HRP20040747A2 - Powder inhalation containing cgrp-antagonist bibn4096 and method for the production therof - Google Patents

Powder inhalation containing cgrp-antagonist bibn4096 and method for the production therof Download PDF

Info

Publication number
HRP20040747A2
HRP20040747A2 HR20040747A HRP20040747A HRP20040747A2 HR P20040747 A2 HRP20040747 A2 HR P20040747A2 HR 20040747 A HR20040747 A HR 20040747A HR P20040747 A HRP20040747 A HR P20040747A HR P20040747 A2 HRP20040747 A2 HR P20040747A2
Authority
HR
Croatia
Prior art keywords
active substance
particles
drying
bibn4096
water
Prior art date
Application number
HR20040747A
Other languages
Croatian (hr)
Inventor
Trunk Michael
Weiler Claudius
Original Assignee
Boehringer Ingelheim Pharma Gmbh & Co.Kg.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Pharma Gmbh & Co.Kg. filed Critical Boehringer Ingelheim Pharma Gmbh & Co.Kg.
Publication of HRP20040747A2 publication Critical patent/HRP20040747A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1688Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

Izum se odnosi na inhalacijski prah koji sadrži CGRP antagonist 1-[N2-[3,5-dibrom-N-[[4-(3,4-dihidro-2(1H)-okso-kinazolin-3-il)-1-piperidinil]karbonil]-D-tirozil]-1-lizil]-4-(4-piridinil)-piperazin [BIBN4096] formule I u obliku okruglih nanostrukturiranih mikročestica, koje su pod normalnim uvjetima (T <50ºC, relativna vlaga <75%) prisutne u njihovom stabilnom amorfnom stanju, kao i na postupak za njihovu proizvodnju, pomoću kojeg se termodinamički stabilnu, odnosno stabiliziranu aktivnu tvar u amorfnom stanju može preraditi u mikročestice u j ednom jedinom koraku. The invention relates to an inhalation powder containing the CGRP antagonist 1-[N2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxo-quinazolin-3-yl)-1 -piperidinyl]carbonyl]-D-tyrosyl]-1-lysyl]-4-(4-pyridinyl)-piperazine [BIBN4096] of formula I in the form of round nanostructured microparticles, which under normal conditions (T <50ºC, relative humidity <75 %) present in their stable amorphous state, as well as the process for their production, by which the thermodynamically stable, i.e. stabilized active substance in the amorphous state can be processed into microparticles in a single step.

Okrugle nanostrukturirane mikročestice prema izumu prikladne su za proizvodnju inhalacijskog praha, pri čemu nije potrebna nikakva daljnja pomoćna tvar ili dodatna tvar (noseći materijali) da bi se dobilo prah s kojim se može tehnički rukovati, koji se može izravno dalje prerađivati i koji ima odlična svojstva što se tiče mogućnosti dispergiranja i u pogledu njegovih kohezijskih svojstava, i koja su dovoljna da se on može dobro prerađivati, Daljnji aspekt izuma je prah za inhalaciju koji se može dobiti postupkom prema izumu. Formula I: The round nanostructured microparticles according to the invention are suitable for the production of inhalable powders, where no further excipient or additional substance (carrier materials) is required to obtain a powder that can be handled technically, can be directly further processed and has excellent properties in terms of dispersibility and in terms of its cohesive properties, and which are sufficient for it to be well processed, A further aspect of the invention is a powder for inhalation which can be obtained by the process according to the invention. Formula I:

[image] [image]

Stanje tehnike State of the art

BIBN4096 predstavlja visoko učinkovite CGRP antagoniste za liječenje migrene, čija aplikacija nije moguća oralnim putem pomoću klasičnih oblika za davanje, jer ova tvar ima vrlo ograničenu oralnu biološku raspoloživost. BIBN4096 represents a highly effective CGRP antagonist for the treatment of migraine, the application of which is not possible orally using classical administration forms, because this substance has a very limited oral bioavailability.

Kod aplikacije u obliku inhalacijskog praha, koji se puni u prikladne kapsule (inhalete), on se donosi u pluća pomoću inhalatora za prah. Alternativno tome, inhalacijska primjena može se izvršiti također i aplikacijom prikladnog praškastog inhalacijskog aerosola, koji kao potisni plin sadrži, na primjer, HFA134a, HFA227 ili njihovu mješavinu. In case of application in the form of inhalation powder, which is filled in suitable capsules (inhalates), it is brought to the lungs using a powder inhaler. Alternatively, the inhalation application can also be carried out by the application of a suitable powder inhalation aerosol, which contains, for example, HFA134a, HFA227 or a mixture thereof as a propellant gas.

Pri tome, rnikročestice čiste aktivne tvari apliciraju se kroz dišne puteve na površinu pluća, npr. u alveole, pomoću inhalacije. Te čestice se talože na površinu i tek nakon otapanja tijelo ih može preuzeti putem aktivnih i pasivnih procesa transporta. At the same time, microparticles of the pure active substance are applied through the respiratory tract to the surface of the lungs, for example in the alveoli, by inhalation. These particles are deposited on the surface and only after dissolution can the body take them up through active and passive transport processes.

U literaturi su poznati inhalacijski sistemi u kojima je aktivna tvar prisutna kao mikronizirana suspenzija u prikladnom sistemu otapala kao nosaču ili u obliku suhog praha. Inhalation systems are known in the literature in which the active substance is present as a micronized suspension in a suitable solvent system as a carrier or in the form of a dry powder.

Inhalacijski prah se proizvodi obično npr. u obliku kapsula za inhalaciju na temelju opće pouke koja je opisana u DE-A-179 22 07, uz upotrebu kemijski postojanog oblika aktivne tvari. Pri tome se farmaceutski pripravci, proizvedeni miješanjem fino usitnjenog lijeka s grubljim česticama nosača, dispergiraju u zračnoj struji pomoću takozvanog "postupka protoka praha" uz korištenje usisne funkcije inhalatora kao glavnog izvora energije. The inhalation powder is usually produced, for example, in the form of capsules for inhalation based on the general instruction described in DE-A-179 22 07, using a chemically stable form of the active substance. In doing so, pharmaceutical preparations, produced by mixing finely divided medicine with coarser carrier particles, are dispersed in the air stream using the so-called "powder flow process" using the suction function of the inhaler as the main energy source.

Kritični faktor kod takovih sistema od više tvari je jednolika razdioba lijeka u mješavini praha. Nadalje, dodatno opterećenje pluća uzrokovano je s nosačem, kao i s pojavom neželjenih uzajamnih djelovanja, što može dovesti do problema kompatibilnosti. A critical factor in such multi-substance systems is the uniform distribution of the drug in the powder mixture. Furthermore, the additional burden on the lungs is caused by the carrier, as well as the occurrence of unwanted interactions, which can lead to compatibility problems.

Značajan aspekt kod inhalacijske aplikacije aktivne tvari je to da u ciljni organ, pluća, dolaze samo čestice određene aerodinamičke veličine. Veličina tih čestica koje dolaze u pluća (udio koji se može inhalirati) nalazi se u području ispod mikrona. Takove Čestice dobivaju se obično mikronizacijom (mljevenje sa strujom zraka). Iz toga često proizlazi da takove čestica, s tim mehaničkim korakom, u pogledu njihovih svojstava kristala, mogu imati kompleksan sastav. Također, geometrijski oblik čestica polaznog materijala uvjetuje morfološka svojstva mikronizata. A significant aspect of the inhalation application of the active substance is that only particles of a certain aerodynamic size reach the target organ, the lungs. The size of these particles that reach the lungs (the fraction that can be inhaled) is in the sub-micron range. Such particles are usually obtained by micronization (grinding with an air current). It often follows that such particles, with this mechanical step, in terms of their crystal properties, can have a complex composition. Also, the geometric shape of the particles of the starting material determines the morphological properties of the micronisate.

Osim postupka mljevenja s mlazom, pri čemu postupak mljevenja s mlaznom zraka ima posebno značenje, prikladan mikronizat se također može proizvesti i alternativnim postupcima. Prikladni postupci mikronizacije za proizvodnju mikročestica u području ispod mikrona jesu npr. postupak taloženja, uključiv postupak, po kojem se aktivnu tvar može istaložiti kao ne-kristaliničnu krutu tvar (amorfnu) koncentriranjem otapala ispod maksimalne topivosti, taloženje pomoću superkritičnih plinova, kao npr. RESS- ili PGSS-postupak (J. Jung, M. Perrut: Particle Design Using Supercritical Fluids, J. Supercrit. Fluids 20 (2001), 179-219), postupak GASR (M.P. Gallager et al.: Gas Antisolvent Recrystallization, Am. Chem. Soc. (1989) ) , postupak PCA (D.J. Dixon, K.P. Johnston: Polymeric Materials Formed by Precipitation with compressed Fluid Antisolvent, AIChE Journal (1993, Vol. 39 (1), 127), sušenje smrzavanjem, sušenje raspršivanjem ili kombinacijom više gore navedenih postupaka. In addition to the jet milling process, in which the jet milling process is of particular importance, suitable micronises can also be produced by alternative processes. Suitable micronization processes for the production of microparticles in the sub-micron range are, for example, a deposition process, including a process by which the active substance can be precipitated as a non-crystalline solid (amorphous) by concentrating the solvent below the maximum solubility, deposition using supercritical gases, such as RESS - or PGSS-procedure (J. Jung, M. Perrut: Particle Design Using Supercritical Fluids, J. Supercrit. Fluids 20 (2001), 179-219), GASR procedure (M.P. Gallager et al.: Gas Antisolvent Recrystallization, Am. Chem. Soc. (1989) ), PCA procedure (D.J. Dixon, K.P. Johnston: Polymeric Materials Formed by Precipitation with compressed Fluid Antisolvent, AIChE Journal (1993, Vol. 39 (1), 127), freeze drying, spray drying or a combination more of the above procedures.

Iz literature je poznato da se pomoću sušenja raspršivanjem mogu proizvesti čestice koje dolaze u pluća i koje imaju veličinu između 0,5 μm i 10 μm, ponajprije između 0,5 μm i 6 μm. Iz takovih čestica, dobivenih sušenjem raspršivanjem, s osloncem na gore citirani postupak (DE-A-179 22 07), obično se proizvode formulacije s kojima se može tehnički rukovati i koje imaju dovoljnu mogućnost dispergiranja pri medicinskoj primjeni (inhalacija) [Y.-F. Maa, P.-A. Mgyuyen, J. D. Andya, N. Dasovich, T.D. Sweeny, S.J. Shire, C.C. Hsu, Pharmaceutical Research, 15, br. 5 (1998) , 768-775; M. T. Vidgren, P.A. Vidgren, T.P. Paronert, Int. J. Pharmaceutics, 35 (1987), 139-144; R.W. Niven, F.D. Lott, A.Y. 1p, J. M. Cribbs, Pharmaceutical Research, 11, br. 8 (1994), 1101-1109]. It is known from the literature that spray drying can produce particles that reach the lungs and have a size between 0.5 μm and 10 μm, preferably between 0.5 μm and 6 μm. Formulations are usually produced from such particles, obtained by spray drying, based on the process cited above (DE-A-179 22 07), which can be handled technically and which have sufficient dispersibility for medical use (inhalation) [Y.- F. Maa, P.-A. Mgyuyen, J.D. Andya, N. Dasovich, T.D. Sweeny, S.J. Shire, C.C. Hsu, Pharmaceutical Research, 15, no. 5 (1998), 768-775; M. T. Vidgren, P.A. Vidgren, T.P. Paronert, Int. J. Pharmaceutics, 35 (1987), 139-144; R.W. Niven, F.D. Lott, A.Y. 1p, J.M. Cribbs, Pharmaceutical Research, 11, no. 8 (1994), 1101-1109].

Osim ovih primjera, postoje i druge proizvodne tehnike koje preporučaju, prije svega, farmaceutske tvrtke, posebno na osnovi postupka sušenja raspršivanjem, i koje opisuju posebne formulacije za inhalacijske prahove. In addition to these examples, there are other production techniques recommended, above all, by pharmaceutical companies, especially based on the spray drying process, and which describe special formulations for inhalation powders.

Osim gore navedenih zahtjeva, općenito treba imati na umu da svaka promjena stanja krute tvari nekog lijeka, koja u usporedbi s manje postojanim oblicima istog lijeka može poboljšati njegovu fizičku i kemijsku postojanost kao i tehnička svojstva, nudi značajnu prednost. In addition to the above requirements, it should generally be remembered that any change in the solid state of a drug, which, compared to less stable forms of the same drug, can improve its physical and chemical stability as well as its technical properties, offers a significant advantage.

Utvrđivanje problema Problem determination

Složeni zadatak predloženog izuma sastoji je ponajprije u pripravi biološki raspoložive formulacije za CGRP antagoniste BIBN4096 visokog učinka. Formulacija prema izumu za liječenje akutnih stanja boli, koji se kod migrene pojavljuju vrlo iznenada, mora pokazati brzo nastupanje djelovanja. To znači da treba osigurati brzu apsorpciju aktivne tvari i brzi porast njezine količine u plazmi. The complex task of the proposed invention consists primarily in the preparation of a biologically available formulation for the highly effective CGRP antagonist BIBN4096. The formulation according to the invention for the treatment of acute pain conditions, which appear very suddenly in migraine, must show a rapid onset of action. This means that a rapid absorption of the active substance and a rapid increase in its amount in the plasma should be ensured.

Opis izuma Description of the invention

Brže uspostavljanje djelovanja za liječenje akutnih stanja boli, kao i više količine aktivne tvari BIBN4096 u plazmi za kratko vrijeme, može se pored intravenskog davanja ostvariti najbolje preko pluća kao organa za primanje lijeka. A faster establishment of action for the treatment of acute pain conditions, as well as a higher amount of the active substance BIBN4096 in the plasma in a short time, can be achieved, in addition to intravenous administration, best through the lungs as the organ for receiving the drug.

U okviru predloženog izuma iznenađujuće je pronađeno da se BIBN4096 može učiniti u dovoljnoj mjeri biološki raspoloživ u obliku baze aktivne tvari inhalacijskim davanjem. Pokazalo se je da se kod inhalacijskog davanja aktivne tvari u obliku okruglih nanostrukturiranih mikročestica može postići biološku raspoloživost od pribl. 60% u odnosu na finu frakciju formulacije (što odgovara određivanju FPD-a prema USP 24 Suppl. 2000). In the context of the proposed invention, it has surprisingly been found that BIBN4096 can be made sufficiently bioavailable in the form of the base of the active substance by inhalation. It has been shown that when the active substance is administered by inhalation in the form of round nanostructured microparticles, a biological availability of approx. 60% in relation to the fine fraction of the formulation (corresponding to the FPD determination according to USP 24 Suppl. 2000).

Formulacija prema izumu ne zahtjeva nikakav dodatak nosećih materijala. The formulation according to the invention does not require any addition of carrier materials.

Prvi predmet predloženog izuma je stoga inhalacijski prah, koji sadrži aktivnu tvar bazu 1-[H2-[3,5-dibrom-N-[[4-(3,4-dihidro-2(1H)-oksokinazolin-3-il)-1-piperidinil]-karbonil]-D-tirozil]-1-lizil]-4-(4-piridinil)-piperazin [BIBN4096] formule (I) u obliku okruglih nanostrukturiranih čestica, koji je karakteriziran time, da The first object of the proposed invention is therefore an inhalation powder, which contains the active substance base 1-[H2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl) -1-piperidinyl]-carbonyl]-D-tyrosyl]-1-lysyl]-4-(4-pyridinyl)-piperazine [BIBN4096] of formula (I) in the form of round nanostructured particles, which is characterized by

(a) čestice imaju specifičnu površinu između 1 m2/g i 25 m2/g, ponajprije između 1 m2/g i 20 m2/g, posebno ponajprije između 3 m2/g i 10 m2/g, (a) the particles have a specific surface between 1 m2/g and 25 m2/g, preferably between 1 m2/g and 20 m2/g, especially preferably between 3 m2/g and 10 m2/g,

(b) karakteristična vrijednost Q(5,8) je između 50% i 100% i (b) the characteristic value of Q(5,8) is between 50% and 100% and

(c) parametar X50 je između 1 μm i 6 μm. (c) parameter X50 is between 1 μm and 6 μm.

Ove mikročestice odlikuju se naročitim fizičkim i kemijskim svojstvima, koja dovode do poboljšanog farmakološko-farmakokinetičkog djelovanja kod inhalacijske primjene tvari. Raspoloživost tvari, kako kvantitativno u odnosu na datu količinu aktivne tvari, tako također i u odnosu na moguće brzo postizanje visoke količine u plazmi, uzrokovano je pored biokemijskih svojstava tvari također i s fizičko-kemijskim svojstvima. Ako se daje krutu tvar, kao u slučaju inhalacijskog praha, ovdje treba uzeti u obzir posebno parametar apsolutne topivosti u mediju okoline, te također i brzinu otapanja u mediju okoline kao funkciju lokalne koncentracije aktivne tvari i vremena. These microparticles are characterized by special physical and chemical properties, which lead to an improved pharmacological-pharmacokinetic effect when the substance is inhaled. The availability of the substance, both quantitatively in relation to the given amount of the active substance, and also in relation to the possible rapid achievement of a high amount in the plasma, is caused by the biochemical properties of the substance as well as the physicochemical properties. If a solid substance is administered, as in the case of inhalation powder, the parameter of absolute solubility in the environmental medium should be taken into account here, and also the rate of dissolution in the environmental medium as a function of the local concentration of the active substance and time.

Za optimalno inhalacijsko davanje mora se stoga uzeti u obzir da čestice aktivne tvari na površini pluća tvore prevlaku fine razdiobe. Zato je najvažnije da se aktivnu tvar promijeni tako da inahalacijske mikročestice u pogledu njihovog uzajamnog djelovanja Čestica-čestica, kao i njihovih disperzijskih, odnosno aerodinamičnih svoj stava imaju prednosti koje uzrokuju da se one s jedne strane kvantitativno talože u dubljem području pluća, a s druge strane da pokriju najveću moguću površinu pluća. Zbog toga fizičko-kemijska svojstva mikročestica za inhalaciju imaju veliki značaj za inhalacijski prah. For optimal inhalation administration, it must therefore be taken into account that the particles of the active substance form a finely divided coating on the surface of the lungs. That is why it is most important to change the active substance so that the inhaled microparticles have advantages in terms of their particle-particle interaction, as well as their dispersion, i.e. aerodynamic properties, which cause them to deposit quantitatively in the deeper area of the lungs on the one hand, and on the other hand to cover the largest possible lung surface. This is why the physico-chemical properties of microparticles for inhalation are of great importance for inhalation powder.

Čestice proizvedene postupkom prema izumu imaju visoku fizičku postojanost. Posebno, kod primjene kao inhalacijskog praha, svojstva čestica omogućuju dobivanje visokog udjela sitnih čestica, koji se tehnički utvrđuje npr. mjerenjem pomoću kaskadnog impaktora (Andersen kaskadnni impaktor, prema USP 24, odnosno Pharm. Eur. Suppl. 2000). Prema toj metodi, udio čestica koje su manje od 5 μm (aerodinamičke) je obično veći od 15%, dok se u nekim slučajevima postiže udio sitne frakcije veći od 50%, Osim tog ključnog parametra, prah za inhalaciju se odlikuje i time da se on može dalje prerađivati uobičajenim tehničkim postupcima. Tako proizveden prah karakterizira fizičko-kemijski parametar veličine čestica, izmjerena npr. difrakcijom laserskih zraka, kao i specifična površina, izmjerena npr. B.E.T. mjerenjem u više točaka. Za karakterističnu vrijednost Q(5,8) veličina čestica tako proizvedenog praha je obično između 50% i 100%, a parametar X50 je između 1 μm i 6 μm. Pri tome, čestice, koje su proizvedene gornjim postupkom, imaju tipične vrijednosti specifične površine između 1 m2/g i 25 m2/g, u najboljem slučaju između 1 m2/g i 20 m2/g, a u posebno povoljnom slučaju između 3 m2/g i 10 m2/g. Geometrijski, čestice proizvedene gornjim postupkom imaju oblik koji se može opisati, ovisno o uvjetima pokusa, između graničnih "oblika kugle", "oblika kugle sa šupljim prostorom, eventualno s rupom", "oblika kugle s konveksnošću okrenutom prema unutra", kao također i oblika "urušenog šupljeg tijela". Gledana pretražnim elektronskim mikroskopom, površina takovih čestica je maksimalno nanostrukturirana. The particles produced by the process according to the invention have a high physical stability. In particular, when used as an inhalation powder, the properties of the particles allow obtaining a high proportion of small particles, which is technically determined, for example, by measuring with a cascade impactor (Andersen cascade impactor, according to USP 24, or Pharm. Eur. Suppl. 2000). According to this method, the proportion of particles that are smaller than 5 μm (aerodynamic) is usually greater than 15%, while in some cases the proportion of the fine fraction is greater than 50%. In addition to this key parameter, inhalation powder is characterized by the fact that he can further process with usual technical procedures. The thus produced powder is characterized by the physico-chemical parameter of particle size, measured for example by diffraction of laser beams, as well as the specific surface area, measured for example by B.E.T. by measuring in several points. For a characteristic value of Q(5,8), the particle size of the powder thus produced is usually between 50% and 100%, and the parameter X50 is between 1 μm and 6 μm. In addition, the particles produced by the above process have typical specific surface values between 1 m2/g and 25 m2/g, in the best case between 1 m2/g and 20 m2/g, and in a particularly favorable case between 3 m2/g and 10 m2 /Mr. Geometrically, the particles produced by the above process have a shape that can be described, depending on the experimental conditions, between the limits "sphere shape", "sphere shape with a hollow space, possibly with a hole", "sphere shape with convexity facing inwards", as well as in the form of a "collapsed hollow body". Seen with a scanning electron microscope, the surface of such particles is maximally nanostructured.

Prema izumu je iznenađujuće pronađeno da se BIBN4096 u obliku slobodne baze može postupkom sušenja raspršivanjem promijeniti morfološki tako, da se tako proizveden prah može puniti izravno u prvo sredstvo pakiranja bez daljnjih stupnjeva, prije sve bez potrebnog miješanja s krupnijim nosećim materijalom, i iz njega se može isporučiti za inhalaciju pomoću naprave za inhalaciju praha. According to the invention, it was surprisingly found that BIBN4096 in the form of a free base can be changed morphologically by a spray drying process so that the thus produced powder can be filled directly into the first packaging means without further steps, above all without the necessary mixing with a larger carrier material, and from it can deliver for inhalation using a powder inhalation device.

Pri tome, proizvodni postupak se može voditi tako da se dobiju čestice odgovarajuće veličine jezgre, obično između 0,1 i 10 μm i te čestice imaju takova svojstva površine da se one mogu lako fluidizirati/dispergirati. In doing so, the production process can be conducted in such a way as to obtain particles of a suitable core size, usually between 0.1 and 10 μm, and these particles have such surface properties that they can be easily fluidized/dispersed.

Pronađeno je, nadalje, da se na morfologiju čestica, uključiv i veličinu čestica, može značajno i ciljano utjecati s izborom parametara procesa i parametara proizvodnje. Pri tome je iznenađujuće da se prah ove tvari mikronizira "klasičnim" postupkom mljevenja s mlazom i kojim se dobije sličan spektar veličine čestica koje se, međutim, morfološki bitno razlikuju od čestica, koje su proizvedene prema ovom izumu, što se tiče svojstava njihove površine i uzajamnog djelovanja čestica-čestica. To se vidi po tome da se parametar kvalitete "Fine Particle Fraction of Delivered Dose" (npr. po metodi za određivanje "Aerodynamic Particle Size Distribution" - USP 24 ili Pharm. Eur. Suppl. 2000) poboljšava za faktor 10 i više. Budući da se istovremeno u formulaciji može izostaviti noseći materijal, kod unaprijed zadane ukupne količine praha za aplikaciju poboljšava se stvarna i pacijentu raspoloživa apsolutna doza aktivne tvari za još značajnije viši faktor. Furthermore, it was found that the morphology of the particles, including the size of the particles, can be significantly and targeted influenced by the choice of process parameters and production parameters. At the same time, it is surprising that the powder of this substance is micronized by a "classical" jet milling process, which results in a similar spectrum of particle sizes, which, however, are morphologically significantly different from the particles produced according to this invention, as regards their surface properties and of particle-particle interaction. This can be seen by the fact that the quality parameter "Fine Particle Fraction of Delivered Dose" (eg according to the method for determining "Aerodynamic Particle Size Distribution" - USP 24 or Pharm. Eur. Suppl. 2000) improves by a factor of 10 or more. Since the carrier material can be omitted from the formulation at the same time, with a predetermined total amount of powder for application, the actual and absolute dose of the active substance available to the patient is improved by an even significantly higher factor.

Proizvodni postupak prema izumu karakteriziran je time, da se aktivnu tvar otopi na prikladan način, rasprši se i osuši u tornju za raspršivanje. Načelo sušenja raspršivanjem sastoji se u tome da se otopinu ili suspenziju proizvoda koji se seli osušiti podijeli u sitne kapljice i osuši s vrućim strujom plina. Udio krute tvari, koji ostane nakon isparavanja otapala, se odvoji iz struje plina pomoću separatora koji djeluje inercijskom silom (npr. ciklon) i/ili s filterom, i skupi se. Pri tome, tako proizvedene mikročestice odlikuju se po naročitim vrijednostima što se tiče veličine čestica, specifične površine i morfologije. The production process according to the invention is characterized by the fact that the active substance is dissolved in a suitable way, sprayed and dried in a spray tower. The principle of spray drying is that the solution or suspension of the product to be dried is divided into small droplets and dried with a hot stream of gas. The portion of the solid substance, which remains after the evaporation of the solvent, is separated from the gas stream by means of a separator acting on inertial force (eg a cyclone) and/or with a filter, and is collected. At the same time, the microparticles produced in this way are characterized by special values in terms of particle size, specific surface area and morphology.

Kao prikladna otapala pokazala su se organska otapala, odnosno mješavine organskih i vodenih otapala. Upotrebljava se ponajprije sistem alkoholno-vodenog otapala, posebno povoljna je mješavina otapala koja se sastoji iz etanol/metanol/vode kao i etanol/propanol/vode, a posve posebno povoljna je mješavina otapala etanola i vode. Pri tome, u mješavinama otapala se upotrebljava molni udio vode koji ide od 0,1-struke do 10-struke količine molnog udjela alkoholnih komponenata, ponajprije od 0,5-struke do 4-struke količine. Organic solvents, i.e. mixtures of organic and aqueous solvents, proved to be suitable solvents. An alcohol-water solvent system is primarily used, a solvent mixture consisting of ethanol/methanol/water as well as ethanol/propanol/water is particularly favorable, and a solvent mixture of ethanol and water is particularly favorable. At the same time, in the solvent mixtures, the molar proportion of water is used, which ranges from 0.1 times to 10 times the molar proportion of the alcohol components, preferably from 0.5 to 4 times the quantity.

Namještanje koncentracije aktivne tvari služi ponajprije tome da se postupak učini ekonomičnim. Pri tome, međutim, postavljaju se one granice namještanja koncentracije aktivne tvari koje su unaprijed određene tako da se s određenim omjerom između veličine kapljica i koncentracije krute tvari mogu optimirati svojstva površine čestica. Uobičajeno se bira koncentraciju između 0,5 i 20 masenih postotaka, ponajprije između 2 i 10 masenih postotaka, a posebno povoljno između 3 i 8 masenih postotaka. Veličina kapljica je presudan parametar za dobivanje čestica koje se mogu inhalirati. Ovisno o upotrijebljenoj mlaznici, struju plina za raspršivanje bira se u kombinaciji s protokom otopine tako da se postigne željenu veličinu kapljica. Budući da postoji kombinacija velikog broja parametara mlaznica - protoka plina za raspršivanje i protoka otopine, koji dovode do povoljne veličine kapljica, smisleno je postupak definirati preko veličine kapljica koje se moraju odabrati za postupak. Nju se može karakterizirati s karakteristikom X50 (srednja vrijednost = veličina čestica/veličina kapljica, ispod koje se nalazi 50% količine čestica u odnosu na razdiobu volumena pojedinačnih čestica/kapljica) koje moraju biti u području između 1,5 μm i 20 μm, ponajprije između l,5 μm i 8 μm, kao i karakteristika Q(5,8) (koja odgovara količini čestica koje su u odnosu na razdiobu volumena kapljica ispod 5,8 μm.), koja mora biti između 10% i 100%, ponajprije između 30% i 100%. Adjusting the concentration of the active substance primarily serves to make the procedure economical. In doing so, however, the limits for adjusting the concentration of the active substance are set, which are predetermined so that with a certain ratio between the size of the droplets and the concentration of the solid substance, the surface properties of the particles can be optimized. A concentration between 0.5 and 20 mass percent is usually chosen, preferably between 2 and 10 mass percent, and especially advantageously between 3 and 8 mass percent. Droplet size is a crucial parameter for obtaining inhalable particles. Depending on the nozzle used, the spray gas stream is selected in combination with the solution flow to achieve the desired droplet size. Since there is a combination of a large number of nozzle parameters - spray gas flow and solution flow - that lead to a favorable droplet size, it makes sense to define the process by the droplet size that must be selected for the process. It can be characterized with the characteristic X50 (mean value = particle size/droplet size, below which 50% of the amount of particles is located in relation to the volume distribution of individual particles/droplets) which must be in the range between 1.5 μm and 20 μm, preferably between 1.5 μm and 8 μm, as well as the characteristic Q(5,8) (which corresponds to the amount of particles that are below 5.8 μm in relation to the droplet volume distribution), which must be between 10% and 100%, preferably between 30% and 100%.

U tehnički rečeno, to se postiže upotrebom odgovarajućih komercijalnih mlaznica koje imaju te karakteristike, npr. mlaznica za jednu ili za više tvari, koje, ovisno o parametrima mlaznice (npr. brzina rotacije u slučaju rotacijskog raspršivanja ili priključeni pritisak raspršivanja i veličina struje plina za raspršivanje koja iz toga proizlazi, u slučaju mlaznica za dvije tvari), kao i omjerom raspršivanja (protok volumena "otopine za raspršivanje"). Osim posebnih uvjeta, koji se moraju održavati tijekom dotičnog postupka raspršivanja, da bi se dobile prikladne kapljice za postupak sušenja, pokazalo se je da se na svojstva površine čestica može također pozitivno/ciljano utjecati s izborom parametara sušenja. Odlučujuće karakteristične veličine, koja ulaze u stupanj sušenja, jesu ulazna i izlazna temperatura plina za sušenje, kao i protok volumena propuštenog plina za sušenje. Treba napomenuti da se kapljice prikladne veličine vode kroz komoru za sušenje tako da kapljice i osušene čestice ne dolaze u dodir sa stijenkom tornja za raspršivanje ili da ga dodiruju samo neznatno. To se postiže upotrebom mlaznice s odgovarajućim čunjastim završetkom za raspršivanje, s tornjom za raspršivanje odgovarajućeg promjera i s uvjetima strujanja u aparaturu. Izlazna temperatura za postupak mora se prilagoditi tako da prah ima dovoljno nizak sadržaj zaostalog otapala i time dovoljnu kemijsku i fizičku postojanost, To se najpovoljnije postiže ako se izlaznu temperaturu drži u području vrelišta, odnosno malo iznad toga. Suprotno tome, ulaznu temperaturu plina za sušenje mora se odabrati tako da se, u kombinaciji s parametrom protoka volumena "plina za sušenje" kao i brzine raspršivanja, sušenje odvija tako oprezno da nastaju čestice s prikladnim svojstvima površine. In technical terms, this is achieved by using suitable commercial nozzles that have these characteristics, e.g. single or multi-substance nozzles, which, depending on the nozzle parameters (e.g. rotation speed in the case of rotary atomization or connected atomization pressure and gas flow size for the resulting atomization, in the case of dual-substance nozzles), as well as the atomization ratio (volume flow of the "spray solution"). Apart from the special conditions, which must be maintained during the respective sputtering process, in order to obtain suitable droplets for the drying process, it has been shown that the surface properties of the particles can also be positively/targeted influenced by the choice of drying parameters. The decisive characteristic parameters, which enter the drying stage, are the inlet and outlet temperature of the drying gas, as well as the volume flow of the passed drying gas. It should be noted that droplets of suitable size are guided through the drying chamber so that the droplets and dried particles do not contact the wall of the spray tower or only touch it slightly. This is achieved by using a nozzle with a suitable spray cone, with a spray tower of suitable diameter and with the flow conditions in the apparatus. The outlet temperature for the procedure must be adjusted so that the powder has a sufficiently low content of residual solvent and thus sufficient chemical and physical stability. This is most advantageously achieved if the outlet temperature is kept in the region of the boiling point, i.e. slightly above it. Conversely, the inlet temperature of the drying gas must be selected so that, in combination with the "drying gas" volume flow parameter as well as the spray rate, drying takes place so carefully that particles with suitable surface properties are produced.

Drugi predmet izuma je stoga postupak za proizvodnju aktivne tvari baze BIBN4096 u obliku okruglih nanostrukturiranih mikročestica, koji obuhvaća slijedeće stupnjeve The second object of the invention is therefore a process for the production of the active substance based on BIBN4096 in the form of round nanostructured microparticles, which includes the following stages

(a) otapanje aktivne tvari BIBN4096 u organskom otapalu ili u mješavini organsko-vodenog otapala za pripravu otopine aktivne tvari s koncentracijom aktivne tvari između 0,5 i 20 mas. %, ponajprije između 2 i 10 mas. %, posebno ponajprije između 3 i 8 mas. %, (a) dissolving the active substance BIBN4096 in an organic solvent or in a mixture of organic-aqueous solvent to prepare a solution of the active substance with a concentration of the active substance between 0.5 and 20 wt. %, preferably between 2 and 10 wt. %, especially preferably between 3 and 8 wt. %,

(b) raspršivanje tako dobivene otopine aktivne tvari na uobičajen način, tako da se dobije maglicu s veličinom kapljica koje imaju karakteristiku X50 u području od 1,5 do 20 μm, ponajprije u području od 1,5 do 8 μm, i Q(5,8) između 10 i 100%, ponajprije između 30 i 100%, (b) dispersing the solution of the active substance thus obtained in a conventional manner, so as to obtain a mist with a droplet size having a characteristic X50 in the range of 1.5 to 20 μm, preferably in the range of 1.5 to 8 μm, and Q(5 ,8) between 10 and 100%, preferably between 30 and 100%,

(c) sušenje tako dobivene nagiiće od raspršivanja pomoću plina za sušenje primjenom slijedećih parametara: (c) drying of the thus obtained powder from spraying using a drying gas using the following parameters:

• ulazna temperatura plina za sušenje od 100°C do 350°C, ponajprije između 120ºC i 250°C, i posebno povoljno između 130°C i 200°C, • inlet gas temperature for drying from 100°C to 350°C, preferably between 120°C and 250°C, and especially preferably between 130°C and 200°C,

• izlazna temperatura plina za sušenje od 40ºC do 120°C, • outlet gas temperature for drying from 40ºC to 120°C,

• protok volumena plina za raspršivanje od 1 Nm3/h do 15 Nm3/h i • volume flow of atomizing gas from 1 Nm3/h to 15 Nm3/h i

• protok volumena plina za sušenje od 15 Nm3/h do 1500 Nm3/h, ponajprije između 15 Nm3/h do 150 Nm3/h, i • drying gas volume flow from 15 Nm3/h to 1500 Nm3/h, preferably between 15 Nm3/h to 150 Nm3/h, and

(d) odvajanje osušene frakcije krute tvari iz struje plina za sušenje na uobičajen način. (d) separating the dried solids fraction from the drying gas stream in a conventional manner.

Treći predmet izuma je upotreba aktivne tvari baze BIBN4096 u obliku okruglih nanostrukturiranih mikročestica, koje se mogu dobiti gore opisanim postupkom, za proizvodnju inhalacijskog praha. The third object of the invention is the use of the active substance of the BIBN4096 base in the form of round nanostructured microparticles, which can be obtained by the process described above, for the production of inhalation powder.

Četvrti predmet izuma je inhalacijski prah koji je karakteriziran time da se okrugle nanostrukturirane čestice mogu dobiti gore opisanim postupkom prema izumu. The fourth object of the invention is an inhalable powder, which is characterized by the fact that round nanostructured particles can be obtained by the method described above according to the invention.

Eksperimentalni dio Experimental part

1) Mjerni postupci 1) Measuring procedures

a) Određivanje veličine čestica difrakcijom laserskih zraka (Frauenhoferova difrakcija) a) Determination of particle size by diffraction of laser beams (Frauenhofer diffraction)

Mjerni postupak: Za određivanje veličine čestica prah se pomoću naprave za dispergiranje stavi u spektrometar za lasersku difrakciju. Sa srednjom vrijednošću X50 misli se na veličinu čestica ispod koje se nalazi 50% količine čestica. Vrijednost Q(5,8) opisuj e postotni udio čestica koje imaju veličinu ispod 5,8 μm. Measurement procedure: To determine the particle size, the powder is placed in a laser diffraction spectrometer using a dispersing device. The mean value X50 refers to the particle size below which 50% of the particle quantity is located. The value Q(5,8) describes the percentage of particles with a size below 5.8 μm.

Mjerni uređaj: Spektrometar za lasersku difrakciju (HELOS), tvrtke Sympatec. Measuring device: Laser Diffraction Spectrometer (HELOS), Sympatec company.

Programski paket: WINDOX verzija 3.3/REL 1 za primjere 1 do 3 i verzija 4 za primjere 4 do 6. Software package: WINDOX version 3.3/REL 1 for examples 1 to 3 and version 4 for examples 4 to 6.

Naprava za dispergiranje: RODOS/pritisak dispergiranja: 3 bara. Dispersing device: RODOS/dispersing pressure: 3 bar.

Žarišna duljina: 100 mm [mjerno područje: 0,9..... 175 μm]. Focal length: 100 mm [measuring range: 0.9..... 175 μm].

Način prikazivanja vrijednosti: HRLD (V 3.3 Rel. 1). Value display mode: HRLD (V 3.3 Rel. 1).

b) Određivanje specifične površine b) Determination of the specific area

Mjerni postupak: Određivanje specifične površine vrši se izlaganjem uzorka praha atmosferi dušika pod različitim tlakovima. Hlađenjem uzorka dolazi do kondenzacije molekula dušika na površini čestica. Količina kondenziranog dušika utvrđuje se preko pada pritiska u sistemu, a specifična površina uzorka se računa preko površinskog utroška dušika i odvage uzorka. Measurement procedure: The specific surface area is determined by exposing the powder sample to a nitrogen atmosphere under different pressures. By cooling the sample, condensation of nitrogen molecules occurs on the surface of the particles. The amount of condensed nitrogen is determined through the pressure drop in the system, and the specific surface area of the sample is calculated through the surface consumption of nitrogen and the weighing of the sample.

Mjerni uređaj: Tri Star Multi Point BET, tvrtke Micromeritics. Measuring device: Tri Star Multi Point BET, company Micromeritics.

Uređaj za grijanje: VacPrep 061, tvrtke Micromeritics. Heating device: VacPrep 061, Micromeritics.

Vrijeme grijanja: pribl. 12h/40°C Heating time: approx. 12h/40°C

Parametri analize Analysis parameters

Posuda za uzorak: 1/2 inče; s "filler rod"; Sample container: 1/2 inch; with "filler rod";

postupak analize: BET mjerenje površine u 16 točaka o,05 do 0.20 p/p0; analysis procedure: BET surface measurement in 16 points o.05 to 0.20 p/p0;

apsolutna tolerancija tlaka: 5,0 mm Hg; absolute pressure tolerance: 5.0 mm Hg;

relativna tolerancija tlaka: 5,0%; relative pressure tolerance: 5.0%;

brzina evakuacije: 50,0 mm Hg/sekundi; evacuation rate: 50.0 mm Hg/second;

prag evakuacije: 10,0 mm Hg; evacuation threshold: 10.0 mm Hg;

trajanje evakuacije: 0,1 h; duration of evacuation: 0.1 h;

prazan volumen: spuštanje Dewarove posude, t: 0,5 h; empty volume: descent of the Dewar vessel, t: 0.5 h;

vrijeme zadržavanja: 20 sekundi; dwell time: 20 seconds;

trajanje minimalne ravnoteže: 600 sekundi; minimum balance duration: 600 seconds;

apsorbent: dušik. absorbent: nitrogen.

c) Određivanje veličine kapljica pomoću laserske difracije (po Mie-u): c) Determination of droplet size using laser diffraction (according to Mie):

Mjerni uređaj: spektrometer za lasersku difrakciju (HELOS), tvrtke Sympatec. Measuring device: laser diffraction spectrometer (HELOS), Sympatec company.

Programski paket: WINDOX verzija 4. Software package: WINDOX version 4.

Žarišna duljina: 100 mm [mjerno područje: 0,9,.... 175 μm] . Focal length: 100 mm [measuring range: 0.9,.... 175 μm] .

Mjerni postupak: Određivanje veličine kapljica vrši se odstranjivanjem mlaznice s uređaja za sušenje raspršivanjem i stavljanjem spreja u gornjoj trećini čunjastog dijela mlaznice za raspršivanje u sredinu laserskog snopa. Mjerenje se vrši pri sobnoj temperaturi s vodom kao usporedbenim sredstvom, pod inače jednakim uvjetima. Measurement procedure: Determining the droplet size is done by removing the nozzle from the spray dryer and placing the spray in the upper third of the conical part of the spray nozzle in the middle of the laser beam. The measurement is performed at room temperature with water as a comparative agent, under otherwise equal conditions.

2) Primjeri 2) Examples

Primjer 1 Example 1

Parametar za raspršivanje prikladan za alkoholnu otopinu BIBN4096 (modificirani uređaj za sušenje raspršivanjem BÜCHI) Spray parameter suitable for alcohol solution BIBN4096 (modified BÜCHI spray dryer)

[image] [image]

Karakterizacija dobivenih čestica krute tvari: Characterization of the solid particles obtained:

[image] [image]

Primjer 2 Example 2

Parametar za raspršivanje prikladan za alkoholnu otopinu BIBN4096 (modificirani uređaj za sušenje raspršivanjem BÜCHI) Spray parameter suitable for alcohol solution BIBN4096 (modified BÜCHI spray dryer)

[image] [image]

Karakterizacija dobivenih čestica krute tvari: Characterization of the solid particles obtained:

[image] [image]

Primjer 3 Example 3

Parametar za raspršivanje prikladan za alkoholnu otopinu BIBN4096 (modificirani uređaj za sušenje raspršivanjem BÜCHI) Spray parameter suitable for alcohol solution BIBN4096 (modified BÜCHI spray dryer)

[image] [image]

Karakterizacija dobivenih čestica krute tvari: Characterization of the solid particles obtained:

[image] [image]

Primjer 4 Example 4

Parameter za raspršivanje prikladan za alkoholnu otopinu BIBN4096 (modificirani uređaj za sušenje raspršivanjem BÜCHI) Spray parameter suitable for alcohol solution BIBN4096 (modified BÜCHI spray dryer)

[image] [image]

Karakterizacija dobivenih čestica krute tvari Characterization of the solid particles obtained

[image] [image]

Primjer 5 Example 5

Parametar za raspršivanje prikladan za alkoholnu otopinu BIBN4096 (modificirani uređaj za sušenje raspršivanjem BÜCHI) Spray parameter suitable for alcohol solution BIBN4096 (modified BÜCHI spray dryer)

[image] [image]

Karakterizacija dobivenih čestica krute tvari: Characterization of the solid particles obtained:

[image] [image]

Primjer 6 Example 6

Parametar za raspršivanje prikladan za alkoholnu otopinu BIBN4096 (modificirani uređaj za sušenje raspršivanjem BÜCHI) Spray parameter suitable for alcohol solution BIBN4096 (modified BÜCHI spray dryer)

[image] [image]

Karakterizacija dobivenih čestica krute tvari Characterization of the solid particles obtained

[image] [image]

Kratki opis slika Short description of the pictures

Slike 1 do 6 prikazuju snimke mikročestica aktivne tvari baze BIBN4096, koje su proizvedene postupkom prskanja alkoholne otopine prema izumu. Figures 1 to 6 show images of microparticles of the active substance of the base BIBN4096, which were produced by the process of spraying an alcoholic solution according to the invention.

Claims (12)

1. Inhalacijski prah, koji kao aktivnu tvar sadrži bazu 1-[N2-[3,5-dibrom-N-[[4-(3,4-dihidro-2(1H)-okso-kinazolin-3-il)-1-piperidinil]karbonil]-D-tirozil]-1-lizil]-4-(4-piridinil)-piperazin [BIBN4096] formule I [image] u obliku okruglih nanostrukturiranih čestica, naznačen time, da (a) čestice imaju specifičnu površinu između 1 m2/g i 25 m2/g, (b) karakteristična vrijednost Q(5,8) je između 50% i 100% i (c) parametar X50 je između 1 μm i 6 μm.1. Inhalation powder, which as an active substance contains the base 1-[N2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxo-quinazolin-3-yl)- 1-piperidinyl]carbonyl]-D-tyrosyl]-1-lysyl]-4-(4-pyridinyl)-piperazine [BIBN4096] of formula I [image] in the form of round nanostructured particles, indicated by that (a) the particles have a specific surface between 1 m2/g and 25 m2/g, (b) the characteristic value of Q(5,8) is between 50% and 100% and (c) parameter X50 is between 1 μm and 6 μm. 2. Inhalacijski prah prema zahtjevu 1, naznačen time, da čestice imaju specifičnu površinu između 1 m2/g i 20 m2/g.2. Inhalation powder according to claim 1, characterized in that the particles have a specific surface between 1 m2/g and 20 m2/g. 3. Inhalacijski prah prema zahtjevu 1, naznačen time, da čestice imaju specifičnu površinu između 3 m2/g i 10 m2/g.3. Inhalation powder according to claim 1, characterized in that the particles have a specific surface between 3 m2/g and 10 m2/g. 4. Postupak za proizvodnju aktivne tvari baze BIBN4096 u obliku okruglih nanostrukturiranih mikročestica, naznačen time, da on obuhvaća stupnjeve (a) otapanje aktivne tvari BIBN4096 u organskom otapalu ili u mješavini organsko-vodenog otapala za pripravu otopine aktivne tvari s koncentracijom aktivne tvari između 0,5 i 20 mas. %, (b) raspršivanje tako dobivene otopine aktivne tvari na uobičajen način, tako da se dobije maglicu s veličinom kapljica koje imaju karakteristiku X50 u području od 1,5 do 20 μm, ponajprije u području od 1,5 do 8 μm, i Q(5,8) između 10 i 100%, ponajprije između 30 i 100%, (c) sušenje tako dobivene maglice pomoću plina za sušenje primjenom slijedećih parametara: • ulazna temperatura plina za sušenje od 100°C do 350°C, ponajprije između 120°C i 250°C, i posebno povoljno između 130°C i 200°C, • izlazna temperatura plina za sušenje od 40°C do 120°C, • protok volumena plina za raspršivanje od 1 Nm3/h do 15 Nm3/h i • protok volumena plina za sušenje od 15 Nm3/h do 1500 Nm3/h, ponajprije od 15 Nm3/h do 150 Nm3/h, i (d) odvajanje osušene frakcije krute tvari iz struje plina za sušenje na uobičajen način.4. The process for the production of the active substance of the base BIBN4096 in the form of round nanostructured microparticles, characterized by the fact that it includes stages (a) dissolving the active substance BIBN4096 in an organic solvent or in a mixture of organic-aqueous solvent to prepare a solution of the active substance with a concentration of the active substance between 0.5 and 20 wt. %, (b) dispersing the solution of the active substance thus obtained in a conventional manner, so as to obtain a mist with a droplet size having a characteristic X50 in the range of 1.5 to 20 μm, preferably in the range of 1.5 to 8 μm, and Q(5 ,8) between 10 and 100%, preferably between 30 and 100%, (c) drying the thus obtained mist using a drying gas using the following parameters: • inlet gas temperature for drying from 100°C to 350°C, preferably between 120°C and 250°C, and especially preferably between 130°C and 200°C, • outlet gas temperature for drying from 40°C to 120°C, • volume flow of atomizing gas from 1 Nm3/h to 15 Nm3/h i • drying gas volume flow from 15 Nm3/h to 1500 Nm3/h, preferably from 15 Nm3/h to 150 Nm3/h, and (d) separating the dried solids fraction from the drying gas stream in a conventional manner. 5. Postupak prema zahtjevu 4, naznačen time, da otapalo, koje je upotrijebljeno za otapanje aktivne tvari, je sistem organsko-vodenog otapala, pri čemu se upotrebljava molni udio vode od 0,1-struke do 10-struke količine molnog udjela alkoholne komponente, ponajprije od 0,5 do 4-struke količine.5. The method according to claim 4, indicated by the fact that the solvent, which is used to dissolve the active substance, is an organic-aqueous solvent system, where the molar fraction of water is used from 0.1 times to 10 times the molar fraction of the alcohol component , preferably from 0.5 to 4 times the amount. 6. Postupak prema zahtjevu 4, naznačen time, da se sistem organsko-vodenog otapala sastoji iz etanol/metanol/ vode, pri čemu se upotrebljava molni udio vode od 0,1-struke do 10-struke količine molnog udjela alkoholne komponente, ponajprije od 0,5 do 4-struke količine.6. The method according to claim 4, indicated by the fact that the organic-aqueous solvent system consists of ethanol/methanol/water, where the molar fraction of water is used from 0.1 times to 10 times the molar fraction of the alcohol component, preferably from 0.5 to 4 times the amount. 7. Postupak prema zahtjevu 4, naznačen time, da se sistem organsko-vodenog otapala sastoji iz etanol/propanol/ vode, pri čemu se upotrebljava molni udio vode od 0,1-struke do 10-struke količine molnog udjela alkoholne komponente, ponajprije od 0,5 do 4-struke količine.7. The method according to claim 4, indicated by the fact that the organic-aqueous solvent system consists of ethanol/propanol/water, where the molar fraction of water is used from 0.1 times to 10 times the molar fraction of the alcohol component, preferably from 0.5 to 4 times the amount. 8. Postupak prema zahtjevu 4, naznačen time, da se sistem organsko-vodenog otapala sastoji iz etanol/vode, pri čemu se upotrebljava molni udio vode od 0,1-struke do 10-struke količine molnog udjela alkoholne komponente, ponajprije od 0,5 do 4-struke količine.8. The method according to claim 4, indicated by the fact that the organic-aqueous solvent system consists of ethanol/water, where the mole fraction of water is used from 0.1 times to 10 times the amount of the mole fraction of the alcohol component, preferably from 0, 5 to 4 times the amount. 9. Postupak prema bilo kojem zahtjevu 4 do 8, naznačen time, da otopina aktivne tvari upotrijebljena za sušenje raspršivanjem ima koncentraciju od 2 do 10 mas. %.9. The method according to any of claims 4 to 8, characterized in that the active substance solution used for spray drying has a concentration of 2 to 10 wt. %. 10. Postupak prema bilo kojem zahtjevu 4 do 8, naznačen time, da otopina aktivne tvari koja je upotrijebljena za sušenje raspršivanjem ima koncentraciju od 3 do 8 mas. %.10. The method according to any of claims 4 to 8, characterized in that the active substance solution used for spray drying has a concentration of 3 to 8 wt. %. 11. Upotreba aktivne tvari baze BIBN4096 u obliku okruglih nanostrukturiranih mikročestica, dobivenih prema bilo kojem zahtjevu 4 do 10, naznačena time, da se ona koriste za proizvodnju inhalacijskog praha.11. Use of the active substance based on BIBN4096 in the form of round nanostructured microparticles, obtained according to any of claims 4 to 10, characterized in that they are used for the production of inhalation powder. 12. Inhalacijski prah prema bilo kojem zahtjevu 1 do 3, naznačen time, da se okrugle nanostrukturirane čestice mogu dobiti postupkom prema bilo kojem zahtjevu 4 do 10.12. Inhalation powder according to any claim 1 to 3, characterized in that round nanostructured particles can be obtained by the process according to any claim 4 to 10.
HR20040747A 2002-02-20 2004-08-19 Powder inhalation containing cgrp-antagonist bibn4096 and method for the production therof HRP20040747A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10207026A DE10207026A1 (en) 2002-02-20 2002-02-20 Stable inhalable powder of the calcitonin gene-related peptide antagonist, BIBN4096, useful for treating migraine, in the form of spherical nano-structured particles obtained by spray-drying
PCT/EP2003/001563 WO2003070215A1 (en) 2002-02-20 2003-02-17 Powder inhalation containing cgrp-antagonist bibn4096 and method for the production thereof

Publications (1)

Publication Number Publication Date
HRP20040747A2 true HRP20040747A2 (en) 2005-02-28

Family

ID=27635158

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20040747A HRP20040747A2 (en) 2002-02-20 2004-08-19 Powder inhalation containing cgrp-antagonist bibn4096 and method for the production therof

Country Status (22)

Country Link
EP (1) EP1478338B1 (en)
JP (1) JP4085063B2 (en)
KR (1) KR20040089646A (en)
CN (1) CN1638728A (en)
AR (1) AR038572A1 (en)
AT (1) ATE299016T1 (en)
AU (1) AU2003208862A1 (en)
BR (1) BR0307821A (en)
CA (1) CA2476621A1 (en)
DE (2) DE10207026A1 (en)
EA (1) EA200401010A1 (en)
EC (1) ECSP045241A (en)
ES (1) ES2244922T3 (en)
HR (1) HRP20040747A2 (en)
IL (1) IL163559A0 (en)
MX (1) MXPA04008183A (en)
NO (1) NO20043865L (en)
PE (1) PE20030832A1 (en)
PL (1) PL371315A1 (en)
TW (1) TW200304376A (en)
UY (1) UY27674A1 (en)
WO (1) WO2003070215A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338403A1 (en) * 2003-08-18 2005-03-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Powder formulation containing the CGRP antagonist 1- [N 2 - [3,5-dibromo-N - [[4- (3,4-dihydro-2 (1 H) -oxoquinazolin-3-yl] -1-piperidinyl] carbonyl] -D-tyrosyl] -L-lysyl] -4- (4-pyrindinyl) piperazine, process for its preparation and its use as inhalant
DE10338407A1 (en) * 2003-08-18 2005-03-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg New inhalable powders containing the CGRP antagonist 1- [N 2 - [3,5-dibromo-N - [[4- (3,4-dihydro-2 (1H) -oxoquinazolin-3-yl) -1-piperidinyl] carbonyl] -D-tyrosyl] -L-lysyl] -4- (4-pyridinyl) -piperazine
DE10338399A1 (en) * 2003-08-18 2005-03-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Microparticles containing the CGRP antagonist 1- [N 2 - [3,5-dibromo-N - [[4- (3,4-dihydro-2 (1H) -oxoquinazolin-3-yl) -1-piperidinyl] carbonyl] -D-tyrosyl] -L-lysyl] -4- (4-pyridinyl) -piperazine, process for their preparation and their use as inhalation powder
DE10338402A1 (en) * 2003-08-18 2005-03-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Spray-dried, amorphous BIBN 4096, process for its preparation and its use as inhalant
ME03483B (en) * 2013-06-19 2020-01-20 Aicuris Anti Infective Cures Gmbh Amorphous letermovir and solid pharmaceutical formulations thereof for oral administrationletermovir

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1242211A (en) * 1967-08-08 1971-08-11 Fisons Pharmaceuticals Ltd Pharmaceutical composition
DE19937304C2 (en) * 1999-08-10 2003-08-21 Boehringer Ingelheim Pharma Use of CGRP antagonists to combat menopausal hot flashes
ES2343124T3 (en) * 1999-10-29 2010-07-23 Novartis Ag DRY POWDER COMPOSITIONS WITH IMPROVED DISPERSABILITY.
DE10139410A1 (en) * 2001-08-17 2003-02-27 Boehringer Ingelheim Pharma Use of BIBN4096 in combination with other anti-migraine drugs for the treatment of migraines

Also Published As

Publication number Publication date
UY27674A1 (en) 2003-09-30
ES2244922T3 (en) 2005-12-16
WO2003070215A1 (en) 2003-08-28
EP1478338B1 (en) 2005-07-06
TW200304376A (en) 2003-10-01
IL163559A0 (en) 2005-12-18
ATE299016T1 (en) 2005-07-15
JP2005529849A (en) 2005-10-06
AU2003208862A1 (en) 2003-09-09
DE10207026A1 (en) 2003-08-28
AR038572A1 (en) 2005-01-19
CN1638728A (en) 2005-07-13
EA200401010A1 (en) 2005-02-24
NO20043865L (en) 2004-09-15
MXPA04008183A (en) 2004-11-26
PL371315A1 (en) 2005-06-13
JP4085063B2 (en) 2008-04-30
DE50300736D1 (en) 2005-08-11
ECSP045241A (en) 2004-09-28
BR0307821A (en) 2004-12-14
KR20040089646A (en) 2004-10-21
CA2476621A1 (en) 2003-08-28
EP1478338A1 (en) 2004-11-24
PE20030832A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
US20080038357A1 (en) Inhalation Powder Containing the CGRP antagonist BIBN4096 and Process for the Preparation Thereof
US6900317B2 (en) Salts of the CGRP antagonist BIBN4096 and inhalable powdered medicaments containing them
AU2020250195B2 (en) Rapamycin Powders for Pulmonary Delivery
JP4085064B2 (en) Method for preparing an inhalable powder containing a salt of CGRP antagonist BIBN4096
UA65538C2 (en) Ultrafine dry powder compositions of biological macromolecules, methods for their preparation and application
Tarara et al. Characterization of suspension-based metered dose inhaler formulations composed of spray-dried budesonide microcrystals dispersed in HFA-134a
TW581681B (en) Liquid crystal forms of cyclosporin
HRP20040747A2 (en) Powder inhalation containing cgrp-antagonist bibn4096 and method for the production therof
JP2007502792A (en) CGRP antagonist 1- [N2- [3,5-dibromo-N-[[4- (3,4-dihydro-2 (1H) -oxoquinazolin-3-yl) -1-piperidinyl] carbonyl] -D-tyrosyl ] -L-lysyl] -4- (4-pyridinyl) -piperazine-containing powder preparation, its production method and use as inhaled powder
JP2007502792A6 (en) CGRP antagonist 1- [N2- [3,5-dibromo-N-[[4- (3,4-dihydro-2 (1H) -oxoquinazolin-3-yl) -1-piperidinyl] carbonyl] -D-tyrosyl ] -L-lysyl] -4- (4-pyridinyl) -piperazine-containing powder preparation, its production method and use as inhaled powder
US20050042180A1 (en) Powder formulation containing the CGRP antagonist 1 [N2-[3,5-dibromo-N-[[4-(3,4-dihydro-2 (1H)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazin, process for preparing and the use thereof as inhalation powder
US20050042178A1 (en) Microparticles containing the CGRP-antagonist 1-[N2-[3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxoquinazoline-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazine, process for preparing and the use thereof as inhalation powder
CA2536048A1 (en) Microparticles comprising the cgrp antagonist 1-[n2-[3,5-dibromo-n-[[4-(3,4-dihydro-2(1h)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-d-tyrosyl]-l-lysyl]-4-(4-pyridinyl)-piperazine method for production and use thereof as inhalation powder
US20060105051A1 (en) Manufacture of particles for pulmonary drug delivery by carbon dioxide assisted nebulization
CA3210442A1 (en) Dihydroergotamine dry powder formulations and methods of use

Legal Events

Date Code Title Description
A1OB Publication of a patent application
OBST Application withdrawn