato consente, tramite Γ effetto Venturi, di ricavare notevoli quantità di energia anche con bassissime velocità del vento e riesce inoltre a produrre ugualmente energia, tramite la variazione di assetto, quando la velocità del vento diventa eccessiva. In other words, therefore, the variable attitude flying Taogenerator claimed here allows, through the Venturi effect, to obtain considerable quantities of energy even with very low wind speeds and is also able to produce energy equally, through the variation of attitude, when the speed of the wind becomes excessive.

Nella fig. 3 è riportata una vista anteriore dell’aerogeneratore da cui si evince che la sezione di generazione della energia (pale eoliche più generatori elettrici) è posizionata eccentrica più in basso del centro idrostatico di spinta (verso l’alto) del dirigibile in modo tale che un eventuale squilibrio del momento sul mozzo dell’elica (6) possa essere subito controbilanciata in modo automatico e senza interventi esterni dal momento della forza peso che si crea non appena il dirigibile comincia a ruotare sotto l’azione del momento squilibrante esterno. In fig. 3 shows a front view of the wind turbine which shows that the power generation section (wind turbines plus electric generators) is positioned eccentrically lower than the hydrostatic thrust center (upwards) of the airship so that any moment imbalance on the propeller hub (6) can be immediately counterbalanced automatically and without external intervention by the moment of the weight force that is created as soon as the airship begins to rotate under the action of the external imbalance moment.

Va da ultimo rivendicato che l’aver posto la sezione di generazione di corrente nella sezione di gola del Venturi dà un ulteriore importante beneficio poiché le alte velocità del vento ivi sempre presenti consentono di realizzare pale eoliche di piccolo diametro e ad alta velocità. Con diametri delle eliche dell’ordine dei 10 m è possibile ottenere velocità di rotazione inferiori ai 1000 rpm e, quindi, perfettamente compatibili con uh accoppiamento diretto ai generatori elettrici senza interposizione, quindi, di moltiplicatori di giri meccanici. Se si tiene conto che negli impianti tradizionali il moltiplicatore di giri è il complessivo più delicato e costoso e che, inoltre, dissipa dal 20 al 30% della energia totale per ineliminabili attriti interni, si vede subito quale ulteriore grosso vantaggio consente l aerogeneratore volante ad assetto variabile oggetto di presente trovato. Una ulteriore versione dell’ aerogeneratore è indicata in fig. 4. Lastly, it must be claimed that having placed the current generation section in the throat section of the Venturi gives a further important benefit since the high wind speeds always present there allow the creation of small diameter and high speed wind turbines. With propeller diameters of the order of 10 m it is possible to obtain rotation speeds of less than 1000 rpm and, therefore, perfectly compatible with a direct coupling to electric generators without interposition, therefore, of mechanical speed multipliers. If we take into account that in traditional systems the gearbox is the most delicate and expensive assembly and that, moreover, it dissipates from 20 to 30% of the total energy due to unavoidable internal frictions, we immediately see what further great advantage the flying wind turbine allows. variable structure object of the present invention. A further version of the wind turbine is shown in fig. 4.

In tale caso l’elica (11) è solidale 3⁄4 un toro metallico magnetico (12) che funge da rotore di un generatore elettrico il cui statore(13) è un ulteriore toro vincolato rigidamente alla struttura (8) del dirigibile. Con tale soluzione si hanno i seguenti vantaggi: In this case the propeller (11) is 3⁄4 integral with a magnetic metal torus (12) which acts as the rotor of an electric generator whose stator (13) is a further torus rigidly bound to the structure (8) of the airship. With this solution you have the following advantages:

- si evita l’ingombro aerodinamico assiale del generatore (5) con vantaggi sul rendimento globale - si può ottenere una diminuzione dei pesi totali - the axial aerodynamic encumbrance of the generator (5) is avoided with advantages on the overall efficiency - a decrease in the total weights can be achieved

Se poi ragioni di tipo aerodinamico facessero ritenere opportuno ricorrere a due eliche controrotanti anziché a una sola, anche questa ultima soluzione permette la doppia elica. If then aerodynamic reasons would make it necessary to resort to two counter-rotating propellers instead of just one, this last solution also allows the double propeller.

LEGENDA delle figure 1, 2, 3 e 4 KEY to figures 1, 2, 3 and 4

1. argano 1. winch

2. cavo di ancoraggio a terra e conduttore elettrico 2. Ground anchor cable and electrical conductor

3. profili alari mobili anteriori 3. movable front airfoils

4. involucro superiore 4. upper casing

5. generatore/i elettrico/i 5. electric generator (s)

6. elica (o doppia elica controrotante) 6. propeller (or double counter-rotating propeller)

7. profili alari mobili laterali esterni 7. external lateral movable airfoils

8. struttura metallica rigida 8. rigid metal structure

9. involucro inferiore 9. lower casing

10. timone di direzione (fisso o mobile) 10. rudder (fixed or mobile)

11. elica solidale al toro magnetico (12) che funge da rotore del generatore elettrico 11. propeller integral with the magnetic torus (12) which acts as the rotor of the electric generator

12. toro magnetico che funge da rotore 12. magnetic torus which acts as a rotor

toro esterno che funge da statore external torus that acts as a stator

Claims (1)

"AEROGENERATORE VOLANTE AD ASSETTO VARIABILE” RIVENDICAZIONI 1. aerogeneratore volante ad assetto variabile costituito da una o più pale eoliche poste nella sezione di gola dì un tubo venturi mantenuto a circa 1000 m dal suolo e ricavato nella parte interna di un dirigibile a struttura rigida (8) 2. aerogeneratore volante ad assetto variabile come nella rivendicazione precedente nel quale la captazione della energia eolica avviene a mezzo di due eliche controrotanti (6) allo scopo dì aumentare il coefficiente di Betz 3. aerogeneratore volante ad assetto variabile come alle rivendicazioni precedeti munito di profili alari (simmetrici o asimmetrici) anteriori (3) e profili alari esterni (7) che, opportunamente manovrati da una centralina di controllo a bordo, consentono la variazione di assetto del dirigibile al variare della velocità del vento. 4. aerogeneratore volante ad assetto variabile come nella rivendicazione precedente nel quale il ridotto diametro delle eliche di captazione energetica consente alte velocità di rotazione che permettono l’accoppiamento diretto ai generatori elettrici senza la necessità di dover interporre moltiplicatori di giri meccanici, 5. aerogeneratore volante ad assetto variabile come nelle rivendicazioni precedenti nel quale la sezione di generazione energetica è posta in posizione eccentrica rispetto al centro di spinta del dirigibile allo scopo di equilibrare con il solo peso proprio dei generatori un eventuale squilibrio dei momenti agenti sulle eliche. 6. aerogeneratore volante nel quale le eliche sono solidali a un toro magnetico che funge da rotore e mota entro un altro toro fisso alla struttura (8) che funge da statore."FLYING AEROGENERATOR WITH VARIABLE TRIM" CLAIMS 1. variable attitude flying wind turbine consisting of one or more wind blades placed in the throat section of a venturi tube maintained at about 1000 m from the ground and obtained in the internal part of a rigid structure airship (8) 2. variable attitude flying wind turbine as in the previous claim in which the collection of wind energy takes place by means of two counter-rotating propellers (6) in order to increase the Betz coefficient 3. variable attitude flying wind turbine as per the previous claims equipped with front (symmetrical or asymmetrical) wing profiles (3) and external wing profiles (7) which, suitably maneuvered by an on-board control unit, allow the airship to be adjusted as the wind speed varies. 4. variable attitude flying wind turbine as in the previous claim in which the reduced diameter of the energy capturing propellers allows high rotation speeds that allow direct coupling to electric generators without the need to interpose mechanical speed multipliers, 5. variable attitude flying wind turbine as in the preceding claims in which the energy generation section is placed in an eccentric position with respect to the thrust center of the airship in order to balance any unbalance of the moments acting on the propellers with the only weight of the generators. 6. flying wind turbine in which the propellers are integral with a magnetic torus which acts as a rotor and mota within another torus fixed to the structure (8) which acts as a stator.
IT000425A 2008-08-04 2008-08-04 VARIABLE-SET FLYWHEEL VENTILATOR ITRM20080425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IT000425A ITRM20080425A1 (en) 2008-08-04 2008-08-04 VARIABLE-SET FLYWHEEL VENTILATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000425A ITRM20080425A1 (en) 2008-08-04 2008-08-04 VARIABLE-SET FLYWHEEL VENTILATOR

Publications (1)

Publication Number Publication Date
ITRM20080425A1 true ITRM20080425A1 (en) 2008-11-03

Family

ID=40749215

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000425A ITRM20080425A1 (en) 2008-08-04 2008-08-04 VARIABLE-SET FLYWHEEL VENTILATOR

Country Status (1)

Country Link
IT (1) ITRM20080425A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166596A (en) * 1978-01-31 1979-09-04 Mouton William J Jr Airship power turbine
EP0045264A2 (en) * 1980-07-29 1982-02-03 Megatec - Industrie Wind driven electric generator
EP0045202A1 (en) * 1980-07-26 1982-02-03 Timothy Michael Gilchrist Improvements in wind powered electric generators
US4350898A (en) * 1980-10-24 1982-09-21 Benoit William R Lighter than air wind energy conversion system utilizing an external radial disk diffuser
FR2561719A1 (en) * 1984-03-20 1985-09-27 Haentjens Rene Air-supported air generator called ''Aeolian''
DE202007013257U1 (en) * 2007-09-20 2008-02-14 Cl Cargolifter Gmbh & Co. Kgaa Arrangement for wind energy utilization
US20080048453A1 (en) * 2006-07-31 2008-02-28 Amick Douglas J Tethered Wind Turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166596A (en) * 1978-01-31 1979-09-04 Mouton William J Jr Airship power turbine
EP0045202A1 (en) * 1980-07-26 1982-02-03 Timothy Michael Gilchrist Improvements in wind powered electric generators
EP0045264A2 (en) * 1980-07-29 1982-02-03 Megatec - Industrie Wind driven electric generator
US4350898A (en) * 1980-10-24 1982-09-21 Benoit William R Lighter than air wind energy conversion system utilizing an external radial disk diffuser
FR2561719A1 (en) * 1984-03-20 1985-09-27 Haentjens Rene Air-supported air generator called ''Aeolian''
US20080048453A1 (en) * 2006-07-31 2008-02-28 Amick Douglas J Tethered Wind Turbine
DE202007013257U1 (en) * 2007-09-20 2008-02-14 Cl Cargolifter Gmbh & Co. Kgaa Arrangement for wind energy utilization

Similar Documents

Publication Publication Date Title
JP6423943B2 (en) Method and system for moving an air vehicle between crosswind and hover flight
Rancourt et al. Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation
Lilley et al. A preliminary report on the design and performance of ducted windmills
Singh et al. Blade design and performance testing of a small wind turbine rotor for low wind speed applications
do Rio et al. An extension of the blade element momentum method applied to diffuser augmented wind turbines
AU2014367205B2 (en) Path based power generation control for an aerial vehicle
Schreck et al. Horizontal axis wind turbine blade aerodynamics in experiments and modeling
US20150330367A1 (en) Drive Mechanism Utilizing a Tubular Shaft and Fixed Central Shaft
JP2015102090A (en) Ocean current power generating apparatus using dual ducts producing boundary layer control effect
JP2008506877A5 (en)
Brusca et al. Low-speed wind tunnel: design and build
US10094358B2 (en) Wind turbine blade with double airfoil profile
WO2015190916A1 (en) Device for converting kinetic energy of a flowing medium to electrical energy
Kheiri et al. On the aerodynamic performance of crosswind kite power systems
US20150183510A1 (en) Dual-Pitch Support for a Propeller
EP2762719A1 (en) Omnidirectional turbine
US9890768B2 (en) Hybrid vertical axis wind turbine
US11313347B2 (en) Scalable wind power station
ITRM20080425A1 (en) VARIABLE-SET FLYWHEEL VENTILATOR
Kheiri et al. Power limit for crosswind kite systems
AU2020101236A4 (en) Immersed wind turbine with ambulant blades to increase efficiency of harvesting wind energy to develop power generation capacity
Hunsaker et al. Momentum theory with slipstream rotation applied to wind turbines
RU2618416C1 (en) Roof radial fan of smoke-removal and ventilation
US10563635B2 (en) Aft rotor ducted wind turbine
Jafari et al. The effects of installation configuration and solidity on the power generation of a linear cascade wind turbine