IL113098A - Solar collection system - Google Patents

Solar collection system

Info

Publication number
IL113098A
IL113098A IL113098A IL11309895A IL113098A IL 113098 A IL113098 A IL 113098A IL 113098 A IL113098 A IL 113098A IL 11309895 A IL11309895 A IL 11309895A IL 113098 A IL113098 A IL 113098A
Authority
IL
Israel
Prior art keywords
solar collector
collector
assembly according
solar
angle
Prior art date
Application number
IL113098A
Other versions
IL113098A0 (en
Inventor
Eldad Dagan
Original Assignee
Solel Solar Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solel Solar Systems Ltd filed Critical Solel Solar Systems Ltd
Priority to IL113098A priority Critical patent/IL113098A/en
Publication of IL113098A0 publication Critical patent/IL113098A0/en
Priority to PCT/US1996/003699 priority patent/WO1996029745A1/en
Priority to AU55243/96A priority patent/AU5524396A/en
Publication of IL113098A publication Critical patent/IL113098A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/428Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis with inclined axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/60Arrangements for controlling solar heat collectors responsive to wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/11Driving means
    • F24S2030/115Linear actuators, e.g. pneumatic cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

Solar collection system SOLEL Solar Systems Ltd. tt"V-l fl1>*17U? il1.3*lj>0 77 0 The inventor: Eldad DAGAN C. 95743 SOLAR COLLECTION SYSTEM FIELD OF THE INVENTION The present invention is in the field of solar radiation collection systems ("solar systems") and more specifically it is concerned with an improved one axis tracking (OAT) solar collector.
BACKGROUND OF THE INVENTION The rapid exploitation of natural energy resources together with the search for environmental friendly energy resources and the need to provide energy to remote settlements or plants, raises an increasing interest in solar energy systems and in improvements therein.
One way of increasing the efficiency of OAT solar collectors is through improving the angular radiation efficiency which is defined as the ratio between the solar radiation intensity received at a surface and between the radiation intensity received at the surface when it faces exactly in the sun's direction. Accordingly, in case of a parabolic reflector or a Fresnel's concentrator, when the sun's rays strike parallel to an optical axis of the reflecting or concentrating surface, then, the angular radiation efficiency is maximal.
It has long been known that in order to improve the angular radiation efficiency of a solar system, tracking means are to be provided for tracking the sun as it progresses in the sky.
One kind of tracking systems known is the two axis tracking systems, However, due to complexity of the two-axes tracking systems, they are usually applicable to parabolic dishes supported by a substantially tall single leg. Rotating a parabolic trough-like collector in two axes is practical only for short and narrow collectors, since in large collectors there may be severe problems such as torsion of the reflector giving rise to poor optic performances and various torsion forces which may even cause damage to the heat collection element (HCE).
In order to use reflectors having substantially large areas, i.e. 500 square meters and more, single-axes tracking systems are typically used, having their longitudinal axes parallel with the meridian (north-south) and tilted above horizon at an optimal angle, depending on the latitude in which the system is positioned. As a typical example, at the latitude range of between 20 to 35° which is the so-called "sun-belt", in which some of the best radiation areas lie (e.g. Sahara Desert, California, New Mexico, etc.) a reflector tilted at approximately 8° with respect to the horizon was found to increase the annual solar radiation collection efficiency by about 6% as compared with a 0° tilt axis.
However, an inclined collection unit of the single axis tracking type involves several difficulties. First, a solar system unit typically having a reflecting area of about 500 square meters, e.g. being 50 meters long and having a span of about 10 meters, requires at least three supporting legs; for obtaining an inclination of approximately 8° the lowest leg should be approximately 6 meters high and the tallest leg should be about 13 meters high.
As a result of the legs' height, the reflector and the entire system are prone to damage by strong winds, in particular in portions adjacent the higher supporting leg, such as deflection of the reflectors or even breakage of the HCE.
Even when such a parabolic solar system is in its stow position, i.e., rotated to an angle in which the optical axis is about 30° below the horizon, in order to reduce the overall height of the solar system, the wind remains substantially strong and may inflict damage.
Furthermore, OAT solar systems should be periodically serviced, e.g. regularly rinsing the reflectors and HCE and other maintenance procedures. For the performance of such operations, the collector unit is rotated about its longitudinal axis to the stow position. However, in solar systems known to date when the longitudinal axes is inclined, in the stow position one end of the collector is several meters higher than the other end, and servicing the reflector and the HCE require elevating means.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a single axis tracking solar system with the above-referred to disadvantages significantly reduced while the annual angular radiation efficiency is increased.
Furthermore, it is an object of the present invention to provide a solar system in which the longitudinal axis of the collector is substantially parallel to the horizon when the collector is in the stow position.
According to the present invention there is provided a solar collector assembly comprising one or more solar collector units of the one axis tracking type, each of which comprises an elongated solar collector device mounted on a support structure, the assembly is characterized in that the collector unit is mounted on the support structure so that the tracking axis of the collector unit is inclined at an initial angle a with respect to the horizon and the longitudinal axis of the collector unit is inclined at an auxiliary angle β with respect to said tracking axis, whereby when the solar collector device faces the zenith the longitudinal axis of the collector unit is inclined at a superimposed angle φ equal to α+β, and at a predetermined stow position, the longitudinal axis is substantially parallel to the horizon.
According to one application of the present invention, the solar collection device is a concentrating collector wherein said collector unit is of the line-focus type and comprises a solar collector device having an elongated optical concentrator or reflector and a longitudinal receiver fixed at the focus of the concentrator or reflector and wherein the optical concentrator or . reflector may for example be a trough-like parabolic reflector or a Fresnel's lens concentrator or a compound parabolic concen-trator.
According to another application of the present invention, said solar collector device is a non-concentrating device, which may for example comprise photo-voltaic elements or may be adapted fqrjigating a heat__ absorbing fluid.
According to one embodiment of the present invention, φ (expressed in degrees) meets the following formula: φ ≤ L+5° (I) where L is the latitude (expressed in degrees).
In a preferred embodiment of the present invention the, stow angle τ is about -30°±5°; the initial angle a is about 2.5°± ; and the auxiliary angle β is about 7°±4°. In a particular preferred embodiment, β is about 2a.
According to one embodiment of the invention, the support structure comprises at least two supporting legs of different heights, each one of which bears one of two remote ends of the solar collector unit. Where the collector unit comprises a trough-like parabolic reflector, the unit is preferably mounted on a support structure so that the tracking axis intersects the trough's nadir, i.e. it is above the nadir at the lowermost end -and below the nadir at the uppermost end.
BRIEF DESCRIPTION OF THE DRAWINGS For better understanding, the invention will now be described in a non-limiting way, with reference to the accompanying drawings in which: Figs, la-c are isometric views of a solar collector assembly according to an embodiment of the present invention, showing the reflector in its sky-up position, side facing position and stow position, respectively; Figs. 2a and 2b are side elevations of the solar collector assembly shown in Figs, la and lc, respectively; Figs. 3a-c are cross-sectional views (not showing the support legs) along lines Illa-IIIa, Illb-IIIb and IIIc-IIIc, respectively in Fig. 2a; Figs 4a-c are cross-sectional views along lines IVa-IVa, IVa-IVa and IVc-FVc, respectively in Figs. 2a, showing in dashed lines selected angular positions of the reflector; Fig. 5a is an illustration of the sun's progress in the sky from east to west over a solar collector assembly according to an embodiment of the present invention having its longitudinal axis extending from north to south; Fig. 5b is a side elevation of the illustration in Fig. 5a; Figs. 6a-c are side views of an hydraulic angular activating mechanism attached to a central support leg (not shown) in three angular positions; Fig. 7 is an isometric view of part of a field of solar collectors according to the present invention; Fig. 8 is an isometric view of a solar collector unit according to the present invention, in which a Fresnel's lens concentrator is used, the collector shown in its sky-up position; Fig. 9 is an isometric view of a solar collector unit according to the present invention in which the solar collector device is a compound parabolic collector; 11 3098/ Fig. 10 is an isometric view of a solar collector unit according to the present invention in which the solar collector device is a different kind of a compound parabolic collector; and Fig. 11 is an isometric view of a solar collector unit according to the present invention in which the solar collector device is a non-concentrating collector comprising photo-voltaic elements.
DETAILED DESCRIPTION OF A SPECIFIC EMBODIMENT Attention is first directed to Figs. 1 and 2 of the drawings showing a collector assembly 8 of a solar system, having a collector unit 9 comprising a parabolic trough-like reflector 10 consisting of two aligned reflectors 12 and 14 with a heat collection element (HCE) 16 fixed along the focus of the parabolic reflectors by means of brackets 18, the HCE defining a longitudinal axis of the collector unit.
The reflectors 12 and 14 are supported by end brackets 20, 22 and 26 which together with a truss (not shown) maintain the reflectors' shape and impart the systems rigidness. The collector unit 9 is carried by three support legs 30, 32 and 34 aligned with the meridians (north-south), the northern support leg 30 being higher than the central leg 32 which in turn is higher than the southern leg 34. The collector unit is mounted on the three support legs so as to be rotatable about a tracking axis 11. The tracking axis 11 is at an initial angle with respect to the horizon (see Figs. 2a and 2b). The height different Ah between two legs separated from one another by distance D, is defined by the following formula (Π) Ah = Dxtga (II) Each of the legs 30, 32 and 34 comprises a top portion 30', 32' and 34', respectively, inclined at an angle substantially equal to the angle a, with respect to the longitudinal axis of the legs.
Referring now also to Fig. 3 a- 3c of the drawings, it is shown that the northern side bracket 20 comprises an arm 40 projecting in a direction outward from the collector and is provided with a pivot center 42 located below the nadir 44 of the trough-like collector. The central end brackets 22 (at the adjacent ends of the reflectors 14 and 16) have their pivot center 46 right under the trough's nadir 44, whereas the southern end bracket 26 comprises an arm 48 projecting upward, i.e. in a direction inward the collector and has a pivot center 50 above the trough's nadir 44.
The construction of the collectors is such that an angle β is formed between the tracking axis 11 passing along the pivoting centers 42, 46 and 50 and between the longitudinal axis of the collectors defined by the HCE (shown in Figs, lb and 2a).
When the collector is in a tracking position facing the zenith, i.e. at 90° (also referred to as "sky-up" position or the "solar noon") as shown in Figs, la and 2a, the longitudinal axis of the collectors is inclined at a superimposed angle substantially equal to + β with respect to the horizon and the arms 40 and 48 are substantially vertical and in alignment with support legs 30 and 34.
As shown in Fig. lb, when the collector is at a tracking angle of 0°, i.e. in a position in which the. collector faces the horizon, then the arms 40 and 48 are substantially horizontal, the longitudinal axis of the collector is inclined at an angle substantially equal to with respect to the horizon (when viewed from the side) and diverts from the meridians at an angle substantially equal to β (when viewed from above).
When the collectors are to be maintained or repaired, or at strong winds (usually over 70 km./hr.) the collector unit is rotated into a stow position in which the stow angle τ may be calculated according to the following formula (1Π): T= arcsin (α/β) (III) where a condition for obtaining a true solution is that a < β.
In the stow position the longitudinal axis of the collector as well as the HCE 16 and edges 54 of the reflectors 10 are substantially parallel to the horizon as can be seen in Figs, lc and 2b.
For better understanding, further reference is made to Figs. 4a-c of the drawings in which selected tracking angular positions of the collector are shown.
Fig. 4a is a cross-section taken adjacent the northern support leg 30. It is shown that in the sky-up position, i.e., at a tracking angle of 90° (illustrated by full lines) the reflector is supported at a height superimposed of the height of the support leg 30 and the arm 40, with the HCE extending above the pivoting center 42. In the horizontal position, i.e., at a tracking angle of 0° (illustrated by dashed lines), the reflector is supported substantially at the end of the support leg 30 and the arm 40 is displaced at a substantially horizontal position, with the HCE 16 extending substantially at the same height as the pivoting center 42. In the stow position, i.e. at a tracking angle of about 30° below the horizon (illustrated by dashed-dotted lines) the reflector is facing downward at an angle of -30° and is supported below the top end of leg 30 with the HCE 16 and edges 54 of the reflectors extending substantially parallel with the ground and at a height lower than said pivoting center 42, said height designated in the figure as H.
Fig. 4b is a cross-section taken adjacent the central support leg 32. In this figure, it is shown that the reflector rotates directly around the pivoting center 46 without a linking arm so that in the sky-up position the reflector is supported at the top end of the support leg 32 whereas similarly as in Fig. 4a, when the reflector is rotated to the stow position (dashed-dotted lines), the HCE extends substantially parallel with the ground at the same height H.
In Fig. 4c, which is a cross-sectional view taken adjacent the southern leg 34, when the reflector is in the sky-up position, it is supported below the top end of the support leg 34 with the HCE 16 extending below said pivoting center 50. However, at the horizontal tracking position (illustrated by dashed lines), the arm 48 is substantially horizontal and the HCE extends substantially at the same height as the pivoting center 50, whereas at the stow position (illustrated by dashed-dotted lines) the HCE is below the pivoting center and extends substantially parallel with the ground at the same height designated H. The outcome of the above arrangement is that in the stow position, the longitudinal axis of the collector and the edges thereof are substantially horizontal when viewed from the side, whereas when viewed from above the longitudinal axis appears to be diverted from the meridians at an angle substantially equal to β .
Referring now to Fig. 5a of the drawings, the collector unit is shown in selected tracking positions as the sun 52 progresses in the sky. As shown, initially the reflector faces east towards the rising sun and it gradually rotates in a counter-clockwise direction around its longitudinal axis, as the sun progresses towards the west, passing at midday through the sky-up position, facing the horizon.
Fig. 5b shows the collector unit of Fig. 5a in a side view in its sky-up position, the longitudinal axis thereof being inclined at the superimposed angle of a + β.
It should be obvious to a skilled person that the reflector is symmetrically disposed at symmetric angles below and over 90°, i.e. before and over the sky-up position.
With collector units being 50 meters long and having an aperture of 10.5 meters, best results were obtained with the stow angle τ preferably in the range of -30°±5° with the initial angle a in the range of about 2.5°±1° and the auxiliary angle β in the range of about 7°±4° with β being preferably about 2a. The height of the support legs was substantially reduced whereby a northern support leg of 8.5 meters tall and a southern support leg of 6 meeters were found to be suitable.
Whereas in the description and drawings reference was made to a solar system positioned in the northern hemisphere of earth, it should be obvious to a person versed in the art that in the southern hemisphere a solar collecting unit according to the present invention is so positioned with its southern leg being the highest one and the northern one being the lowest, with the other components arranged accordingly.
Attention is now directed to Figs. 6a-c of the drawings schematically illustrating the rotating mechanism and the control unit.
In order to minimize torsion forces in the system, the rotating mechanism generally designated 55 is attached to the central leg 32 (not shown). The rotation mechanism comprises a first hydraulic piston 57 pivotally attached to the leg 32 with a piston rod 59 pivotally linked to an arm 61 rigidly attached to the end bracket 22 at the pivoting center 46. A second hydraulic piston 63 is pivotally attached together with the first hydraulic piston 57 to the leg 32 and has a second piston rod 65 pivotally linked to a second arm 67 angularly disposed with respect to the first rigid arm 61, which is also rigidly attached to the end bracket 22 at the pivoting center 46.
Each of the hydraulic pistons 57 and 63 comprises a pair of flexible tubes 65, 66 and 68, 69 for the ingress and egress of hydraulic fluid received or delivered from a hydraulic power unit 70 as may be the case. The construction of the rotation mechanism is such that upon simultaneous extraction of one piston rod and rotation of the other piston rod, the reflector rotates around its longitudinal axis.
In Fig. 6a the reflector is shown in the sky-up position in which both piston rods 59 and 65 are symmetrically retracted within the pistons 57 and 63 respectively, whereas at the position in which the reflector is in a tracking angle of about 30° above the horizon of Fig. 6b the first piston rod 59 is about or halfway extracted and the second piston rod 65 is fully retracted.
In the stow position shown in Fig. 6c of the drawings, the first piston rod 59 is fully extracted and the second piston rod 65 is about halfway retracted.
In a preferred embodiment, the system is controlled by a computerized control unit generally designated 75 comprises a processing unit 76 comprising an internal clock and is programmed to yield an output signal to the hydraulic power unit 70 according to the predetermined annular progress of the sun in the sky. The control unit further comprises a wind sensor 77 for detecting the speed of the wind whereby at predetermined speeds (typically over 70 km/hr) the collector is automatically rotated to the stow position).
An optical sensor 78 ensures that the reflector is facing the sun at an optimal angle, thus ensuring maximal radiation whereas an angular displacement sensor 79 continuously updates the controller 76 as of the angular displacement of the reflector according to which the controller 76 yields a signal to the hydraulic power unit 70, typically rotating the reflector at increments of milli-radians.
Fig. 7 of the drawings illustrates a field of solar collector units 8 according to the present invention, connected to one another by a flexible connecting means 80 as known per se. As shown in the figure, all the collectors are rotated at the stow position in which the longitudinal axis of all the collectors are equi-levelled and are parallel with the horizon, whereby in a top view the longitudinal axis of the reflectors divert from one another at said angle β constituting a so-called "saw^-tooth" pattern. This arrangement enables accessibility and The example of Fig. 7 illustrates how a vehicle 82 travels along the collector units emitting a fluid jet for rinsing the reflectors.
In the specific description and drawings, reference was made to a solar collector device of the concentrating type, comprising a trough-like reflector, however it should be obvious to a person versed in the art that the invention may well be used with other types of solar collector devices e,g. with an optical concentrator of the Fresnel's lens 85 type as illustrated in Fig. 8 of the drawings, or with a compound parabolic concentrator (CPC) 87 with an HCE 16', or a compound parabolic concentrator 88 with a flat collecting zone 89, as illustrated in Figs 9 and 10 respectively. Fig. 11 illustrates a collector unit in which the solar collector device is a non-concentrating collector 90 which consists of photo-voltaic elements 92 or compartments for heating a heat absorbing fluid, all as known perse in the art.

Claims (15)

CLAIMS:
1. A solar collector assembly comprising one or more solar collector units of the one axis tracking type, each of which comprises an elongated solar collector device mountecT on , a ^support structure, the assembly is characterized in that the collector unit is mounted on the support structure so that the tracking axis of the collector unit is inclined at an initial angle a with respect to the horizon and the longitudinal axis of the collector unit is inclined at an auxiliary angle β with respect to said tracking axis, whereby when the solar collector device faces the zenith the longitudinal axis of the collector unit is inclined at a superimposed angle φ equal to α+β, and at a predetermined stow position, the longitudinal axis is substantially parallel to the horizon.
2. A solar collector according to claim 1, wherein said solar collector device is a concentrating collector.
3. A ^solar collector assembly according to claim 2, wherein said collector unit is of the line-focus type and comprises a solar collector device having an elongated optical concentrator or reflector and a longitudinal receiver fixed at the focus of the concentrator or re ector.
4. A solar collector assembly according to claim 3, comprising a trough-like parabolic reflector.
5. A solar collector assembly according to claim 3, comprising a Fresnel's lens concentrator.
6. A solar collector assembly according to claim 2, wherein said solar collector device is a compound parabolic concentrator.
7. A solar collector assembly according to claim 1, wherein said solar collector device is a non-concentrating collector.
8. A solar collector assembly according to claim 7, wherein said solar collector device comprises photo-voltaic elements.
9. A solar collector assembly according to claim 7, wherein said solar collector device is adapted for heating a heat absorbingjluid.
10. A solar collector assembly according to claim 1, wherein φ, at a latitude L meets the following formula (I): φ ≤ L+5° (I) φ and L expressed in degrees.
11. A solar collector assembly according to claim 1 wherein the stow angle τ which is the angle about the tracking axis in which the solar collector device rotates from the horizon to reach the stow position, is defined by the following formula (II): r=arcsin {alp) , (II) wherein a < β.
12. A solar collector assembly according to claim 11, wherein τ is about -30°±5°, a is about 2.5°±1°, and β is about 7°±4°.
13. A solar collector assembly according to claim 12, wherein β is about 2a.
14. A solar collector according to claim 1, wherein the initial angle a is about 0° and the auxliary angle β is other than 0° and wherein the stow angle x is about .0°.
15. A solar collector assembly according to claim 3, wherein said support means comprises at least two legs of a different height, each of Which is positioned adjacent one remote end of said collector unit and baring the collector unit at said initial angle a, and wherein at a lowermost end of the collector unit said axis of rotation is above the trough's nadir and at the highermost end of the collector, said axis of rotation is below the trough's nadir. For the Applicants, DR. REINHOLD COHN AND PARTNERS By: 95743-lSPC/DD/be/21.3.1995
IL113098A 1995-03-23 1995-03-23 Solar collection system IL113098A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
IL113098A IL113098A (en) 1995-03-23 1995-03-23 Solar collection system
PCT/US1996/003699 WO1996029745A1 (en) 1995-03-23 1996-03-19 Solar collection system
AU55243/96A AU5524396A (en) 1995-03-23 1996-03-19 Solar collection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IL113098A IL113098A (en) 1995-03-23 1995-03-23 Solar collection system

Publications (2)

Publication Number Publication Date
IL113098A0 IL113098A0 (en) 1995-06-29
IL113098A true IL113098A (en) 1998-03-10

Family

ID=11067253

Family Applications (1)

Application Number Title Priority Date Filing Date
IL113098A IL113098A (en) 1995-03-23 1995-03-23 Solar collection system

Country Status (3)

Country Link
AU (1) AU5524396A (en)
IL (1) IL113098A (en)
WO (1) WO1996029745A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004001642U1 (en) * 2004-02-03 2004-05-27 Deger, Artur Solar installation frame with two support for solar cell panel, second longer than first one, in which solar cell panel is secured on shaft between two supports, with shaft rotatable by drive
US20090056703A1 (en) 2007-08-27 2009-03-05 Ausra, Inc. Linear fresnel solar arrays and components therefor
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor
CN103104991A (en) * 2008-07-03 2013-05-15 美环太阳能股份有限公司 Solar collector assembly
IT1397565B1 (en) * 2009-04-15 2013-01-16 Cuzzoli FLAT MIRROR SYSTEM TO QUADRUPLICATE THE POWER OBTAINED FROM PHOTOVOLTAIC SENSORS
US9291368B2 (en) 2010-12-01 2016-03-22 Hitachi, Ltd. Solar heat collecting device
US8407950B2 (en) 2011-01-21 2013-04-02 First Solar, Inc. Photovoltaic module support system
ES2522570T3 (en) 2012-06-22 2014-11-17 Hawe Hydraulik Se Solar generator and hydraulic regulating seat valve
EP3106777A1 (en) * 2015-06-15 2016-12-21 Abengoa Solar New Technologies, S.A. Method for actuating upon a hydraulic solar collector tracking system, and hydraulic solar collector tracking system
WO2017145328A1 (en) * 2016-02-25 2017-08-31 日立造船株式会社 Solar heat recovery system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376165A (en) * 1965-10-22 1968-04-02 Charles G. Abbot Apparatus for converting solar energy to electricity
US4000734A (en) * 1975-11-06 1977-01-04 Matlock William C Solar energy converter
US4024852A (en) * 1976-02-05 1977-05-24 Esperance Paul M L Solar energy reflector-collector
US4119365A (en) * 1976-04-30 1978-10-10 Roger Andrew Powell Trough reflector
US4175391A (en) * 1977-12-12 1979-11-27 Dow Corning Corporation Self reorienting solar tracker
US4832001A (en) * 1987-05-28 1989-05-23 Zomeworks Corporation Lightweight solar panel support
US4968358A (en) * 1989-03-07 1990-11-06 Air Products And Chemicals, Inc. Vapor phase uphill quenching of metal alloys using fluorochemicals
US5228924A (en) * 1991-11-04 1993-07-20 Mobil Solar Energy Corporation Photovoltaic panel support assembly

Also Published As

Publication number Publication date
IL113098A0 (en) 1995-06-29
AU5524396A (en) 1996-10-08
WO1996029745A1 (en) 1996-09-26

Similar Documents

Publication Publication Date Title
US4044753A (en) Solar energy collection system
US4459972A (en) Heliostat assembly
US7975686B2 (en) High leverage trough solar collector
US8056555B2 (en) Thin film trough solar collector
US6131565A (en) Solar energy collector system
US4347834A (en) Variable entropy solar energy harvester
US20100218807A1 (en) 1-dimensional concentrated photovoltaic systems
EP2016344B1 (en) Hyperbolic solar trough field system
CA1265397A (en) Heliotropic solar heat collector system
CN103238033A (en) A solar energy collector system
US20110265783A1 (en) solar energy collecting system
IL113098A (en) Solar collection system
EP0769121B1 (en) Improved solar collector
US5934271A (en) Large aperture solar collectors with improved stability
CN102971590B (en) A device for collecting solar energy
US4495938A (en) Solar energy collector
US4297988A (en) Solar energy collector
CN1541321A (en) Emitting/receiving device with oblique setting and polished circle relective surface
RU2044226C1 (en) Solar-energy plant
US11984845B1 (en) Solar collector
AU700607B2 (en) Large aperture solar collectors with improved stability
IL300698B2 (en) A dual axis solar tracking module
AU2918895A (en) Improved solar collectors
Eckhardt A Comparison Of Tracking Methods For Solar Concentrators
MXPA97000491A (en) Solar collectors improves

Legal Events

Date Code Title Description
FF Patent granted
KB Patent renewed
MM9K Patent not in force due to non-payment of renewal fees