GB2381281A - A completion system for a well bore - Google Patents

A completion system for a well bore Download PDF

Info

Publication number
GB2381281A
GB2381281A GB0224050A GB0224050A GB2381281A GB 2381281 A GB2381281 A GB 2381281A GB 0224050 A GB0224050 A GB 0224050A GB 0224050 A GB0224050 A GB 0224050A GB 2381281 A GB2381281 A GB 2381281A
Authority
GB
United Kingdom
Prior art keywords
completion
seal
sand
sand control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0224050A
Other versions
GB2381281B (en
GB0224050D0 (en
Inventor
Ii James A Pramann
Diana L Orzechowski
Patrick W Bixenman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Holdings Ltd
Original Assignee
Schlumberger Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Holdings Ltd filed Critical Schlumberger Holdings Ltd
Publication of GB0224050D0 publication Critical patent/GB0224050D0/en
Publication of GB2381281A publication Critical patent/GB2381281A/en
Application granted granted Critical
Publication of GB2381281B publication Critical patent/GB2381281B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sliding Valves (AREA)
  • Lift Valve (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Gasket Seals (AREA)

Abstract

A completion 40 run into a well 2 is inserted into a sand screen completion 10. Seal assemblies 42 of the completion 40 mate with inner polished bore receptacle 30 to isolate the associated zone(s). Flow entering the annulus formed between a sand screen 18 and the completion is controlled with valves 44 in the completion 40. The seal assemblies 42 and the inner polished receptacle 30 provide for control of the flow through the valves 44. Control lines 46 extend along the completion 40 through the seal assemblies 42 to provide power and telemetry to the valves or the other equipment in the well 2.

Description

<Desc/Clms Page number 1>
COMPLETION SYSTEM, APPARATUS, AND METHOD BACKGROUND OF THE INVENTION Field of Invention.
The present invention relates to the field of completions. More specifically, the invention relates to a device and method for a completing a well using an inner completion string.
Related Art.
Oil companies are continually improving their recovery systems to produce oil and gas more efficiently and economically from sources that are continually more difficult to exploit, without significantly increasing the cost to the consumer. One relatively recent development to increase production is the use of intelligent completions. Intelligent completions generally include downhole monitoring devices and control devices that are remotely actuatable from the surface. Intelligent completions as well as other types of completions require the use of control lines (e. g., electrical, fiber optic, and hydraulic lines and combinations thereof) that extend through the well to equipment positioned therein. Routing of the control lines is often an issue in a number of completions. For example, in sand control completions, the control line is typically run with the sand screens that are then gravel packed. When the production string is run and stabbed into the polished bore receptacle (PBR) of the sand screen completion, the control lines installed with the sand control completion must be connected to the surface. This connection is generally made with a wet connect which are generally considered undesirable.
Additionally, once the sand control completion is gravel packed in the well, it is very difficult or impossible to remove. Accordingly, the equipment installed in the sand control completion generally cannot be replaced easily.
<Desc/Clms Page number 2>
In sand control completions having multiple zones, it is desirable to separate the production from and injection into the various zones.
Also, there is a need for remedial completions inside preexisting completions or as a redundant option for new completions.
SUMMARY In general, according to one embodiment, the present invention provides a sand control completion in which an inner completion is run into a sand screen. The inner completion comprises the flow control equipment as well as the control line to the surface. In another embodiment, the present invention comprises an isolation seal assembly having a control line passageway therethrough.
Other features and embodiments will become apparent from the following description, the drawings, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS The manner in which these objectives and other desirable characteristics can be obtained is explained in the following description and attached drawings in which: Figure 1 illustrates an embodiment of the present invention showing multiple zones Figure 2 illustrations a blown-up portion of Figure 1 of the present invention.
Figure 3 illustrates an alternative embodiment of the present invention.
Fig. 4 is an end view of an embodiment of a seal assembly of the present invention.
<Desc/Clms Page number 3>
Fig. 5 is a side, cross sectional view of an embodiment of a seal assembly of the present invention.
Figure 6 illustrates an alternative embodiment of the present invention.
Figure 7 illustrates an alternative embodiment in which a PBR is positioned between a screen and a circulating valve.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
DETAILED DESCRIPTION OF THE INVENTION In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
Although the figures show the invention used in a multi-zone completion, the present invention
may be used in a single zone completion. Further, the present invention may be employed in t some of the zones (e. g. , one of the zones) of a multi-zone completion if desired.
Referring to Fig. 1, a well 2 having a casing 4 therein extends through a plurality of perforated zones 6. Each zone is completed with a sand screen completion 10. The sand screen completion 10 may be as shown or use other sand screen completion methodologies and equipment. In the embodiment shown, the sand screen completion 10 comprises a sump packer 12 having a polished bore receptacle (PBR) 14 therein. Note that the PBR 30 may be incorporated into a separate piece of the completion. However, it is generally described herein as attached to or part of the packer for ease of discussion. The sump packer 12 is placed and set in the well below a
<Desc/Clms Page number 4>
zone 6. A sand screen assembly 16, comprising a sand screen 18 and a seal assembly 20 at its lower end, is attached to the lower end of a packer 22. The sand screen assembly 16 is positioned in the well with the seal assembly 20 in sealing engagement with the PBR 14 of the sump packer 12. The packer 22 of the sand screen assembly 16, which also has a PBR 14 therein, is set, thereby isolating the associated zone 6 between the packers 12,22.
If desired, a service string (not shown) is run into the well and the zone 6 is gravel packed by any desired method. U. S. patent No. 6,220, 353, issued April 24, 2001, discusses a gravel packing procedure and associated tools and is hereby incorporated by reference. Other methods of gravel packing the zone 6 are known and may be used with the present invention.
If the well has multiple zones they may also be completed as described above. For example, the seal assembly 20 of a second sand screen assembly 16 stabs into the PBR 14 of the previously installed sand screen assembly 16. Once the packer 22 of the second sand screen assembly 16 is set, the packers 22 of the two sand screen assemblies 16 isolate the additional, upper zone. The second zone may then be gravel packed. Additional zones may be completed in like manner.
In an alternative embodiment, a multizone well sand screen completion 10 may be completed as described in U. S. patent application serial no. 09/631,859, filed August 3,2000 which is hereby incorporated herein by reference. In this embodiment, the gravel pack is accomplished throughtubing so that all of the hardware for the sand screen completion 10 for all zones may be installed before the gravel pack operation is performed. Similarly, a multizone well sand screen completion 10 may be completed as described in U. S. patent no. 6,311, 772, issued November 6, 2001 which is hereby incorporated herein by reference or may be completed in other known manners.
Above and below each of the sand screens 18 is an inner PBR 30. Note that, rather than providing inner PBRs 30 above and below each sand screen 18 in each sand screen assembly 16 of a multi-zone well 2, each sand screen assembly 16 may have one inner PBR 30 below the sand screen 18. However, the overall completion has at least one PBR 30 between the zones of the well. The inner PBR 30 of the two sand screen assemblies 16 providing isolation of the
<Desc/Clms Page number 5>
lowermost of the two sand screen assemblies 16. The uppermost sand screen assembly 16 of the sand control completion 10 would then have an inner PBR 30 above its sand screen 18 to provide for isolation of that uppermost zone. However, the use of an upper and lower inner PBR 30 in each sand screen assembly 16 provides a redundant seal and a more reliable system. Generally, the sand screen assemblies 16 have a circulating valve 32 (Figure 7) above the sand screen 18 that is used during gravel packing. The upper inner PBR 30 provides additional reliability in the case of a leak in the circulating valve. If a PBR 30 is placed between the circulating valve and the sand screen 18, the circulating valve is isolated from the production by the PBR 30 once a completion 40 (discussed below) is put into place.
A completion 40 run into the well 2 is inserted into the sand screen completion 10. Seal assemblies 42 of the completion 40 mate with the inner PBRs 30 to isolate the associated zone (s). Flow entering the annulus formed between the sand screen 18 and the completion 40 is controlled with valves 44 in the completion 40. The seal assemblies 42 and inner PBRs 30 provide for the control of flow through the valves 44. Control lines 46 extend along the completion 40 through the seal assemblies 42 to provide power and telemetry to the valves 44 or other equipment in the well 2.
In the embodiment shown, the completion 40 comprises a production tubing 50 (or conduit) extending to the surface of the well 2. A safety valve 52 and a packer 54 are positioned in the well 2 about the production tubing 50 above the sand control completion 10. A seal assembly 42 attached to the production tubing 50 mates with the uppermost inner PBR 30. Below the seal assembly 42, is a control valve 44. A seal assembly 42 below the control valve 44 mates with the inner PBR 30 below the sand screen 18 of the associated zone 6 to isolate the zone. Together, the seal assemblies 42 above and below a control valve 44 and the equipment therebetween are referred to collectively as an isolation assembly 56. Figure 2 illustrates one isolation assembly 56. Although primarily described herein as isolating a single zone 6, an isolation assembly 56 may bridge more than one zone 6 if desired.
A control line 46 extends from the valve 44 and through the seal assembly 42 to a position above the sand control completion 10. Generally, the control line 46 extends to the surface, but may
<Desc/Clms Page number 6>
extend to a downhole controller, power supply, or telemetry equipment, such as an inductive coupler or acoustic transmitter. Examples of control lines 46 are electrical, hydraulic, fiber optic and combinations of thereof. Other equipment may also be provided in the isolation assembly 56 or isolated portion that requires a control line 46 connected thereto. For example, the completion 40 may have intelligent completions devices such as gauges, sensors, valves, sampling devices, temperature sensors, pressure sensors, flow rate measurement devices, oil/water/gas ratio measurement devices, scale detectors, actuators, locks, release mechanisms, equipment sensors (e. g. , vibration sensors), sand detection sensors, water detection sensors, data recorders, viscosity sensors, density sensors, bubble point sensors, composition sensors, resistivity array devices and sensors, acoustic devices and sensors, other telemetry devices, near infrared sensors, gamma ray detectors, H2S detectors, CO2 detectors, downhole memory units, downhole controllers, locators, and other downhole devices therein. In addition, the control line 46 itself may comprise an intelligent completions device as in the example of a fiber optic line that provides functionality, such as tempeMture-measurement,-pressure measurement, and the like. In one example, the fiber optic line provides a distributed temperature functionality so that the temperature along the length of the fiber optic line may be determined. The control line 46 for such equipment would also extend through the seal assembly 42.
In a multi-zone well, such as that shown in Figure 1, the completion 40 has additional isolation assemblies 56 corresponding to associated zones 6 as desired.
In one embodiment, a locator device 60 ensures the proper alignment between the completion 40 and the sand control completion 10. An example of a locator device is shown in Figure 1. In that example, the bottom 62 of completion 40 lands on a shoulder 64 connected to a lower end of the sand control completion 10. In that example, the shoulder 64 is positioned below the sump packer 12. Numerous other types of locators may be used.
Figures 4 and 5 provide a more detailed illustration of the seal assembly 42. In many cases, the radial limitations of placing a completion 40 within the sand control completion 10 are stringent. To facilitate placement of the control lines 46 in the radially restricted space, the seal assembly 42 may be eccentric with the primary production passageway 66 offset from the centerline of the
<Desc/Clms Page number 7>
seal assembly 42. An eccentric arrangement provides a relatively thicker side through which control line (s) 46 may extend. The control lines 46 extend through control line passageways provided in the body of the seal assembly 42.
In another embodiment, shown in Figure 3, the completion 40 is used in conjunction with a preexisting completion 70 to provide a remedial system. As an example, a completion 70, as described in U. S. patent application no. 09/732,134, filed December 7,2000 which is hereby incorporated by reference herein, is provided in a well 2. In one embodiment, the completion 70 has a sand screen 18 with a gravel pack. A base pipe 72 of the sand screen 18 is unperforated and defines a flow annulus 74 between the sand screen 18 and the base pipe 72. The annulus communicates with a flow control valve 44 that controls the flow from the annulus 74 into the production string 50.
In the present embodiment, the completion 70 further includes a pair of inner PBRs 30 isolating the inlet to the production tubing (i. e. , the valve 44 port). For example, an inner PBR 30 may be placed below the valve 44 and above the sand screen 18. In this way, if the valve 44 fails, it can be locked open and an inner completion 40 may be run inside completion 70. As in the previously described embodiment, the seal assemblies 42 of the completion 40 may mate with the inner PBRs to isolate the incoming flow which may then be controlled by the valve 44 in the inner completion 40. This system will work in other situations wherein there is a specific area of ingress into the production tubing and an interior completion 40 is desired to control the flow therethrough, such as in cases of remediation.
Although the isolation is described herein as using PBRs and seal assemblies, other types of isolation devices, such as packers and cup packers, may be used. In one embodiment an inner completion 40 of the present invention may be used in a pro-existing completion that does not have a PBR. In this embodiment, the inner completion uses inner packers 80 to isolate between the various zones. In this way, an intelligent completion may be provided in an existing well.
Referring to Figure 6, one example of this embodiment is shown. In Figure 6, the pre-existing completion comprises an upper packer 22, a sand screen 18 in each of the zones, and a packer 22 isolating the two zones. The inner completion 40 comprises a valve 44 for each of the zones and
<Desc/Clms Page number 8>
inner packers 80 on isolating the valves 44 from one another. The inner packers 22 seal between the inner string 82 and the pre-existing completion. The inner packers 22 and valves 44 are positioned in the well so that flow of each of the screens or zones is isolated from the flow of other screens or zones (although one valve could be used for multiple zones if desired). A control line 46 may run from the surface or from a downhole controller to each of the valves 44 so that the position of the valve may be controlled. Other intelligent completions devices may be placed in the inner completion 40 as well. The control line 46 may extend through bypass lines in the inner packers 80 which may be eccentric to provide additional area for running of the control lines 46 therethrough.
When a device is described herein as providing a seal, some leakage through the seal may occur.
Thus, a seal includes an arrangement that substantially restricts the flow. The term"seal"as used herein refers generically to seal assemblies, packers, cup packers, and other isolation devices.
Also note that in each of the above-described embodiments, the sand screen 18 may be replaced with a slotted liner as an alternative form of sand control. The term"sand control device"is used to generally describe sand screens, liners, and other types of conduits used to prevent migration of sand into the production.
It will be clear to those skilled in the art that the above-described embodiments are merely exemplary of the present invention, and that modifications and improvements may be made thereto without departing from the scope of the invention.

Claims (41)

  1. CLAIMS 1. A system for completing a well, the system comprising: a sand control device; a first inner polished bore receptacle above the sand control device; a second inner polished bore receptacle below the sand control device; a completion positioned inside the sand control device having a first seal assembly sealingly mating with the first inner polished bore receptacle and having a second seal assembly sealingly mating with the second inner polished bore receptacle; a valve of the completion positioned between the first and second seal assemblies; and a control line extending from the valve and through the first seal assembly.
  2. 2. The system of claim 1, wherein the sand control device is a sand screen.
  3. 3. The system of claim 1, wherein the sand control device is a slotted liner.
  4. 4. The system of claim 1, further comprising an intelligent completions device in the completion.
  5. 5. The system of claim 1, wherein the control line is a fiber optic line and the fiber optic line that provides functionality.
  6. 6. The system of claim 1, wherein : the first polished bore receptacle has a control line passageway therethrough; and the control line extends through the control line passageway.
  7. 7. The system of claim 1, further comprising: the first polished bore receptacle has a primary production passageway that is eccentric
    <Desc/Clms Page number 10>
    with respect to a centerline of the first polished bore receptacle.
  8. 8. The system of claim 1, further comprising a locator device.
  9. 9. The system of claim 1, further comprising: a second sand control device; the second first polished bore receptacle is positioned between the sand control device and the second control device.
  10. 10. The system of claim 9, further comprising: a third polished bore receptacle positioned below the second sand control device; the completion having a third seal assembly sealingly mating with the third inner polished bore receptacle.
  11. 11. The system of claim 9, further comprising: a fourth polished bore receptacle positioned between the sand control device and the second sand control device; and the completion having a fourth seal assembly sealingly mating with the fourth inner polished bore receptacle.
  12. 12. The system of claim 9, further comprising: a second valve of the completion positioned below the second seal assembly; and a control line extending from the valve and through the first seal assembly and the second seal assembly.
  13. 13. The system of claim 9, wherein the second sand control device is a sand screen.
  14. 14. The system of claim 9, wherein the second sand control device is a slotted liner.
  15. 15. The system of claim 1, further comprising: a circulating valve;
    <Desc/Clms Page number 11>
    one of the first polished bore receptacle and the second polished bore receptacle is positioned between the circulating valve and the sand control device.
  16. 16. The system of claim 1, further comprising a gravel pack.
  17. 17. A method for completing a well, the method comprising: completing a well so as to define an area of fluid ingress into a completion; positioning a conduit within the completion; sealing between the conduit and the completion above and below the area of fluid ingress with spaced seals; controlling the flow into the conduit with a valve; and routing a control line from the valve through one of the seals.
  18. 18. The method of claim 17, further comprising providing a screen at the area of fluid ingress.
  19. 19. The method of claim 17, further comprising gravel packing the well.
  20. 20. The method of claim 17, further comprising: completing the well to define a plurality of areas of fluid ingress; isolating the areas of fluid ingress from one another by sealing between the conduit and the completion above and below the areas of fluid ingress with spaced seals; independently controlling the flow into the conduit from each of the areas of fluid ingress.
  21. 21. The method of claim 17, wherein the sealing comprises inserting a seal assembly attached to the conduit into a mating polished bore receptacle of the completion.
  22. 22. The method of claim 17, further comprising measuring a parameter between the spaced seals.
    <Desc/Clms Page number 12>
  23. 23. The method of claim 17, further comprising engaging a locator device and ensuring proper alignment between the completion and the conduit.
  24. 24. The method of claim 17, further comprising isolating a circulating valve of the completion with one of the spaced seals.
  25. 25. A system for controlling flow in a well having a sand control completion therein, the system comprising: an inner completion comprising a tubing, a first seal, a second seal, and a valve between the first seal and the second seal ; the first seal positioned and adapted to seal above a sand screen of the sand control completion; the second seal positioned and adapted to seal below the sand screen ; a control line extending from the valve and through the first seal.
  26. 26. The system of claim 25, further comprising an intelligent completions device of the inner completion.
  27. 27. The system of claim 25, wherein: the first seal has a control line passageway therethrough; and the control line extends through the control line passageway.
  28. 28. The system of claim 25, further comprising: the second seal is positioned to seal between two sand screens of the sand control completion.
  29. 29. The system of claim 28, further comprising: a third seal of the inner completion is positioned and adapted to seal below a second sand screen of the sand control completion.
  30. 30. The system of claim 28, further comprising a fourth seal of the inner completion
    <Desc/Clms Page number 13>
    positioned and adapted to seal between the two sand screens.
  31. 31. The system of claim 28, further comprising a second valve of the inner completion positioned below the second seal.
  32. 32. The system of claim 25, further comprising: one of the first seal and the second seal is positioned to seal between a circulating valve of the sand control completion and the screen.
  33. 33. A method of controlling flow in a well having a sand control completion therein, the method comprising: running an inner completion into the sand control completion; sealing between the inner completion and the sand control completion above a sand screen of the sand control completion to create an isolation zone; controlling a valve of the inner completion to selectively control the flow into the inner completion, the valve positioned in the isolation zone.
  34. 34. The method of claim 33, further comprising running a control line from the valve through a seal used to seal between the inner completion and the sand control completion.
  35. 35. The method of claim 33, further comprising isolating multiple zones of the sand control completion with the inner completion; controlling the flow from each of the zones into the inner completion using valves controlled from the surface.
  36. 36. The method of claim 33, further comprising measuring a parameter of the isolated zone using an intelligent completions device of the inner completion.
  37. 37. The method of claim 33, further comprising isolating a circulating valve of the sand control completion with the sealing between the inner completion and the sand control completion.
  38. <Desc/Clms Page number 14>
    The method of claim 33, further comprising sealing between the inner completion and the sand control completion below the sand screen of the sand control completion.
  39. 39. A seal assembly, comprising : a body; an eccentric passageway through the body defining a relatively thick portion of the wall; a control line passageway in the thick portion.
  40. 40. A system for controlling flow in a well having a sand control completion therein, the system comprising: an inner completion positioned in the sand control completion; means for sealing between the inner completion and the sand control completion above a sand screen of the sand control completion to create an isolation zone; means for selectively controlling a flow into the inner completion in the isolation zone.
  41. 41. An apparatus substantially as described and shown in the accompanying drawings.
GB0224050A 2001-10-26 2002-10-16 Completion system, apparatus, and method Expired - Fee Related GB2381281B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33951201P 2001-10-26 2001-10-26

Publications (3)

Publication Number Publication Date
GB0224050D0 GB0224050D0 (en) 2002-11-27
GB2381281A true GB2381281A (en) 2003-04-30
GB2381281B GB2381281B (en) 2004-05-26

Family

ID=23329338

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0224050A Expired - Fee Related GB2381281B (en) 2001-10-26 2002-10-16 Completion system, apparatus, and method

Country Status (3)

Country Link
US (1) US20030079878A1 (en)
BR (1) BR0204365A (en)
GB (1) GB2381281B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408529A (en) * 2002-03-04 2005-06-01 Schlumberger Holdings A sand screen
GB2408528A (en) * 2002-03-04 2005-06-01 Schlumberger Holdings A sand screen with a recess containing a control line or device
GB2421745A (en) * 2004-12-30 2006-07-05 Schlumberger Holdings Fluid delivery system
WO2008112697A1 (en) * 2007-03-13 2008-09-18 Schlumberger Canada Limited Providing a removable electrical pump in a completion system
US7775275B2 (en) 2006-06-23 2010-08-17 Schlumberger Technology Corporation Providing a string having an electric pump and an inductive coupler
US8235127B2 (en) 2006-03-30 2012-08-07 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US8408064B2 (en) 2008-11-06 2013-04-02 Schlumberger Technology Corporation Distributed acoustic wave detection
US8839850B2 (en) 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US8924158B2 (en) 2010-08-09 2014-12-30 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
US9175523B2 (en) 2006-03-30 2015-11-03 Schlumberger Technology Corporation Aligning inductive couplers in a well
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9546548B2 (en) 2008-11-06 2017-01-17 Schlumberger Technology Corporation Methods for locating a cement sheath in a cased wellbore
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263287A1 (en) * 2004-05-26 2005-12-01 Schlumberger Technology Corporation Flow Control in Conduits from Multiple Zones of a Well
BRPI0618659B1 (en) * 2005-11-21 2017-12-05 Shell Internationale Research Maatschappij B.V. METHOD FOR MONITORING FLUID PROPERTIES WITH A DISTRIBUTED SENSOR IN A WELL HOLE
US7950454B2 (en) 2007-07-23 2011-05-31 Schlumberger Technology Corporation Technique and system for completing a well
US7934555B2 (en) * 2009-06-01 2011-05-03 Baker Hughes Incorporated Multiple zone isolation method
US8863832B2 (en) * 2010-09-28 2014-10-21 Schlumberger Technology Corporation Orientable eccentric downhole assembly
US8215164B1 (en) * 2012-01-02 2012-07-10 HydroConfidence Inc. Systems and methods for monitoring groundwater, rock, and casing for production flow and leakage of hydrocarbon fluids
MY191383A (en) 2012-09-26 2022-06-22 Halliburton Energy Services Inc Snorkel tube with debris barrier for electronic gauges placed on sand screens
WO2014051570A1 (en) * 2012-09-26 2014-04-03 Halliburton Energy Services, Inc. Single trip multi-zone completion systems and methods
US9598952B2 (en) 2012-09-26 2017-03-21 Halliburton Energy Services, Inc. Snorkel tube with debris barrier for electronic gauges placed on sand screens
US9163488B2 (en) 2012-09-26 2015-10-20 Halliburton Energy Services, Inc. Multiple zone integrated intelligent well completion
WO2014051564A1 (en) 2012-09-26 2014-04-03 Halliburton Energy Services, Inc. Single trip multi-zone completion systems and methods
US8857518B1 (en) 2012-09-26 2014-10-14 Halliburton Energy Services, Inc. Single trip multi-zone completion systems and methods
AU2012391054B2 (en) * 2012-09-26 2016-07-07 Halliburton Energy Services, Inc. Tubing conveyed multiple zone integrated intelligent well completion
SG11201502083TA (en) 2012-09-26 2015-04-29 Halliburton Energy Services Inc Method of placing distributed pressure gauges across screens
US8893783B2 (en) 2012-09-26 2014-11-25 Halliburton Energy Services, Inc. Tubing conveyed multiple zone integrated intelligent well completion
WO2014051562A1 (en) * 2012-09-26 2014-04-03 Halliburton Energy Services, Inc. Single trip multi-zone completion systems and methods
BR112015006647B1 (en) 2012-09-26 2020-10-20 Halliburton Energy Services, Inc well sensor system and detection method in a well bore
GB2535027B (en) * 2013-09-25 2020-02-19 Landmark Graphics Corp Method and load analysis for multi-off-center tools
BR112017023757B8 (en) * 2015-06-05 2022-07-12 Halliburton Energy Services Inc SYSTEM FOR USE IN A WELL HOLE AND GRAVEL FILLING METHOD OF A WELL HOLE
US10233732B2 (en) * 2016-07-29 2019-03-19 Schlumberger Technology Corporation Active integrated flow control for completion system
US11078743B2 (en) * 2019-05-16 2021-08-03 Schlumberger Technology Corporation System and methodology for providing bypass through a swellable packer
WO2023108011A1 (en) * 2021-12-07 2023-06-15 Schlumberger Technology Corporation Integrated screen for electrical flow control valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401158A (en) * 1980-07-21 1983-08-30 Baker International Corporation One trip multi-zone gravel packing apparatus
US6227298B1 (en) * 1997-12-15 2001-05-08 Schlumberger Technology Corp. Well isolation system
US6302216B1 (en) * 1998-11-18 2001-10-16 Schlumberger Technology Corp. Flow control and isolation in a wellbore
US6343651B1 (en) * 1999-10-18 2002-02-05 Schlumberger Technology Corporation Apparatus and method for controlling fluid flow with sand control
US6354378B1 (en) * 1998-11-18 2002-03-12 Schlumberger Technology Corporation Method and apparatus for formation isolation in a well
US20020074116A1 (en) * 2000-07-20 2002-06-20 Millar David Martin Downhole packer
US20020092654A1 (en) * 2000-12-21 2002-07-18 Coronado Martin P. Expandable packer isolation system

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1806312C3 (en) * 1968-10-31 1980-11-20 Robert Bosch Gmbh, 7000 Stuttgart Headlamp leveler for vehicle headlights
FR2223229B1 (en) * 1973-04-02 1978-12-29 Alphen Jacques
GB1516500A (en) * 1974-09-26 1978-07-05 Lucas Electrical Ltd Motor vehicle with headlamp tilting mechanism
US3953726A (en) * 1974-12-06 1976-04-27 Scarritt Sr Frank M Infinitely adjustable level light
US4024388A (en) * 1975-03-24 1977-05-17 Marvin H. Kleinberg, Inc. Cornering light system for two-wheeled vehicles
DE2639263A1 (en) * 1976-09-01 1978-03-02 Bosch Gmbh Robert CONTROLLED HEADLIGHT SYSTEM FOR MOTOR VEHICLES
JPS5648581Y2 (en) * 1976-09-24 1981-11-13
FR2365461A1 (en) * 1976-09-24 1978-04-21 Sev Marchal METHOD FOR ADJUSTING THE ORIENTATION OF THE LIGHTING PROJECTORS OF A VEHICLE, DEVICE FOR IMPLEMENTING THIS PROCEDURE AND VEHICLE INCLUDING THIS DEVICE
SE402644B (en) * 1976-10-15 1978-07-10 Bergkvist Lars A DEVICE FOR INSTALLING A FOREWORD TO ADOPTING A PRE-DETERMINED ANGLE AGAINST A CERTAIN PLAN
FR2384654A1 (en) * 1977-03-25 1978-10-20 Cibie Projecteurs DEVICE FOR JOINT CONTROL OF THE TILT OF THE HEADLIGHTS OF A MOTOR VEHICLE
US4310172A (en) * 1979-04-23 1982-01-12 General Motors Corporation Position control system
US4679935A (en) * 1983-10-28 1987-07-14 Honda Giken Kogyo Kabushikikaisha Light distribution of headlight beam
US4583152A (en) * 1984-02-15 1986-04-15 Aisin Seiki Kabushiki Kaisha Headlamp drive and control apparatus
US4891559A (en) * 1985-06-13 1990-01-02 Nippondenso Soken, Inc. Apparatus for controlling a headlight of a vehicle
DE3601388A1 (en) * 1986-01-18 1987-07-23 Bosch Gmbh Robert HEADLIGHT SYSTEM FOR VEHICLES, ESPECIALLY FOR MOTOR VEHICLES
JPH0810563B2 (en) * 1986-12-22 1996-01-31 株式会社小糸製作所 Vehicle headlights
IT1210733B (en) * 1987-05-13 1989-09-20 Paolo Soardo PROGRAMMABLE HEADLIGHT FOR VEHICLES WITH BRIGHT DISTRIBUTION
US4948249A (en) * 1987-06-23 1990-08-14 Hopkins Manufacturing Corporation Headlight aiming and light pattern testing apparatus and method
JPH0825417B2 (en) * 1987-08-17 1996-03-13 株式会社小糸製作所 Illumination angle correction device for headlights for motorcycles
US4791343A (en) * 1987-08-31 1988-12-13 Allied-Signal Inc. Stepper motor shaft position sensor
JPS6467439A (en) * 1987-09-08 1989-03-14 Koito Mfg Co Ltd Cornering lamp system for vehicle
JPH0657517B2 (en) * 1987-09-16 1994-08-03 株式会社小糸製作所 Lamp system
JPH07110595B2 (en) * 1987-10-13 1995-11-29 本田技研工業株式会社 Motorcycle headlight device
JPH0788151B2 (en) * 1988-05-06 1995-09-27 株式会社小糸製作所 Vehicle headlamp tilting device
US4852649A (en) * 1988-09-20 1989-08-01 Otis Engineering Corporation Packer seal means and method
US5158352A (en) * 1990-01-31 1992-10-27 Honda Giken Kogyo Kabushiki Kaisha Headlamp
JPH076564Y2 (en) * 1990-04-19 1995-02-15 株式会社小糸製作所 Variable light distribution vehicle headlights
EP0468920A1 (en) * 1990-07-26 1992-01-29 Saia Ag Positioning device
US5392111A (en) * 1990-10-09 1995-02-21 Honda Giken Kogyo Kabushiki Kaisha Method of measuring and adjusting optical axis of headlight
US5099400A (en) * 1990-12-05 1992-03-24 Lee Hyun J Headlight moving apparatus for a motor vehicle
US5164785A (en) * 1991-02-08 1992-11-17 Hopkins Manufacturing Corporation Headlight aiming apparatus and display
DE4122531C2 (en) * 1991-07-08 2001-06-07 Bosch Gmbh Robert Device for regulating the headlight range of motor vehicle headlights
JP2783079B2 (en) * 1992-08-28 1998-08-06 トヨタ自動車株式会社 Light distribution control device for headlamp
JPH0642407U (en) * 1992-11-19 1994-06-07 株式会社小糸製作所 Cornering lamp system for vehicles
US5331393A (en) * 1992-12-11 1994-07-19 Hopkins Manufacturing Corporation Method and apparatus for locating a specific location on a vehicle headlamp
US5426571A (en) * 1993-03-11 1995-06-20 Jones; Jerry Motorcycle headlight aiming device
US5428512A (en) * 1993-06-18 1995-06-27 Mouzas; Alexander A. Sidelighting arrangement and method
JP2777052B2 (en) * 1993-10-13 1998-07-16 株式会社小糸製作所 Automotive headlamp
JP2832573B2 (en) * 1993-12-28 1998-12-09 株式会社小糸製作所 Cornering lamp system for vehicles
US5550717A (en) * 1994-02-04 1996-08-27 Liao; Winner Direction turning device for a headlight of an automobile
US5485265A (en) * 1994-09-02 1996-01-16 Hopkins Manufacturing Corporation Vehicle headlight aiming apparatus
US5507345A (en) * 1994-11-23 1996-04-16 Chevron U.S.A. Inc. Methods for sub-surface fluid shut-off
DE19513554A1 (en) * 1995-04-10 1996-10-17 Bayerische Motoren Werke Ag Device for adjusting the headlight range of a motor vehicle headlight
DE19525981A1 (en) * 1995-07-17 1997-01-23 Bayerische Motoren Werke Ag Device for setting a specifiable illuminance of a headlight in motor vehicles
DE19530008B4 (en) * 1995-08-16 2005-02-03 Automotive Lighting Reutlingen Gmbh Illumination device for vehicles with a reflective deflection device
US5751832A (en) * 1996-09-04 1998-05-12 Progressive Tool & Industries Co. Headlight aiming apparatus
US5633710A (en) * 1995-10-04 1997-05-27 Egs Inc. System for self-aligning vehicle headlamps
NO954659D0 (en) * 1995-11-17 1995-11-17 Smedvig Technology As Measuring equipment for wells
JP3128611B2 (en) * 1996-04-26 2001-01-29 株式会社小糸製作所 Illumination direction control device for vehicle lighting
US5896928A (en) * 1996-07-01 1999-04-27 Baker Hughes Incorporated Flow restriction device for use in producing wells
US5868488A (en) * 1996-11-18 1999-02-09 Speak; Justin R. Adjustable headlights, headlight adjusting and direction sensing control system and method of adjusting headlights
DE69705921T2 (en) * 1996-12-13 2001-12-06 Denso Corp Device for regulating the headlight range of vehicle headlights
JPH10166934A (en) * 1996-12-13 1998-06-23 Koito Mfg Co Ltd Lamp device for vehicle
JPH10203232A (en) * 1997-01-29 1998-08-04 Honda Motor Co Ltd Headlamp device for vehicle
US5875852A (en) * 1997-02-04 1999-03-02 Halliburton Energy Services, Inc. Apparatus and associated methods of producing a subterranean well
DE19704427A1 (en) * 1997-02-06 1998-08-13 Bosch Gmbh Robert Device for adjusting beam spread of automobiles headlamps
FR2760705B1 (en) * 1997-03-13 1999-05-28 Valeo Vision MOTOR VEHICLE LIGHTING SYSTEM COMPRISING AT LEAST TWO TURN HEADLIGHTS
US6049171A (en) * 1998-09-18 2000-04-11 Gentex Corporation Continuously variable headlamp control
US5781105A (en) * 1997-04-09 1998-07-14 Ford Motor Company Light management system for a vehicle
DE19720314A1 (en) * 1997-05-15 1998-11-19 Bosch Gmbh Robert Self-levelling headlights for vehicle
DE19743670A1 (en) * 1997-10-02 1999-04-08 Bosch Gmbh Robert Device for regulating the headlight range of vehicle headlights
US5977678A (en) * 1997-10-09 1999-11-02 Ut Automotive Dearborn, Inc. Magnetic coupling mechanism for use in an automotive vehicle
US6118113A (en) * 1998-03-02 2000-09-12 Hibbard; Earl Roger Focusing mirror control system and method for adjusting same
US6173788B1 (en) * 1998-04-07 2001-01-16 Baker Hughes Incorporated Wellpacker and a method of running an I-wire or control line past a packer
JP3849829B2 (en) * 1998-04-27 2006-11-22 株式会社デンソー Vehicle height sensor and vehicle headlamp optical axis adjusting device
DE19825570C1 (en) * 1998-06-08 1999-11-11 Porsche Ag Automatic automobile headlamp setting device for compensating vehicle loading
DE69931407T2 (en) * 1998-06-16 2007-05-24 Denso Corp., Kariya System for automatically adjusting the direction of the optical axis of a headlamp of a vehicle
DE19830298C2 (en) * 1998-07-07 2002-06-27 Bosch Gmbh Robert Motor vehicle headlights with adjustable shielding device
JP3849960B2 (en) * 1998-09-29 2006-11-22 株式会社小糸製作所 Auto-leveling device for automotive headlamps
US6097156A (en) * 1999-02-22 2000-08-01 Diep; Michael T. Switching control system for automatically turning headlights off and on at intersections
JP3839609B2 (en) * 1999-02-22 2006-11-01 株式会社小糸製作所 Vehicle lamp device
US6220353B1 (en) * 1999-04-30 2001-04-24 Schlumberger Technology Corporation Full bore set down tool assembly for gravel packing a well
US6257332B1 (en) * 1999-09-14 2001-07-10 Halliburton Energy Services, Inc. Well management system
JP3782634B2 (en) * 2000-01-11 2006-06-07 株式会社小糸製作所 Auto-leveling device for automotive headlamps
US6325144B1 (en) * 2000-06-09 2001-12-04 Baker Hughes, Inc. Inflatable packer with feed-thru conduits

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401158A (en) * 1980-07-21 1983-08-30 Baker International Corporation One trip multi-zone gravel packing apparatus
US6227298B1 (en) * 1997-12-15 2001-05-08 Schlumberger Technology Corp. Well isolation system
US6302216B1 (en) * 1998-11-18 2001-10-16 Schlumberger Technology Corp. Flow control and isolation in a wellbore
US6354378B1 (en) * 1998-11-18 2002-03-12 Schlumberger Technology Corporation Method and apparatus for formation isolation in a well
US6343651B1 (en) * 1999-10-18 2002-02-05 Schlumberger Technology Corporation Apparatus and method for controlling fluid flow with sand control
US20020074116A1 (en) * 2000-07-20 2002-06-20 Millar David Martin Downhole packer
US20020092654A1 (en) * 2000-12-21 2002-07-18 Coronado Martin P. Expandable packer isolation system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844627B2 (en) 2000-08-03 2014-09-30 Schlumberger Technology Corporation Intelligent well system and method
GB2408529A (en) * 2002-03-04 2005-06-01 Schlumberger Holdings A sand screen
GB2408527B (en) * 2002-03-04 2005-09-28 Schlumberger Holdings Sand screens
GB2408529B (en) * 2002-03-04 2006-03-08 Schlumberger Holdings Sand screens
GB2408528B (en) * 2002-03-04 2006-05-24 Schlumberger Holdings Sand screens
GB2408528A (en) * 2002-03-04 2005-06-01 Schlumberger Holdings A sand screen with a recess containing a control line or device
GB2408527A (en) * 2002-03-04 2005-06-01 Schlumberger Holdings A sand screen with control line running through
NO337861B1 (en) * 2004-12-30 2016-07-04 Schlumberger Technology Bv Multi-zone completion system
GB2421745A (en) * 2004-12-30 2006-07-05 Schlumberger Holdings Fluid delivery system
GB2421745B (en) * 2004-12-30 2008-11-05 Schlumberger Holdings Multiple zone completion system and method
US9175523B2 (en) 2006-03-30 2015-11-03 Schlumberger Technology Corporation Aligning inductive couplers in a well
US8235127B2 (en) 2006-03-30 2012-08-07 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US7775275B2 (en) 2006-06-23 2010-08-17 Schlumberger Technology Corporation Providing a string having an electric pump and an inductive coupler
WO2008112697A1 (en) * 2007-03-13 2008-09-18 Schlumberger Canada Limited Providing a removable electrical pump in a completion system
US8408064B2 (en) 2008-11-06 2013-04-02 Schlumberger Technology Corporation Distributed acoustic wave detection
US9546548B2 (en) 2008-11-06 2017-01-17 Schlumberger Technology Corporation Methods for locating a cement sheath in a cased wellbore
US8839850B2 (en) 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US9316754B2 (en) 2010-08-09 2016-04-19 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
US8924158B2 (en) 2010-08-09 2014-12-30 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method

Also Published As

Publication number Publication date
GB2381281B (en) 2004-05-26
US20030079878A1 (en) 2003-05-01
GB0224050D0 (en) 2002-11-27
BR0204365A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
GB2381281A (en) A completion system for a well bore
US7699115B2 (en) Method for applying an annular seal to a tubular element
US9163488B2 (en) Multiple zone integrated intelligent well completion
US8925631B2 (en) Large bore completions systems and method
US9016368B2 (en) Tubing conveyed multiple zone integrated intelligent well completion
US9103207B2 (en) Multi-zone completion systems and methods
US20070158060A1 (en) System for sealing an annular space in a wellbore
US20080223585A1 (en) Providing a removable electrical pump in a completion system
US8584766B2 (en) Seal assembly for sealingly engaging a packer
GB2410263A (en) A completion assembly for a well
GB2387863A (en) Inflatable packer with control line and sensor
MX2015003813A (en) Single trip multi-zone completion systems and methods.
GB2408527A (en) A sand screen with control line running through
EP2900905B1 (en) Tubing conveyed multiple zone integrated intelligent well completion
AU2016228178B2 (en) Multiple zone integrated intelligent well completion
CA3065106A1 (en) Annular bypass packer
NO327168B1 (en) Insulation assembly for use in a well
CN101519950A (en) Integrated flow control device and isolated component

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20131016