GB2050105A - Automatic chroma gain control circuit for S.E.C.A.M. coder - Google Patents

Automatic chroma gain control circuit for S.E.C.A.M. coder Download PDF

Info

Publication number
GB2050105A
GB2050105A GB8010325A GB8010325A GB2050105A GB 2050105 A GB2050105 A GB 2050105A GB 8010325 A GB8010325 A GB 8010325A GB 8010325 A GB8010325 A GB 8010325A GB 2050105 A GB2050105 A GB 2050105A
Authority
GB
United Kingdom
Prior art keywords
signal
gain
channel
frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8010325A
Other versions
GB2050105B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/094,279 external-priority patent/US4264918A/en
Application filed by RCA Corp filed Critical RCA Corp
Publication of GB2050105A publication Critical patent/GB2050105A/en
Application granted granted Critical
Publication of GB2050105B publication Critical patent/GB2050105B/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/06Transmission systems characterised by the manner in which the individual colour picture signal components are combined
    • H04N11/18Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous and sequential signals, e.g. SECAM-system
    • H04N11/183Encoding means therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits

Abstract

In a method and apparatus for ensuring that the frequency deviation of the colour sub-carrier in a S.E.C.A.M. encoder are within tolerance, automatic gain control is applied to the output signals from the matrix 12, 18,..., before they enter the frequency modulator via resistors 30a, 30b and 32a, 32b, by applying, during the vertical blanking interval (Fig. 5, not shown) two reference signals R<+> and R<-> in succession from a generator 58, and so controlling the impedance of an FET 74 such that the frequency difference, as determined by a circuit 62, between the modulator outputs for the two reference signals R<+> and R<-> is brought to a reference value. A detailed circuit (Fig. 7, not shown) using digital counting techniques, is described for circuit 62. <IMAGE>

Description

SPECIFICATION Automatic chroma gain control circuits useful in S.E.C.A.M. coders The present invention relates to automatic gain control circuits, and more particularly to those used in the chroma channel of a SECAM encoder.
Recent developments concerning the French SECAM standard indicate that several tolerances of the SECAM system will be made much tighter in the future. This not only leads to problems in designing encoder circuits, but also makes it difficult to adjust SECAM encoders in the production line. Test equipment such as vectorscopes, which enable simple and precision adjustment of NTSC or PAL encoders, do not exist for SECAM. Therefore it is very desirable to introduce self-adjusting circuits in SECAM encoders.
It is therefore an object of the invention to provide an automatic chroma channel gain adjusting circuit and method.
In brief, this and other objects are achieved by inserting a test signal into the channel, measuring the resulting deviation due to the test signal and then controlling the gain of the channel.
In the drawings: Figure 1 shows a block diagram of a SECAM encoder; Figures 2 and 3 show time diagrams; Figure 4 shows a block diagram one one embodiment of the invention; Figure 5 shows some time diagrams; Figure 6 shows an alternative embodiment; Figure 7 shows a more detailed block diagram of the alternative embodiment; Figures 8-11 show some time diagrams; and Figure 12 shows a detailed schematic.
The SECAM system uses a frequency modulation of the subcarrier by the line sequential color difference signals. The center frequency of the color subcarrier is FOB = 4.25 MHz for the B-Y signal and FOR = 4.40625 MHz for the R-Y signal. The maximum deviation of the subcarrier is represented by DB and DR for the B-Y and R-Y signals respectively and should be kept to an accuracy of 10 kHz. During the occurrence of horizontal synchronization pulses, the modulator is resynchronized to FOB or FOR.
Fig. 1 shows a circuit of a SECAM encoder. The first portion 100 is a baseband signal processing portion that takes three primary color signals and forms properly pre-emphasized and clamped line sequential signals having line identification signals. These signals are applied to a frequency control loop 102 that provides a baseband SECAM FM color signal from VCO 48 in accordance with the line sequential signals. The FM signal is then applied to a high frequency signal processing portion 104 that does alternate-line phase inversion, more pre-emphasis, and filtering.
Now examining Fig. 1 in more detail, the R, G, and B signals from an appropriate source, such as camera pickup tubes, are applied to a matrix 1 2. Matrix 1 2 comprises potentiometers 1 3 and 1 3a for manually adjusting the amplitudes of the color difference signal R-Y and B-Y.
In accordance with the principles of the present invention, in the preferred embodiment these potentiometers will be replaced by means for providing automatic adjustment. One output provides the luminance signal Y, which is applied to a delay circuit 14, which compensates for the inherent circuitry delay that chrominance signals applied to input 1 7 of adder 1 6 undergo.
From there the luminance signal is applied to adder 16, which also receives composite synchronization signals at input 17a. Color difference signals (R-Y, B-Y) are also produced by matrix 12, are alternately fed through line sequential switch 18, which receives a half line frequency switching control signal, (fH/2), to a pre-emphasis, clamping and blanking circuit 20, which receives blanking and clamping pulses. In circuit 20, the color difference signals are given a low frequency pre-emphasis, in accordance with SECAM standards. Then they are clamped to a voltage UB/2 during the blanking interval. From circuit 20 the color difference signals go to a switch 22.During the vertical identification period, which is a time period during the field blanking time when signals are sent that indicate which color difference signal is being transmitted, switch 22, which is controlled by a bottle insertion signal applied to control input 23, connects the sawtooth output signal of the bottle generator 24 (which is formally called a SECAM line identification signal generator) to the one input of each of the switches 26 and 28.
At other times one of the color difference signals is applied to switches 26 and 28. Switches 26 and 28 are controlled by means of an fH/2 signal, similar to the operation of switch 1 8. During the occurrence of the B-Y line, resistor 30 is connected to a voltage source 27 of value UB/2 through switch 26, while resistor 32 is connected to the output of switch 22 through switch 28 so as to feed the B-Y signal to the non-inverting input of the amplifier 34. During the occurrence of the R-Y line, the output of switch 22 is connected to resistor 30 and to the inverting input of amplifier 34 through switch 26. At the same time, voltage source 27 is connected by switch 28 to resistor 32 to the non-inverting input.This alternation of the color signals applied to amplifier 34 alternates the direction of deviation of the R-Y and B-Y color signals. Resistor 36 supplies negative feedback to control the gain of amplifier 34. Also a center frequency control signal generated by means of a phase detector 38, that receives during alternate lines the frequencies FOR and FOB, and a sample-and-hold circuit 40, is added at the non-inverting input of amplifier 34 through resistor 42. The sample pulse for sample-and-hold circuit 40 comprises a horizontal synchronization pulse. This resynchronizes VCO 48 to the frequencies FOR or FOB during the horizontal synchronization period.After passing through an amplitude limiter stage 44, that controls the deviation limits, and a low pass filter 46, which has a cutoff frequency of about 1.3 MHz, the output signal of amplifier 34 modulates the frequency of the voltage controlled oscillator 48 when it is not being resynchronized. The output of the voltage controlled oscillator 48 is applied to subcarrier phase switch 50, which receives a switching signal at input 51 to cause a 180 degree phase inversion each frame and also on one line out of every three in accordance with SECAM standards. The output of switch 50 is fed through a bell shaped response filter 52 to increase the color subcarrier amplitude during high subcarrier frequency deviation, which also is in accordance with SECAM standards.A band pass filter 54, which has a band pass of from 3 to 5.5 MHz, receives the output of filter 52 and applies it to a blanking circuit 56, which receives blanking pulses, before the FM color signal is added to the Y and composite sync signals by adder 16.
For both color difference signals the subcarrier is modulated so that there is a linear relationship between the change in subcarrier frequency and the value of the color difference signals. The deviations for European Broadcast Union color bars are as follows and are shown in Fig. 2 together with the maximum deviation limits of 4.756 MHz and 3.900 MHz: R+= + 280 kHz 4406.25 + 280 kHz = 4686.25 kHz ) R- -280kHz 4406.25-280kHz = 4l262SkHz)TOLERANCES:: B+ = + 230 kHz 4250 + 230 kHz = 4480 kHz ) < + 5 kHz B-=-230kHz 4250-230kHz = 4020 )- - Current SECAM encoders need two adjustments for R-Y and B-Y gain (potentiometers 1 3 and 1 3a in Fig. 1). It is not easy to set the chroma gain in the production line for two reasons: (a) the tolerances are < + 5 kHz and (b) due to nonlineartiy of the modulator (VCO 48) a compromise must be made, as can be seen in the example of Fig. 3a, which shows an ideal R-Y line modulator transfer function and the actual non-linear modulator transfer function.
Best compromise is obtained if i\R - =AR + or - aR- = dR + The same is true for the B-Y line. It has been found in practice that the nonlinearity of the voltage controlled oscillators normally used is < + 1 % which is shown in exaggerated form in Fig. 3b. Assuming an error of + 1 % for worst case consideration, this results in a deviation error of + 2.8 kHz (for + 280 kHZ deviation). Therefore, it makes no sense to adjust, for example, the chroma gain very accurately for the R + deviation because the R - signal then may be out of the tolerance.It should be noted that the slope of the voltage to frequency characteristic of the oscillator also changes due to temperature changes or aging. An automatic chroma gain circuit has not only to compensate for the gain change of the VCO, but it must also set the gain automatically to the best compromise of the R+ and R- deviation and B+ and Bdeviation, respectively.
Fig. 4 shows a preferred embodiment of a block diagram of a circuit constructed in accordance with the principles of the present invention wherein corresponding elements have been given reference numbers corresponding to that of Fig. 1. It will be noted that the box labelled 12, 18, 20, 22, 26, 28 comprises those similarly numbered elements as shown in Fig.
1. Further, for simplicity, those portions of Fig. 1 that are unchanged are not shown. The circuit of Fig. 4 allows control of the gain of the R-Y line. A control circuit for the B-Y line is identical and is not shown. Just after the beginning of the vertical blanking interval, an R + only and an R- only signal as shown in Fig. 5f from color bar generator 58, which generates the standard known EBU color bars, are inserted into matrix 1 2 by input selector switch 60. A frequency measurement circuit 62, which is shown in greater detail in Fig. 7, measures the frequency of the deviated subcarrier from detector 38 for both signals, R+ and R-, respectively. Phase detector 38 has alternate reference signals FOR and FOB alternately applied to it by switch 72 under the control of half line frequency pulses as shown in Fig. 5e. By means of a coincidence phase detector 64 and an integrator circuit 66, a D.C. voltage is generated in order to control the R-Y chroma gain so that R+ + R- - +R = 280 kHz.
2 To ensure that the gain loop also operates correctly if the input of matrix 1 2 is connected to an external source (e.g., the pick-up tubes of a camera), the input selector switch 60 is periodically switched to the color bar generator output during R+ only and R - only by means of an OR gate 68. The generator 58, gate 68, and measuring circuit 62 are under the control of a control line insertion enable signal labelled "CE" (shown in Fig. 5H) to ensure that insertion takes place at the beginning of the vertical blanking interval (shown in Fig. 5g). Further, a switch 70 provides a manually selectable control of insertion of a signal from a camera or color bar generator 58.
The R + only and R - only signals comprises the RGB combinations as follows: R+ (=red) R=High R- (=cyan) R=L G = Low G = H B = Low B = H Note that the color bar generator 58 and the input selector 60 are already present in the RCA Model TK-47 camera.
The gain control element in Fig. 4 comprises a FET 74 which is connected as a variable shunt resistor. The resistors 30 and 32 of Fig. 1 are divided into two parts 30a/30b and 32a/32b, respectively, and form in connection with the FET, a variable attenuator, which responds to the gain control voltage from integrator 66 applied to FET 74.
This circuit works well for relatively low signal amplitudes ( < 300 mV peak to peak). For higher signal amplitudes the attenuation becomes signal-dependent. A more sophisticated solution uses a linear multipler circuit 76 as shown in Fig. 6 instead of FET 74. In the RCA Model TK-47 camera this multiplier circuit is already built in and used as the "contrast compression" multiplier. It is very simple to feed the chroma gain control signal to the same linear multiplier 76 so that no FET attenuator 74 is necessary. For the operation of the automatic chroma gain control circuit of the invention, either type of gain control element can be used.
The block diagram in Fig. 7 shows more details of the preferred embodiment of a circuit constructed in accordance with the principles of the invention, where corresponding elements have been given corresponding reference numbers and some elements already described have been shown in consolidated blocks. The output of the VCO 48 is fed to the phase detector 38 which can be MC 4044 from Motorola Inc., Phoenix, Arizona, USA, which contains an edge triggered phase detector 78 used to synchronize the VCO 48, and an EX-OR (Exclusive OR) gate 80, which operates as a frequency mixer for the VCO signal and the reference frequency.
This difference frequency is 280 kHz for R+ and R-, respectively, if the R-Y gain is correctly adjusted, and if the VCO 48 is absolutely linear. Note that the reference frequency at the input of the phase detector is FOR (= 4.40625 MHz) for the R-Y line and FOB (= 4.25 MHz) for the B-Y line.
The output of the EX-OR gate 80 is lowpass filtered by filter 82 and fed to a buffer 84 whose gain is so high that it saturates and produces a square wave output signal when control enable signal CE applied to it is high. From buffer 84, the pulses are applied to divider-decoder 86, where it is divided by 4 to form a signal to be measured by detector 64. One output of the divider decoder 86 is used to start a reference divider comprising dividers 88 and 90 which generates a time reference pulse (TR), which is fed to coincidence detector 64 through inverter 92. If the divide-by-4 output of the divider-decoder 86 is in coincidence with the time reference pulse TR, the output voltage Ug of the integrator 66 does not change and the R-Y gain is exact.
Otherwise Ug changes until coincidence is achieved. The enable signal CE applied to the buffer stage 84 ensures that only during the two control lines (R- only, R+ only, see Fig. 5f and h) is the output of the EX-OR gate 80 fed to the divider-decoder 86. This enable signal CE is the same as in Fig. 4 and Fig. 5h, where it is called "control line insertion enable." Fig. 8 shows waveforms present in the circuit of Fig. 7. The operation of the circuit of Fig. 7 is now described in detail.
The first positive transition of the BO (buffer output) signal is transmitted to the set (s) input of flip-flop 94. Its output 0 goes low and enables flip-flop 90 of the reference divider to divide the reference subcarrier FOR by two. Positive transitions of the output 0 of flip-flop 90 clock the divide-by-32 circuit 88. After thirty-one clock pulses, the output of the divide-by-32 circuit 88 goes low, while it goes high again with the next positive transition of waveform I (Fig. 9c). The positive transition of TR (Fig. 8d) loads the divide-by-32 circuit 88 and also triggers flip-flop 94.
Signal A goes high and disables the divide-by-two circuit 90. At the same time the dividerdecoder 86 continues to count the signal BO. After 4 pulses of signal BO, the output of the divider-decoder 86, which is the signal to be measured (G), shown in Fig. 8c goes high and disables itself (stop).
The time reference pulse TR (Fig. 8e) closes the coincidence phase detector 64 and connects signal GE to the input of the integrator 66. If signals GE and TR are in coincidence, the output voltage U of the integrator 66 does not change because its input current comprises a positive and negative part of equal amplitude, and therefore the R-Y chroma gain is correct. Otherwise U g changes until coincidence is obtained.The divider ratio of the divide-by-32 is calculated as follows: 1 pulses of signal BO = --------= 14.2857 ys 280 kHz 1 subcarrier cycle = ----------= = 226.95 ns 4.40625 mHz 14.2857 = = 62.94 = 63 pulses 226.95 In Fig. 9 it can be seen that the center point P of the time reference pulse (Fig. 9b) corresponds to the sixty-third pulse of FOR (Fig. 9b), if the reference divider 90 and 92 is programmed to 32. It should be noted that flip-flop 90 is used to divide FOR by two in order to achieve a wider time reference pulse, as is needed to be generated to keep R+ +R = = 280 kHz 2 constant as explained below.
Fig. 8a shows that two cycles (R- cycle and R+ cycle) are used to generate Ug. The assumption that U g does not change if signals TR and GE are in coincidence must be modified as follows: U does not change if the average current into the integrator 66 of both cycle is zero.
Fig. 10 shows three cases having all an average current of zero for the two cycles. Fig. 1 0a shows the relations if R - and R+ are exactly 280 kHz (no nonlinearity of the VCO), while Fig.
1 0b and 10c shows the relation for a nonlinearity of the VCO of approximately 1.5%. The appropriate extreme values of R+ and R- are calculated as follows. The positive-going edge of signal GE for the R + signal in Fig. 1 0b is in coincidence with the 64th clock pulse and therefore the frequency of 44406.25 R+ is: --------- = 275.39- - 4.6 kHz ) 64 )~-+15% 44406.25 and R- is: = = 284.27- + 4.3 kHz) 62 It has been mentioned earlier that the nonlinearity of the VCO is < 1 % and as a result, the positive-going edge of the signal GE always lies within the positive part of the TR pulse for both cycles R + and R - if the average current into the integrator 66 is zero, and therefore stable operation is obtained. Fig. 11 shows a practical example for a nonlinearity of 1%. It can be seen in Fig. 11 that then R- is 282.8 kHz and R+ is 277.2 kHz and therefore R-+R+ 282.8+277.2 ------ = ~~~~~~~~~~~ = = 280 kHz 2 2 As mentioned earlier the same could be done to control the B-Y gain. It has been found that very good results are obtained if the B-Y gain is adjustable by means of a potentiometer in the matrix circuit of Fig. 1 comprising stable resistors and feedback-stabilized amplifier. The R-Y gain loop, as described above, then compensates for the temperature and aging influences for both the R-Y and B-Y line.
Fig. 12 shows the details of the circuit as used in the RCA Model TK-47 camera including RCA standard integrated circuit type numbers. Its operation is as described.

Claims (11)

1. A method of controlling the gain of a SECAM chroma channel having a frequency modulator, said method comprising inserting a test signal into said channel, measuring the resulting frequency deviation due to said test signal, and controlling the gain of said channel in accordance with the resulting deviation.
2. A method as claimed in Claim 1, wherein said test signal is inserted during the vertical blanking interval.
3. A method as claimed in Claim 1, wherein said measuring step comprises frequency dividing the deviated signal to provide a signal to be measured, providing time reference pulses, coincidence detecting said signal to be measured and said time reference pulses, and integrating the resultant signal of said detecting step.
4. A method as claimed in Claim 1, wherein said controlling step comprises applying a control signal to a multiplier.
5. A method as claimed in Claim 1, wherein said controlling step comprises applying a control signal to a shunting gain control element.
6. A device comprising a SECAM chroma channel having a frequency modulator, means for inserting a test signal into said channel, means for measuring the resulting frequency deviation due to said test signal, and means for controlling the gain of said channel in accordance with the resulting deviation.
7. A device as claimed in Claim 6, wherein said inserting means inserts said test signal during the vertical blanking time.
8. A device as claimed in Claim 6, wherein said measuring means comprises a dividerdecoder for dividing the deviated signal to produce a signal to be measured, a reference divider for dividing a reference signal to produce time reference pulses, a coincidence detector coupled to receive said time reference pulses and said signal to be measured, and an integrator coupled to the coincidence detector.
9. A device as claimed in Claim 6, 7 or 8 wherein said gain control means comprises a linear multiplier disposed in said channel.
10. A device as claimed in Claim 6, 7 or 8 wherein said gain control means comprises a shunting element.
11. SECAM apparatus substantially as hereinbefore described with reference to Fig. 4, Fig.
6, Fig. 7, or Fig. 1 2 of the accompanying drawings.
GB8010325A 1979-04-05 1980-03-27 Automatic chroma gain control circuit for secam coder Expired GB2050105B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7912024 1979-04-05
US06/094,279 US4264918A (en) 1979-04-05 1979-11-19 Automatic chroma gain control circuits useful in secam coders

Publications (2)

Publication Number Publication Date
GB2050105A true GB2050105A (en) 1980-12-31
GB2050105B GB2050105B (en) 1983-06-15

Family

ID=26271138

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8010325A Expired GB2050105B (en) 1979-04-05 1980-03-27 Automatic chroma gain control circuit for secam coder

Country Status (3)

Country Link
DE (1) DE3013195C2 (en)
FR (1) FR2453573B1 (en)
GB (1) GB2050105B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528527A (en) * 1982-03-08 1985-07-09 Rca Corporation SECAM Modulator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2283611A1 (en) * 1974-08-30 1976-03-26 Thomson Csf DEVICE FOR CONTROLLING THE REST FREQUENCY OF A COLOR TELEVISION SUB-CARRIER AND CORRESPONDING ENCODERS FOR THE SECAM SYSTEM
DE2446539A1 (en) * 1974-09-28 1976-04-15 Bosch Gmbh Robert CIRCUIT ARRANGEMENT FOR AUTOMATIC GAMMA ADJUSTMENT
GB2031676B (en) * 1978-09-02 1983-05-11 Marconi Instruments Ltd Frequency modulation systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528527A (en) * 1982-03-08 1985-07-09 Rca Corporation SECAM Modulator

Also Published As

Publication number Publication date
GB2050105B (en) 1983-06-15
FR2453573B1 (en) 1986-05-02
DE3013195A1 (en) 1980-10-23
FR2453573A1 (en) 1980-10-31
DE3013195C2 (en) 1982-11-11

Similar Documents

Publication Publication Date Title
CA1106057A (en) Electronic signal processing apparatus
EP0160489A2 (en) Phase responsive composite video signal control system
US4725894A (en) Digital conversion system for a color video signal that is capable of converting an analog composite and an analog component video signal into a digital composite signal and a digital component color signal
US4680621A (en) Method and apparatus for variable phasing of periodic signals
US4264918A (en) Automatic chroma gain control circuits useful in secam coders
GB1487573A (en) Video time base corrector
CA1146666A (en) Circuit arrangement in a colour television encoder
US4296431A (en) High-resolution television system
GB2050105A (en) Automatic chroma gain control circuit for S.E.C.A.M. coder
McMann et al. Improved signal processing techniques for color television broadcasting
GB2157106A (en) Gain control in a digital video signal processor
EP0285078A2 (en) Method and apparatus for calibrating the phase of a video signal
US4255758A (en) Self-adjusting bell filter circuit for use in SECAM coders
US4821087A (en) Encoder circuit eliminating carrier leak
US4263609A (en) Automatic deviation limit control circuit for secam encoders
USRE34169E (en) Phase responsive composite video signal control system
US4030120A (en) Processing arrangement and correcting device for color television signals
US4327372A (en) Encoding circuit for a secam color television transmitter
JPH0431237B2 (en)
GB1509958A (en) Control circuit for controlling the resting frequency of a frequency-modulated colour television sub-carrier
US3471635A (en) Sequential-simultaneous colour television system using a frequency modulated subcarrier
US2875272A (en) Color synchronizing circuit
GB2048610A (en) Automatic limit control for S.E.C.A.M. encoder
RU2039373C1 (en) Device for interface between computer and tv set
US4152720A (en) Contrast correction arrangements

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee