GB2327949A - Detergent tablet - Google Patents

Detergent tablet Download PDF

Info

Publication number
GB2327949A
GB2327949A GB9716351A GB9716351A GB2327949A GB 2327949 A GB2327949 A GB 2327949A GB 9716351 A GB9716351 A GB 9716351A GB 9716351 A GB9716351 A GB 9716351A GB 2327949 A GB2327949 A GB 2327949A
Authority
GB
United Kingdom
Prior art keywords
detergent
compressed
compressed portion
acid
detergent tablet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9716351A
Other versions
GB9716351D0 (en
Inventor
Barry Rowland
Alasdair Duncan Mcgregor
Michael Crombie Addison
Lynda Anne Speed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10816870&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=GB2327949(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to GB9716351A priority Critical patent/GB2327949A/en
Publication of GB9716351D0 publication Critical patent/GB9716351D0/en
Priority to DE69808885T priority patent/DE69808885T2/en
Priority to BR9815605-5A priority patent/BR9815605A/en
Priority to PT98938306T priority patent/PT960187E/en
Priority to DE29824535U priority patent/DE29824535U1/en
Priority to JP2000505266A priority patent/JP2001512177A/en
Priority to DE69836835T priority patent/DE69836835T2/en
Priority to US09/485,138 priority patent/US6451754B1/en
Priority to DK98938306T priority patent/DK0960187T3/en
Priority to ES01112070T priority patent/ES2206365T3/en
Priority to AT01112070T priority patent/ATE251665T1/en
Priority to ES98938306T priority patent/ES2142782T3/en
Priority to CN98809752.4A priority patent/CN1218029C/en
Priority to PCT/US1998/016144 priority patent/WO1999006522A1/en
Priority to AT98938306T priority patent/ATE226626T1/en
Priority to EP01112070A priority patent/EP1134281B1/en
Priority to DE29823752U priority patent/DE29823752U1/en
Priority to DE69818871T priority patent/DE69818871T2/en
Priority to CA002298510A priority patent/CA2298510C/en
Priority to AT01203388T priority patent/ATE350456T1/en
Priority to ES01203388T priority patent/ES2280302T3/en
Priority to EP98938306A priority patent/EP0960187B1/en
Priority to EP01203388A priority patent/EP1162258B1/en
Publication of GB2327949A publication Critical patent/GB2327949A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/384Animal products
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Zoology (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Washing And Drying Of Tableware (AREA)
  • External Artificial Organs (AREA)
  • Medicinal Preparation (AREA)

Abstract

A detergent tablet comprises: a) a compressed portion comprising active detergent components; b) a non compressed, non-encapsulating portion comprising active detergent components. Detergent components which are sensitive to compression can be incorporated into tablets and greater control of washing processes can be achieved. The tablet may contain enzymes or a silicate. The two portions may have differing solubilities.

Description

Detergent Tablet Technical Field The present invention provides a detergent tablet comprising a compressed portion and a non-compressed, non-encapsulating portion.
Background Detergent compositions in tablet form are known in the art. It is understood that detergent compositions in tablet form hold several advantages over detergent compositions in particulate form, such as ease of handlihg, transportation and storage.
Detergent tablets are most commonly prepared by pre-mixing components of a detergent composition and forming the pre-mixed detergent components into a tablet using a tablet press. Tablets are typically formed by compression of the components of the detergent composition into a tablet. However, the Applicant has found that some components of a detergent composition are adversely affected by the compression pressure used to form the tablets. These components could not previously be included in a detergent tablet composition without sustaining a loss in performance. In some cases the components may even have become unstable or inactive as a result of the compression.
Furthermore as the components of the detergent composition are compressed, the components are brought into close proximity with each other. A result of the close proximity of the components can be that certain of the components react with each other, becoming unstable, inactive or exhausted. A solution to this problem, as seen in the prior art, has been to separate components of the detergent composition that may potentially react with each other when the detergent composition is compressed into tablet form. Separation of the components has been achieved by, for example, preparing multiple-layer tablets wherein the components that may potentially react with each other are contained in different layers of the tablet. Multiple-layer tablets, are traditionally prepared using multiple compression steps. Layers of the tablet that are subjected to more than one compression step are subjected to a cumulative and potentially greater overall compression pressure. An increase in compression pressure of the tabletting press is known to decrease the rate of dissolution of the tablet with the effect that such multiple layer may not dissolve satisfactorily in use.
Other methods of achieving separation of detergent components have been described.
For example EP-A 0,224,135 describes a dishwashing detergent in a form which comprises a warm water-soluble melt, into which is pressed a cold water-soluble tablet. The document teaches a detergent composition that consists of two parts, the first part dissolving in the pre-rinse and the second part dissolving in the main wash of the dishwasher.
EP-B-0,055,100 describes a lavatory block formed by combining a slow dissolving shaped body with a tablet. The lavatory block is designed to be placed in the cistem of a lavatory and dissolves over a period of days, preferably weeks. As a means of controlling the dissolution of the lavatory block, the document teaches admixing one or more solubility control agents. Examples of such solubility control agents are paradichlorobenzene, waxes, long chain fatty acids and alcohols and esters thereof and fatty alkylamides. Detergent tablets for use in laundry or automatic dishwashing must substantially dissolve within one cycle of the washing or dishwashing machine, i.e. within 30 to 120 minutes.
The Applicant has found that by providing a detergent tablet comprising a compressed portion and a non-encapsulating, non-compressed portion detergent components previously considered to be unacceptable for detergent tablets, can be incorporated into a detergent tablet. In addition, potentially reactive components of the detergent composition can be effectively separated.
A further advantage of using a detergent tablet as described herein, is the performance benefits which may be achieved in being able to prepare the detergent tablet so that if required, the compressed portion and the non-compressed portion have different rates of dissolution. Such performance benefits are achieved by selectively delivering active detergent components into the wash solution at different times.
Summarv of the Invention According to the present invention there is provided a detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the detergent tablet comprises an enzyme.
In an alternative embodiment there is also provided a detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the weight ratio of compressed to non-compressed portion is greater than 0.5:1 and the detergent tablet comprises silicate.
In another alternative embodiment there is provided a detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the weight ratio of compressed to non-compressed portion is greater than 0.5:1 and the detergent tablet has a dissolution rate of greater than 0.33 g/min as determined using the SOTAX dissolution test method described herein.
In yet another alternative embodiment there is provided a detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the weight of the detergent tablet is less than 40g and the detergent tablet has a dissolution rate of greater than 0.33 g/min as determined using the SOTAX dissolution test method described herein.
In yet another alternative embodiment there is provided a detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component wherein the compressed portion provides a mould to accommodate the non-compressed portion.
In addition there is also provided a process for preparing the detergent tablets described herein.
Detailed Description ofthe Invention Thus, in accordance with the present invention it has been found that active detergent components of a detergent tablet previously adversely affected by the compression pressure used to form the tablets can now be included in a detergent tablet.
Examples of these components include bleaching agents and enzymes. In addition, in accordance with the present invention, it has been found that active detergent components of a detergent tablet may be separated from one another by having one or more compatible components contained in a compressed portion and one or more compatible components contained in a non-compressed portion of the tablet.
Examples of components that may interact and may therefore require separation include bleaching agents, bleach activators or catalyst and enzymes; bleaching agents and bleach catalysts or activators; bleaching agents and surfactants; alkalinity sources and enzymes.
Furthermore, it may be advantageous to provide the compressed and the noncompressed portions such that they dissolve in wash water with different dissolution rates. By controlling the rate of dissolution of each portion relative to one another, and by selection of the active detergent components in the respective portions, their order of release into the wash water can be controlled and the cleaning performance of the detergent tablet may be improved. For example it is often preferred that enzymes are delivered to the wash prior to bleaching agent and/or bleach activator. It may also be preferred that a source of alkalinity is released into the wash water more rapidly than other components of the detergent tablet. It is also envisaged that it may be advantageous to prepare a detergent tablet according'to the present invention wherein the release of certain components of the tablet is delayed relative to other components.
It is also envisaged that the tablet may comprise a plurality of compressed or noncompressed portions. For example, a plurality of compressed portions may be arranged in layers and/or a plurality of non-compressed portions may be present as discrete sections of the tablet separated by a compressed portion. Thus, there may be a first and a second and optional subsequent compressed and/or non-compressed portions, each comprising an active detergent component and where at least the first and second portions may comprise different active detergent components or mixtures of components. Such a plurality of compressed or non-compressed portions may be advantageous, enabling a tablet to be produced which has for example, a first and second and optional subsequent portions so that they have different rates of dissolution. Such performance benefits are achieved by selectively delivering active detergent components into the wash water at different times.
The detergent tablets described herein are preferably between 1 5g and 1 00g in weight, more preferably between 1 8g and 80g in weight, even more preferably between 20g and 60g in weight. The detergent tablet described herein that are suitable for use in automatic dishwashing methods are most preferably between 20g and 40g in weight Detergent tablets suitable for use in fabric laundering methods are most preferably between 40g and lOOg, more preferably between 40g and 80g, most preferably between 40g and 65g in weight. The weight ratio of compressed portion to non-compressed portion is generally greater than 0.5:1, preferably greater than 1:1, more preferably greater than 2:1, even more preferably greater than 3:1 or even 4: 1, most preferably at least 5:1.
The detergent tablets described herein have Child Bite Strength (CBS) which is generally greater than 1OKg, preferably greater than 12Kg, most preferably greater than 14Kg. CBS is measured as per the U.S. ConsumerProduct Safety Commission Test Specification.
Child Bite Strength Test Method: According to this method the tablet is placed horizontally between two strips/plates of metal. The upper and lower plates are hinged on one side, such that the plates resemble a human jaw. An increasing downward force is applied to the upper plate, mimicking the closing action of the jaw, until the tablet breaks. The CBS of the tablet is a measure of the force in Kilograms, required to break the tablet.
The detergent tablets described herein generally have a dissolution rate of faster than 0.33 g/min, preferably faster than 0.5 g/min, more preferably faster than 1.00 g/min, even more preferably faster than 2.00 g/m, most preferably faster than 2.73 g/min.
Dissolution rate is measured using the SOTAX dissolution test method. For the purposes of the present invention dissolution of detergent tablets is achieved using a SOTAX (tradename) machine; model number AT7 available from SOTAX.
SOTAX Dissolution Test Method: The SOTAX machine consists of a temperature controlled waterbath with lid. 7 pots are suspended in the water bath. 7 electric stirring rods are suspended from the underside of the lid, in positions corresponding to the position of the pots in the waterbath. The lid of the waterbath also serves as a lid on the pots.
The SOTAX waterbath is filled with water and the temperature gauge set to 500C.
Each pot is then filled with 1 litre of deionised water and the stirrer set to revolve at 250rpm. The lid of the waterbath is closed, allowing the temperature of the deionised water in the pots to equilibrate with the water in the waterbath for 1 hour.
The tablets are weighed and one tablet is placed in each pot, the lid is then closed.
The tablet is visually monitored until it completely dissolves. The time is noted when the tablet has completely dissolved. The dissolutlbn rate of the tablet is calculated as the average weight (g) of tablet dissolved in deionised water per minute.
Compressed portion The compressed portion of the detergent tablet comprises at least one active detergent component but may comprise a mixture of more than one active detergent components, which are compressed. Any detergent tablet component conventionally used in known detergent tablets is suitable for incorporation into the compressed portion of the detergent tablets of this invention. Suitable active detergent components are described hereinafter. Preferred active detergent components include builder compound, surfactant, bleaching agent, bleach activator, bleach catalyst, enzyme and an alkalinity source.
Active detergent component(s) present in the compressed layer may optionally be prepared in combination with a carrier and/or a binder for example water, polymer (e.g. PEG), liquid silicate. The active detergent components are preferably prepared in particulate form (i.e. powder or granular form) and may be prepared by any known method, for example conventional spray drying, granulation or agglomeration. The particulate active detergent component(s) are then compressed using any suitable equipment suitable for forming compressed tablets, blocks, bricks or briquettes; described in more detail hereafter.
Non-Compressed Non-Encapsulating Portion The non-compressed, non-encapsulating portion (hereinafter non-compressed portion) comprises at least one active detergent component, but may comprise a mixture of more than one active detergent components. Active detergent components suitable for incorporation in the non-compressed portion include components that interact with one or more detergent cornponents present in the compressed portion. In particular, preferred components of the non-compressed portion are those that are adversely affected by compression pressure of for example a compression tablet press. Examples of such active detergent components include, but are not limited to, surfactant, bleaching agent, bleach activator, bleach catalyst, enzyme, corrosion inhibitor, perfume and an alkalinity source. These components are described in more detail below. The active detergent component(s) may be in any form for example particulate (i.e. powder or granular), gel or liquid form. The non-compressed portion in addition to comprising an active detergent component, may also optionally comprise a carrier component. The active detergent component may be present in the form of a solid, gel or liquid, prior to combination with a carrier component.
The non-compressed portion of the detergent tablet may be in solid, gel or liquid form.
The detergent tablet of the present invention requires that the non-compressed portion be delivered to the compressed portion such that the compressed portion and non-compressed portion contact each other. The non-compressed portion may be delivered to the compressed portion in solid or flowable form. Where the noncompressed portion is in solid form, it is pre-prepared, optionally shaped and then delivered to the compressed portion. The non-compressed portion is then affixed to a pre-formed compressed portion, for example by adhesion or by insertion of the non-compressed portion to a co-operating surface of the compressed portion.
Preferably the compressed portion comprises a pre-prepared depression or mould into which the non-compressed portion is delivered.
The non-compressed portion is preferably delivered to the compressed portion in flowable form. The non-compressed portion is then affixed to the compressed portion for example by adhesion, by forming a coating over the non-compressed layer to secure it to the compressed portion, or by hardening, for example (i) by cooling to below the melting point where the flowable composition becomes a solidified melt; (ii) by evaporation of a solvent; (iii) by crystallisation; (iv) by polymerisation of a polymeric component of the flowable non-compressed portion; (v) through pseudo-plastic properties where the flowable non-compressed portion comprises a polymer and shear forces are applied to the non-compressed portion; (vi) combining a binding agent with the flowable non-compressed portion. In an alternative embodiment the flowable non-compressed portion may be an extrudate that is affixed to the compressed portion by for example any of the mechanism described above or by expansion of the extrudate to the parameters of a mould provided by the compressed portion.
Preferably the compressed portion comprises a pre-prepared depression or mould (hereafter referred to as 'mould') into which the non-compressed portion is delivered.
In an alternative embodiment the surface of the compressed portion comprises more than one mould into which the non-compressed portion may be delivered. The mould(s) preferably at least partially accommodates one or more non-compressed portions. The non-compressed portion(s) is then delivered into the mould and affixed to the compressed portion as described above.
The non-compressed portion may comprise particulates. The particulates may be prepared by any known method, for example conventional spray drying, granulation, encapsulation or agglomeration. Particulates may be affixed to the compressed portion by incorporating a binding agent or by forming a coating layer over the noncompressed portion.
Where the detergent tablet comprises more than one non-compressed portion, the first and second and optional subsequent non-compressed portions may comprise particulates having substantially different average particle size. By substantially different average particle size we mean that the difference between the average particle size of the first and second and/or subsequent compositions is greater than 5%, preferably greater than 10%, more preferably greater than 15% or even 20% of the smaller average particle size.
The average particle size of the particulate detergent active components used herein is calculated using a series of Tyler sieves. The series consists of a number of sieves each having a different aperture size. Samples of a composition of active detergent components are sieved through the series of sieves (typically 5 sieves). The weight of a sample of composition retained in the sieve is plotted against the aperture size of the sieve. The average particle size of the composition is defined as the aperture size through which 50% by weight of the sample of composition would pass.
In another embodiment the first and second and optional subsequent compositions of active detergent components have substantially different density such that the difference between the density of the first and second and/or subsequent compositions is greater than 5%, preferably greater than 10%, more prefera,bly greater than 15% or even 20% of the smaller density. Density of the particulate composition of active detergent components can be measured by any known method suitable for measuring density of particulate material.
Preferably the density of the composition of active detergent components is measured using a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface ofthe base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
A density measurement is taken by hand pouring the composition into the funnel.
Once the funnel is filled, the flap valve is opened and powder allowed to run through the funnel, overfilling the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in grams/litre. Replicate measurements are made as required.
Tablets in which one or more of the non-compressed portions comprise particulates and the average particle size and/or density of the first and second and optionally subsequent non-compressed portions are substantially different are preferred where the first and second and optionally subsequent non-compressed portions are required to have different rates of dissolution.
Where the non-compressed portion comprises a solidified melt, the melt is prepared by heating a composition comprising a detergent active component and optional carrier component(s) to above its melting point to form a flowable melt. The flowable melt is then poured into a mould and allowed to cool. As the melt cools it becomes solid, taking the shape of the mould at ambient temperature. Where the composition comprises one or more carrier components, the carrier component(s) may be heated to above their melting point, and then an active detergent component may be added. Carrier components suitable for preparing a solidified melt are typically non-active components that can be heated to above melting point to form a liquid and cooled to form an intermolecular matrix that can effectively trap active detergent components. A preferred non-active carrier component is an organic polymer that is solid at ambient temperature. Preferably the non-active detergent components is polyethylene glycol (PEG). The compressed portion of the detergent tablet preferably provides a mould to accommodate the melt.
The flowable non-compressed portion may be in a form'comprising a dissolved or suspended active detergent component. The flowable non-compressed portion may harden over time to form a solid, semi solid or highly viscous liquid non-compressed portion by any of the methods described above. In particular, the flowable noncompressed portion may harden by evaporation of a solvent. Solvents suitable for use herein may include any known solvent in which a binding agent is soluble.
Preferred solvents may be polar or non-polar and may include water, alcohol, (for example ethanol, acetone) and alcohol derivatives. In an alternative embodiment more than one solvent may be used.
The flowable non-compressed portion may comprise one or more binding agents.
Any binding agent that has the effect of causing the composition to become solid, semi-solid or highly viscous over time is envisaged for use herein. Although not wishing to be bound by theory, it is believed that mechanisms by which the binding agent causes a non-solid composition to become solid, semi-solid or highly viscous include: chemical reaction (such as chemical cross linking), or effect interaction between two or more components of the flowable compositions either; chemical or physical interaction of the binding agent with a component of the composition.
Preferred binding agents include a sugar/gelatine combination, starch, glycerol and organic polymers. The sugar may be any monosaccharide ( e.g. glucose), disaccharide (e.g. sucrose or maltose) or polysaccharide. The most preferred sugar is commonly available sucrose. For the purposes of the present invention type A or B gelatine may be used, available from for example Sigma. Type A gelatine is preferred since it has greater stability in alkaline conditions in comparison to type B.
Preferred gelatine also has a bloom strength of between 65 and 300, most preferably between 75 and 100. Preferred organic polymers include polyethylene glycol (PEG) of molecular weight from 500 to 10,000, preferably from 750 to 8000, most preferably from 1000 to 6000 available from Hoechst.
Where the non-compressed portion is an extrudate, the extrudate is prepared by premixing the active detergent components with optional carrier components to form a viscous paste. The viscous paste is then extruded using any suitable commonly available extrusion equipment such as for example a single or twin screw extruder available from for example APV Baker, Peterborough, U.K. The extrudate is then cut to size either after delivery to the compressed portion, or prior to delivery to the compressed portion of the detergent tablet. The compressed portion of the tablet preferably comprises a mould into which the extruded non-compressed portion may be delivered.
In a preferred embodiment the non-compressed portion is coated with a coating layer.
The coating may be used to affix a non-compressed portion to the compressed portion. This may be particularly advantageous where the non-compressed portion comprises flowable particulates, gels or liquids.
The coating layer preferably comprises a material that becomes solid on contacting the compressed and/or the non-compressed portions within preferably less than 15 minutes, more preferably less than 10 minutes, even more preferably less than 5 minutes, most preferably less than 60 seconds. Preferably the coating layer is watersoluble. Preferred coating layers comprise materials selected from the group consisting of fatty acids, alcohols, diols, esters and ethers, adipic acid, carboxylic acid, dicarboxylic acid, polyvinyl acetate (PVA), polyvinyl pyrrolidone (PVP), polyacetic acid (PLA), polyethylene glycol (PEG) and mixtures thereof. Preferred carboxylic or dicarboxylic acids preferably comprise an even number of carbon atoms. Preferably carboxylic or dicarboxylic acids comprise at least 4, more preferably at least 6, even more preferably at least 8 carbon atoms, most preferably between 8 and 13 carbon atoms. Preferred dicarboxylic acids include adipic acid, suberic acid, azelaic acid, subacic acid, undecanedioic acid, dodecandioic acid, tridecanedioic and mixtures thereof. Preferred fatty acids are those having a carbon chain length of from C 12 to C22, most preferably from Cl 8 to C22. The coating layer may also preferably comprise a disrupting agent. Where present the coating layer generally present at a level of at least 0.05%, preferably at least 0.1%, more preferably at least 1%, most preferably at least 2% or even at least 5% of the detergent tablet.
As an alternative embodiment the coating layer may encapsulate the detergent tablet.
In this embodiment the coating layer is present at a level of at least 4%, more preferably at least 5%, most preferably at least 10% of the detergent tablet.
In a preferred embodiment the compressed and/or non-compressed portions and/or coating layer additionally comprise a disrupting agent. The disrupting agent may be a disintegrating or effervescing agent. Suitable disintegrating agents include agents that swell on contact with water or facilitated water influx and/or efflux by forming channels in compressed and/or non-compressed portions. Any known disintegrating or effervescing agent suitable for use in laundry or dishwashing applications is envisaged for use herein. Suitable disintegrating agent include starch, starch derivatives, alginates, carboxymethylcellulose (CMC), CMC-based polymers, sodium acetate, aluminium oxide. Suitable effervescing agents are those that produce a gas on contact with water. Suitable effervesing agents may be oxygen, nitrogen dioxide or carbon dioxide evolving species. Examples of preferred effervesing agents may be selected from the group consisting of perborate, percarbonate, carbonate, bicarbonate and carboxylic acids such as citric or maleic acid.
An advantage of including a disrupting agent in the detergent tablet of the present invention is the transport, storage and handling benefits that can be achieved by increasing the hardness of the detergent tablet without adversely affecting the cleaning performance.
Process According to the present invention there is also provided a process for preparing a detergent tablet comprising the steps of: a) compressing an active detergent component to form a compressed portion; and b) delivering a non-compressed, non-encapsulating portion comprising an active detergent component to the compressed portion.
As described above, the detergent tablets described herein are prepared by separately preparing the composition of active detergent components forming the respective compressed portion and the non-compressed portion, then delivering or adhering the composition of the non-compressed portion to the compressed portion.
The compressed portion is prepared by obtaining at least one active detergent component and optionally premixing with carrier components. Any pre-mixing will be carried out in a suitable mixer; for example a pan mixer, rotary drum, vertical blender or high shear mixer. Preferably dry particulate components are admixed in a mixer, as described above, and liquid components are applied to the dry particulate components, for example by spraying the liquid components directly onto the dry particulate components. The resulting composition is then formed into a compressed portion in a compression step using any known suitable equipment. Preferably the composition is formed into a compressed portion using a tablet press, wherein the tablet is pre feeder or extruder. Where the compressed portion comprises a mould, the noncompressed portion is preferably delivered to the mould using accurate delivery equipment, for example a nozzle feeder, such as a loss in weight screw feeder available from Optima, Germany or an extruder.
Where the flowable non-compressed portion is in particulate form the process comprises delivering a flowable non-compressed portion to the compressed portion in a delivery step and then coating at least a portion of the non-compressed portion with a coating layer such that the coating layer has the effect of substantially adhering the non-compressed portion to the compressed portion.
Where the flowable non-compressed portion is affixed to the compressed portion by hardening, the process comprises a delivery step in which the flowable noncompressed portion is delivered to the compressed portion and a subsequent conditioning step, wherein the non-compressed portion hardens. Such a conditioning step may comprise drying, cooling, binding, polymerisation etc. of the noncompressed portion, during which the non-compressed portion becomes solid, semisolid or highly viscous. Heat may be used in a drying step. Heat, or exposure to radiation may be used to effect polymerisation in a poly'merisation step.
It is also envisaged that the compressed portion may be prepared having a plurality of moulds. The plurality of moulds are then filled with a non-compressed portion. It is also envisaged that each mould can be filled with a different non-compressed portion or alternatively, each mould can be filled with a plurality of different noncompressed portions.
Active Detergent Components The compressed portion of the detergent tablets described herein are prepared by compression composition of active detergent components. A suitable composition may include a variety of different detergent active components including builder compounds, surfactants, enzymes, bleaching agents, alkalinity sources, colourants, perfume, lime soap dispersants, organic polymeric compounds including polymeric dye transfer inhibiting agents, crystal growth inhibitors, heavy metal ion sequestrants, metal ion salts, enzyme stabilisers, corrosion inhibitors, suds suppressers, solvents, fabric softening agents, optical brighteners and hydrotropes.
Highly preferred active detergent components include a builder compound, a surfactant, an enzyme and a bleaching agent.
Builder compound The detergent tablets of the present invention preferably contain a builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition of active detergent components.
Water-soluble builder compound Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and furnaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
Polycarboxylates containing three carboxy groups include, in particular, watersoluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No.
1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cistetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5 -tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that 50"C, especially less than 40"C.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Highly preferred builder compounds for use in the present invention are watersoluble phosphate builders. Specific examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphatesin which the degree of polymerisation ranges from 6 to 21, and salts of phytic acid.
Specific examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from 6 to 21, and salts of phytic acid.
Partiallv soluble or insoluble builder compound The detergent tablets of the present invention may contain a partially soluble or insoluble builder compound. Partially soluble and insoluble builder compounds are particularly suitable for use in tablets prepared for use in laundry cleaning methods.
Examples of partially water soluble builders include the crystalline layered silicates as disclosed for example, in EP-A-0164514, DE-A-3417649 and DE-A-3742043.
Preferred are the crystalline layered sodium silicates of general formula NaMSix02+1 .yH20 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type preferably have a two dimensional 'sheet' structure, such as the so called layered structure, as described in EP 0 164514 and EP 0 293640.
Methods for preparation of crystalline layered silicates of this type are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2,3 or 4 and is preferably 2.
The most preferred crystalline layered sodium silicate compound has the formula 6 Na2Si2O5 ,known as NaSKS-6 (trade name), available from Hoechst AG.
The crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, watersoluble ionisable material as described in PCT Patent Application No. WO92/18594.
The solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof, with citric acid being preferred.
Examples of largely water insoluble builders include the sodium aluminosilicates.
Suitable aluminosilicates include the aluminosilicate zeolites having the unit cell formula Naz[(A102)z(SiO2)y]. xH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof.
A preferred method of synthesizing aluminosilicate zeolites is that described by Schoeman et al (published in Zeolite (1994) 14(2), 110-116), in which the author describes a method of preparing colloidal aluminosilicate zeolites. The colloidal aluminosilicate zeolite particles should preferably be such that no more than 5% of the particles are of size greater than 1 pm in diameter and not more than 5% of particles are of size less then 0.05 m in diameter. Preferably the aluminosilicate zeolite particles have an average particle size diameter of between 0.01 m and l,um, more preferably between 0.05 ilm and 0.9 pm, most preferably between 0.1 m and 0.6 m.
Zeolite A has the formula Na 12 [AlO2) 12 (SiO2)12]. xH2O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AlO2)86(SiO2)106]. 276 H2O. Zeolite MAP, as disclosed in EP-B-384,070 is a preferred zeolite builder herein.
Preferred aluminosilicate zeolites are the colloidal aluminosilicate zeolites. When employed as a component of a detergent composition colloidal aluminosilicate zeolites, especially colloidal zeolite A, provide enhanced builder performance in terms of providing improved stain removal. Enhanced builder performance is also seen in terms of reduced fabric encrustation and improved fabric whiteness maintenance; problems believed to be associated with poorly built detergent compositions.
A surprising finding is that mixed aluminosilicate zeolite detergent compositions comprising colloidal zeolite A and colloidal zeolite Y provide equal calcium ion sequestration performance versus an equal weight of commercially available zeolite A. Another surprising finding is that mixed aluminosilicate zeolite detergent compositions, described above, provide improved magnesium ion sequestration performance versus an equal weight of commercially available zeolite A.
Surfactant Surfactants are preferred detergent active components of the compositions described herein. Suitable surfactants are selected from anionic, ctitionic, nonionic ampholytic and zwitterionic surfactants and mixtures thereof. Automatic dishwashing machine products should be low foaming in character and thus the foaming of the surfactant system for use in dishwashing methods must be suppressed or more preferably be low foaming, typically nonionic in character. Sudsing caused by surfactant systems used in laundry cleaning methods need not be suppressed to the same extent as is necessary for dishwashing. The surfactant is typically present at a level of from 0.2% to 30% by weight, more preferably from 0.5% to 10% by weight, most preferably from 1% to 5% by weight of the composition of active detergent components.
A typical listing of anionic, nonionic, ampholytic and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December, 30, 1975. A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31,1981. A listing of surfactants typically included in automatic dishwashing detergent compositions is given for example, in EP-A-0414 549 and PCT Applications No.s WO 93/08876 and WO 93/08874.
Nonionic surfactant Essentially any nonionic surfactants useful for detersive purposes can be included in the detergent tablet. Preferred, non-limiting classes of useful nonionic surfactants are listed below.
Nonionic ethoxvlated alcohol surfactant The alkyl ethoxylate condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
End-capped alkyl alkoxvlate surfactant A suitable endcapped alkyl alkoxylate surfactant is the epoxy-capped poly(oxyalkylated) alcohols represented by the formula: R1 0 [CH2CH(CH3)Ojx[CH2CH2O]y[CH2CH(OH)R2] (I) wherein R1 is a linear or branched, aliphatic hydrocarbon radical having from 4 to 18 carbon atoms; R2 is a linear or branched aliphatic hydrocarbon radical having from 2 to 26 carbon atoms; x is an integer having an average value of from 0.5 to 1.5, more preferably 1; and y is an integer having a value of at least 15, more preferably at least 20.
Preferably, the surfactant of formula I, at least 10 carbon atoms in the terminal epoxide unit [CH2CH(OH)R2]. Suitable surfactants of formula I, according to the present invention, are Olin Corporation's POLY-TERGENTS SLF-18B nonionic surfactants, as described, for example, in WO 94/22800, published October 13, 1994 by Olin Corporation.
Ether-capped Dolv(oxvalkvlated) alcohols Preferred surfactants for use herein include ether-capped poly(oxyalkylated) alcohols having the formula: R1 O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 wherein R1 and R2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 1 to 30 carbon atoms; R3 is H, or a linear aliphatic hydrocarbon radical having from 1 to 4 carbon atoms; x is an integer having an average value from 1 to 30, wherein when x is 2 or greater R3 may be the same or different and k and j are integers having an average value of from 1 to 12, and more preferably 1 to 5.
R1 and R2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 6 to 22 carbon atoms with 8 to 18 carbon atoms being most preferred. H or a linear aliphatic hydrocarbon radical having from 1 to 2 carbon atoms is most preferred for R3. Preferably, x is an integer having an average value of from 1 to 20, more preferably from 6 to 15.
As described above, when, in the preferred embodiments, and x is greater than 2, R3 may be the same or different. That is, R3 may vary between any of the alklyeneoxy units as described above. For instance, if x is 3, R3may be be selected to form ethlyeneoxy(EO) or propyleneoxy(PO) and may vary in order of (EO)(PO)(EO), (EO)(EO)(PO); (EO)(EO)(EO); (PO)(EO)(PO); (PO)(PO)(EO) and (PO)(PO)(PO).
Of course, the integer three is chosen for example only and the variation may be much larger with a higher integer value for x and include, for example, mulitple (EO) units and a much small number of(PO) units.
Particularly preferred surfactants as described above include those that have a low cloud point of less than 20"C. These low cloud point surfactants may then be employed in conjunction with a high cloud point surfactant as described in detail below for superior grease clearing benefits.
Most preferred ether-capped poly(oxyalkylated) alcohol surfactants are those wherein k is 1 and j is 1 so that the surfactants have the formula:' R1 O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 where R1, R2 and R3 are defined as above and x is an integer with an average value of from 1 to 30, preferably from 1 to 20, and even more preferably from 6 to 18.
Most preferred are surfactants wherein R1 and R2 range from 9 to 14, R3 is H forming ethyleneoxy and x ranges from 6 to 15.
The ether-capped poly(oxyalkylated) alcohol surfactants comprise three general components, namely a linear or branched alcohol, an alkylene oxide and an alkyl ether end cap. The alkyl ether end cap and the alcohol serve as a hydrophobic, oil soluble portion of the molecule while the alkylene oxide group forms the hydrophilic, water-soluble portion of the molecule.
These surfactants exhibit significant improvements in spotting and filming characteristics and removal of greasy soils, when used in conjunction with high cloud point surfactants, relative to conventional surfactants.
Generally speaking, the ether-capped poly(oxyalkylene) alcohol surfactants of the present invention may be produced by reacting an aliphatic alcohol with an epoxide to form an ether which is then reacted with a base to form a second epoxide. The second epoxide is then reacted with an alkoxylated alcohol to form the novel compounds of the present invention. Examples of methods of preparing the ethercapped poly(oxyalkylated) alcohol surfactants are described below: Preparation oft12/14 alkvl nlvcidvl ether A C12/14 fatty alcohol (100.00 g, 0.515 mol.) and tin (IV) chloride (0.58 g, 2.23 mmol, available from Aldrich) are combined in a 500 mL three-necked roundbottomed flask fitted with a condenser, argon inlet, addition funnel, magnetic stirrer and internal temperature probe. The mixture is heated to 60 "C. Epichlorhydrin (47.70 g, 0.515 mol, available from Aldrich) is added dropwise so as to keep the temperature between 60-65 OC. After stirring an additional hour at 60 "C, the mixture is cooled to room temperature. The mixture is treated with a 50% solution of sodium hydroxide (61.80 g, 0.773 mol, 50%) while being stirred mechanically. After addition is completed, the mixture is heated to 90 "C for 1.5 h, cooled, and filtered with the aid of ethanol. The filtrate is separated and the organic phase is washed with water (100 mL), dried over MgSO4, filtered, and concentrated. Distillation of the oil at 100-120 "C (0.1 mm Hg) providing the glycidyl ether as an oil.
Preparation ofC12/14 alkvl-Cg/1 l ether capped alcohol surfactant Neodols 91-8 (20.60 g, 0.0393 mol ethoxylated alcohol available from the Shell chemical Co.) and tin (IV) chloride (0.58 g, 2.23 mmol) are combined in a 250 mL three-necked round-bottomed flask fitted with a condenser, argon inlet, addition funnel, magnetic stirrer and internal temperature probe. The mixture is heated to 60 C at which point C12/14 alkyl glycidyl ether (11.00 g, 0.0393 mol) is added dropwise over 15 min. After stirring for 18 h at 60 "C, the mixture is cooled to room temperature and dissolved in an equal portion of dichloromethane. The solution is passed through a 1 inch pad of silica gel while eluting with dichloromethane. The filtrate is concentrated by rotary evaporation and then stripped in a kugelrohr oven (100 "C, 0.5 mm Hg) to yield the surfactant as an oil.
Nonionic ethoxvlatedlpropoxvlated fattv alcohol surfactant The ethoxylated C6-C18 fatty alcohols and C6-C18 mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble.
Preferably the ethoxylated fatty alcohols are the C 10-C18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12-C18 ethoxylated fatty alcohols with a degree of ethoxylation'from 3 to 40. Preferably the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
Nonionic EO/PO condensates with propvlene glvcol The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein.
The hydrophobic portion of these compounds preferably has a molecular weight of from 1500 to 1800 and exhibits water insolubility. Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
Nonionic EO condensation products with propylene oxide/ethvlene diamine adducts The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from 2500 to 3000. Examples of this type of noionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
Mixed Nonionic Surfactant Svstem In a preferred embodiment of the present invention the detergent tablet comprises a mixed nonionic surfactant system comprising at least one low cloud point nonionic surfactant and at least one high cloud point nonionic surfactant.
"Cloud point", as used herein, is a well known property'ofnonionic surfactants which is the result of the surfactant becoming less soluble with increasing temperature, the temperature at which the appearance of a second phase is observable is referred to as the "cloud point" (See Kirk Othmer's Encyclopedia of Chemical Technology, 3rd Ed.
Vol. 22, pp. 360-379).
As used herein, a "low cloud point" nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of less than 30"C, preferably less than 20"C, and most preferably less than 10"C. Typical low cloud point nonionic surfactants include nonionic alkoxylated surfactants, especially ethoxylates derived from primary alcohol, and polyoxypropylene/polyoxyethylene/polyoxypropylene (PO/EO/PO) reverse block polymers. Also, such low cloud point nonionic surfactants include, for example, ethoxylated-propoxylated alcohol (e.g., Olin Corporation's Poly-TergentX SLF18), epoxy-capped poly(oxyalkylated) alcohols (e.g., Olin Corporation's Poly-Tergent SLF18B series of nonionics, as described, for example, in WO 94/22800, published October 13, 1994 by Olin Corporation)and the ether-capped poly(oxyalkylated) alcohol surfactants.
Nonionic surfactants can optionally contain propylene oxide in an amount up to 15% by weight. Other preferred nonionic surfactants can be prepared by the processes described in U.S. Patent 4,223,163, issued September 16, 1980, Builloty, incorporated herein by reference.
Low cloud point nonionic surfactants additionally comprise a polyoxyethylene, polyoxypropylene block polymeric compound. Block polyoxyethylenepolyoxypropylene polymeric compounds include those based on ethylene glycol, propylene glycol, glycerol, trimethylolpropane and ethylenediamine as initiator reactive hydrogen compound. Certain of the block polymer surfactant compounds designated PLURONICB, REVERSED PLURONIC, and TETRONIC(D by the BASF-Wyandotte Corp., Wyandotte, Michigan, are suitable in ADD compositions of the invention. Preferred examples include REVERSEIPPLURONICB 25R2 and TETRONICB 702, Such surfactants are typically useful herein as low cloud point nonionic surfactants.
As used herein, a "high cloud point" nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of greater than 40"C, preferably greater than 50"C, and more preferably greater than 600C. Preferably the nonionic surfactant system comprises an ethoxylated surfactant derived from the reaction of a monohydroxy alcohol or alkylphenol containing from 8 to 20 carbon atoms, with from 6 to 15 moles of ethylene oxide per mole of alcohol or alkyl phenol on an average basis. Such high cloud point nonionic surfactants include, for example, Tergitol 15S9 (supplied by Union Carbide), Rhodasurf TMD 8.5 (supplied by Rhone Poulenc), and Neodol 91-8 (supplied by Shell).
It is also preferred for purposes of the present invention that the high cloud point nonionic surfactant further have a hydrophile-lipophile balance ("HLB"; see Kirk Othmer hereinbefore) value within the range of from 9 to 15, preferably 11 to 15.
Such materials include, for example, Tergitol 15S9 (supplied by Union Carbide), Rhodasurf TMD 8.5 (supplied by Rhone Poulenc), and Neodol 91-8 (supplied by Shell).
Another preferred high cloud point nonionic surfactant is derived from a straight or preferably branched chain or secondary fatty alcohol containing from 6 to 20 carbon atoms (C6-C20 alcohol), including secondary alcohols and branched chain primary alcohols. Preferably, high cloud point nonionic surfactants are branched or secondary alcohol ethoxylates, more preferably mixed C9/11 or C11/15 branched alcohol ethoxylates, condensed with an average of from 6 to 15 moles, preferably from 6 to 12 moles, and most preferably from 6 to 9 moles of ethylene oxide per mole of alcohol. Preferably the ethoxylated nonionic surfactant so derived has a narrow ethoxylate distribution relative to the average.
In a preferred embodiment the detergent tablet comprising such a mixed surfactant system also comprises an amount of water-soluble salt to provide conductivity in deionised water measured at 25"C greater than 3 milli Siemens/cm, preferably greater than 4 milli Siemens/cm, most preferably greater than 4.5 milli Siemens/cm as described in co-pending GB Patent Application (attorney docket number CM 1573F).
In another preferred embodiment the mixed surfactant system dissolves in water having a hardness of 1.246mmol/L in any suitable cold-fill automatic dishwasher to provide a solution with a surface tension of less than 4 Dynes/cm2 at less than 45"C, preferably less than 40"C, most preferably less than 35"C as described in co-pending U.S. Patent Application (attorney docket number 6252).
In another preferred embodiment the high cloud point and low cloud point surfactants of the mixed surfactant system are separated such that one of either the high cloud point or low cloud point surfactants is present in a first matrix and the other is present in a second matrix as described in co-pending U.S. Patent Application (attorney docket number 6252). For the purposes of the present invention, the first matrix may be a first particulate and the second matrix may be a second particulate. A surfactant may be applied to a particulate by any suitable known method, preferably the also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the Cg-C17 acyl-N-(Cl-C4 alkyl) and -N-(C1 -C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferably selected from the linear and branched primary Clo-Cl alkyl sulfates, more preferably the C11-C15 branched chain alkyl sulfates and the C1 2-C14 linear chain alkyl sulfates.
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C10-C18 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C1 1-C18, most preferably C11-C15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of Cg-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic carboxvlate surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)X CH2C00-M+ wherein R is a C6 to C18 alkyl group, x ranges from 0 to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is O is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHRI-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, xis from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l -undecanoic acid, 2-ethyl- 1 -decanoic acid, 2-propyl l-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid. Certain soaps may also be includei as suds suppressors.
Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(0R4)xN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are CIO-C18 alkyl dimethylamine oxide, and Cm 0 18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2COO wherein R is a C6-C18 hydrocarbyl group, each R1 is typically C1-C3 alkyl, and R2 is a C1 -C5 hydrocarbyl group. Preferred betaines are C1 2-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic surfactants Cationic ester surfactants used in this invention are preferably water dispersible compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group. Other suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-C10 N-alkyl or alkyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Enzvmes In an embodiment of the present invention an enzyme is an essential feature of the detergent tablet. In other embodiments of the present invention an enzyme is an optional detergent active component. Where present said enzymes are selected from the group consisting of cellulases, hemicellulases, peroxidases, proteases, glucoamylases, amylases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, B-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof.
Preferred enzymes include protease, amylase, lipase, peroxidases, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes.
The cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 12 and an activity above 50 CEVU (Cellulose Viscosity Unit). Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and W096/02653 which disclose fungal cellulases produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum. EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and W095/26398.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800.
Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of 50KDa, an isoelectric point of 5:5 and containing 415 amino acids; and a -43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO 91/17243. Also suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in W094/21801, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also We91/17244 and WO9 1/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in W096/34092, WO96/17994 and WO95/24471. Said cellulases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase. - Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, W089/09813 and in European Patent application EP No.
91202882.6, filed on November 6, 1991 and EP No. 96870013.8, filed February 20, 1996. Also suitable is the laccase enzyme.
Preferred enhancers are substitued phenthiazine and phenoxasine 10 Phenothiazinepropionicacid (PPT), 10-ethylphenothiazine4-carboxylic acid (EPC), 10-phenoxazinepropionic acid (POP) and 10-methylphenoxazine (described in WO 94/12621) and substitued syringates (C3-C5 substitued Alkyl syringates) and phenols.
Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
Said cellulases and/or peroxidases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Other preferred enzymes that can be included in the detergent compositions of the present invention include lipases. Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent lAM 1057.
This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P". Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolylicum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. Especially suitable lipases are lipases such as M1 LipaseR and LipomaxR (Gist-Brocades) and LipolaseR and Lipolase UltraR(Novo) which have found to be very effective when used in combination with the compositions of the present invention. Also suitables are the lipolytic enzymes described in EP 258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO 96/00292 by Unilever.
Also suitable are cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).
The lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN'). One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo. Other suitable proteases include ALCALASE, DURAZYM(g) and SAVINASEt) from Novo and MAXATASE, MAXACALB, PROPERASEX and MAXAPEMB (protein engineered Maxacal) from Gist Brocades. Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A" herein. Suitable is what is called herein "Protease C", which is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274.
Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
A preferred protease referred to as "Protease D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO95/10591 and in the patent application of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes" having US Serial No. 08/322,677, filed October 13, 1994.
Also suitable for the present invention are proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAST) described in WO91/02792 and their variants described in WO 95/23221.
See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.
Other preferred protease enzymes include protease enzymes which are a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived by replacement of a plurality of amino acid residues of a precursor carbonyl hydrolase with different amino acids, wherein said plurality of amino acid residues replaced in the precursor enzyme correspond to position +210 in combination with one or more of the following residues: +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218 and +222, where the numbered positions correspond to naturallyoccurring subtilisin from Bacillus amylolipuefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisin's (such as Bacillus lentus subtilisin). Preferred enzymes of this type include those having position changes +210, +76, +103, +104, +156, and +166.
The proteolytic enzymes are incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.001% to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight ofthe composition.
Amylases (a and/or 13) can be included for removal of carbohydrate-based stains.
W094/02597, Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also WO95/1 0603, Novo Nordisk A/S, published April 20, 1995. Other amylases known for use in cleaning compositions include both cc- and -amylases. amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no.
1,296,839 (Novo). Other suitable amylases are stability-enhanced amylases described in WO94/18314, published August 18, 1994 and W096/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, W095/26397 and W096/23873 (all by Novo Nordisk).
Examples of commercial a-amylases products are Purafect Ox Am8 from Genencor and TermamylB, BanB ,Fungamyl and Duramyl, all available from Novo Nordisk A/S Denmark. W095/26397 describes other suitable amylases : amylases characterised by having a specific activity at least 25% higher than the specific activity of TermamylB at a temperature range of 25"C to 55"C and at a pH value in the range of 8 to 10, measured by the Phadebase a-amylase activity assay. Suitable are variants of the above enzymes, described in W096/23873 (Novo Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in W095/35382.
Preferred amylase enzymes include those described in W095/26397 and in copending application by Novo Nordisk PCT/DK96/00056.
The amylolytic enzymes are incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition In a particularly preferred embodiment, detergent tablets of the present invention comprise amylase enzymes, particularly those described in WO95/26397 and co pending application by Novo Nordisk PCT/DK96/00056 in combination with a complementary amylase.
By "complementary" it is meant the addition of one or more amylase suitable for detergency purposes. Examples of complementary amylases (a and/or ) are described below. W094/02597 and W095/10603, Novo Nordisk A/S describe cleaning compositions which incorporate mutant amylases. Other amylases known for use in cleaning compositions include both a- and ,8-amylases. a-Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no. 1,296,839 (Novo). Other suitable amylases are stabilityenhanced amylases described in W094/18314, and W096/05295, Genencor and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603. Also suitable are amylases described in EP 277 216 (Novo Nordisk). Examples of commercial a-amylases products are Purafect Ox Am8 from Genencor and TermamylB, BanB ,FungamylB and Duramyl, all available from Novo Nordisk A/S Denmark. W095/26397 describes other suitable amylases : a-amylases characterised by having a specific activity at least 25% higher than the specific activity of TermamylB at a temperature range of 25"C to 550C and at a pH value in the range of 8 to 10, measured by the PhadebasB a-amylase activity assay. Suitable are variants of the above enzymes, described in W096/23873 (Novo Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in W095/35382. Preferred complementary amylases for the present invention are the amylases sold under the tradename Purafect Ox AmR described in WO 94/18314, W096/05295 sold by Genencor; TermamylB, FungamylB, BanB and Duramyl, all available from Novo Nordisk A/S and MaxamylB by Gist-Brocades.
Said complementary amylase is generally incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition. Preferably a weight of pure enzyme ratio of specific amylase to the complementary amylase is comprised between 9:1 to 1:9, more preferably between 4:1 to 1:4,andmostpreferablybetween2:1 and 1:2.
The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used. Also included by definition, are mutants of native enzymes. Mutants can be obtained e.g. by protein and/or genetic engineering, chemical and/or physical modifications of native enzymes. Common practice as well is the expression of the enzyme via host organisms in which the genetic material responsible for the production of the enzyme has been cloned.
Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition. The enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc... containing one enzyme) or as mixtures of two or more enzymes (e.g. cogranulates).
Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp.
AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
Bleaching agent A highly preferred component of the composition of active detergent components is a bleaching agent. Suitable bleaching agents include chlorine and oxygen-releasing bleaching agents.
In one preferred aspect the oxygen-releasing bleaching agent contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an alternative preferred aspect a preformed organic peroxyacid is incorporated directly into the composition. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
Inorganic perhvdrate bleaches The compositions of active detergent components preferably include a hydrogen peroxide source, as an oxygen-releasing bleach. Suitable hydrogen peroxide sources include the inorganic perhydrate salts.
The inorganic perhydrate salts are normally incorporated in the form of the sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
Sodium perborate can be in the form of the monohydrate of nominal formula NaBO2H202 or the tetrahydrate NaB02H2O2.3H20.
Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates for inclusion in compositions in accordance with the invention. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H202, and is available commercially as a crystalline solid. Sodium percarbonate, being a hydrogen peroxide addition compound tends on dissolution to release the hydrogen peroxide quite rapidly which can increase the tendency for localised high bleach concentrations to arise. The percarbonate is most preferably incorporated into such compositions in a coated form which provides in-product stability.
A suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate. Such coatings together with coating processes have previously been described in GB-1,466,799, granted to Interox on 9th March 1977. The weight ratio of the mixed salt coating material to percarbonate lies in the range from 1: 200 to 1: 4, more preferably from 1: 99 to 1 9, and most preferably from 1: 49 to 1:19. Preferably, the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2SO4.n.Na2CO3 wherein n is from 0. I to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
Another suitable coating material providing in product stability, comprises sodium silicate of SiO2 : Na2O ratio from 1.8:1 to 3.0:1, preferably 1.8:1 to 2.4:1, and/or sodium metasilicate, preferably applied at a level of from 2% to 10%, (normally from 3% to 5%) of SiO2 by weight of the inorganic perhydrate salt. Magnesium silicate can also be included in the coating. Coatings that contain silicate and borate salts or boric acids or other inorganics are also suitable.
Other coatings which contain waxes, oils, fatty soaps cah also be used advantageously within the present invention.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of utility in the compositions herein.
Peroxvacid bleach Drecursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as
where L is a leaving group and X is essentially any functionality, such that on perhydrolysis the structure of the peroxyacid produced is
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 10% by weight, most preferably from 1.5% to 5% by weight of the compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Leaving groups The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle).
However, if L is too reactive, this activator will be difficult to stabilise for use in a bleaching composition.
*Preferred L groups are selected from the group consisting of:
and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, R5 is an alkenyl chain containing from 1 to 8 carbon atoms and Y is H or a 4 solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammonium groups.
The preferred solubilizing groups are -SO3-M+, -CO2M+, -SO4-M+, -N+(R3)4X and O > --N(R )3 and most preferably -SO3-M+ and -CO2-M+ wherein R3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Perbenzoic acid precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
Suitable O-acylated perbenzoic acid precursor compounds include the substituted a unsubstituted benzoyl oxybenzene sulfonates, including for example benzoyl oxybenzene sulfonate:
Also suitable are the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, including for example:
Ac = COCH3; Bz = Benzoyl Perbenzoic acid precursor compounds of the imide type include N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole and other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Other perbenzoic acid precursors include the benzoyl diacyl peroxides, the benzoyl tetraacyl peroxides, and the compound having the formula:
Phthalic anhydride is another suitable perbenzoic acid precursor compound herein:
Suitable N-acylated lactam perbenzoic acid precursors have the formula:
wherein n is from 0 to 8, preferably from 0 to 2, and R6 is a berizoyl group.
Perbenzoic acid derivative precursors Perbenzoic acid derivative precursors provide substituted perbenzoic acids on perhydrolysis.
Suitable substituted perbenzoic acid derivative precursors include any of the herein disclosed perbenzoic precursors in which the benzoyl group is substituted by essentially any non-positively charged (i.e.; non-cationic) functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl and amide groups.
A preferred class of substituted perbenzoic acid precursor compounds are the amide substituted compounds of the following general formulae:
wherein R1 is an aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an arylene, or alkarylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. R1 may be aryl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. R5 is preferably H or methyl. R1 and R5 should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Cationic peroxvacid Drecursors Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammonium group, preferably an ethyl or methyl ammonium group. Cationic peroxyacid precursors are typically present in the compositions as a salt with a suitable anion, such as for example a halide ion or a methylsulfate ion.
The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or berizoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose berizoyl peroxides.
A preferred cationically substituted berizoyl oxybenzene sulfonate is the 4-(trimethyl ammonium) methyl derivative of benzoyl oxybenzene sulfonate:
A preferred cationically substituted alkyl oxybenzene sulfonate has the formula:
Preferred cat ionic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams, particularly trimethyl ammonium methylene benzoyl caprolactam:
Other preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene alkyl caprolactarns:
where n is from 0 to 12, particularly from 1 to 5.
Another preferred cationic peroxyacid precursor is 2-(N,N,N-trimethyl ammonium) ethyl sodium 4-sulphophenyl carbonate chloride.
Alkvl nercarboxylic acid bleach precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N ,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate SNOBS), sodium acetoxybenzene sulfonate (ABS) and penta acetyl glucose.
Amide substituted alkvl peroxyacid precursors Amide substituted alkyl peroxyacid precursor compounds are also suitable, including those of the following general formulae:
wherein R1 is an alkyl group with from 1 to 14 carbon atoms, R2 is an alkylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. The substitution can include alkyl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. R5 is preferably H or methyl. R1 and R5 should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Benzoxazin organic peroxyacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A482,807, particularly those having the formula:
including the substituted benzoxazins of the type
wherein R1 is H, alkyl, alkaryl, aryl, arylalkyl, and wherein R2, R3, R4, and R5 may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkyl amino, COOR6 (wherein R6 is H or an alkyl group) and carbonyl functions.
An especially preferred precursor of the benzoxazin-type is:
Preformed organic Deroxvacid The organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 0.5% to 25% by weight, more preferably from 1% to 10% by weight ofthe composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
wherein R1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. R1 preferably contains from 6 to 12 carbon atoms. R2 preferably contains from 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. R5 is preferably H or methyl. R1 and R5 should not contain more than 18 carbon atoms in total. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid, and diperoxyhexadecanedioc acid. Dibenzoyl peroxide is a preferred organic peroxyacid herein. Mono- and diperazelaic acid, mono- and diperbrassylic acid, and Nphthaloylaminoperoxicaproic acid are also suitable herein.
Controlled rate of release - means A means may be provided for controlling the rate of release of bleaching agent, particularly oxygen bleach to the wash solution.
Means for controlling the rate of release of the bleach may provide for controlled release of peroxide species to the wash solution. Such means could, for example, include controlling the release of any inorganic perhydrate salt, acting as a hydrogen peroxide source, to the wash solution.
Suitable controlled release means can include confining the bleach to either the compressed or non-compressed portiOns. Where more than one non-compressed portions are present, the bleach may be confined to the first and/or second and/or optional subsequent non-compressed portions.
Another mechanism for controlling the rate of release of bleach may be by coating the bleach with a coating designed to provide the controlled release. The coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
The coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to bleach of from 1:99 to 1:2, preferably from 1:49 to 1:9.
Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
Other suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate and silicas.
A preferred coating material, particularly for an inorganic perhydrate salt bleach source, comprises sodium silicate of SiO2 : Na2O ratio'from 1.8 1 to 3.0:1, preferably 1.8:1 to 2.4:1, and/or sodium metasilicate, preferably applied at a level of from 2% to 10%, (normally from 3% to 5%) of SiO2 by weight of the inorganic perhydrate salt. Magnesium silicate can also be included in the coating.
Any inorganic salt coating materials may be combined with organic binder materials to provide composite inorganic salt/organic binder coatings. Suitable binders include the C1 0-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the C1 s-C20 primary alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
Other preferred binders include certain polymeric materials. Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 5 x 106 preferably 1000 to 400,000 most preferably 1000 to 10,000 are examples of such polymeric materials. Copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents. These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C1 0-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole. Further examples of binders include the C10-C20 mono- and diglycerol ethers and also the C10-C20 fatty acids.
Cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
One method for applying the coating material involves agglomeration. Preferred agglomeration processes include the use of any of the organic binder materials described hereinabove. Any conventional agglomerator/mixer may be used including, but not limited to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
Other means of providing the required controlled release include mechanical means for altering the physical characteristics of the bleach to control its solubility and rate of release. Suitable protocols could include compression, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
Whilst the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired controlled release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
Additional protocols for providing the means of controlled release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required controlled release kinetics to be achieved.
Metal-containing bleach catalyst The compositions described herein which contain bleach as an active detergent component may additionally contain as a preferred component, a metal containing bleach catalyst. Preferably the metal containing bleach catalyst is a transition metal containing bleach catalyst, more preferably a manganese or cobalt-containing bleach catalyst.
A suitable type of bleach catalyst is a catalyst comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminium cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
Such catalysts are disclosed in U.S. Pat. 4,430,243.
Preferred types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 andU.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV2(u-O)3(1,4,7-trimethyl- 1,4,7-triazacyclononane)2-(PF6)2, Mn1112(u-O) 1 (u-OAc)2( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(ClO4)2, MnIV4(u-0)6(1 ,4,7-triazacyclononane)4-(C104)2, MnIIIMnIV4(u.O)1 (u-OAc)2.
(1,4,7-trimethyl-l ,4,7-triazacyclononane)2-(C104)3 , and mixtures thereof. Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include l,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl1 ,4,7-triazacyclononane, 2-methyl-l ,4,7-triazacyclononane, 1 ,2,4,7-tetramethyl1,4,7triazacyclononane, and mixtures thereof.
The bleach catalysts useful in the compositions herein may also be selected as appropriate for the present invention. For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7.trimethyl.1,4,7. triazacyclononane)(OCH3)3 -(PFg).
Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a watersoluble complex of manganese (III), and/or (IV) with'a ligand which is a noncarboxylate polyhydroxy compound having at least three consecutive C-OH groups.
Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylithol, arabitol, adonitol, meso-erythritol, meso-inositol, lactose, and mixtures thereof.
U.S. Pat. 5,114,611 teaches a bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand. Said ligands are of the formula:
wherein R1, R2, R3, and R4 can each be selected from H, substituted alkyl and aryl groups such that each R1-N=C-R2 and R3-C=N-R4 form a five or six-membered ring. Said ring can further be substituted. B is a bridging group selected from 0, S.
CR5R6, NR7 and C=O, wherein R5, R6, and R7 can each be H, alkyl, or aryl groups, including substituted or unsubstituted groups. Preferred ligands include pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, and triazole rings.
Optionally, said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and nitro. Particularly preferred is the ligand 2,2'-bispyridylamine.
Preferred bleach catalysts include Co, Cu, Mn, Fe,-bispyridylmethane and bispyridylamine complexes. Highly preferred catalysts include Co(2,2'bispyridylamine)C12, Di(isothiocyanato)bispyridylamine-cobalt (II), trisdipyridylamine-cobalt(II) perchlorate, Co(2,2-bispyridylamine)202C104, Bis (2,2'-bispyridylamine) copper(II) perchlorate, tris(di-2-pyridylamine) iron(II) perchlorate, and mixtures thereof.
Preferred examples include binuclear Mn complexes with tetra-N-dentate and bi-Ndentate ligands, including N4MnIll(uO)2MnIVN4)+and [Bipy2MnIII(u- O)2MnIVbipy2](ClO4)3.
While the structures of the bleach-catalyzing manganese complexes of the present invention have not been elucidated, it may be speculated that they comprise chelates or other hydrated coordination complexes which result from the interaction of the carboxyl and nitrogen atoms of the ligand with the manganese cation. Likewise, the oxidation state of the manganese cation during the catalytic process is not known with certainty, and may be the (+II), (+III), (+IV) or (+V) valence state. Due to the ligands' possible six points of attachment to the manganese cation, it may be reasonably speculated that multi-nuclear species and/or "cage" structures may exist in the aqueous bleaching media. Whatever the form of the active Mn ligand species which actually exists, it functions in an apparently catalytic manner to provide improved bleaching performances on stubborn stains such as tea, ketchup, coffee, wine, juice, and the like.
Other bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S.
4,728,455 (manganese gluconate catalysts).
Other preferred examples include cobalt (III) catalysts having the formula: Co[(NH3)nM',B'bT'tQqPp] Yy wherein cobalt is in the +3 oxidation state; n is an integer from 0 to 5 (preferably 4 or 5; most preferably 5); M' represents a monodentate ligand; m is an integer from 0 to 5 (preferably 1 or 2; most preferably 1); B' represents a bidentate ligand; b is an integer from 0 to 2; T' represents a tridentate ligand; t is 0 or 1; Q is a tetradentate ligand;qis0or 1; P is a pentadentate ligand; p is 0 or 1; and n + m + 2b + 3t + 4q + 5p = 6; Y is one or more appropriately selected counteranions present in a number y, where y is an integer from 1 to 3 (preferably 2 to 3; most preferably 2 when Y is a -1 charged anion), to obtain a charge-balanced salt, preferred Y are selected from the group consisting of chloride, nitrate, nitrite, sulfate, citrate, acetate, carbonate, and combinations thereof; and wherein further at least one of the coordination sites attached to the cobalt is labile under automatic dishwashing use conditions and the remaining co-ordination sites stabilise the cobalt under automatic dishwashing conditions such that the reduction potential for cobalt (III) to cobalt (II) under alkaline conditions is less than 0.4 volts (preferably less than 0.2 volts) versus a normal hydrogen electrode.
Preferred cobalt catalysts of this type have the formula: [CO(NH3)n(M')mj Yy wherein n is an integer from 3 to 5 (preferably 4 or 5; most preferably 5); M' is a labile coordinating moiety, preferably selected from the group consisting of chlorine, bromine, hydroxide, water, and (when m is greater than 1) combinations thereof; m is an integer from 1 to 3 (preferably 1 or 2; most preferably 1); m+n = 6; and Y is an appropriately selected counteranion present in a number y, which is an integer from 1 to 3 (preferably 2 to 3; most preferably 2 when Y is a -1 charged anion), to obtain a charge-balanced salt.
The preferred cobalt catalyst of this type useful herein are cobalt pentaamine chloride salts having the formula [Co(NH3)5C1] Yy, and especially [Co(NH3)5C1]C12.
More preferred are the present invention compositions which utilize cobalt (III) bleach catalysts having the formula: [C0(NH3)n(M)m(B)bj Ty wherein cobalt is in the +3 oxidation state; n is 4 or 5 (preferably 5); M is one or more ligands coordinated to the cobalt by one site; m is 0, 1 or 2 (preferably 1); B is a ligand co-ordinated to the cobalt by two sites; b is 0 or 1 (preferably 0), and when b=0, then m+n = 6, and when b=l, then m=0 and n=4; and T is one or more appropriately selected counteranions present in a number y, where y is an integer to obtain a charge-balanced salt (preferably y is 1 to 3; most preferably 2 when T is a -1 charged anion); and wherein further said catalyst has a base hydrolysis rate constant of less than 0.23 M-1 s-l (25"C).
Preferred T are selected from the group consisting of chloride, iodide, I3-, formate, nitrate, nitrite, sulfate, sulfite, citrate, acetate, carbonate, bromide, PF6-, BF4-, B(Ph)4-, phosphate, phosphite, silicate, tosylate, methanesulfonate, and combinations thereof. Optionally, T can be protonated if more than one anionic group exists in T, e.g., HP042-, HCO3-, H2PO4-, etc. Further, T may be selected from the group consisting of non-traditional inorganic anions such as anionic surfactants (e.g., lin n is an integer from 1 to 16, preferably from 2 to 10, and most preferably from 2 to 5.
Most preferred M are carboxylic acids having the formula above wherein R is selected from the group consisting of hydrogen, methyl, ethyl, propyl, straight or branched C4-C12 alkyl, and benzyl. Most preferred R is methyl. Preferred carboxylic acid M moieties include formic, benzoic, octanoic, nonanoic, decanoic, dodecanoic, malonic, maleic, succinic, adipic, phthalic, 2-ethylhexanoic, naphthenoic, oleic, palmitic, triflate, tartrate, stearic, butyric, citric, acrylic, aspartic, fumaric, lauric, linoleic, lactic, malic, and especially acetic acid.
The B moieties include carbonate, di- and higher carboxylates (e.g., oxalate, malonate, malic, succinate, maleate), picolinic acid, and alpha and beta amino acids (e.g., glycine, alanine, beta-alanine, phenylalanine).
Cobalt bleach catalysts useful herein are known, being described for example along with their base hydrolysis rates, in M. L. Tobe, "Base Hydrolysis of Transition Metal Complexes", Adv. Inborn. Bioinorg. Mech., (1983), 2, pages 1-94. For example, Table 1 at page 17, provides the base hydrolysis rates (designated therein as kOH) for cobalt pentaamine catalysts complexed with oxalate (kOH= 2.5 x 10-4 M-1 s-l (250C)), NCS- (kOH= 5.0 x 10-4 M-1 s-1 (25 C)), formate (k0W 5.8 x 10-4 M1 s-1 (25 C)), and acetate (koH= 9.6 x 10-4 M-1 s-l (25 C)). The most preferred cobalt catalyst useful herein are cobalt pentaamine acetate salts having the formula [Co(NH3)5OAc] Ty, wherein OAc represents an acetate moiety, and especially cobalt pentaamine acetate chloride, [Co(NH3)5OAc]C12; as well as [Co(NH3)5OAc](OAc)2; [Co(NH3)5OAc](PF6)2; [Co(NH3)50Ac](S04); [Co (NH3)5OAc](BF4)2; and [Co(NH3)5OAc](NO3)2 (herein "PAC").
These cobalt catalysts are readily prepared by known procedures, such as taught for example in the Tobe article hereinbefore and the references cited therein, in U.S.
Patent 4,810,410, to Diakun et al, issued March 7,1989, J. Chem. Ed. (1989), 66 (12), 1043-45; The Synthesis and Characterization of Inorganic Compounds, W.L.
Jolly (Prentice-Hall; 1970), pp. 461-3; Inorg. Chem. 18, 1497-1502 (1979); Inorg.
Chem., 21, 2881-2885 (1982); Intro. Chem., 18. 2023-2025 (1979); Inorg..
Synthesis, 173-176 (1960); and Joumal of Phvsical Chemistrv, 56, 22-25 (1952); as well as the synthesis examples provided hereinafter.
Cobalt catalysts suitable for incorporation into the detergent tablets of the present invention may be produced according to the synthetic routes disclosed in U.S. Patent Nos. 5,559,261, 5,581,005, and 5,597,936, the disclosures of which are herein incorporated by reference.
These catalysts may be co-processed with adjunct materials so as to reduce the colour impact if desired for the aesthetics of the product, or to be included in enzymecontaining particles as exemplified hereinafter, or the compositions may be manufactured to contain catalyst "speckles".
Organic polvmeric compound Organic polymeric compounds may be added as preferred components of the detergent tablets in accord with the invention. By organic polymeric compound it is meant essentially any polymeric organic compound commonly found in detergent compositions having dispersant, anti-redeposition, soil release agents or other detergency properties.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homoor co-polymeric polycarboxylic acids, modified polycarboxylates or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter,type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of molecular weight 2000-10000 and their copolymers with any suitable other monomer units including modified acrylic, fumaric, maleic, itaconic, aconitic, mesaconic, citraconic and methylenemalonic acid or their salts, maleic anhydride, acrylamide, alkylene, vinylmethyl ether, styrene and any mixtures thereof. Preferred are the copolymers of acrylic acid and maleic anhydride having a molecular weight of from 20,000 to 100,000.
Preferred commercially available acrylic acid containing polymers having a molecular weight below 15,000 include those sold under the tradename Sokalan PA30, PA20, PA15, PAlO and Sokalan CP10 by BASF GmbH, and those sold under the tradename Acusol 45N, 480N, 460N by Rohm and Haas.
Preferred acrylic acid containing copolymers include those which contain as monomer units: a) from 90% to 10%, preferably from 8b% to 20% by weight acrylic acid or its salts and b) from 10% to 90%, preferably from 20% to 80% by weight of a substituted acrylic monomer or its salts having the general formula -[CR2-CR1(CO O-R3)]- wherein at least one of the substituents R1, R2 or R3, preferably R1 or R2 is a 1 to 4 carbon alkyl or hydroxyalkyl group, R1 or R2 can be a hydrogen and R3 can be a hydrogen or alkali metal salt. Most preferred is a substituted acrylic monomer wherein R1 is methyl, R2 is hydrogen (i.e. a methacrylic acid monomer). The most preferred copolymer of this type has a molecular weight of 3500 and contains 60% to 80% by weight of acrylic acid and 40% to 20% by weight of methacrylic acid.
The polyamine and modified polyamine compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Other optional polymers may polyvinyl alcohols and acetates both modified and nonmodified, cellulosics and modified cellulosics, polyoxyethylenes, polyoxypropylenes, and copolymers thereof, both modified and non-modified, terephthalate esters of ethylene or propylene glycol or mixtures thereof with polyoxyalkylene units.
Suitable examples are disclosed in US patent Nos. 5,591,703 , 5,597,789 and 4,490,271.
Soil Release Agents Suitable polymeric soil release agents include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to 30 oxypropylene units, said hydrophile segments preferably comprising at least 25% oxyethylene units and more preferably, especially for such components having 20 to 30 oxypropylene units, at least 50% oxyethylene units; or (b) one or more hydrophobe components comprising (i) C3 oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise oxyethylene terephthalate, the ratio of oxyethylene terephthalate:C3 oxyalkylene terephthalate units is 2:1 or lower, (ii) C4-C6 alkylene or oxy C4-C6 alkylene segments, or mixtures therein, (iii) poly (vinyl ester) segments, preferably polyvinyl acetate, having a degree of polymerization of at least 2, or (iv) C1-C4 alkyl ether or C4 hydroxyalkyl ether substituents, or mixtures therein, wherein said substituents are present in the form of C1 -C4 alkyl ether or C4 hydroxyalkyl ether cellulose derivatives, or mixtures therein, or a combination of (a) and (b).
Typically, the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from 200, although higher levels can be used, preferably from 3 to 150, more preferably from 6 to 100. Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO3S(CH2)nOCH2CH2O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
Polymeric soil release agents useful herein also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C 1 -C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4X000,093, issued December 28, 1976 to Nicol, et al.
Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C1-C6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al.
Another suitable soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of this polymeric soil release agent is in the range of from 25,000 to 55,000. See U.S.
Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
Another suitable polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
Another suitable polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone. These soil release agents are described fully in U.S.
Patent 4,968,451, issued November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic endcapped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink. Other polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896 > , issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoarolyl, end-capped terephthalate esters.
Another soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units. The repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps. A particularly preferred soil release agent of this type comprises one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a ratio of from 1.7 to 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
Heavv metal ion sequestrant The detergent tablets of the invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
Heavy metal ion sequestrants, which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
Preferably any salts/complexes are water soluble. The molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1:1.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1hydroxy disphosphonates and nitrilo trimethylene phosphonates. Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
Crvstal growth inhibitor component The detergent tablets preferably contain a crystal growth inhibitor component, preferably an organodiphosphonic acid component, incorporated preferably at a level of from 0.01% to 5%, more preferably from 0.1% to 2% by weight of the compositions.
By organo diphosphonic acid it is meant herein an organo diphosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrant components.
The organo diphosphonic acid is preferably a C 1 -C4 diphosphonic acid, more preferably a C2 diphosphonic acid, such as ethylene diphosphonic acid, or most preferably ethane l-hydroxy-l,l -diphosphonic acid (HEDP) and may be present in partially or fully ionized form, particularly as a salt or complex.
Water-soluble sulfate salt The detergent tablet optionally contains a water-soluble sulfate salt. Where present the water-soluble sulfate salt is at the level of from 0.1% to 40%, more preferably from 1% to 30%, most preferably from 5% to 25% by weight of the compositions.
The water-soluble sulfate salt may be essentially any salt of sulfate with any counter cation. Preferred salts are selected from the sulfates of the alkali and alkaline earth metals, particularly sodium sulfate.
Alkali Metal Silicate According to an embodiment of the present invention an alkali metal silicate is an essential component of the detergent tablet. In other embodiments of the present invention the presence of an alkali metal silicate is optional. A preferred alkali metal silicate is sodium silicate having an SiO2:Na2O ratio of from 1.8 to 3.0, preferably from 1.8 to 2.4, most preferably 2.0. Sodium silicate is preferably present at a level of less than 20%, preferably from 1% to 15%, most preferably from 3% to 12% by weight of SiO2. The alkali metal silicate may be in the form of either the anhydrous salt or a hydrated salt.
Alkali metal silicate may also be present as a component of an alkalinity system.
The alkalinity system also preferably contains sodium metasilicate, present at a level of at least 0.4% SiO2 by weight. Sodium metasilicate has a nominal SiO2 : Na2O ratio of 1.0. The weight ratio of said sodium silicate to said sodium metasilicate, measured as SiO2, is preferably from 50:1 to 5:4, more preferably from 15:1 to 2:1, mostpreferablyfrom 10:1 to 5:2.
Colourant The term 'colourant', as used herein, means any substance that absorbs specific wavelengths of light from the visible light spectrum. Such colourants when added to a detergent composition have the effect of changing the visible colour and thus the appearance of the detergent composition. Colourants may be for example either dyes or pigments. Preferably the colourants are stable in composition in which they are to be incorported. Thus in a composition of high pH the colourant is preferably alkali stable and in a composition of low pH the colourant is preferably acid stable.
The compressed portion and/or non compressed may contain a colourant, a mixture of colourants, coloured particles or mixture of coloured particles such that the compressed portion and the non-compressed portion have different visual appearances. Preferably one of either the compressed portion or the non-compressed comprises a colourant.
Where the non-compressed portion comprises two or more compositions of active detergent components, preferably at least one of either the first and second and/or subsequent compositions comprises a colourant. Where both the first and second and/or subsequent compositions comprise a colourant it is preferred that the colourants have a different visual appearance.
Where present the coating layer preferably comprises a colourant. Where the compressed portion and the coating layer comprise a colourant, it is preferred that the colourants provide a different visual effect.
Examples of suitable dyes include reactive dyes, direct dyes, azo dyes. Preferred dyes include phthalocyanine dyes, anthraquinone dye, quinoline dyes, monoazo, disazo and polyazo. More preferred dyes include anthraquinone, quinoline and monoazo dyes. Preferred dyes include SANDOLAN E-HRL 180% (tradename), SANDOLAN MILLING BLUE (tradename), TURQUOISE ACID BLUE (tradename) and SANDOLAN BRILLIANT GREEN (tradename) all available from Clariant UK, HEXACOL QUINOLINE YELLOW (tradename) and HEXACOL BRILLIANT BLUE (tradename) both available from Pointings, UK, ULTRA MARINE BLUE (tradename) available from Holliday or LEVAFIX TURQUISE BLUE EBA (tradename) available from Bayer, USA.
The colourant may be incorporated into the compressed and/or non-compressed portion by any suitable method. Suitable methods include mixing all or selected active detergent components with a colourant in a drum or spraying all or selected active detergent components with the colourant in a rotating drum.
Colourant when present as a component of the compressed portion is present at a level of from 0.001% to 1.5%, preferably from 0.01% to 1.0%, most preferably from 0.1% to 0.3%. When present as a component of the non-compressed portion, colourant is generally present at a level of from 0.001% to 0.1%, more preferably from 0.005% to 0.05%, most preferably from 0.007% to 0.02%. When present as a component of the coating layer, colourant is present at a level of from 0.01% to 0.5%, more preferably from 0.02% to 0.1%, most preferably from 0.03% to 0.06%.
Corrosion inhibitor compound The detergent tablets of the present invention suitable for use in dishwashing methods may contain corrosion inhibitors preferably- selected from organic silver coating agents, particularly paraffin, nitrogen-containing corrosion inhibitor compounds and Mn(II) compounds, particularly Mn(II) salts of organic ligands.
Organic silver coating agents are described in PCT Publication No. W094/16047 and copending European application No. EP-A-690122. Nitrogen-containing corrosion inhibitor compounds are disclosed in copending European Application no.
EP-A-634,478. Mn(II) compounds for use in corrosion inhibition are described in copending European Application No. EP-A-672 749.
Organic silver coating agent may be incorporated at a level of from 0.05% to 10%, preferably from 0. 1% to 5% by weight of the total composition.
The functional role of the silver coating agent is to form 'in use' a protective coating layer on any silverware components of the washload to which the compositions of the invention are being applied. The silver coating agent should hence have a high affinity for attachment to solid silver surfaces, particularly when present in as a component of an aqueous washing and bleaching solution with which the solid silver surfaces are being treated.
Suitable organic silver coating agents herein include fatty esters of mono- or polyhydric alcohols having from 1 to 40 carbon atoms in the hydrocarbon chain.
The fatty acid portion of the fatty ester can be obtained from mono- or polycarboxylic acids having from 1 to 40 carbon atoms in the hydrocarbon chain.
Suitable examples of monocarboxylic fatty acids include behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid, lauric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, Valerie acid, lactic acid, glycolic acid and , '- dihydroxyisobutyric acid. Examples of suitable polycarboxylic acids include: nbutyl-malonic acid, isocitric acid, citric acid, maleic acid, malic acid and succinic acid.
The fatty alcohol radical in the fatty ester can be represented by mono- or polyhydric alcohols having from 1 to 40 carbon atoms in the hydrocarbon chain. Examples of suitable fatty alcohols include; behenyl, arachidyl, cocoyl, oleyl and lauryl alcohol, ethylene glycol, glycerol, ethanol, isopropanol, vinyl alcohol, diglycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan.
Preferably, the fatty acid and/or fatty alcohol group of the fatty ester adjunct material have from 1 to 24 carbon atoms in the alkyl chain.
Preferred fatty esters herein are ethylene glycol, glycerol and sorbitan esters wherein the fatty acid portion of the ester normally comprises a species selected from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
The glycerol esters are also highly preferred. These are the mono-; di- or tri-esters of glycerol and the fatty acids as defined above.
Specific examples of fatty alcohol esters for use herein include: stearyl acetate, palmityl di-lactate, cocoyl isobutyrate, oleyl maleate, oleyl dimaleate, and tallowyl proprionate. Fatty acid esters useful herein include: xylitol monopalmitate, pentaerythritoi monostearate, sucrose monostearate, glycerol monostearate, ethylene glycol monostearate, sorbitan esters. Suitable sorbitan esters include sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monobehenate, sorbitan mono-oleate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate, and also mixed tallowalkyl sorbitan mono- and di-esters.
Glycerol monostearate, glycerol mono-oleate, glycerol monopalmitate, glycerol monobehenate, and glycerol distearate are preferred glycerol esters herein.
Suitable organic silver coating agents include triglycerides, mono or diglycerides, and wholly or partially hydrogenated derivatives thereof; and any mixtures thereof.
Suitable sources of fatty acid esters include vegetable and fish oils and animal fats.
Suitable vegetable oils include soy bean oil, cotton seed oil, castor oil, olive oil, peanut oil, safflower oil, sunflower oil, rapeseed oil, grapeseed oil, palm oil and corn oil.
Waxes, including microcrystalline waxes are suitable organic silver coating agents herein. Preferred waxes have a melting point in the range from 35"C to 110"C and comprise generally from 12 to 70 carbon atoms. Preferred are petroleum waxes of the paraffin and microcrystalline type which are composed of long-chain saturated hydrocarbon compounds.
Alginates and gelatin are suitable organic silver coating agents herein.
Dialkyl amine oxides such as C12-C20 methylamine oxide, and dialkyl quaternary ammonium compounds and salts, such as the C1 2-C20 methylammonium halides are also suitable.
Other suitable organic silver coating agents include certain polymeric materials.
Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000, polyethylene glycols (PEG) with an average molecular weight of from 600 to 10,000, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and Nvinylimidazole, and cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose are examples of such polymeric materials.
Certain perfume materials, particularly those demonstrating a high substantivity for metallic surfaces, are also useful as the organic silver coating agents herein.
Polymeric soil release agents can also be used as an organic silver coating agent.
A preferred organic silver coating agent is a paraffin oil, typically a predominantly branched aliphatic hydrocarbon having a number of carbon atoms in the range of from 20 to 50; preferred paraffin oil selected from predominantly branched C2545 species with a ratio of cyclic to noncyclic hydrocarbons of from 1:10 to 2: 1, preferably from 1:5 to 1:1. A paraffin oil meeting these characteristics, having a ratio of cyclic to noncyclic hydrocarbons of 32:68, is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
Nitrogen-containing corrosion inhibitor compounds Suitable nitrogen-containing corrosion inhibitor compounds include imidazole and derivatives thereof such as benzimidazole, 2-heptadecyl imidazole and those imidazole derivatives described in Czech Patent No. 139, 279 and British Patent GB-A-1,137,741, which also discloses a method for making imidazole compounds.
Also suitable as nitrogen-containing corrosion inhibitor compounds are pyrazole compounds and their derivatives, particularly those where the pyrazole is substituted in any of the 1, 3, 4 or 5 positions by substituents R1, R3, R4 and R5 where R1 is any of H, CH2OH, CONH3, or COCH3, R3 and R5 are any ofC1-C20 alkyl or hydroxyl, and R4 is any of H, NH2 or NO2.
Other suitable nitrogen-containing corrosion inhibitor compounds include benzotriazole, 2-mercaptobenzothiazole, 1 -phenyl-5-mercapto- 1,2,3,4-tetrazole, thionalide, morpholine, melamine, distearylamine, stearoyl stearamide, cyanuric acid, aminotriazole, aminotetrazole and indazole.
Nitrogen-containing compounds such as amines, especi'ally distearylamine and ammonium compounds such as ammonium chloride, ammonium bromide, ammonium sulphate or diammonium hydrogen citrate are also suitable.
Mn(II) corrosion inhibitor compounds The detergent tablets may contain an Mn(II) corrosion inhibitor compound. The Mn(II) compound is preferably incorporated at a level of from 0.005% to 5% by weight, more preferably from 0.01% to 1%, most preferably from 0.02% to 0.4% by weight of the compositions. Preferably, the Mn(II) compound is incorporated at a level to provide from 0.1 ppm to 250 ppm, more preferably from 0.5 ppm to 50 ppm, most preferably from 1 ppm to 20 ppm by weight of Mn(II) ions in any bleaching solution.
The Mn (II) compound may be an inorganic salt in anhydrous, or any hydrated forms. Suitable salts include manganese sulphate, manganese carbonate, manganese phosphate, manganese nitrate, manganese acetate and manganese chloride. The Mn(II) compound may be a salt or complex of an organic fatty acid such as manganese acetate or manganese stearate.
The Mn(II) compound may be a salt or complex of an organic ligand. In one preferred aspect the organic ligand is a heavy metal ion sequestrant. In another preferred aspect the organic ligand is a crystal growth inhibitor.
Other corrosion inhibitor compounds Other suitable a a number of carbon atoms in the range of from 20 to 50; preferred hydrocarbons are saturated and/or branched; preferred hydrocarbon oil selected from predominantly branched C2545 species with a ratio of cyclic to noncyclic hydrocarbons of from 1:10 to 2:1, preferably from 1:5 to 1:1. A preferred hydrocarbon oil is paraffin. A paraffin oil meeting the characteristics as outlined above, having ratio of cyclic to noncyclic hydrocarbons of 32:68, is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
Water-soluble bismuth compound The detergent tablets of the present invention suitable for use in dishwashing methods may contain a water-soluble bismuth compound, preferably present at a level of from 0.005% to 20%, more preferably from 0.01% to 5%, most preferably from 0. 1% to 1% by weight of the compositions.
The water-soluble bismuth compound may be essentially any salt or complex of bismuth with essentially any inorganic or organic counter anion. Preferred inorganic bismuth salts are selected from the bismuth trihalides, bismuth nitrate and bismuth phosphate. Bismuth acetate and citrate are preferred salts with an organic counter anion.
Enzyme Stabilizing Svstem Preferred enzyme-containing compositions herein may comprise from 0.001% to 10%, preferably from 0.005% to 8%, most preferably from 0.01% to 6%, by weight of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, chlorine bleach scavengers and mixtures thereof. Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
Lime soap dispersant compound The compositions of active detergent components may contain a lime soap dispersant compound, preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
A lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions. Preferred lime soap disperant compounds are disclosed in PCT Application No. W093/08877.
Suds suppressing system The detergent tblets of the present invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to Io%, most preferably from 0.1% to 5% by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, 2alkyl and alcanol antifoam compounds. Preferred suds suppressing systems and antifoam compounds are disclosed in PCT Application No. W093/08876 and EP-A705 324.
Polymeric dye transfer inhibiting agents The detergent tablets herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
ODtical brightener The detergent tablets suitable for use in laundry washing methods as described herein, also optionally contain from 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
Hydrophilic optical brighteners useful herein include those having the structural formula:
wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2 hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
Clav softening system The detergent tablets suitable for use in laundry cleaning methods may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent.
The clay mineral compound is preferably a smectite clay compound. Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647.
European Patents No.s EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents.
Cationic fabric softening agents Cationic fabric softening agents can also be incorporated into compositions in accordance with the present invention which are suitable for use in methods of laundry washing. Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A- 1514 276 and EP-B-0 011 340.
Cationic fabric softening agents are typically incorporated at total levels of from 0.5% to 15% by weight, normally from 1% to 5% by weight.
Other optional ingredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes and filler salts, with sodium sulfate being a preferred filler salt. pH of the compositions The detergent tablets of the present invention are preferably not formulated to have an unduly high pH, in preference having a pH measured as a 1% solution in distilled water of from 8.0 to 12.5, more preferably from 9.0 to 11.8, most preferably from 9.5 to 11.5.
In another aspect of the present invention the compressed and non-compressed portions are formulated to deliver different pH.
Machine dishwashing method Any suitable methods for machine washing or cleaning soiled tableware are envisaged.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, silverware, metallic items, cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a detergent tablet in accord with the invention. By an effective amount of the detergent tablet it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods. Preferably the detergent tablets are from 15g to 40g in weight, more preferably from 20g to 35g in weight.
Laundrv washing method Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent tablet composition in accord with the invention. By an effective amount of the detergent tablet composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
In a preferred use aspect a dispensing device is employed in the washing method.
The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass. Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678. Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968. A convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
Examples Abbreviations used in Examples In the detergent compositions, the abbreviated component identifications haye the following meanings: STPP Sodium tripolyphosphate Citrate Tri-sodium citrate dihydrate Bicarbonate Sodium hydrogen carbonate Citric Acid Anhydrous Citric acid Carbonate Anhydrous sodium carbonate Silicate Amorphous Sodium Silicate (SiO2:Na2O ratio = 1.6 3.2) Metasilicate Sodium metasilicate (SiO2:Na2O ratio = 1.0) PBl Anhydrous sodium perborate monohydrate PB4 Sodium perborate tetrahydrate of nominal formula NaBO2.3H2O.H2O2 Plurafac C 13-C15 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5, sold under the tradename Plurafac by BASF Tergitol Nonionic surfactant available under the tradename TergitolTSS9 from Union Carbide SLF 18 Epoxy-capped poly(oxyalkylated) alcohol of Example III of WO 94/22800 wherein 1,2-epoxydodecane is substituted for 1,2-epoxydecane available under the tradename Polytergent SLF 1 8D from OLIN.
TAED Tetraacetyl ethylene diamine HEDP Ethane 1 -hydroxy- 1,1 -diphosphonic acid DETPMP . Diethyltriamine penta (methylene) phosphonate, marketed by monsanto under the tradename Dequest 2060 PAAC Pentaamine acetate cobalt (III) salt BzP Benzoyl Peroxide Paraffin Paraffin oil sold under the tradename Winog 70 by Wintershall.
Protease Proteolytic enzyme Amylase Amylolytic enzyme.
BTA Benzotriazole PA30 Polyacrylic acid of average molecular weight approximately 4,500 480N Random copolymer of 7:3 acrylate/methacrylate, average molecular weight 3,500 Sulphate Anhydrous sodium sulphate.
PEG 3000 Polyethylene Glycol molecular weight approximately 3000 available from Hoechst PEG 6000 Polyethylene Glycol molecular weight approximately 6000 available from lIoechst Sugar Household sucrose Gelatine Gelatine Type A, 65 bloom strength available from Sigma CMC Carboxymethylcellulose Dodecandioic Acid C12 dicarboxylic acid Adipic Acid C6 dicarboxylic acid Lauric Acid C12 monocarboxylic acid pH Measured as a 1% solution in distilled water at 200C In the following examples all levels are quoted as % by weight of the compressed portion, the non-compressed portion or the coating layer: Example 1 The following illustrates examples detergent tablets of the present invention suitable for use in a dishwashing machine.
The compressed portion is prepared by delivering the composition of active detergent components to a punch cavity of a modified 12 head rotary tablet press and compressing the composition at a pressure of 13KN/cm2. The modified tablet press provides tablet wherein the compressed portion has a mould. For the purposes of Example A to F the non-compressed portion is in particulate form. The noncompressed portion is accurately delivered to the mould of the compressed portion using a nozzle feeder. The non-compressed portion is adhered to the compressed portion by coating the non-compressed portion with a coating layer which contacts the compressed portion.
A B C D E F Compressed portion STPP - 55.10 52.0 52.80 50.00 38.20 Citrate 26.40 - - - - - Carbonate - 14.0 16.0 15.40 18.40 15.00 Silicate 26.40 14.80 15.0 12.60 10.00 10.10 Protease - - - 1.0 - Amylase 0.6 0.75 0.75 0.95 2.0 0.85 PB1 1.56 12.50 12.20 12.60 15.70 11.00 PB4 6.92 - - - - - Nonionic 1.50 1.5 1.50 1.65 0.80 1.65 PAAC - 0.016 0.016 0.012 - 0.008
TAED 4.33 - - - 1.30 HEDP 0.67 - - - - 0.92 DETPMP 0.65 - - - - Paraffin 0.42 0.50 0.5 0.55 0.50 - BTA 0.24 0.30 0.3 0.33 0.33 PA30 3.2 - - - - Perfume - - - 0.05 0.20 0.2 Sulphate 24.05 - 2.00 - 10.68 22.07 Misc/water to balance Weight (g) 20.0 20.0 20.0 20.0 30.0 Non-compressed portion Protease 12.80 8.12 9.92 8.00 8.00 8.00 Amylase 7.20 13.00 6.00 10.00 - 13.00 Metasilicate - 50.02 - 45.10 40.00 50.00 Bicarbonate - 13.00 20.02 13.00 6.00 13.00 Citric acid - 13.00 14.98 - 14.00 6.00 13.00 BzP - - - - 9.00 - Citrate 35.00 - - - 40 Silicate 42.00 - 48.03 - - - Weight (g) 5.0 3.0 3.0 3.0 5.0 Coating Layer Dodecandioic acid - 90.00 82.00 - - 90.00 Adipic acid - - - 92.00 - Lauric acid - - 8.00 - - Starch 15.00 10.00 10.00 8.0 - 10.00 PEG - - - - 100 Weight (g) 1.00 1.00 1.20 0.80 0.50 1.00
Total weight (g) of tablet 25g 25g 20g 30g 18g 35g Example 2 The compressed portion is prepared by delivering the composition of active detergent components to a punch cavity of a modified 12 head rotary tablet press and compressing the composition at a pressure of 13KN/cm2. The modified tablet press provides tablet wherein the compressed portion has a mould. For the purposes of Examples G to K the non-compressed portion comprises active detergent components and a binding agent. The non-compressed portion is then poured into the mould of the compressed portion. The detergent tablet is then subjected to a conditioning step, during which time the non-compressed portion hardens.
G H I J K L Compressed portion STPP - 55.10 52.0 52.80 50.00 38.20 Citrate 26.40 - - - - - Carbonate - 14.0 16.0 15.40 18.40 15.00 Silicate 26.40 14.80 15.0 12.60 10.00 10.10 Protease - - - 1.0 - Amylase 0.6 0.75 0.75 0.95 2.0 0.85 PB1 1.56 12.50 12.20 12.60 15.70 11.00 PB4 6.92 - - - - Nonionic 1.50 1.5 1.50 1.65 0.80 1.65 PAAC - 0.016 0.016 0.012 - 0.008 TAED 4.33 - - - 1.30 HEDP 0.67 - - - - 0.92 DETPMP 0.65 - - - - - Paraffin 0.42 0.50 0.5 0.55 0.50
BTA 0.24 0.30 0.3 0.33 0.33 - PA30 3.2 - - - Perfume - - - 0.05 0.20 0.2 Sulphate 24.05 - 2.00 - 10.68 , 22.07 Misc/water to balance Weight (g) 20.0g 20.0g 20.0g 20.0g 22g 30.0g Non-compressed portion Tergitol - - 21.5 18.92 PEG 3000 89.40 - - - - PEG 6000 86.9 - - BzP 10.60 11.00 - - 20.00 20.00 Sugar - - 53.4 29.04 65.00 65.00 Gelatine - - 15.01 30.00 5.00 5.00 Starch - - - 10.00 Water - - 10.00 10.00 10.00 10.00 Misc./balance Weight (g) 2.Sg 5.0g 2.Sg @ 2.Sg 3g 3g Total weight (g) of tablet 22.Sg 25g 22.Sg 22.Sg 25g 33g

Claims (31)

  1. Claims 1. A detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the detergent tablet comprises an enzyme.
  2. 2. A detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the weight ratio of compressed to non-compressed portion is greater than 0.5:1 and the detergent tablet comprises silicate.
  3. 3. A detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the weight ratio of compressed to non-compressed portion(s) is greater than 0.5:1 and the detergent tablet has a dissolution rate of greater than 0.33 g/min as determined using the SOTAX dissolution test method described herein.
  4. 4. A detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component, wherein the weight of the detergent tablet is less than 40g and the detergent tablet has a dissolution rate of greater than 0.33 g/min as determined using the SOTAX dissolution test method described herein.
  5. 5. A detergent tablet comprising: (a) a compressed portion comprising an active detergent component; and (b) a non-compressed, non-encapsulating portion comprising an active detergent component wherein the compressed portion provides a mould and the noncompressed portion is at least partially contained in the mould.
  6. 6. A detergent tablet according to any of claims 1 to 5 wherein the non-compressed portion is in solid, gel or liquid form.
  7. 7. A detergent tablet according to any preceding claim comprising a first and a second and optionally subsequent non-compressed portions.
  8. 8. A detergent tablet according to claim 7, when dependant on claim 6, wherein the compressed portion provides a plurality of moulds and each non-compressed portion is at least partially contained in a mould.
  9. 9. A detergent tablet according to either of claims 7 or 8 wherein at least two of the first, second and optional subsequent non-compressed portions comprises at least one different active detergent component.
  10. 10. A detergent tablet according to any preceding claim wherein the non-compressed portion is coated with a coating layer.
  11. 11. A detergent tablet according to claim 10 wherein the coating layer affixes the non-compressed portion to the compressed portion.
  12. 12. A detergent tablet according to claim 10 or 11 wherein the coating layer is watersoluble.
  13. 13. A detergent tablet according to any of claims 10 to 12 wherein the coating layer comprises a component selected from the group consisting of fatty acids, alcohols, diols, esters and ethers, adipic acid, carboxylic acid, dicarboxylic acid, polyvinyl acetate (PVA), polyvinyl pyrrolidone (PVP), polyacetic acid (PLA), polyethylene glycol (PEG) and mixtures thereof.
  14. 14. A detergent tablet according to claim 13 wherein the coating layer comprises a component selected from the group consisting of adipic acid, lauric acid suberic acid, azelaic acid, subacic acid, undecanedioic acid, dodecandioic acid, tridecanedioic acid and mixtures thereof.
  15. 15. A detergent tablet according to any preceding claim wherein the non-compressed portion is in particulate form.
  16. 16. A detergent tablet according to any preceding claim wherein the non-compressed portion comprises a solidified melt.
  17. 17. A detergent tablet according to any preceding claim wherein the non-compressed portion comprises a binding agent selected from the group consisting of sugar, starch, gelatine, and organic polymers.
  18. 18. A detergent tablet according to any preceding claim'wherein the compressed portion comprises a compressed particulate active detergent component.
  19. 19. A detergent tablet according to any preceding claim wherein the dissolution rate of the non-compressed portion is greater than the dissolution rate of the compressed portion measured using the SOTAX dissolution test method described herein.
  20. 20. A detergent tablet according to any preceding claim wherein the dissolution rate of the compressed portion is greater than the dissolution rate of the non-compressed portion measured using the SOTAX dissolution test method described herein.
  21. 21. A detergent tablet according to any preceding claim comprising an enzyme wherein the enzyme is selected from the group consisting of amylases, proteases, cellulases, hemicellulases, peroxidases, lipases, phospholipases and mixtures thereof.
  22. 22. A detergent tablet according to any preceding claim comprising an alkali metal silicate.
  23. 23. A detergent tablet according to claim 22 wherein the silicate is a sodium silicate having a SiO2:Na2O ratio of from 1.0 to 3.0.
  24. 24. A detergent tablet according to any preceding claim wherein the detergent tablet additionally comprises a disrupting agent which is a disintegrating agent, an effervescing agent or mixtures thereof.
  25. 25. A detergent tablet according to claim 24 wherein the disrupting agent is selected from the group consisting of starch, starch derivatives, alginate, carboxymethyl cellulose (CMC)-based polymers, sodium acetate, aluminium oxide, carbonate, bicarbonate, carboxylic acids and mixtures thereof.
  26. 26. A process for preparing a detergent tablet according to any preceding comprising the steps of: a) compressing a composition comprising an active detergent component to form a compressed portion; and b) delivering a composition comprising an active detergent component to the compressed portion to form a non-compressed, non-encapsulating portion.
  27. 27. A process according to claim 26 wherein the process comprises the steps of: a) compressing active detergent components to form a compressed portion having a mould; and b) delivering a composition comprising active detergent components to the mould.
  28. 28. A process according to either of Claims 26 or 27 additionally comprising a subsequent coating step wherein at least a portion of the non-compressed portion is coated with a coating layer such that the non-compressed portion substantially adheres to the compressed portion.
  29. 29. A process according to any of claims 26 to 28 additionally comprising a subsequent conditioning step, wherein the non-compressed portion and/or optionally the coating layer hardens.
  30. 30. Use of a detergent tablet according to any of claims 1 to 25 in a method for dishwashing.
  31. 31. Use of a detergent tablet according to any of claims 1 to 25 in a method for fabric laundering.
GB9716351A 1997-08-02 1997-08-02 Detergent tablet Withdrawn GB2327949A (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
GB9716351A GB2327949A (en) 1997-08-02 1997-08-02 Detergent tablet
EP01203388A EP1162258B1 (en) 1997-08-02 1998-08-03 Detergent tablet
EP98938306A EP0960187B1 (en) 1997-08-02 1998-08-03 Dishwashing method
ES98938306T ES2142782T3 (en) 1997-08-02 1998-08-03 METHOD FOR WASHING DISH.
CN98809752.4A CN1218029C (en) 1997-08-02 1998-08-03 Detergent tablet
PT98938306T PT960187E (en) 1997-08-02 1998-08-03 LOUD WASHING METHOD
DE29824535U DE29824535U1 (en) 1997-08-02 1998-08-03 Detergent tablet
JP2000505266A JP2001512177A (en) 1997-08-02 1998-08-03 Tablet detergent
DE69836835T DE69836835T2 (en) 1997-08-02 1998-08-03 detergent tablet
US09/485,138 US6451754B1 (en) 1997-08-02 1998-08-03 Process for preparing detergent tablet
DK98938306T DK0960187T3 (en) 1997-08-02 1998-08-03 Washing Method
ES01112070T ES2206365T3 (en) 1997-08-02 1998-08-03 DETERGENT TABLET.
AT01112070T ATE251665T1 (en) 1997-08-02 1998-08-03 DETERGENT TABLET
DE69808885T DE69808885T2 (en) 1997-08-02 1998-08-03 METHOD FOR RINSING DISHES
BR9815605-5A BR9815605A (en) 1997-08-02 1998-08-03 Detergent tablet
PCT/US1998/016144 WO1999006522A1 (en) 1997-08-02 1998-08-03 Detergent tablet
AT98938306T ATE226626T1 (en) 1997-08-02 1998-08-03 METHOD FOR WASHING DISHES
EP01112070A EP1134281B1 (en) 1997-08-02 1998-08-03 Detergent tablet
DE29823752U DE29823752U1 (en) 1997-08-02 1998-08-03 Detergent tablet
DE69818871T DE69818871T2 (en) 1997-08-02 1998-08-03 detergent tablet
CA002298510A CA2298510C (en) 1997-08-02 1998-08-03 Detergent tablet
AT01203388T ATE350456T1 (en) 1997-08-02 1998-08-03 DETERGENT TABLET
ES01203388T ES2280302T3 (en) 1997-08-02 1998-08-03 DETERGENT PAD.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9716351A GB2327949A (en) 1997-08-02 1997-08-02 Detergent tablet

Publications (2)

Publication Number Publication Date
GB9716351D0 GB9716351D0 (en) 1997-10-08
GB2327949A true GB2327949A (en) 1999-02-10

Family

ID=10816870

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9716351A Withdrawn GB2327949A (en) 1997-08-02 1997-08-02 Detergent tablet

Country Status (12)

Country Link
EP (3) EP0960187B1 (en)
JP (1) JP2001512177A (en)
CN (1) CN1218029C (en)
AT (3) ATE251665T1 (en)
BR (1) BR9815605A (en)
CA (1) CA2298510C (en)
DE (3) DE69836835T2 (en)
DK (1) DK0960187T3 (en)
ES (3) ES2280302T3 (en)
GB (1) GB2327949A (en)
PT (1) PT960187E (en)
WO (1) WO1999006522A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027067A1 (en) * 1997-11-26 1999-06-03 The Procter & Gamble Company Detergent tablet
WO1999027068A1 (en) * 1997-11-26 1999-06-03 The Procter & Gamble Company Detergent tablet
WO1999035225A2 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Moulded body dishwasher detergents containing surfactants
WO1999035231A1 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Shaped body with washing activity and a specific surface
WO1999035232A1 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Dish washing detergent shaped body with specific volumetric proportions
WO1999035236A1 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Specific shaped moulded body dishwasher detergents
WO2000004123A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet
WO2000004129A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet
GB2339792A (en) * 1998-07-17 2000-02-09 Procter & Gamble Detergent tablet
WO2000052127A1 (en) * 1999-03-03 2000-09-08 Henkel Kommanditgesellschaft Auf Aktien Method of preparing multi-phase moulded detergent and/or cleaning agent articles
WO2001019951A1 (en) * 1999-09-15 2001-03-22 Cognis Deutschland Gmbh & Co. Kg Detergent tablets
WO2001038475A1 (en) * 1999-11-25 2001-05-31 Unilever Plc Laundry product
GB2358405A (en) * 1999-12-17 2001-07-25 Unilever Plc Use of dish-washing compositions
GB2362161A (en) * 2000-03-11 2001-11-14 Mcbride Robert Ltd Detergent tablets
EP1184450A2 (en) * 1997-11-26 2002-03-06 The Procter & Gamble Company Detergent tablet
US6358911B1 (en) 1997-11-26 2002-03-19 The Procter & Gamble Company Detergent tablet
WO2002042407A2 (en) * 2000-10-31 2002-05-30 The Procter & Gamble Company Multi-phase detergent tablets and method of reblending these tablets
US6399564B1 (en) * 1997-11-26 2002-06-04 The Procter & Gamble Company Detergent tablet
US6544944B1 (en) * 1998-07-17 2003-04-08 Procter & Gamble Company Detergent tablet
US6551981B1 (en) * 1998-07-17 2003-04-22 Patrizio Ricci Detergent tablet
US6589932B1 (en) * 1998-07-17 2003-07-08 The Procter & Gamble Company Detergent tablet
DE10209157A1 (en) * 2002-03-01 2003-09-18 Henkel Kgaa Perfumed detergent tablets
DE10209156A1 (en) * 2002-03-01 2003-09-18 Henkel Kgaa Shaped body with subsequent surfactant dosage
DE10221559A1 (en) * 2002-05-15 2003-12-04 Henkel Kgaa Detergent tablets with active phase
GB2430617A (en) * 2005-09-28 2007-04-04 Anthony John Collier A shower system with washing dispenser

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69901211T2 (en) * 1998-07-17 2002-11-14 Procter & Gamble detergent tablet
DE29911484U1 (en) * 1998-07-17 2000-02-24 Procter & Gamble Detergent tablet
GB9901688D0 (en) 1999-01-26 1999-03-17 Unilever Plc Detergent compositions
GB2348435A (en) * 1999-04-01 2000-10-04 Procter & Gamble Softening compositions
EP1043390A1 (en) * 1999-04-09 2000-10-11 The Procter & Gamble Company Detergent tablet
DE19922578C2 (en) * 1999-05-17 2003-12-24 Benckiser Nv Process for the production of a multilayer tablet, in particular detergent tablet, and product which can be produced thereafter
WO2001036290A1 (en) 1999-11-17 2001-05-25 Reckitt Benckiser (Uk) Limited Injection-moulded water-soluble container
DE19964225C2 (en) * 1999-12-17 2002-01-24 Henkel Kgaa Pressing process for multi-phase moldings
DE19961367A1 (en) * 1999-12-17 2001-07-05 Henkel Kgaa Preparation of multi-phase shaped detergent bodies, which can include regions of temperature/pressure-sensitive components, by pressing core shaped bodies and particulate premix
DE10010760A1 (en) 2000-03-04 2001-09-20 Henkel Kgaa Laundry and other detergent tablets containing enzymes, e.g. controlled release tablets, have two or more uncompressed parts containing active substances and packaging system with specified water vapor permeability
DE10023812A1 (en) * 2000-05-15 2001-11-29 Reckitt Benckiser Nv Widening the choice of materials for multi-phase molded pieces, especially detergent tablets, even to pressure-sensitive materials comprises using a non-particulate matrix in the second phase of manufacture in a rotary press
ES2288998T3 (en) 2000-05-17 2008-02-01 Henkel Kommanditgesellschaft Auf Aktien MOLDED BODIES OF DETERGENTS OR CLEANING PRODUCTS.
GB0015350D0 (en) 2000-06-23 2000-08-16 Reckitt Benckiser Nv Improvements in or relating to compositions
GB0020964D0 (en) 2000-08-25 2000-10-11 Reckitt & Colmann Prod Ltd Improvements in or relating to containers
GB0029095D0 (en) * 2000-11-29 2001-01-10 Reckitt Benckiser Nv Improvements in or relating to packaging
DE10062262A1 (en) * 2000-12-14 2002-07-04 Henkel Kgaa Feedable tablet cores "
GB2373235A (en) 2001-03-16 2002-09-18 Reckitt Benckiser Composition packaged in film
GB2374830A (en) 2001-04-20 2002-10-30 Reckitt Benckiser Improvements in or relating to compositions/components including a thermoforming step
DE10120441C2 (en) 2001-04-25 2003-09-04 Henkel Kgaa Detergent tablets with a viscoelastic phase
MXPA03010366A (en) 2001-05-14 2004-03-16 Procter & Gamble Cleaning product.
GB2410209B (en) * 2002-01-26 2005-12-14 Aquasol Ltd Improvements in or relating to devices
GB2385599A (en) 2002-02-26 2003-08-27 Reckitt Benckiser Nv Packaged detergent composition
GB2385857B (en) 2002-02-27 2004-04-21 Reckitt Benckiser Nv Washing materials
GB2387598A (en) 2002-04-20 2003-10-22 Reckitt Benckiser Nv Water-soluble container and a process for its preparation
AU2003242641A1 (en) * 2002-06-11 2003-12-22 Unilever Plc Detergent tablets
DE60320062D1 (en) * 2002-06-11 2008-05-15 Unilever Nv detergent tablets
GB2391532B (en) 2002-08-07 2004-09-15 Reckitt Benckiser Water-soluble container with spacer between compartments
ATE367433T1 (en) * 2003-04-16 2007-08-15 Unilever Nv METHOD FOR PRODUCING MULTIPHASE CLEANING TABLETS WITH A SMOOTH PHASE
GB2401848A (en) 2003-05-20 2004-11-24 Reckitt Benckiser Two-compartment water-soluble container
GB2404662A (en) 2003-08-01 2005-02-09 Reckitt Benckiser Cleaning composition
GB2414958A (en) 2004-06-11 2005-12-14 Reckitt Benckiser Nv A process for preparing a water soluble article.
EP1642961A1 (en) * 2004-10-01 2006-04-05 Unilever N.V. Detergent compositions in tablet form
PL2944578T3 (en) 2005-03-10 2019-02-28 Reckitt Benckiser Finish B.V. Process for the preparation of a package containing compacted composition
GB0523336D0 (en) 2005-11-16 2005-12-28 Reckitt Benckiser Uk Ltd Injection moulding
GB0714811D0 (en) 2007-07-31 2007-09-12 Reckitt Benckiser Nv Improvements in or relating to compositions
GB0913808D0 (en) 2009-08-07 2009-09-16 Mcbride Robert Ltd Dosage form detergent products
AU2014390776B2 (en) 2014-04-15 2017-04-06 Ecolab Usa Inc. Novel solid block comprising one or more domains of prismatic or cylindrical shape and production thereof
JP6434722B2 (en) * 2014-06-27 2018-12-05 株式会社日新化学研究所 Transfer dye remover for polyvinyl chloride products
CN106833934B (en) * 2017-01-16 2020-04-10 广州立白企业集团有限公司 Enzyme-containing sheet detergent and preparation method thereof
CN106916659B (en) * 2017-01-24 2020-05-12 纳爱斯集团有限公司 Multilayer laundry tablet and preparation method thereof
EP3825392A1 (en) 2019-11-21 2021-05-26 Dalli-Werke GmbH & Co. KG Detergent tablet comprising an effervescent system
WO2021191175A1 (en) 2020-03-24 2021-09-30 Basf Se Detergent formulation in form of a three dimensional body
EP4166638A1 (en) 2021-10-13 2023-04-19 CLARO Products GmbH Cleaning tablet for cleaning spectacles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055100B1 (en) * 1980-12-18 1984-10-10 Jeyes Group Limited Lavatory cleansing blocks
US4913832A (en) * 1985-11-21 1990-04-03 Henkel Kommanditgesellschaft Auf Aktien Detergent compacts
EP0481547A1 (en) * 1990-10-17 1992-04-22 Unilever N.V. Machine dishwashing detergent tablets
WO1992020774A1 (en) * 1991-05-14 1992-11-26 Ecolab Inc. Two part chemical concentrate
WO1996010988A1 (en) * 1994-10-07 1996-04-18 Southland, Ltd. Enzyme containing effervescent cleaning tablet
EP0737738A2 (en) * 1995-04-12 1996-10-16 Cleantabs A/S Bleach tablets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9022724D0 (en) * 1990-10-19 1990-12-05 Unilever Plc Detergent compositions
US5316688A (en) * 1991-05-14 1994-05-31 Ecolab Inc. Water soluble or dispersible film covered alkaline composition
JP3142958B2 (en) * 1992-05-29 2001-03-07 ライオン株式会社 Tablet type detergent composition
JPH07102300A (en) * 1993-10-07 1995-04-18 Lion Corp Tabletted detergent composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055100B1 (en) * 1980-12-18 1984-10-10 Jeyes Group Limited Lavatory cleansing blocks
US4913832A (en) * 1985-11-21 1990-04-03 Henkel Kommanditgesellschaft Auf Aktien Detergent compacts
EP0481547A1 (en) * 1990-10-17 1992-04-22 Unilever N.V. Machine dishwashing detergent tablets
WO1992020774A1 (en) * 1991-05-14 1992-11-26 Ecolab Inc. Two part chemical concentrate
WO1996010988A1 (en) * 1994-10-07 1996-04-18 Southland, Ltd. Enzyme containing effervescent cleaning tablet
EP0737738A2 (en) * 1995-04-12 1996-10-16 Cleantabs A/S Bleach tablets

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027067A1 (en) * 1997-11-26 1999-06-03 The Procter & Gamble Company Detergent tablet
WO1999027068A1 (en) * 1997-11-26 1999-06-03 The Procter & Gamble Company Detergent tablet
EP1184450A3 (en) * 1997-11-26 2003-01-15 The Procter & Gamble Company Detergent tablet
US6399564B1 (en) * 1997-11-26 2002-06-04 The Procter & Gamble Company Detergent tablet
US6358911B1 (en) 1997-11-26 2002-03-19 The Procter & Gamble Company Detergent tablet
EP1184450A2 (en) * 1997-11-26 2002-03-06 The Procter & Gamble Company Detergent tablet
WO1999035225A2 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Moulded body dishwasher detergents containing surfactants
WO1999035231A1 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Shaped body with washing activity and a specific surface
WO1999035232A1 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Dish washing detergent shaped body with specific volumetric proportions
WO1999035236A1 (en) * 1997-12-30 1999-07-15 Henkel Kommanditgesellschaft Auf Aktien Specific shaped moulded body dishwasher detergents
WO1999035225A3 (en) * 1997-12-30 1999-09-23 Henkel Kgaa Moulded body dishwasher detergents containing surfactants
GB2339790A (en) * 1998-07-17 2000-02-09 Procter & Gamble Detergent tablet
EP1103596A3 (en) * 1998-07-17 2001-06-13 The Procter & Gamble Company Detergent tablet
GB2339791A (en) * 1998-07-17 2000-02-09 Procter & Gamble Detergent tablet
GB2339793A (en) * 1998-07-17 2000-02-09 Procter & Gamble Detergent tablet
FR2782092A1 (en) * 1998-07-17 2000-02-11 Procter & Gamble DETERGENT TABLET
FR2782089A1 (en) * 1998-07-17 2000-02-11 Procter & Gamble DETERGENT TABLET
EP0979864A1 (en) * 1998-07-17 2000-02-16 The Procter & Gamble Company Detergent tablet
WO2000004128A3 (en) * 1998-07-17 2000-03-30 Procter & Gamble Detergent tablet
WO2000004123A3 (en) * 1998-07-17 2000-04-13 Procter & Gamble Detergent tablet
US6589932B1 (en) * 1998-07-17 2003-07-08 The Procter & Gamble Company Detergent tablet
GB2339791B (en) * 1998-07-17 2001-01-24 Procter & Gamble Detergent tablet
GB2339792B (en) * 1998-07-17 2001-01-24 Procter & Gamble Detergent tablet
GB2339793B (en) * 1998-07-17 2001-01-24 Procter & Gamble Detergent tablet
GB2339790B (en) * 1998-07-17 2001-01-24 Procter & Gamble Detergent tablet
US6551981B1 (en) * 1998-07-17 2003-04-22 Patrizio Ricci Detergent tablet
EP1103596A2 (en) * 1998-07-17 2001-05-30 The Procter & Gamble Company Detergent tablet
EP1103597A2 (en) * 1998-07-17 2001-05-30 The Procter & Gamble Company Detergent tablet
US6544944B1 (en) * 1998-07-17 2003-04-08 Procter & Gamble Company Detergent tablet
EP1103597A3 (en) * 1998-07-17 2001-06-06 The Procter & Gamble Company Detergent tablet
GB2339792A (en) * 1998-07-17 2000-02-09 Procter & Gamble Detergent tablet
WO2000004123A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet
WO2000004129A3 (en) * 1998-07-17 2001-08-23 Procter & Gamble Detergent tablet
WO2000004129A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet
EP0976819A1 (en) * 1998-07-17 2000-02-02 The Procter & Gamble Company Detergent tablet
WO2000004128A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet
WO2000052127A1 (en) * 1999-03-03 2000-09-08 Henkel Kommanditgesellschaft Auf Aktien Method of preparing multi-phase moulded detergent and/or cleaning agent articles
WO2001019951A1 (en) * 1999-09-15 2001-03-22 Cognis Deutschland Gmbh & Co. Kg Detergent tablets
US6951838B1 (en) 1999-09-15 2005-10-04 Cognis Deutschland Gmbh & Co. Kg Detergent tablets
US6555516B1 (en) 1999-11-25 2003-04-29 Unilever Home & Personal Care Usa, Division Of Conopco, Laundry product
WO2001038475A1 (en) * 1999-11-25 2001-05-31 Unilever Plc Laundry product
GB2358405A (en) * 1999-12-17 2001-07-25 Unilever Plc Use of dish-washing compositions
GB2358405B (en) * 1999-12-17 2004-10-20 Unilever Plc Use of dish-washing compositions
GB2362161A (en) * 2000-03-11 2001-11-14 Mcbride Robert Ltd Detergent tablets
WO2002042407A2 (en) * 2000-10-31 2002-05-30 The Procter & Gamble Company Multi-phase detergent tablets and method of reblending these tablets
WO2002042407A3 (en) * 2000-10-31 2002-08-29 Procter & Gamble Multi-phase detergent tablets and method of reblending these tablets
DE10209157A1 (en) * 2002-03-01 2003-09-18 Henkel Kgaa Perfumed detergent tablets
DE10209156A1 (en) * 2002-03-01 2003-09-18 Henkel Kgaa Shaped body with subsequent surfactant dosage
DE10221559A1 (en) * 2002-05-15 2003-12-04 Henkel Kgaa Detergent tablets with active phase
DE10221559B4 (en) * 2002-05-15 2009-04-30 Henkel Ag & Co. Kgaa Detergent and detergent tablets with active phase
GB2430617A (en) * 2005-09-28 2007-04-04 Anthony John Collier A shower system with washing dispenser

Also Published As

Publication number Publication date
EP1162258B1 (en) 2007-01-03
CN1218029C (en) 2005-09-07
DE69808885T2 (en) 2003-06-18
ES2206365T3 (en) 2004-05-16
DE69836835T2 (en) 2007-10-11
EP0960187A1 (en) 1999-12-01
EP0960187B1 (en) 2002-10-23
DE69818871D1 (en) 2003-11-13
EP1134281A1 (en) 2001-09-19
WO1999006522A1 (en) 1999-02-11
CN1272875A (en) 2000-11-08
DE69836835D1 (en) 2007-02-15
EP1162258A3 (en) 2004-01-14
ES2280302T3 (en) 2007-09-16
ATE350456T1 (en) 2007-01-15
ATE226626T1 (en) 2002-11-15
EP1162258A2 (en) 2001-12-12
DE69808885D1 (en) 2002-11-28
JP2001512177A (en) 2001-08-21
ES2142782T3 (en) 2003-05-01
PT960187E (en) 2003-03-31
BR9815605A (en) 2001-11-20
DK0960187T3 (en) 2003-02-24
ATE251665T1 (en) 2003-10-15
ES2142782T1 (en) 2000-05-01
EP1134281B1 (en) 2003-10-08
CA2298510C (en) 2004-05-11
CA2298510A1 (en) 1999-02-11
GB9716351D0 (en) 1997-10-08
DE69818871T2 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
CA2298510C (en) Detergent tablet
CA2311715C (en) Detergent tablet
US6274538B1 (en) Detergent compositions
US6358911B1 (en) Detergent tablet
EP0960188B1 (en) Dishwashing method
US6399564B1 (en) Detergent tablet
US6599871B2 (en) Detergent tablet
US6451754B1 (en) Process for preparing detergent tablet
EP1144584B1 (en) Detergent tablet
US20080113893A1 (en) Process for preparing detergent tablet
GB2327947A (en) Detergent tablet
AU762815B2 (en) Detergent tablet
EP1113071B1 (en) Detergent compositions
US6551981B1 (en) Detergent tablet
GB2324495A (en) Multi-layer detergent tablet
CA2296354C (en) Detergent compositions
AU4968699A (en) Detergent tablet
US6544943B1 (en) Detergent tablet
EP1184450A2 (en) Detergent tablet

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)