GB2419056A - Combined radar and laser detector having a GPS receiver and using wireless communication - Google Patents

Combined radar and laser detector having a GPS receiver and using wireless communication Download PDF

Info

Publication number
GB2419056A
GB2419056A GB0422151A GB0422151A GB2419056A GB 2419056 A GB2419056 A GB 2419056A GB 0422151 A GB0422151 A GB 0422151A GB 0422151 A GB0422151 A GB 0422151A GB 2419056 A GB2419056 A GB 2419056A
Authority
GB
United Kingdom
Prior art keywords
unit
signal
information
receiving
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0422151A
Other versions
GB0422151D0 (en
Inventor
Dong-Ryeol Kim
Sun-Woung Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Channel Tech Inc
Original Assignee
Channel Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Channel Tech Inc filed Critical Channel Tech Inc
Priority to GB0422151A priority Critical patent/GB2419056A/en
Publication of GB0422151D0 publication Critical patent/GB0422151D0/en
Priority to CNA2005100065609A priority patent/CN1758069A/en
Publication of GB2419056A publication Critical patent/GB2419056A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • G01S7/4806Road traffic laser detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • G01S7/022Road traffic radar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations

Abstract

A combined radar and laser detector for use in a vehicle is disclosed in which a signal receiving module 100 for receiving traffic related data and an information display module 200 are separated. The signal receiving module 100 includes a signal processing unit 110 for detecting a radar signal received via a horn antenna, a laser receiving unit 130 for receiving a laser signal, and an information transmission unit 150 for wirelessly transmitting the radar and laser traffic related data to the information display module 200. The information display module 200 includes an information receiving unit 210 for receiving information from the signal receiving module 100, a GPS receiver 260 for receiving data related to the location and speed of a moving vehicle, an audible indication unit 270 and a visual display unit 280 for outputting information received from the information receiving unit 210 or the GPS receiver 260 to the driver.

Description

- -
24 1 9056
COMBINED RADAR AND LASER DETECTOR HAVING GPS RECEIVER AND
USING WIRELESS COMMUNICATION
BACKGROUND OF THE INVENTION s
1. Field of the Invention
The present invention relates generally to a combined radar and laser detector that enables a driver to drive safely and, more particularly, to a combined radar and laser detector, which has a global positioning system receiver capable of detecting global positioning system data related to the location and speed of a moving vehicle and uses wireless communication, so that the combined radar and laser detector can not only provide accurate traffic information to a driver, but also allow the installation thereof to be easy, the miniaturization thereof to be achieved, and the power consumption thereof to be minimized.
2. Description of the Related Art
Various traffic safety devices for the safe driving of vehicles have been developed and used. In particular, the use of a combined radar and laser detector is generalized in U.S. and Europe to enable a driver to drive safely using traffic information, such as low speed zones, school zones and road maintenance/construction zones, provided to the driver through ' microwaves and a laser.
FIG. l is a diagram schematically showing the construction of a conventional combined radar and laser detector, and the conventional combined radar and laser detector includes a horn antenna lO, a signal processing unit for detecting a signal received through the horn antenna lO, a laser module 30 for receiving a laser signal, a central processor unit 40 for controlling the detection of the signals received through the signal processing unit 20 and the laser module 30, a visual display means 50 for visually displaying the detected signals, and an audible indication means 60 for audibly outputting the detected signals through an audio amplification unit 61.
The conventional combined radar and laser detector l constructed as described above is generally mounted on a dashboard using a fastening means, as shown in FIG. 2.
However, in the case of mounting the combined radar and laser detector l in a vehicle, a problem arises in that various kinds of signals enabling the driver to drive safely cannot be easily received.
That is, a combined radar and laser detector generally uses a high frequency of lO to 40 GHz, but the high frequency has directionality, so that the horn antenna needs to be located on the front of the vehicle.
However, in the case of mounting the horn antenna on the front of the vehicle, work is required to connect the horn antenna, placed outside the vehicle, with a visual display means and an audible indication means, placed inside the vehicle and adapted to provide traffic information to the driver through a wire, so that a problem arise in that it is difficult to install the combined radar and laser detector.
Additionally, the conventional combined radar and laser detector is constructed in such a way that the horn antenna and other components are integrated into a single body, so that the size of the combined radar and laser detector is large, and thus problems arise in that it is difficult to ensure a space for installation and excessive power consumption is incurred.
Furthermore, the conventional combined radar and laser detector is disadvantageous in that it cannot provide various kinds of information to the driver. To solve the above problems, there have been attempts to combine a Global Positioning System (GPS) receiver, which detects GPS data related to the location and speed of a moving vehicle, with the combined radar and laser detector to provide accurate and various kinds of traffic information to a driver. However, a problem still arises in that faulty operations occur due to frequency interference when the combined radar and laser detector is constructed to include the GPS receiver, so that it is difficult to guarantee the reliability of the operation of the combined radar and laser detector.
SUMMARY OF THE INVENTION
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a combined radar and laser detector, in which a signal receiving module for receiving various kinds of signals enabling a driver to drive safely and an information display module for informing the driver of the signals are separated, the signal receiving and information display modules are constructed to communicate with each other using wireless communication, and the information display module is integrated with a GPS receiver detecting GPS data related to the location and speed of a moving vehicle.
In order to accomplish the above object, the present invention provides a combined radar and laser detector having a GPS receiver and using wireless communication, including a signal receiving module, which includes a signal processing unit for detecting a signal received through a horn antenna, a laser receiving unit for receiving a laser signal, a central processor unit for controlling detection of the signals received through the signal processing unit and the laser receiving unit, analyzing the detected signals, and outputting the information data of the detected signals, and an information transmission unit for wirelessly transmitting the information data output from the central processor unit; and an information display module, which includes an information s receiving unit for receiving the information data wirelessly transmitted from the information transmission unit of the signal receiving module, a GPS engine for detecting GPS data transmitted from a satellite, a memory unit for storing coordinates data used to indicate the location of a moving vehicle, an audible indication unit for audibly outputting the data received through the information receiving unit or detected through the GPS engine, a visual display unit for visually displaying the data received through the information receiving unit or detected through the GPS engine, and a central processor unit for controlling operations of the visual display unit and the audible indication unit according to the data received through the information unit or detected through the GPS engine.
The information display module may further includes a serial communication unit for communicating with a user's computer, and a switching unit for temporarily restricting the operation of the GPS engine under control of the central processor unit when data is downloaded through the serial communication unit.
2s The information display module may further include a s back-up battery for supplying power to the internal memory of the GPS engine.
The information display module may be operated by power supplied from a portable battery or a solar cell battery.
The signal processing unit of the signal receiving module may include a first local oscillator for producing oscillations of a first frequency, a sweep voltage generator for driving the first local oscillator, a first mixer for mixing the first frequency of the oscillations of the first lo local oscillator with the frequency of the signal received through the horn antenna, and outputting a difference signal, a first amplifier for amplifying the difference signal that is the output signal of the first mixer, second and third local oscillators for alternately producing the oscillations of second and third frequencies, a second mixer for mixing the signal of the second and third local oscillators with the output signal of the first amplifier, and outputting a difference signal, a second amplifier for amplifying the difference signal that is the output signal of the second mixer, a filter for selectively passing the output signal of the second amplifier through, a demodulator for detecting the signal passed through the filter, and an analog to digital converter for converting the detected signal into a digital signal.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the present invention will be more clearly understood from the s following detailed description taken in conjunction with the accompanying drawings, in which: FIG. l is a block diagram schematically showing the construction of a conventional combined radar and laser detector; FIG. 2 is a view showing the installation of the conventional combined radar and laser detector; FIG. 3 is a block diagram schematically showing the construction of a combined radar and laser detector according to the present invention; and FIG. 4 is a block diagram showing the construction of the combined radar and laser detector of to the present invention in detail.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference now should be made to the drawings, in which the same reference numerals are used throughout the different drawings to designate the same or similar components.
FIG. 3 is a block diagram schematically showing the 2s construction of a combined radar and laser detector having a GPS receiver according to the present invention. The combined radar and laser detector of the present invention includes a signal receiving module 100 for detecting various kinds of signals that enable a driver to drive safely, and an information display module 200 for detecting GPS data related to the location and speed of a moving vehicle and informing the driver of the GPS data and the data detected through the signal receiving module 100. The signal receiving module 100 placed outside and on front of the vehicle and the information display module 200 placed inside the vehicle are constructed to wirelessly communicate with each other using an ultra high frequency of 300 to 400 MHz.
The signal receiving module 100 includes a signal processing unit 110 for detecting a signal received through a Is horn antenna, a laser receiving unit 130 for receiving a laser signal, a central processor unit 140 for controlling the detection of the signals received through the signal processing unit 110 and the laser receiving unit 130, analyzing the detected signals and outputting the information data of the detected signals, and an information transmission unit 150 for wirelessly transmitting the information data output from the central processor unit 140 to the information display module 200.
Meanwhile, the information display module 200 includes an information receiving unit 210 for receiving the information data wirelessly transmitted from the information transmission unit 150 of the signal receiving module 100, a GPS engine 260 for detecting GPS data transmitted from a satellite, a memory unit 250 for storing coordinates data used to indicate the s location of the moving vehicle, an audible indication unit 270 for audibly outputting the data received through the information receiving unit 210 or detected through the GPS engine 260, a visual display unit 280 for visually displaying the data received through the information receiving unit 210 or detected through the GPS engine 260, and a central processor unit 230 for controlling the operations of the visual display unit 280 and the audible indication unit 270 according to the data received through the information receiving unit 210 or detected through the GPS engine 260.
The information display module 200 further includes a serial communication unit 220 for communicating with a user's computer, and a switching unit 240 for temporarily restricting the operation of the GPS engine 260 according to the control of the central processor unit 230 to prevent a collision that can be incurred at the time of downloading data through the serial communication unit 220.
FIG. 4 is a block diagram showing the detailed construction of the combined radar and laser detector. The signal processing unit 110 of the signal receiving module 100 includes a first local oscillator 112 for producing oscillations of 10 GHz, a sweep voltage generator 111 for operating the first local oscillator 112, a first mixer 113 for mixing the frequency of the oscillations generated from the first local oscillator 112 with a frequency of 10 to 40 GHz received through the horn antenna, and outputting a frequency of 1 to 2 GHz that is a difference signal, and a first amplifier 114 for amplifying the difference signal that is the output signal of the first mixer 113.
The signal processing unit 110 of the signal receiving module 100 further includes second and third local oscillators and 116 for alternately producing oscillations of different frequencies, a second mixer 117 for mixing the oscillation signal of the second and third local oscillators and 116 with the output signal of the first amplifier 114, IS and outputting a frequency of 10.7 MHz that is a difference signal, a second amplifier 118 for amplifying the difference signal that is the output signal of the second mixer 117, a filter 119 for selectively passing the output signal of the second amplifier 118 therethrough, a demodulator 120 for detecting the signal passed through the filter 119, and an Analog to Digital (AD) converter 121 for converting the detected signal into a digital signal.
Additionally, the central processor unit 140 controls the operations of the first to third local oscillators 112, 115, and 116 to receive various kinds of signals through the horn antenna, analyzes the signals detected through the signal processing unit 110 and the laser receiving unit 130, abstracts information data from the detected signals, and wirelessly transmits the information data to the information s display module 200 through the information transmission unit using a frequency of 390 MHz. The signal receiving module is located outside and on front of a vehicle and is constructed to be operated by the battery of the vehicle.
Meanwhile, as shown in FIG. 4, the information display module 200 includes the information receiving unit 210 for receiving the information data wirelessly transmitted from the information transmission unit 150 of the signal receiving module 100, the GPS engine 260 for detecting GPS data included in a signal of 1575.42 MHz transmitted from the satellite, and l5 the memory unit 250 for storing the coordinates data used to indicate the location of the moving vehicle.
Furthermore, the central processor unit 230 controls the operations of the visual display unit 280 and the audible indication unit 270 according to data received through the information receiving unit 210 or detected through the GPS engine 260, and thus provides the traffic information to a driver.
The visual display unit 280 is constructed in a dynamic fashion in the embodiment of the present invention. That is, the visual display unit 280 is constructed in such a way that 1 1 switching devices Q3 to Q7 to be switched according to the control signal of the central processor unit 230 are switched every 5 ms, so that the traffic information is represented by the flickering of Light Emitting Diodes (LEDs) or the operation of seven-segment displays. However, the present invention is not limited to this construction.
The information display module 200 further includes the serial communication unit 220 for communicating with the user's computer and downloading data therefrom. To prevent a collision incurred at the time of downloading data through the serial communication unit 220, the central processor unit 230 controls the switching unit 240 to cut off the power and data lines of the GPS engine 260. Accordingly, the operation of the GPS engine 260 is temporarily restricted. In this case, to l5 prevent the data stored in the internal memory of the GPS engine 260 from being lost, back-up power is supplied by a back-up battery 291.
The information display module 200 is composed of components whose power consumption is considerably smaller than that of the signal receiving module 100, so that the information display module 200 can be operated by a portable battery or a solar cell battery, so the size of a battery can be minimized, and thus the restriction of the mounting space can be solved.
Reference numeral 290 designates a power unit to supply power used for operating the information display module 200.
The power unit 290 converts an applied input voltage of 8 to 30 V into voltages of 12 V, 5 V and 3.3 V, and outputs the converted voltages.
S A method of operating the combined radar and laser detector according to the present invention is described in detail below.
When a frequency signal of 10 to 40 GHz including various kinds of traffic information is received from the horn antenna, the first local oscillator 112 of the signal processing unit 110 produces oscillations of 10 GHz according to the control of the central processor unit 140. The frequency of the oscillations generated from the first local oscillator 112 is mixed with a frequency of 10 to 40 GHz IS received through the horn antenna by the first mixer 113, a frequency of 1 to 2 GHz that is a difference signal is output, and the difference signal is amplified by the first amplifier 114.
Additionally, the difference signal amplified by the first amplifier 114 is mixed with one of the oscillation signals generated from the second and third local oscillators and 116, which alternately produce oscillations of different frequencies, by the second mixer 117. A frequency of 10.7 MHz that is the difference signal output from the second mixer 117 is amplified by the second amplifier 118, filtered by the filter 119, detected by the demodulator 120 while passing therethrough, converted into a digital signal by the AD converter 121, and input to the central processor unit 140.
Meanwhile, the central processor unit 140 controls the operations of the first to third local oscillators 112, 115, and 116 to receive the various kinds of signals through the horn antenna, analyzes the signals detected through the signal processing unit 110 and the general laser receiving unit 130, extracts information data from the detected signals, and wirelessly transmits the information data to the information display module 200 through the information transmission unit using a frequency of 390 MHz.
The information data wirelessly transmitted is received by the information receiving unit 210 of the information display module 200 placed inside a vehicle, and applied to the central processor unit 230. Furthermore, the GPS engine 260 detects GPS data, which is related to the location and speed of a moving vehicle and included in a frequency of 1575.42 MHz, and applies the GPS data to the central processor unit 230.
According to the data received through the information receiving unit 210 or the GPS data detected through the GPS engine 260, the central processor unit 230 drives the visual display unit 280 to visually display the received traffic information, or drives the audible indication unit 270 to audibly inform the driver of the received traffic information.
That is, the central processor unit 230 switches the switching devices Q3 to Q7 to display the traffic information by flickering LEDs or using seven-segment displays, and operates an audio Integrated Circuit (IC) constituting a part of the audible indication unit 270 to audibly inform the driver of the traffic information.
Additionally, data can be downloaded from the user's computer through the serial communication unit 220. In this case, the central processor unit 230 outputs a control signal to switch the switching unit 240 so as to cut off the power and data lines of the GPS engine 260. Accordingly, the operation of the GPS engine 260 is temporarily stopped, so l5 that a collision incurred at the time of downloading the data can be prevented.
When the power line of the GPS engine 260 is cut off, data stored in the internal memory of the GPS engine 260 may be lost. To prevent the data from being lost, the back-up battery 291 supplies back-up power to the GPS engine 260. As a result, time to prepare the re-operation of the GPS engine 260 can be reduced, so that an operation speed can be increased.
The combined radar and laser detector of the present invention is constructed in such a way that a signal receiving module for receiving various kinds of signals that enable a driver to drive safely and an information display module for informing the driver of the signals are separated from each other, the signal receiving module and the information display module are constructed to communicate with each other using wireless communication, and the information display module is integrated with the GPS receiver detecting GPS data related to the location and speed of a moving vehicle, so that the combined radar and laser detector can not only provide accurate traffic information to the driver but also allow the installation thereof to be easy, the miniaturization thereof to be achieved, and the power consumption thereof to be minimized.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (5)

  1. WHAT IS CLAIMED IS: 1. A combined radar and laser detector having a Global
    Positioning System (GPS) receiver and using wireless communication, comprising: a signal receiving module, which comprises a signal processing unit for detecting a signal received through a horn antenna, a laser receiving unit for receiving a laser signal, a central processor unit for controlling detection of the signals received through the signal processing unit and the laser receiving unit, analyzing the detected signals, and outputting information data of the detected signals, and an information transmission unit for Tirelessly transmitting the information data output from the central processor unit; and an information display module, which comprises an information receiving unit for receiving the information data Tirelessly transmitted from the information transmission unit of the signal receiving module, a GPS engine for detecting GPS data transmitted from a satellite, a memory unit for storing coordinates data used to indicate a location of a moving vehicle, an audible indication unit for audibly outputting the data received through the information receiving unit or detected through the GPS engine, a visual display unit for visually displaying the data received through the information 2s receiving unit or detected through the GPS engine, and a central processor unit for controlling operations of the visual display unit and the audible indication unit according to the data received through the information unit or detected through the GPS engine.
  2. 2. The combined radar and laser detector as set forth in claim 1, wherein the information display module further comprises a serial communication unit for communicating with a user's computer, and a switching unit for temporarily restricting an operation of the GPS engine under control of the central processor unit when data is downloaded through the serial communication unit.
  3. 3. The combined radar and laser detector as set forth in ]5 claim 1, wherein the information display module further comprises a back-up battery for supplying power to an internal memory of the GPS engine.
  4. 4. The combined radar and laser detector as set forth in claim 1, wherein the information display module is operated by power supplied from a portable battery or a solar cell battery.
  5. 5. The combined radar and laser detector as set forth in claim 1, wherein the signal processing unit of the signal receiving module comprises: a first local oscillator for producing oscillations of a first frequency, a sweep voltage generator for driving the first local oscillator, a first mixer for mixing the first frequency of the oscillations of the first local oscillator with the frequency of the signal received through the horn antenna, and outputting a difference signal, a first amplifier for amplifying the difference signal that is an output signal of the first mixer, second and third local oscillators for alternately producing oscillations of second and third frequencies, a second mixer for mixing the signal of the second and third local oscillators with the output signal of the first amplifier, and outputting a difference signal, a second amplifier for amplifying the difference signal that is an output signal of the second mixer, a filter for selectively passing the output signal of the second amplifier through, a demodulator for detecting the signal passed through the filter, and an analog to digital converter for converting the detected signal into a digital signal.
GB0422151A 2004-10-06 2004-10-06 Combined radar and laser detector having a GPS receiver and using wireless communication Withdrawn GB2419056A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0422151A GB2419056A (en) 2004-10-06 2004-10-06 Combined radar and laser detector having a GPS receiver and using wireless communication
CNA2005100065609A CN1758069A (en) 2004-10-06 2005-02-23 Combined radar and laser detector having a GPS receiver and using wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0422151A GB2419056A (en) 2004-10-06 2004-10-06 Combined radar and laser detector having a GPS receiver and using wireless communication

Publications (2)

Publication Number Publication Date
GB0422151D0 GB0422151D0 (en) 2004-11-03
GB2419056A true GB2419056A (en) 2006-04-12

Family

ID=33428143

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0422151A Withdrawn GB2419056A (en) 2004-10-06 2004-10-06 Combined radar and laser detector having a GPS receiver and using wireless communication

Country Status (2)

Country Link
CN (1) CN1758069A (en)
GB (1) GB2419056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498568A (en) * 2012-01-20 2013-07-24 Cp Electronics Ltd Power supply for microwave sensing device
EP2902798A1 (en) * 2014-02-04 2015-08-05 Furuno Electric Co., Ltd. Radar antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977884A (en) * 1998-07-01 1999-11-02 Ultradata Systems, Inc. Radar detector responsive to vehicle speed
US6201493B1 (en) * 1999-05-28 2001-03-13 Lucent Technologies Inc. Radar detector arrangement
US6384776B1 (en) * 1999-04-30 2002-05-07 B. Todd Martin EM signal detection and position broadcasting system and method
US6400304B1 (en) * 2000-05-15 2002-06-04 Chubbs, Iii William Integrated GPS radar speed detection system
US20040239553A1 (en) * 2003-06-02 2004-12-02 Channel Technology, Inc. Combined radar and laser detector having GPS receiver and using wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977884A (en) * 1998-07-01 1999-11-02 Ultradata Systems, Inc. Radar detector responsive to vehicle speed
US6384776B1 (en) * 1999-04-30 2002-05-07 B. Todd Martin EM signal detection and position broadcasting system and method
US6201493B1 (en) * 1999-05-28 2001-03-13 Lucent Technologies Inc. Radar detector arrangement
US6400304B1 (en) * 2000-05-15 2002-06-04 Chubbs, Iii William Integrated GPS radar speed detection system
US20040239553A1 (en) * 2003-06-02 2004-12-02 Channel Technology, Inc. Combined radar and laser detector having GPS receiver and using wireless communication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498568A (en) * 2012-01-20 2013-07-24 Cp Electronics Ltd Power supply for microwave sensing device
GB2498568B (en) * 2012-01-20 2014-09-24 Cp Electronics Ltd Sensing device and method of calibration
US9739863B2 (en) 2012-01-20 2017-08-22 C.P. Electronics Limited Sensing device and method of calibration
EP2902798A1 (en) * 2014-02-04 2015-08-05 Furuno Electric Co., Ltd. Radar antenna
US9910147B2 (en) 2014-02-04 2018-03-06 Furuno Electric Co., Ltd. Radar antenna

Also Published As

Publication number Publication date
CN1758069A (en) 2006-04-12
GB0422151D0 (en) 2004-11-03

Similar Documents

Publication Publication Date Title
US6943723B2 (en) Combined radar and laser detector having GPS receiver and using wireless communication
KR920005507B1 (en) Vehicel loading equipment of automatic vehicle chasing system
KR20060051207A (en) Receiving device, semiconductor integrated circuit, transmitting/receiving device, transport apparatus, portable transmitting/receiving device, communication system and receiving method
WO2004066240A3 (en) Gps based vehicle warning and location system and method
JP2009097865A (en) Receiving device of road traffic information
JP2008250628A (en) Radar detection device
GB2419056A (en) Combined radar and laser detector having a GPS receiver and using wireless communication
KR20120113101A (en) Radar detector having power on and off of its oscillator
TWI248520B (en) Combined radar and laser detector having GPS receiver and using wireless communication
KR100986561B1 (en) radar detector
RU2306576C1 (en) Emergency radio beacon
KR100467351B1 (en) Remote wireless radar/laser detector
KR20100032610A (en) Antenna discrete type cars entrainment terminal
JP3872695B2 (en) In-vehicle device
JP2003048480A (en) Control system for on-vehicle electrical equipment
JP7086777B2 (en) In-vehicle antenna unit and in-vehicle system
RU55997U1 (en) EMERGENCY RADIO BEACON
JP2006124948A (en) Remote control system
KR200412988Y1 (en) Radio laser/radar detector having embedded battery
KR100528623B1 (en) The Unified FM DARC and GPS Safety Driving Terminal Unit
JPS6250676A (en) Recognition system for position of moving body
KR101768573B1 (en) Radar detector having patch antenna
JPH0834445B2 (en) Transmitter
KR100344216B1 (en) Common apparatus of frequency multiplier in radio equipment
CN117724104A (en) Radar detection device and motorcycle

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)