GB2456367A - Fuel pipes with controlled resistivity - Google Patents

Fuel pipes with controlled resistivity Download PDF

Info

Publication number
GB2456367A
GB2456367A GB0821548A GB0821548A GB2456367A GB 2456367 A GB2456367 A GB 2456367A GB 0821548 A GB0821548 A GB 0821548A GB 0821548 A GB0821548 A GB 0821548A GB 2456367 A GB2456367 A GB 2456367A
Authority
GB
United Kingdom
Prior art keywords
conductive
composite pipe
pipe
fibre
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0821548A
Other versions
GB0821548D0 (en
Inventor
Michael James Dewhirst
Scott Roberts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crompton Technology Group Ltd
Original Assignee
Crompton Technology Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crompton Technology Group Ltd filed Critical Crompton Technology Group Ltd
Publication of GB0821548D0 publication Critical patent/GB0821548D0/en
Publication of GB2456367A publication Critical patent/GB2456367A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/127Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/125Rigid pipes of plastics with or without reinforcement electrically conducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

A composite pipe, particularly for use in fuel lines of aircraft, comprises a body having at least its outer portion comprising an electrically non-conductive polymeric resin matrix having an electrically non-conductive fibre tow reinforcement, typically glass fibre, and a dispersion of electrically conductive particulate filler, such as carbon black. The resistivity of the outer portion is controlled to semiconductor levels between the low resistance of metals and carbon-fibre reinforced plastics, and the very high resistance of insulators such as glass-reinforced plastics. Specifically, the resistivity is controlled to be between 50 kOhm per metre length and 4.0 MOhm per metre length, preferably between 150kOhm and 1.4 MOhm. An inner core comprising a non-conductive resin matrix and an electrically conductive fibre toe reinforcement may also be provided.

Description

INTELLECTUAL
* ... PROPERTY OFFICE Application No (W()82 I S45 l)atc 2 l)ccenihcr The fo1Iowin term is a registered trademark and should be read as such wherever it occurs in this document: Tenax.
FUEL PIPES WITH CONTROLLED RESISTIVITY
Field
This invention is related to fuel pipes or lines, and in particular to fuel pipes for use in aircraft and in particular in the wings of aircraft
Background of the Invention
Electrically conductive, polymer based composites are becoming increasingly important for use in a variety of electrical, electronic, and aerospace applications Major reasons for using conductive elastomers and plastics are to dissipate static charges and to manufacture contact switches, connectors, surface heaters, pressure sensitive electrically conductive ad hesives, printed circuit boards, electromagnetic interference shielding materials, and various other products ranging from calculators to artificial organs Conductive polymeric composites can be made by incorporation of specific conductive additives such as conductive carbon black, carbon fibre, metallic powder, metallic fibre, and intrinsically conductive polymeric powder, e g poly-pyrrole or polyaniline The electrical conductivity of an insulating polymer filled with conducting particles or short fibres increases discontinuously at some specific filler content equivalent to the percolation limit Evenly distributed small spherical particles display percolation at -I 9v/o whereas higher aspect ratio fibres percolate at -5v/o For fuel pipes or lines, particularly when used in aircraft, it is necessary to balance the conflicting electrical requirements needed such that the fuel lines are resistive enough to prevent them offering the preferred path for lightning conduction whilst at the same time being conductive enough to prevent charge build up and sparking though electrical discharge in the dielectric fuel flowing at the tube core A known example of an aircraft fuel pipe is disclosed in EP297 990-A in which the pipe body is formed from a insulating composite material such as glass filled epoxy resin and the inner wall of the pipe is provided with a conductive liner The pipes are connected through flanged end fittings which are connected to the conductive liner and are grounded to the aircraft wings Mechanically the fuel lines are also required to be of low weight with high vibration resistance and good static and fatigue strength in their operational environment To achieve the mechanical properties, low material densities, reduced length and high longitudinal modulus are all advantageous characteristics However, for any specific design application the lengths and diameters of the pipes are fixed A material combination with high specific axial modulus (high longitudinal modulus and low I 5 density) is required to produce a pipe system with high vibration frequencies To achieve this, composite tubes reinforced with high modulus fibres and in particular high modulus carbon fibre reinforced plastics (CFRP) would be the materials of choice However such pipes are electrically too conductive having resistance levels of up to a few hundred Ohms per metre A lightning strike would be preferentially attracted to the pipe surface and could result in sparking or arcing and ignition of the flammable fuel vapours Within a large composite fuel tank such as a wing tank the expected voltage drop along the pipes -j-Similar glass reinforced pipe sections would be too resistive with many tens of millions of Ohms per metre and would be susceptible to electrical discharge in the fuel In both cases the fuel would be in danger of igniting This invention relates to a means of producing lightweight composites fuel pipes with controlled levels of electrical resistivity intermediate between insulating glass reinforced composites and conductive carbon reinforced composites
Statements of Invent ion
According to the present invention there is provided a glass reinforced composite pipe, particularly for use in fuel lines of aircraft, and comprising a body having at least its outer portion comprising an electrically non-conductive polymeric resin matrix having an electrically non-conductive fibre tow reinforcement and a dispersion of electrically conductive particulate filler and having a resistivity of between 50 kfl per metre length and 4 0 MQ per meter length The intermediate levels of resistance are particularly important for pressurised aircraft fuel systems where the aircraft wings are constructed of composite materials The electrical resistance of the pipe system has to be controlled to semiconductor levels between the low resistance of metals and carbon fibre reinforced plastics and the very high resistance of insulators such as glass-reinforced plastics The resistance is measured along the length of the tube at the outer surface and through the thickness at the opposite ends of a pipe section Preferably, the resistivity lies between 1 50k and 1 4tvf�=�= and more preferably <1 25 IvIQ The fibre tow may include fibre reinforcements such as E glass, S glass, alumina silicate or polymer fibre which can be impregnated with the matrix resin between individual filaments such that it can be formed into tubes using standard composite fabrication techniques such as filament winding, tape winding, fabric wrapping or resin impregnation techniques The particulate filler may include cost, high conductivity carbon blacks, and conductive metal oxides such as antimony tin oxide (ATO) or indium tin oxide (ITO) The conductive particulate filler and be incorporated into a liquid thermosetting resin, for example an epoxy resin, using a simple mixing process In the case of carbon blacks the mixing process should retain the structure of the carbon black and evenly impregnate between individual filaments in the fibre tow The body may further comprise an inner core comprising a non-conductive polymeric resin matrix and an electrically conductive fibre tow reinforcement
Description of the Drawings
The invention will be described by way of Example and with reference to the accompanying drawings in which Fig 1 is a schematic part cross-section through a fuel pipe/line in accordance with the present invention, Fig 2 is graph of resistance data for a tube section according to the present invention and Fig 3 is a graph of resistance vs weight % of' carbon black additive
Detailed Description of the Invent ion
Figure! shows a structurally efficient design based on a composite pipe (P) made from glass fibre reinforced epoxy having semi-conductive properties, electrically connected to a metallic ferrule (F) via a semi-conductive resistive link (L) at the interface between (P) and (F) This is the subject of our invention In an alternative arrangement, where structural considerations are necessary due to the dynamic environment in which the part may be deployed, a hybrid composite pipe (P) can be constructed having a body (B) comprising two layers, (0) and (C) An electrically conductive structural core (C) is made from carbon fibre reinforced epoxy and a more insulative outer layer (0) is made from glass reinforced epoxy having semi-conductive properties The two aluminium alloy end flanges (F) are attached onto outer composite layer (0) though a conductive or semiconductive adhesive similar to the matrix resin in layer (0) Alternatively a more conductive adhesive could be used This also acts as a seal Outer composite Layer (0) is based on glass fibre reinforced epoxy modified to exhibit a semi-conductive property, in this particular case, an epoxy resin matrix comprising S glass reinforcement and carbon black nano-particulate additions The resistance between the end flanges is governed by the resistive characteristics of layer (0) which is a semiconductor The resistance between the left outer flange and right inner core is governed by the resistive characteristics across the thickness of the composite tube The inner bore resistance is governed by the resistive characteristics of the inner composite layer (C) Material requirements The outer layer (0) utihses a fibre reinforcement of S2 or E glass with fibre volume fraction of -60% For hybrid shafts aerospace qualified Tenax HIS I 2k fibre can be used in the pipe core rhe matrix resin is an epoxy based system -modified with the particulate filler to give the required electrical resistance in the cured composite pipe sections Fibre tows can be accurately positioned in the pipe wall using filament winding techniques in layers dispersed at typically (�89° / �28°/�28°) in typical thickness ratio (2 5 5) These angles and ratios can be adjusted to match the required mechanical and thermal expanin characteristics of the pipes For the case of a hybrid pipe with an inner carbon fibre reinforced core C, the inner �89° / �28° layers will be reinforced with Tenax HIS or similar carbon fibre The impregnation matrix system is based on LY556 / HY9 1 7 epoxy (Huntsman) having a Enaco 250 Carbon Black filler with BYX- P 9055 (BYK Chemie) dispersing additive The matrix components were mixed at 40°C by stirring at 500rpm The 10% carbon black system consisted of 100 parts by weight (epoxy) resin, 10 pbw (carbon black), 2 pbw dispersant The lower carbon black matrix systems may be produced by the addition of further quantities of the mixed epoxy resin followed by further stirring The S2 glass fibre tows were impregnated with the resin system using standard filament winding procedures The end fittings will be bonded and sealed in place with either EA 9394 or EA 9395 or if controlled electrical resistance of the bond interface is necessary, with an epoxy based on the composite matrix resin In our invention we have modified the electrical characteristics of the matrix resin in such a way that the S glass fibre tow is impregnated with the matnx resin between individual filaments such that the resulting impregnated tows may be formed into tubes using standard composite fabrication techniques The liquid rheological dispersing additive was used to break up agglomerates, stabilize the carbon black and prevent sedimentation, separation or floating In this way electncal percolation is maintained throughout the matrix at a level of 8-10 % by weight of carbon black addition whilst at the same time maintaining the viscosity of the resin at <1000 cp at 40-50°C as required for filament winding and liquid impregnation At the same time the good mechanical integrity of the composite is maintained The resulting fibre reinforced composite pipes exhibit other advantages over metallic pipes, i e, they are lighter in weight, more resistant to corrosion, more inert and the expansion coefficients can be tailored Electrical Resistance Pipes in accordance with the present invention containing 1 0% by weight carbon black and having an ID of 20mm and OD 21 4 mm with a fibre angle of 45° were tested for resistance as measured between the end fitting and the opposite end pipe bore and between the two end fittings along the pipe outer surface The electrical resistance across a typical carbon fibre reinforced filament wound tube from the bore at one end to the outer machined surface of the other end is -251�= m1 in contrast to a similar glass reinforced composite tube which would be highly insulating at >200MQm' These values may be affected by the surface absorption of the aviation ftel but since the electrical conductivity is low at typically 50-450 pSm1 the effect is expected to be minimal
-
In contrast and as is shown in Fig I, the pipe according to the present invention has a resistance measured using digital volt metre of-l37m' for a 1000mm length of pipe This value does not vary significantly over the operational temperature range The resistivity of pipes may be controlled by varying the amount of the carbon black contents as is shown in Fig 3 Resistance of between 4 M and 22 M were achieved between 8-1 Ow/o of carbon black Lightning impulse voltages of 900V transient have been applied to a hybrid composite pipe section according to the present invention without any signs of sparking between layers within the pipe, or at end fittings The thermal expansion coefficients can be controlled by the details of the fibres and angles used in the windings The thermal expansion coefficient along the pipe axis can be controlled with the fibre angles and thicknesses used in the winding The estimated longitudinal expansion coefficient is -10 ppm o(i for S2 glass reinforcement and 4 ppm OC for a typical S2/carbon hybrid structure -
JO
-

Claims (2)

  1. Claims 1. A glass reinforced composite pipe, particularly for use in fuel lines of aircraft, and comprising a body having at least its outer portion comprising an electrically non-conductive polymeric resin matrix having an electrically non-conductive fibre tow reinforcement and a dispersion of electrically conductive particulate filler and having a resistivity of between 50 kQ per metre length and 4 0 M'Q per meter length.
  2. 2. A composite pipe as claimed in Claim I wherein the resistivity lies between I SOk'Q and 1.4M'�= 3 A composite pipe as claimed in Claim I or Claim 2, wherein the resistivity <1.25 MQ 4. A composite pipe as claimed in any one of Claims I to 3, wherein the fibre tow includes at least one of S glass, E glass, alumina silicate or a polymeric fibre which is impregnated with the matrix resin between individual filaments.
    A composite pipe as claimed in Claim 4 wherein at least a portion of the reinforcing fibres within the outer portion are helically wound around the longitudinal axis of the pipe.
    6 A composite pipe as claimed in any one of Claims 1 to 5, wherein the particulate filler comprises at least one of carbon black, ATO and ITO.
    -II-
    7 A composite pipe as claimed in any one of Claims I to 6, wherein the resin matrix comprises epoxy resin 8 A composite pipe as claimed in any one of Claims I to 7, wherein the pipe body further includes an inner core comprising a non conductive resin matrix and an electrically conductive fibre tow reinforcement 9 A composite pipe as claimed in any one of Claims I to 8 and further including end fittings attached to the outer portion of the body by a conductive or semi-conductive adhesive A method of manufacture of a composite pipe as claimed in Claim 6, wherein the carbon black filler is incorporated into the resin matrix using a simple mixing process which preserves the structure of the carbon black, and then evenly impregnating the resin between in1ividual filaments in the fibre tow 11 A method as claimed in Claim 10, wherein the fibre tow is formed into tubes using filament winding at selected angles which are adjusted to match the required mechanical and thermal expansion characteristics of the pipe
GB0821548A 2008-01-11 2008-11-26 Fuel pipes with controlled resistivity Withdrawn GB2456367A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0800538A GB0800538D0 (en) 2008-01-11 2008-01-11 Fuel pipes with controlled resistivity

Publications (2)

Publication Number Publication Date
GB0821548D0 GB0821548D0 (en) 2008-12-31
GB2456367A true GB2456367A (en) 2009-07-15

Family

ID=39144828

Family Applications (2)

Application Number Title Priority Date Filing Date
GB0800538A Ceased GB0800538D0 (en) 2008-01-11 2008-01-11 Fuel pipes with controlled resistivity
GB0821548A Withdrawn GB2456367A (en) 2008-01-11 2008-11-26 Fuel pipes with controlled resistivity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB0800538A Ceased GB0800538D0 (en) 2008-01-11 2008-01-11 Fuel pipes with controlled resistivity

Country Status (2)

Country Link
GB (2) GB0800538D0 (en)
WO (1) WO2009087372A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064707A3 (en) * 2009-11-24 2011-12-29 The Director General, Defence Research & Development Organisation (Drdo) Fiber reinforced polymeric composites with tailorable electrical resistivities and process for preparing the same
WO2015075134A1 (en) * 2013-11-21 2015-05-28 Novo Nordisk A/S Rotary sensor assembly with space efficient design
US9649448B2 (en) 2013-11-21 2017-05-16 Novo Nordisk A/S Rotary sensor module with resynchronization feature
US9750886B2 (en) 2013-02-19 2017-09-05 Novo Nordisk A/S Drug delivery device with dose capturing module
US9833576B2 (en) 2013-02-19 2017-12-05 Novo Nordisk A/S Rotary sensor module with axial switch
US10201664B2 (en) 2013-02-19 2019-02-12 Novo Nordisk A/S Dose capturing cartridge module for drug delivery device
EP3604880A4 (en) * 2017-03-30 2020-04-15 The Yokohama Rubber Co., Ltd. Marine hose
US11052198B2 (en) 2013-11-21 2021-07-06 Novo Nordisk A/S Rotary sensor assembly with axial switch and redundancy feature
US11454345B2 (en) * 2016-11-01 2022-09-27 Epff Electrical Pipe For Fluid Transport Ab Reduction of microbiological growth in pipes

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9111665B2 (en) 2010-12-31 2015-08-18 Eaton Corporation Conductive mesh for composite tube for fluid delivery system
US9022077B2 (en) 2010-12-31 2015-05-05 Eaton Corporation Composite tube for fluid delivery system
US9366365B2 (en) 2010-12-31 2016-06-14 Eaton Corporation Reinforcement methods for composite tube for fluid delivery system
US9470352B2 (en) 2010-12-31 2016-10-18 Eaton Corporation RFID and product labelling integrated in knit composite tubes for fluid delivery system
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
WO2014204765A1 (en) 2013-06-20 2014-12-24 Eaton Corporation Rfid and product labeling integrated in knit composite tubes for fluid delivery system
WO2014204690A1 (en) 2013-06-20 2014-12-24 Eaton Corporation Conductive mesh for composite tube for fluid delivery system
WO2014204688A1 (en) 2013-06-20 2014-12-24 Eaton Corporation Reinforcement methods for composite tube for fluid delivery system
GB2552170B (en) * 2016-07-11 2022-01-12 Lentus Composites Ltd Fuel pipe
GB2596500B (en) * 2016-07-11 2022-04-06 Polar Tech Management Group Limited Fuel pipe
EP3719368B1 (en) 2019-04-02 2023-01-11 Crompton Technology Group Limited Electrical isolator and corresponding forming method
EP3719370B1 (en) 2019-04-02 2024-03-13 Crompton Technology Group Limited Electrical isolator
EP3719372B1 (en) 2019-04-02 2023-06-07 Crompton Technology Group Limited Electrical isolator
EP3800035A1 (en) 2019-10-04 2021-04-07 Crompton Technology Group Limited Composite component with means to visually detect barely visible impact damage
EP3800036A1 (en) 2019-10-04 2021-04-07 Crompton Technology Group Limited Composite component with means to visually detect barely visible impact damage
EP3805623B1 (en) 2019-10-07 2023-11-29 Crompton Technology Group Limited Fibre reinforced polymer composite pipes and method of making thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196464A (en) * 1978-02-23 1980-04-01 Eaton Corporation Semi-conductive layer-containing reinforced pressure hose and method of making same
US4303457A (en) * 1975-10-06 1981-12-01 Eaton Corporation Method of making a semi-conductive paint hose
JP2007125861A (en) * 2005-11-07 2007-05-24 Bridgestone Corp Hose for transferring insulating liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA791450B (en) * 1978-04-07 1980-04-30 Bristol Composite Mat Antistatic fire-retardant structures particularly pipes of reinforced plastics material
GB1570240A (en) * 1978-05-30 1980-06-25 Btr Industries Ltd Electrically conducting resinous composition
GB2125722B (en) * 1982-08-06 1986-03-26 Taylor Duxbury Thomas Michael Electrically conductive reinforced plastics structures
GB8729316D0 (en) * 1987-12-16 1988-01-27 Shrinemark Ltd Improvements relating to tube formation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303457A (en) * 1975-10-06 1981-12-01 Eaton Corporation Method of making a semi-conductive paint hose
US4196464A (en) * 1978-02-23 1980-04-01 Eaton Corporation Semi-conductive layer-containing reinforced pressure hose and method of making same
JP2007125861A (en) * 2005-11-07 2007-05-24 Bridgestone Corp Hose for transferring insulating liquid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064707A3 (en) * 2009-11-24 2011-12-29 The Director General, Defence Research & Development Organisation (Drdo) Fiber reinforced polymeric composites with tailorable electrical resistivities and process for preparing the same
US9017580B2 (en) 2009-11-24 2015-04-28 The Director General, Defence Research & Development Organisation (Drdo) Fiber reinforced polymeric composites with tailorable electrical resistivities and process for preparing the same
US9750886B2 (en) 2013-02-19 2017-09-05 Novo Nordisk A/S Drug delivery device with dose capturing module
US9833576B2 (en) 2013-02-19 2017-12-05 Novo Nordisk A/S Rotary sensor module with axial switch
US10201664B2 (en) 2013-02-19 2019-02-12 Novo Nordisk A/S Dose capturing cartridge module for drug delivery device
WO2015075134A1 (en) * 2013-11-21 2015-05-28 Novo Nordisk A/S Rotary sensor assembly with space efficient design
US9649448B2 (en) 2013-11-21 2017-05-16 Novo Nordisk A/S Rotary sensor module with resynchronization feature
US11052198B2 (en) 2013-11-21 2021-07-06 Novo Nordisk A/S Rotary sensor assembly with axial switch and redundancy feature
US11311678B2 (en) 2013-11-21 2022-04-26 Novo Nordisk A/S Rotary sensor assembly with space efficient design
US11454345B2 (en) * 2016-11-01 2022-09-27 Epff Electrical Pipe For Fluid Transport Ab Reduction of microbiological growth in pipes
EP3604880A4 (en) * 2017-03-30 2020-04-15 The Yokohama Rubber Co., Ltd. Marine hose

Also Published As

Publication number Publication date
GB0800538D0 (en) 2008-02-20
GB0821548D0 (en) 2008-12-31
WO2009087372A2 (en) 2009-07-16
WO2009087372A3 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
GB2456367A (en) Fuel pipes with controlled resistivity
EP2310270B1 (en) Fluid carrying element for use in dielectric isolators
US8937254B2 (en) Apparatus and method for an aircraft conductor sandwich assembly embedded to an aircraft structure
EP2335320B1 (en) Fluid carrying element for use as a dielectric isolator
De Rosa et al. EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications
US8654499B2 (en) Pipe connector
EP2328978B1 (en) Injection moldable, thermoplastic composite materials
EP2672156B1 (en) Composite tubes for a fluid transport system
EP2440623B1 (en) Method for shielding a substrate from electromagnetic interference
US8356635B2 (en) Fluid transport device, in particular for fuel
GB2211266A (en) Anti-static tubing
Li et al. Reinforcing microwave absorption multiwalled Carbon nanotube–epoxy composites using glass fibers for multifunctional applications
Shifa et al. Towards light weight multifunctional hybrid composite housing for satellite electronics
US5066424A (en) Composite material for EMI/EMP hardening protection in marine environments
JP6722985B2 (en) Ways to reduce edge glow
GB2559403A (en) Aircraft electrical isolation component and method of manufacturing electrical isolation component
Tariq et al. Hybrid nanocomposite material for EMI shielding in spacecrafts
Alarifi et al. Mitigation of lightning strikes on composite aircraft via micro and nanoscale materials
EP3014020B1 (en) Dissipation of static electricity
CN112778707A (en) Dielectric isolation material with thermosetting resin as matrix and preparation method thereof
Tehrani et al. Integration of carbon nanotubes into a fiberglass reinforced polymer composite and its effects on electromagnetic shielding and mechanical properties
US20240124667A1 (en) Multifunctional Carbon Nanotubes-Glass Fiber-Epoxy Composites with High Density Interfaces for Microwave Absorption and Structural Materials
US5173871A (en) Method for providing EMI/EMP hardening and breakdown protection in composite materials
Tariq et al. Fabrication and testing of MWCNT-CFRP facing/aluminum core honeycomb sandwich structure for space applications
Moupfouma et al. Characterization of Aircraft Electrostatic Charging/Discharging Effects and the Influence of Aircraft Skin Conductivity

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)