EP3910326A1 - System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material - Google Patents

System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material Download PDF

Info

Publication number
EP3910326A1
EP3910326A1 EP20174239.2A EP20174239A EP3910326A1 EP 3910326 A1 EP3910326 A1 EP 3910326A1 EP 20174239 A EP20174239 A EP 20174239A EP 3910326 A1 EP3910326 A1 EP 3910326A1
Authority
EP
European Patent Office
Prior art keywords
ultra
antenna
carrier substrate
broadband
measuring cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20174239.2A
Other languages
German (de)
French (fr)
Inventor
Tim Wegner
Stefan Gebhardt
Armin Kohler
Eduard Bischler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RECHNER INDUSTRIE-ELEKTRONIK GmbH
Original Assignee
Rechner Industrie-Elektronik GmbH
Technische Universitaet Ilmenau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rechner Industrie-Elektronik GmbH, Technische Universitaet Ilmenau filed Critical Rechner Industrie-Elektronik GmbH
Priority to EP20174239.2A priority Critical patent/EP3910326A1/en
Priority to CA3116798A priority patent/CA3116798A1/en
Priority to AU2021202812A priority patent/AU2021202812B2/en
Priority to US17/316,347 priority patent/US11860025B2/en
Publication of EP3910326A1 publication Critical patent/EP3910326A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/09Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens wherein the primary active element is coated with or embedded in a dielectric or magnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface

Definitions

  • the invention relates to a system for recognizing and / or determining the volume of bodies or substances made of dielectric and / or conductive material within an interior of a measuring cell, in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall that has a surface directed into the interior having.
  • sensors will also be required in the future that provide information on volumetric product distribution in a contactless manner and / or are suitable for level measurements through material layers.
  • level measurements are carried out using a wide variety of measurement methods, a basic distinction being made between limit level measurement and continuous measurement.
  • limit level measurements several sensors are usually installed at defined height positions in the container wall or vertically from above, so that these mostly only serve to avoid overfilling or idling.
  • Continuous level measurements provide much more specific information and are advantageous, for example, when several limit levels above the level are to be generated.
  • continuous level sensors a distinction is made, as is well known, between sensors that come into contact with the product and those that measure in a non-contact manner.
  • the measuring electrodes In all types of sensors that come into contact with the product, the measuring electrodes extend over a defined filling level in the container and are always in contact with the product, ie they must meet the environmental conditions in the container. Complicated container geometries, such as corners, slopes, changes in diameter, or built-in components such as filling / heating devices and / or agitators, atmospheric disturbances and chemical and physical properties of the medium, such as viscosity, steam, foam, reactivity, change in density, can impair the measurement or even make it impossible.
  • Every measurement should therefore take place from the outside, at least without contact with the product.
  • Contactless measuring sensors work, for example, on the basis of ultrasound, microwaves, radiometry or with radar.
  • pulse radar for example, short impulses are sent from above into the container and when these hit the boundary surface of the medium, part of the energy is reflected and can be detected as an echo. The distance to the sensor is then determined from the transit time of the captured signal and the fill level is ultimately calculated using the specified container height.
  • radar systems with a beam that is as narrow as possible are used to capture only reflections from the product surface.
  • the DE 10 2006 019 688 B4 describes, for example, a planar antenna for a fill level radar for sensor level detection, with a glass or ceramic pane being provided for process separation, on the back of which, ie on the side facing away from the fill level area to be detected by sensors, at least one planar radiator element is applied and spaced therefrom on the side facing away from the fill level area to be detected by sensors, a metal wall is also provided as a ground surface for the radiator element.
  • the planar antenna structure applied by the at least one radiator element is made of a conductive material and can be a single patch radiator or an array made up of several individual patches.
  • a gas e.g. B. air, or a vacuum with a low dielectric constant.
  • a planar antenna which is additionally designed with process separation, is again used in particular within a horn antenna or for installation in a waveguide.
  • One object of the invention is therefore to improve a non-contact measurement within a measuring cell in such a way that even geometrically complex measuring cell volumes are essentially complete and therefore in particular without Dead areas in relation to bodies or substances can be detected with an inexpensive construction.
  • a system arranged as follows.
  • the carrier substrate is also arranged and intended to replace part of the surface of the measuring cell wall directed into the interior during operation, i.e., in particular after fastening the ultra-wideband antenna to the measuring cell, or to extend in the interior at a distance in front of the measuring cell wall.
  • the system according to the invention is further characterized in that the ultra-broadband antenna with radiator elements arranged on or in the carrier substrate is set up as an electrically short antenna with an at least substantially hemispherical radiation characteristic to cover a voluminous measurement field.
  • the ultra-broadband signals that can be used through the use of the ultra-broadband microwave unit and antenna, i.e. with a large bandwidth and at the same time low center frequencies, particularly in the single-digit GHz range, can penetrate a wide variety of materials, which on the one hand supports a volumetric measurement and on the other hand the the technical requirements of the electronics required for this are minimized.
  • the measurement signals obtained in this way can then be processed and, in particular, evaluated by subordinate digital algorithms depending on the application.
  • the signal evaluation shifted away from ultra-broadband electronics to digital algorithms with the system according to the invention allows measurements down to the bottom and in a wide variety of areas including corners of a measuring cell, ie in particular up to the bottom of the container and up to the corners of a measuring cell Container, in particular taking into account transit time and signal shape analyzes, in particular also in the presence of multiple reflections of the measurement field, can be carried out extremely precisely.
  • the carrier substrate of the ultra-broadband antenna replaces part of the surface of the measuring cell wall directed into the interior space or extends in the interior space at a distance from the measuring cell wall and the radiator elements arranged thereon or in it have an at least essentially hemispherical radiation characteristic, dead areas can essentially be completely avoided and that The system can therefore also be used for measurements in the vicinity of the antenna.
  • radiator elements can basically be of any shape in order to form a large number of possible antenna structures, such as, for example, circular, elliptical and ring structures or also butterfly structures, fly structures, ie "bow tie" structures and so-called Batwing structures.
  • a coaxial conductor connection, to which the ultra-broadband microwave unit is also connected, is then expediently connected to these radiator elements, specifically for the wired transmission of an ultra-broadband signal between the radiator elements and the ultra-broadband microwave unit.
  • the invention also provides that the system is set up horizontally and / or vertically parallel to the two planar radiator elements with at least two further planar radiator elements, two of these at least two further planar radiator elements extending essentially parallel to the carrier substrate are held by this in each case in a common plane to each other, and together form a surface dipole.
  • a preferred development provides that a coaxial conductor connection for the wired transmission of an ultra-broadband signal between these radiator elements and the ultra-wideband microwave unit also connected to this coaxial conductor connection is connected to each of these two further emitter elements forming a surface dipole. It is advantageous that the two planar radiator elements and the at least two further planar radiator elements can be connected via the same coaxial conductor connection or also different coaxial conductor connections, so that a large number of individually different bi-static and monostatic antenna structures can be formed with such further surface dipoles, depending on the application .
  • Each coaxial conductor connection is expediently connected via at least one matching element, in particular for impedance conversion, expediently comprising a balun transformer, to the radiator elements each forming a surface dipole.
  • the ultra-broadband antenna comprises a shielding arranged at a distance from the carrier substrate towards the first side, ie in particular on the side facing away from the filling level area to be sensed by sensors, when viewed from the carrier substrate. Wave propagation of the ultra-broadband signal in this direction can thus be avoided in a simple manner and the field propagation behind the antenna can be minimized. It is provided in particular that the shield is not connected to the ultra-broadband microwave unit and / or that the shield is formed directly by a metallic measuring cell wall or by a cover of the ultra-broadband antenna.
  • the adapter is arranged between the shield and the carrier substrate.
  • a surface facing the first side adjacent to the carrier substrate can also be arranged as a protective layer, a non-conductive layer, in particular for covering, and / or an absorber layer, in particular for electromagnetic absorption.
  • a protective layer e.g., a non-conductive layer, in particular for covering
  • an absorber layer e.g., a surface facing the first side adjacent to the carrier substrate
  • at least one such layer designed for covering and / or absorption additional reflections on rear-side layers, in particular also grounded layers, can thus be avoided in a simple manner.
  • the adapter element is embedded in the protective layer.
  • an ultra-broadband M-sequence signal having been shown to be particularly expedient, i.e. in particular a pseudo-coded or pseudo-random maximum or maximum signal Noise Sequence Signal.
  • the ultra-broadband microwave unit has at least one transmission module for generating the ultra-broadband signal and, in an expedient embodiment, can also include an evaluation module for evaluating a received ultra-broadband signal.
  • the system is set up with at least one further ultra-wideband antenna according to prescribed features, this at least one further ultra-wideband antenna being connected to at least one evaluation module for evaluating a received ultra-wideband signal.
  • ultra-broadband antennas each with at least one carrier substrate, which replaces part of the surface of the measuring cell wall directed into the interior, or extends in the interior and at a distance in front of the measuring cell wall, can be used, in particular for evaluating a received ultra-broadband signal at various Locations within the measuring cell.
  • a multi-layer circuit board can expediently also be used as the carrier substrate and / or the radiator elements can be embedded in the substrate.
  • FIGS Figs. 11 to 13 The systems shown here show which measuring systems according to the state of the art with bundling high-frequency antennas for level and object detection in different containers.
  • Figs. 11 to 13 Systems shown in cross-section each have a level radar 100 with antennas (or an antenna) 102 that bundle high-frequency beams be, for example in the DE 10 2006 019 688 B4 described.
  • the bundling antennas 102 are each electrically conductively connected to a rear side, ie on the side facing away from the fill level area to be detected by sensors, to a ground surface or reflector layer 103, a high-frequency connection 104 leading from the bundling antenna 102 to microwave electronics 101.
  • Figs. 11 and 12 each shows a “cuboid” or also “cylindrical” container 300 with a container wall 301, through which a measuring cell is defined.
  • the container wall 301 forms the measuring cell wall, so that the surface of the container wall 301 directed into the interior ultimately defines the fill level range to be detected by sensors.
  • a filling level area is consequently essentially “hollow cuboid” or also “hollow cylindrical”.
  • Figs. 11 and 12 is at Fig. 13 not a merely “cuboid” or also “cylindrical” container, but a container 400 with an essentially arbitrary structure, in particular arbitrarily complex Structure shown, which consequently also comprises a container wall 401 following this arbitrary structure.
  • a measuring cell defined in this way is defined and thus also the fill level area defined by the surface of the container wall 401 directed into the interior space, which is to be detected by sensors, is consequently not only “hollow cuboid” or also “hollow cylindrical”, but can be steps, corners, bevels and the like include.
  • a measurement field 600 generated in each case by means of the bundling antenna 102 is likewise shown in FIG Figs. 11 to 13 outlined.
  • the generated measuring field 600 is a bundled measuring field and consequently has in particular a correspondingly bundled directional lobe 601 which delimits the area in which a transmission signal 602 can be generated with a certain minimum field strength or a reception signal 603 can be received with a certain minimum signal strength .
  • filling material 500 for example, a liquid or a bulk material
  • filling material 500 for example, a liquid or a bulk material
  • a level detection with the at Fig. 11 The measurement system shown according to the prior art can essentially be carried out satisfactorily, since in such a case of a homogeneous product distribution a bundled directional lobe 601 generally does not have any negative effects on the measurement result.
  • the bundled directional lobe 601 can consequently lead to this that only some of the bodies or substances or only individual bodies or substances within the area of the directional lobe are sensed, ie can be recognized in the Figs. 12 and 13 eg only the body marked with 502. But also a level measurement based on a recognized body or according to Figs. 12 and 13 a volume determination can already lead to different results in these exemplary embodiments.
  • Fig. 12 it is like that with Fig. 12 to see, for example, the body 502 on the bottom of the "cuboid” or “cylindrical” container there and the measuring field 600 extends within the directional lobe 601 around the body 502 to the bottom of the container Body 502, in addition to the mere detection of the body, a volume determination of the body can generally also be carried out using appropriate electronics. If, on the other hand, the body is in the near field area of the antenna, such as the body 502 in FIG Fig. 13 , is therefore associated with the Fig. 13 The measurement system shown according to the prior art only detects part of the body 502.
  • the body 502 can in principle be recognized on the basis of the body surface 504 of the body 502 detected by sensors, but the volume of the body can generally no longer be determined.
  • it has a negative complementary effect when the body, such as the body 502, for example Fig. 13 does not lie on the bottom of a merely "cuboid” or “cylindrical” container, but rather, for example, on a shoulder or on other further bodies arranged individually under the body.
  • the body surface 504 of the body 502 detected by sensors can in fact reflect an incorrect fill level in such a case.
  • bodies 503 located outside of directional lobe 601 cannot be detected at all, in particular since its body surface 504 is no longer detected by sensors by means of measurement field 600 either.
  • FIGs. 1 to 3 in a greatly simplified representation various measuring systems according to the invention.
  • three different embodiments of a system 200 according to the invention for recognizing and / or determining the volume of bodies or substances in an arbitrarily structured container are sketched as an example of a possible measuring cell 400.
  • such a system 200 is suitable for recognizing and / or determining the volume of bodies or substances made of dielectric and / or conductive material 500, 502, 503, 504 within an interior of the measuring cell 400, and thus in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall 401, which has a surface directed into the interior.
  • the container wall thus forms the measuring cell wall 401, so that the surface of the container wall directed into the interior space ultimately defines the fill level range to be detected by sensors.
  • Such a or similar measuring cell and thus also the filling level area to be detected by sensors inside the measuring cell is consequently not just “hollow cuboid” or “hollow cylinder-shaped”, but can include steps, corners, bevels and the like, as well in the Figs. 1 to 3 you can see.
  • the system according to the invention here has an ultra-broadband microwave unit 201 and at least one ultra-broadband antenna 202. This is connected to the ultra-broadband microwave unit 201 in a practical embodiment.
  • a component of the ultra-wideband antenna 202 is at least one disk-shaped carrier substrate with a first surface directed towards a first side and a second surface directed towards a first surface. This second surface forms an outside of the antenna and the carrier substrate 205 is arranged and provided in such a way during operation, that is to say in particular after the ultra-broadband antenna has been attached to the measuring cell, for example in the Figs. 1 to 3 indicated to replace part of the surface of the measuring cell wall directed into the interior.
  • the carrier substrate can, however, also extend in the interior space at a distance in front of the measuring cell wall.
  • emitter elements 206a, 206b, 207a, 207b are arranged on or in the carrier substrate 205 in such a way that they are set up as an electrically short antenna with an at least substantially hemispherical radiation pattern in order to create a voluminous measurement field 700, such as the Figures 1 to 3 to be taken as an example, to cover.
  • the electrical conductor of the antenna is much smaller than half the operating wavelength ⁇ :
  • the wavelengths move approximately in the range between 30dm to 5cm during operation, depending on the desired application, half an operating wavelength therefore preferably moves between 15dm to 2.5cm and the electrical conductor or the conductor structure of the
  • the antenna elements that make up the antenna must be adapted accordingly as far as possible.
  • the electrical conductor or the conductor structure of the radiator elements according to the definition from " Textbook of High Frequency Technology ", first volume, second edition, page 261, chapter 6.2.2, from 1973, ISBN 3-540-05974-1 , to set up an electrically short antenna is less than or equal to ⁇ / 8.
  • ultra-broadband signals with low frequencies are provided in order to be able to penetrate a wide variety of dielectric materials particularly well.
  • correspondingly small antennas with radiator elements in the centimeter range are required and provided for small measuring cells.
  • electrically short antennas that have little or no directional effect and thus expediently support a volumetric field spread or measurement
  • the radiator elements 206a, 206b, 207a, 207b arranged on or in the carrier substrate 205 are set up to cover a volumetric measurement field 700 over a solid angle of at least 2 ⁇ .
  • a high-frequency connection 203 expediently leads from the ultra-wideband antenna 202 to the ultra-wideband microwave unit 201, for the wired transmission of an ultra-wideband signal to the ultra-wideband microwave unit 201, ie in particular a coaxial connection connected to the radiator elements for the wired transmission of the ultra-wideband signal between the radiating elements and the ultra-wideband microwave unit 201.
  • a measuring cell 400 with shoulders, corners, slopes and the like for example in the container according to FIG Fig. 1 or 2 , which has a similar, ie arbitrarily complex structure as the container according to Fig. 13 has, however, as filling material, several bodies or substances, such as those marked with 502 and 503, which do not fill the filling level area and thus the interior of the measuring cell homogeneously from the bottom upwards or are arranged inside the measuring cell distributed from one another, can consequently due to the covering of the volumetric measurement field 700 over a solid angle of at least 2 ⁇ , based on the body surfaces 504 detected by sensors, both of the body 502 and also of the body 503, also the multiple bodies or substances recognized and / or, in particular depending on the application-specific further configuration of digital algorithms used for signal evaluation, can be determined in their respective volume.
  • FIGS. outlined with the help of the at least substantially hemispherical radiation characteristic of the ultra-broadband antenna according to the invention, dead areas are thus substantially completely avoided
  • the ultra-broadband microwave unit consequently expediently has a transmission module and / or for the transmission module (not shown in greater detail in the figures for reasons of clarity) Evaluation of a received ultra-wideband signal is expediently an evaluation module, which is likewise not shown in detail in the figures for reasons of clarity.
  • Exemplary transmission signals and also transmission signals reflected on the measuring cell wall within the volumetric measuring field 700 are shown in FIG Figs. 1 and 2 marked with 702 and 704 and exemplary received signals as well as received signals reflected on the measuring cell wall are marked with 703 and 705, respectively.
  • measurements in particular radar measurements down to the floor and in a wide variety of areas including corners of a measuring cell, ie in particular up to the container floor and up to the corners of a container, expediently including using reflected signals and taking into account of time-of-flight analyzes and multiple reflections, can be evaluated extremely precisely, in particular using digital algorithms. It should be noted here, however, that the signal evaluation itself, in particular when using appropriate algorithms, is not the subject of the invention and is consequently not discussed further.
  • the ultra-broadband antenna 202 does not necessarily have to be designed as a transmitting and receiving antenna.
  • the system is set up with at least one further ultra-broadband antenna, so that a first of the antennas is set up as a transmitting antenna and one or more further antenna (s) are set up as receiving antennas.
  • this at least one further ultra-broadband antenna is connected to at least one evaluation module for evaluating a received ultra-broadband signal.
  • This evaluation module is preferably the evaluation module already mentioned above in relation to the ultra-broadband microwave unit, with several evaluation modules also being able to be connected to one another for joint signal evaluation.
  • antennas can also be set up as transmitting antennas and only one or more of the further antenna (s) as receiving antenna.
  • several antennas can also be set up as transmitting and receiving antennas or, in a further alternative, several antennas can be set up as transmitting and receiving antennas and one or more antennas can be set up as receiving antennas.
  • the system according to the invention can also have several ultra-broadband antennas, each with a carrier substrate which, after the respective ultra-broadband antenna is attached to another point of the measuring cell, replaces part of the surface of the measuring cell wall directed into the interior, or is located there in the interior and extends at a distance in front of the measuring cell wall.
  • radiator elements thus arranged at distributed locations of the measuring cell on or in the respective carrier substrate, a radar measurement with support points at different locations within the measuring cell can consequently be carried out, which essentially no longer sets any limits to the possible structural complexity of the fill level areas to be detected by sensors in the applicability of the object according to the invention .
  • a simple example of ultra-broadband antennas attached to distributed locations in the measuring cell is the Fig.
  • radiator elements arranged on or in the carrier substrate 205 which are connected to a coaxial conductor connection as a high-frequency connection 203, as mentioned above, which is also used for the wired transmission of an ultra-wideband signal between the radiator elements and the ultra-wideband microwave unit 201, will be discussed in particular is associated with this.
  • planar radiator elements are expedient 206a, 206b arranged on or in the carrier substrate 205 of the ultra-broadband antenna 202.
  • the planar radiator elements 206a, 206b extend essentially parallel to the carrier substrate 205, are held by the carrier substrate 205 in a common plane, ie in particular a common planar plane spanned by the planar radiator elements consequently extends essentially parallel to a plane spanned by the carrier substrate, and together form a surface dipole.
  • the emitter elements thus expediently also have a horizontal extent to the plane of the carrier substrate.
  • the high-frequency connection 203 is expediently also connected via an adapter 204 to the radiator elements 206a, 206b that form this surface dipole.
  • This allows in particular impedance conversions between the line-bound asymmetrical transmission path of the ultra-broadband signals and the associated electromagnetic signal waves of the symmetrical surface dipole as well as the transmission path of the ultra-broadband signals that is based in the interior of the measuring cell, i.e. in particular based on the medium of air or generally speaking, non-line-bound transmission path of the ultra-broadband signals and the associated electromagnetic signal waves application-specific make as it is known in and of itself to a person skilled in the art.
  • the wave impedance of typical coaxial cables is 50 ⁇ and the impedance of the surface dipole differs significantly depending on the frequency.
  • a matching element 204 in a preferred embodiment, for example, a broadband balun transformer, is therefore generally useful to make appropriate adjustments to the wave impedance of the line at the transition between the line-bound electromagnetic signal waves and the surface dipole.
  • the ultra-wideband antenna 202 of FIG Fig. 4 can consequently be designed as a transmitting and receiving antenna, in particular monostatic.
  • the ultra-wideband antenna 202 is the two, according to the present example
  • Radiator elements 206a, 206b are thus expediently connected to a transmission module comprised by the ultra-broadband microwave unit for generating an ultra-broadband signal used for the measurement and, at the same time, with an evaluation module for evaluating a received ultra-broadband signal, which, however, is not shown in more detail for reasons of clarity.
  • FIG. 5 a cross-sectional view of an embodiment of a dipole antenna with radiator elements 206a, 206b embedded in the carrier substrate 205 for use within a system according to the invention.
  • Figs. 4 and 5 outlined Fig. 6 in plan view an embodiment of a dipole antenna, in particular for bi-static measurements for use within a system according to the invention.
  • the two planar radiator elements 206a, 206b namely horizontally parallel to these two planar radiator elements 206a, 206b
  • at least two further planar radiator elements in the example shown, two further planar radiator elements 207a, 207b are included by the ultra-wideband antenna 202.
  • two 207a, 207b of such at least two further planar radiator elements are held essentially parallel to the carrier substrate 205, extending from this in a common plane to each other and also together form a surface dipole , radiator elements forming a surface dipole, a high-frequency connection 203 designed in particular as a coaxial conductor connection for the wired transmission of an ultra-broadband signal between these radiator elements 207a, 207b and the ultra-wideband microwave unit (not shown) which is consequently also expediently connected to this high-frequency connection.
  • the ultra-wideband antenna 202 in this case can in particular also be set up for bi-static measurement, ie two of the one Radiator elements forming a surface dipole, e.g. the radiator elements 206a, 206b, are set up to transmit an ultra-broadband signal used for the measurement and are therefore expediently connected to at least one transmission module for generating the ultra-broadband signal used for the measurement and two other radiator elements forming a surface dipole, e.g.
  • the radiator elements 207a, 2067 are set up to receive the ultra-wideband signal used for the measurement and are therefore expediently connected to at least one evaluation module for evaluating the received ultra-wideband signal.
  • the radiator elements each forming a common surface dipole can share a common carrier substrate, ie they are arranged on or in the same carrier substrate 205.
  • the arrangement on a fundamentally divided carrier substrate would also come into consideration, ie the emitter elements forming a common surface dipole are each arranged on a partial carrier substrate.
  • FIG. 7 a cross-sectional view of a further embodiment of a dipole antenna with emitter elements embedded in the carrier substrate 205 for use within a system according to the invention.
  • Fig. 5 and also to Fig. 6 are in accordance with the exemplary embodiment Fig. 7 however, in addition to the two planar radiator elements 206a, 206b, namely vertically parallel to these two planar radiator elements 206a, 206b, at least two further planar radiator elements, in the example shown, the two further planar radiator elements 207a, 207b comprised by the ultra-wideband antenna 202.
  • These two further planar radiator elements are also held in this case, extending essentially parallel to the carrier substrate 205, in each case in a common plane to one another and each together basically form a surface dipole. Since in the example shown, all four shown two 207a, 207b of such at least two further planar radiator elements are shown embedded in the carrier substrate 205, it can be seen that such a carrier substrate 205 can also be designed, for example, as a multi-layer circuit board. This also has the advantage, for example, of being able to produce embedding elements in a simple manner, which is desired vertically parallel to one another. A multi-layer circuit board as a carrier substrate 205 can of course also be used without embedded radiator elements.
  • a separate high-frequency connection 203 is connected to each of the radiator elements 206a, 206b and to the radiator elements 207a, 207b, again in an expedient manner via a separate adapter 204, which, however, is not shown for reasons of clarity .
  • the radiator elements 206a, 206b and the radiator elements 207a, 207b are connected to a common high-frequency connection 203.
  • each radiator element 206a, 206b, which together form a surface dipole is expediently electrically connected to a different one of the radiator elements 207a, 207b which together form a further surface dipole.
  • Fig. 7 thus in particular the radiator element 206a with the radiator element 207a and the radiator element 206b with the radiator element 207b.
  • this variant is also not shown for reasons of clarity.
  • the respective application-specific device of an ultra-wideband antenna 202 i.e. in particular for bi-static or monostatic measurements and as a transmitting and / or receiving antenna, is consequently extremely flexible within the scope and application of the invention.
  • mixed forms of further planar radiator elements arranged horizontally and vertically parallel to the two planar radiator elements 206a, 206b are also within the scope of the invention.
  • two further planar radiator elements arranged horizontally and two vertically parallel to the two planar radiator elements 206a, 206b are also within the scope of the invention.
  • two further planar radiator elements arranged horizontally and two vertically parallel to the two planar radiator elements 206a, 206b are also within the scope of the invention.
  • Fig. 8 Outlines a cross-sectional view of a further embodiment of an antenna according to the invention, in the example shown a dipole antenna with two radiator elements 206a, 206b embedded in the carrier substrate 205, with a rear shield 402, ie on the side facing away from the fill level area to be detected by sensors, also included. It has been shown to be useful if such or a similar shield 402 is not connected to the ultra-wideband microwave unit 201. Furthermore, it has been shown to be expedient in a complementary or alternative manner if the shielding 402 is formed by the metallic measuring cell wall itself or by a metallic cover of the ultra-broadband antenna 202. Rearward wave propagation of the ultra-wideband signal can thus be avoided in a simple manner, or at least reduced.
  • the shielding 402 viewed from the carrier substrate, is thus arranged towards the first side and expediently at a distance from the carrier substrate 205.
  • an inserted adapter 204 can expediently also be arranged between the shield 402 and the carrier substrate 205.
  • a cavity 210 is consequently also present between the shield 402 and the carrier substrate 205.
  • this can also be filled with a suitable gas (e.g. air) or vacuum, in particular to provide further, respectively desired dielectric properties to improve the radar measurement.
  • FIG. 9 The embodiment of an antenna according to the invention sketched in a cross-sectional view, in the example shown of a dipole antenna with two radiator elements 206a, 206b embedded in the carrier substrate 205, is a modification of FIG Fig. 8
  • a protective layer 209 is arranged adjacent to the carrier substrate 205 and the first surface facing the first side, which is expediently formed by a non-conductive layer, in particular for covering, and / or by an absorber layer. Even with at least one such protective layer designed for covering and / or absorption, additional reflections on back layers, in particular also grounded layers, can thus be avoided in a simple manner.
  • a broadband HF material in the form of a film or a foam has also proven to be particularly useful as such a protective layer 209, for example.
  • an adapter 204 used within the scope of the invention can be embedded in the protective layer 209 and / or inserted within a cavity 210 formed in the protective layer 209.
  • a existing free space in the cavern 210 between adapter 204 and protective layer 209, depending on the application, for example, can also be filled again with a suitable gas (for example air) or vacuum.
  • FIG. 10 in cross-sectional view sketched embodiment is a hybrid of the in the Figs. 8 and 9 shown.
  • radiator elements 206a, 206b, 207a, 207b described above can in principle be of any shape. Depending on the requirement or application-specific, a large number of possible antenna structures can consequently be used for a particularly suitable design of a respective surface dipole built up by the radiator elements.
  • Radiator elements have proven themselves within the scope of the invention, for example, for the formation of circular, elliptical and ring structures or also with butterfly structures, fly structures, i.e. "bow tie" structures, and so-called batwing structures. It has also proven to be particularly expedient if the ultra-broadband microwave unit is set up for a continuously periodic signal as an ultra-broadband signal, an ultra-broadband M-sequence signal having been shown to be particularly expedient.
  • the invention creates a sensor system suitable for industrial use for the presence detection of filling goods in small and / or complex-structured measuring cells, in particular containers, in particular for empty detection, for filling level measurement and for determining the volume of filling goods.
  • a large number of digital algorithms can then be used for the subsequent signal evaluation and data analysis relating to the presence detection and calculation of the physical properties of the filling material, e.g. using a time-based impedance jump detection, including using KI (artificial Intelligence) including machine learning, a sub-area of artificial intelligence in which the recognition of patterns in existing data sets enables a system to carry out independent analyzes and problem solutions.
  • KI artificial Intelligence
  • a sub-area of artificial intelligence in which the recognition of patterns in existing data sets enables a system to carry out independent analyzes and problem solutions.
  • the ultra-broadband antennas set up within the scope of the invention have a high dispersive / non-directional radiation characteristic or have such field propagation properties.
  • the electromagnetic field generated using the ultra-broadband signals is propagated in a spherical, at least hemispherical and thus volumetric manner into the measuring cell, in particular container, i.e. similar to a capacitive proximity sensor, not directly in the direction of the product. Multiple reflections on metallic walls and fixtures can also occur here, which of course must also be taken into account accordingly.
  • the dipole structures proposed according to the invention instead of patch antennas can be made much more complex and, using a multilayer printed circuit board, can also extend in the direction of the measuring cell area, ie the filling level area to be detected by sensors. They can also be completely embedded in the carrier substrate, for example in a multi-layer circuit board, which in particular can also be done using a vertical integration technique; an inserted adapter can also be embedded here.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Details Of Aerials (AREA)

Abstract

Die Erfindung betrifft ein System zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen aus dielektrischem und/oder leitfähigen Material (500, 502, 503, 504) innerhalb eines Innenraums einer Messzelle (400), insbesondere in Art eines Behälters, mit einer leitfähigen und/oder nichtleitfähigen Messzellenwand (401), die eine in den Innenraum gerichtete Oberfläche aufweist, umfassend:- eine Ultrabreitband-Mikrowelleneinheit (201), und- wenigstens eine Ultrabreitband-Antenne (202) mit wenigstens einem scheibenförmigen Trägersubstrat (205) mit einer zu einer ersten Seite gerichteten ersten Oberfläche und einer entgegengesetzt zur ersten Oberfläche gerichteten zweiten Oberfläche, welche eine Außenseite der Antenne bildet, wobei das Trägersubtrat angeordnet und vorgesehen ist, bei Betrieb, insbesondere nach Befestigung der Ultrabreitband-Antenne an der Messzelle, einen Teil der in den Innenraum gerichteten Oberfläche der Messzellenwand zu ersetzen oder sich im Innenraum beabstandet vor der Messzellenwand zu erstreckendadurch gekennzeichnet, dassdie Ultrabreitband-Antenne mit am oder im Trägersubstrat angeordneten Strahlerelementen als eine elektrisch kurze Antenne mit einer zumindest im Wesentlichen halbkugelförmigen Strahlungscharakteristik eingerichtet ist, zum Abdecken eines volumenhaften Messfeldes (700).The invention relates to a system for recognizing and / or determining the volume of bodies or substances made of dielectric and / or conductive material (500, 502, 503, 504) within an interior of a measuring cell (400), in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall (401), which has a surface directed into the interior, comprising: - an ultra-broadband microwave unit (201), and - at least one ultra-broadband antenna (202) with at least one disk-shaped carrier substrate (205) with one to one First surface facing the first side and a second surface facing opposite to the first surface, which forms an outside of the antenna, wherein the carrier substrate is arranged and provided, during operation, in particular after fastening the ultra-broadband antenna to the measuring cell, part of the interior space to replace directed surface of the measuring cell wall or spaced in the interior to extend in front of the measuring cell wall, characterized in that the ultra-broadband antenna with radiator elements arranged on or in the carrier substrate is set up as an electrically short antenna with an at least substantially hemispherical radiation characteristic, for covering a volumetric measuring field (700).

Description

Die Erfindung betrifft ein System zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen aus dielektrischem und/oder leitfähigem Material innerhalb eines Innenraums einer Messzelle, insbesondere in Art eines Behälters, mit einer leitfähigen und/oder nichtleitfähigen Messzellenwand, die eine in den Innenraum gerichtete Oberfläche aufweist.The invention relates to a system for recognizing and / or determining the volume of bodies or substances made of dielectric and / or conductive material within an interior of a measuring cell, in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall that has a surface directed into the interior having.

Insbesondere auch im Zuge des Trends zur intelligenten Fabrik als Teil des Zukunftsprojekts Industrie 4.0 kommen auf produzierende Unternehmen erhebliche Aufgaben zu. So wird u.a. eine größere Flexibilität gefordert, die Produkte müssen individualisierbar sein, und gleichzeitig werden die Erzeugnisse und Herstellungsprozesse komplexer. Auch gehen mit der individuellen Fertigung geringere Produktionsmengen ab Losgröße 1 einher, die flexiblere Produktionsanlagen notwendig machen. Um auch bei kleinen Verbrauchsmengen und dynamischen Prozessen eine gleichbleibend hohe Produktionsqualität zu erreichen, müssen alle relevanten Regelgrößen permanent zur Verfügung stehen. Dazu zählen auch die Füllmengen und Materialverteilungen von Flüssigkeiten, Viskosestoffen und rieselfähigen Schüttgütern in einer zunehmenden Anzahl von kleinen Vorrats- und Prozessbehältern, die kontinuierlich sensorisch erfasst werden müssen.Particularly in the course of the trend towards the intelligent factory as part of the future project Industry 4.0, manufacturing companies have to face considerable tasks. For example, greater flexibility is required, the products must be customizable, and at the same time the products and manufacturing processes are becoming more complex. Individual production also goes hand in hand with lower production quantities from batch size 1, which make more flexible production systems necessary. In order to achieve a consistently high production quality even with small consumption quantities and dynamic processes, all relevant control variables must be permanently available. This also includes the fill quantities and material distributions of liquids, viscous substances and free-flowing bulk goods in an increasing number of small storage and process containers that have to be continuously recorded by sensors.

So werden beispielsweise zukünftig auch Sensoren gefordert sein, die Informationen zu volumenhaften Füllgutverteilung berührungslos liefern und/oder für Füllstandmessungen durch Materialschichtungen hindurch geeignet sind.For example, sensors will also be required in the future that provide information on volumetric product distribution in a contactless manner and / or are suitable for level measurements through material layers.

Füllstandmessungen werden heutzutage mit verschiedensten Messverfahren realisiert, wobei grundsätzlich zwischen Grenzstandmessung und kontinuierlicher Messung unterschieden wird. Bei Grenzstandmessungen werden üblicherweise mehrere Sensoren an definierten Höhenpositionen in die Behälterwand oder vertikal von oben eingebaut, sodass diese meist nur der Vermeidung von Überfüllung oder Leerlauf dienen. Kontinuierliche Füllstandmessungen liefern dagegen wesentlich dezidiertere Informationen und sind beispielsweise dann vorteilhaft, wenn mehrere Grenzstände über der Füllhöhe generiert werden sollen. Bei kontinuierlichen Füllstandsensoren unterscheidet man bekannter Weise zwischen produktberührenden und berührungslos messenden Sensoren. Bei den produktberührenden Sensoren erstrecken sich bei allen Typen die Messelektroden über eine festgelegte Füllhöhe in dem Behälter und haben dabei stets Kontakt zum Füllgut, d.h. sie müssen den Umweltbedingungen im Behälter genügen. Komplizierte Behältergeometrien, wie z.B. Ecken, Schrägen, Änderung des Durchmessers, oder auch Einbauten, wie z.B. Befüll-/Heizvorrichtungen und/oder Rührwerke, atmosphärische Störeinflüsse sowie chemische und physikalische Eigenschaften des Mediums, wie z.B. Viskosität, Dampf, Schaum, Reaktivität, Dichteänderung, können die Messung beeinträchtigen oder sogar unmöglich machen.Nowadays, level measurements are carried out using a wide variety of measurement methods, a basic distinction being made between limit level measurement and continuous measurement. For limit level measurements, several sensors are usually installed at defined height positions in the container wall or vertically from above, so that these mostly only serve to avoid overfilling or idling. Continuous level measurements, on the other hand, provide much more specific information and are advantageous, for example, when several limit levels above the level are to be generated. In the case of continuous level sensors, a distinction is made, as is well known, between sensors that come into contact with the product and those that measure in a non-contact manner. In all types of sensors that come into contact with the product, the measuring electrodes extend over a defined filling level in the container and are always in contact with the product, ie they must meet the environmental conditions in the container. Complicated container geometries, such as corners, slopes, changes in diameter, or built-in components such as filling / heating devices and / or agitators, atmospheric disturbances and chemical and physical properties of the medium, such as viscosity, steam, foam, reactivity, change in density, can impair the measurement or even make it impossible.

Idealerweise sollte daher jede Messung von außen stattfinden, zumindest ohne Kontakt zum Füllgut. Berührungslos messende Sensoren arbeiten beispielsweise auf Basis von Ultraschall, Mikrowellen, Radiometrie oder mit Radar. Beim Pulsradar werden beispielsweise kurze Impulse von oben in den Behälter geschickt und wenn diese auf die Grenzfläche des Mediums auftreffen, wird ein Teil der Energie reflektiert und kann als Echo detektiert werden. Aus der Laufzeit des aufgefangenen Signals wird dann der Abstand zum Sensor bestimmt und mit der angegebenen Behälterhöhe letztendlich der Füllstand errechnet. Um möglichst nur Reflexionen der Füllgutoberfläche zu erfassen, werden traditionell Radarsysteme mit einer möglichst schmalen Strahlenkeule verwendet. Damit kommen jedoch üblicherweise stark bündelnde Antennen zur Anwendung, die jedoch nur bei hohen Frequenzen zu praktikablen Baugrößen führen und dann auch nur einen kleinen Bereich der Oberfläche detektieren können, was bei vorhandenen Schüttkegeln zu erheblichen Unterschieden zwischen Messwert und tatsächlicher Füllmenge führen kann. Aufgrund der in der Regel schmalen Strahlenkeulen bzw. kleinen Öffnungswinkel heutiger Radarsensoren werden außerhalb der Strahlenkeule in der Regel Schüttkegel nicht erfasst und können folglich zu einer erheblichen Differenz zwischen gemessenem Füllstand und tatsächlicher Füllmenge führen. Auch besitzen diese Sensoren einen Totbereich, insbesondere im antennennahen Feldbereich, in dem die Messgenauigkeit signifikant abnimmt und das vorhandene Behältervolumen also nur unvollständig genutzt werden kann.Ideally, every measurement should therefore take place from the outside, at least without contact with the product. Contactless measuring sensors work, for example, on the basis of ultrasound, microwaves, radiometry or with radar. With pulse radar, for example, short impulses are sent from above into the container and when these hit the boundary surface of the medium, part of the energy is reflected and can be detected as an echo. The distance to the sensor is then determined from the transit time of the captured signal and the fill level is ultimately calculated using the specified container height. Traditionally, radar systems with a beam that is as narrow as possible are used to capture only reflections from the product surface. In this way, however, strongly bundling antennas are usually used, which, however, only lead to practical sizes at high frequencies and can then only detect a small area of the surface, which can lead to considerable differences between the measured value and the actual filling quantity if there are cones of material. Due to the usually narrow beam lobes or small opening angles of today's radar sensors, pouring cones are usually not detected outside the beam lobe and can consequently lead to a considerable difference between the measured level and the actual fill quantity. These sensors also have a dead zone, especially in the vicinity of the antenna Field area in which the measurement accuracy decreases significantly and the existing container volume can therefore only be used incompletely.

Die DE 10 2006 019 688 B4 beschreibt beispielsweise zur sensorischen Füllstanderfassung eine planare Antenne für ein Füllstandradar, wobei zur Prozesstrennung eine Glas- oder Keramikscheibe vorgesehen ist, auf deren Rückseite, d.h. auf der vom sensorisch zu erfassenden Füllstandbereich abgewandten Seite, wenigstens ein planares Strahlerelement aufgebracht ist und beabstandet hiervon, auch auf der vom sensorisch zu erfassenden Füllstandbereich abgewandten Seite ferner eine Metallwand als Massefläche für das Strahlerelement vorgesehen ist. Die durch das wenigstens eine Strahlerelement aufgebrachte planare Antennenstruktur ist hierbei aus einem leitfähigen Material und kann ein einzelner Patchstrahler oder ein Array aus mehreren Einzelpatches sein. Hiermit wird ein elektromagnetisches Hochfrequenz-Sendesignal mit einer Wellenlänge λ erzeugt und durch die Scheibe hindurch zum Füllgut abgestrahlt, welche zur Minimierung der Störung eine Dicke von einem Vielfachen von λ/2 aufweist. Zur Maximierung der Bandbreite der Antenne kann sich überdies zwischen der Massefläche und der Antennenstruktur ein Gas, z. B. Luft, oder ein Vakuum mit niedriger Dielektrizitätskonstante befinden. Ferner ist gemäß DE 10 2006 019 688 B4 vorgesehen, dass auch eine solche, zusätzlich mit Prozesstrennung ausgebildete planare Antenne wiederum insbesondere Verwendung innerhalb einer Hornantenne oder zum Einbau in einen Hohlleiter findet.the DE 10 2006 019 688 B4 describes, for example, a planar antenna for a fill level radar for sensor level detection, with a glass or ceramic pane being provided for process separation, on the back of which, ie on the side facing away from the fill level area to be detected by sensors, at least one planar radiator element is applied and spaced therefrom on the side facing away from the fill level area to be detected by sensors, a metal wall is also provided as a ground surface for the radiator element. The planar antenna structure applied by the at least one radiator element is made of a conductive material and can be a single patch radiator or an array made up of several individual patches. This generates an electromagnetic high-frequency transmission signal with a wavelength λ and emits it through the pane to the filling material, which has a thickness of a multiple of λ / 2 in order to minimize the interference. To maximize the bandwidth of the antenna, a gas, e.g. B. air, or a vacuum with a low dielectric constant. Furthermore, according to DE 10 2006 019 688 B4 It is provided that such a planar antenna, which is additionally designed with process separation, is again used in particular within a horn antenna or for installation in a waveguide.

Abgesehen von der somit in der DE 10 2006 019 688 B4 vorgeschlagenen berührungslosen Messung, bei welcher sich zumindest alle elektronischen Komponenten der Sensoren außerhalb des sensorisch zu erfassenden Füllstandbereichs befinden, wäre jedoch weiterhin und insbesondere zur Füllgut- oder Objektdetektion in komplexeren Behälterstrukturen, eine breitere Strahlenkeule somit wesentlich vorteilhafter.Apart from the thus in the DE 10 2006 019 688 B4 The proposed non-contact measurement, in which at least all electronic components of the sensors are located outside the fill level range to be detected by sensors, would still be much more advantageous, especially for product or object detection in more complex container structures, a wider beam.

Eine Aufgabe der Erfindung ist es daher, eine berührungslose Messung innerhalb einer Messzelle dahingehend zu verbessern, dass auch geometrisch-komplizierte Messzellen-Volumen im Wesentlichen vollständig und also insbesondere ohne Totbereiche in Bezug auf Körper oder Stoffe bei kostengünstigem Aufbau detektierbar sind.One object of the invention is therefore to improve a non-contact measurement within a measuring cell in such a way that even geometrically complex measuring cell volumes are essentially complete and therefore in particular without Dead areas in relation to bodies or substances can be detected with an inexpensive construction.

Die Lösung der Erfindung ist durch ein System mit den Merkmalen nach Anspruch 1 gegeben. Zweckmäßige Weiterbildungen sind Gegenstand der Untersprüche.The solution of the invention is given by a system having the features according to claim 1. Appropriate further training is the subject of the submissions.

Erfindungsgemäß ist somit zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen aus dielektrischem und/oder leitfähigem Material innerhalb eines Innenraums einer Messzelle, insbesondere in Art eines Behälters, mit einer leitfähigen und/oder nicht leitfähigen Messzellenwand, die eine in den Innenraum gerichtete Oberfläche aufweist, ein System vorgesehen, das wie folgt eingerichtet ist.According to the invention is thus for the detection and / or volume determination of bodies or substances made of dielectric and / or conductive material within an interior of a measuring cell, in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall, which has a surface directed into the interior , a system arranged as follows.

Es umfasst eine Ultrabreitband-Mikrowelleneinheit und wenigstens eine Ultrabreitband-Antenne mit wenigstens einem scheibenförmigen Trägersubstrat, das eine zu einer ersten Seite gerichtete erste Oberfläche und eine entgegengesetzt zur ersten Oberfläche gerichtete zweite Oberfläche besitzt, die eine Außenseite der Antenne bildet. D.h., die zur ersten Seite gerichtete erste Oberfläche befindet sich zweckmäßig auf der vom sensorisch zu erfassenden Füllstandbereich abgewandten Seite. Das Trägersubstrat ist ferner angeordnet und vorgesehen, bei Betrieb, d.h., insbesondere nach Befestigung der Ultrabreitband-Antenne an der Messzelle, einen Teil der in den Innenraum gerichteten Oberfläche der Messzellenwand zu ersetzen oder sich im Innenraum beabstandet vor der Messzellenwand zu erstrecken. Das erfindungsgemäße System ist ferner dadurch gekennzeichnet, dass die Ultrabreitband-Antenne mit am oder im Trägersubstrat angeordneten Strahlerelementen als eine elektrisch kurze Antenne mit einer zumindest im Wesentlichen halbkugelförmigen Strahlungscharakteristik zum Abdecken eines volumenhaften Messfeldes eingerichtet ist.It comprises an ultra-broadband microwave unit and at least one ultra-broadband antenna with at least one disk-shaped carrier substrate having a first surface facing a first side and a second surface facing opposite to the first surface, which forms an outer side of the antenna. That is to say, the first surface directed towards the first side is expediently located on the side facing away from the filling level area to be detected by sensors. The carrier substrate is also arranged and intended to replace part of the surface of the measuring cell wall directed into the interior during operation, i.e., in particular after fastening the ultra-wideband antenna to the measuring cell, or to extend in the interior at a distance in front of the measuring cell wall. The system according to the invention is further characterized in that the ultra-broadband antenna with radiator elements arranged on or in the carrier substrate is set up as an electrically short antenna with an at least substantially hemispherical radiation characteristic to cover a voluminous measurement field.

Von Vorteil ist somit, dass mit den durch Einsatz der Ultrabreitband-Mikrowelleneinheit und -Antenne nutzbaren Ultrabreitbandsignalen und also bei großer Bandbreite und gleichzeitig kleinen Mittenfrequenzen insbesondere im einstelligen GHz-Bereich besonders gut verschiedenste Materialien durchdrungen werden können, welches einerseits eine volumenhafte Messung unterstützt und andererseits die technischen Anforderungen der hierzu notwendigen Elektronik minimiert. Die hierdurch erhaltenen Messsignale können dann durch nachgeordnete digitale Algorithmen anwendungsbedingt verarbeitet und insbesondere ausgewertet werden. Mit anderen Worten, können durch die weg von der Ultrabreitband-Elektronik hin zu digitalen Algorithmen verlagerte Signalauswertung mit dem erfindungsgemäßen System Messungen bis hin zum Boden und in die verschiedensten Bereiche einschl. Ecken einer Messzelle, d.h. insbesondere bis zum Behälterboden und bis in die Ecken eines Behälters, insbesondere unter Berücksichtigung von Laufzeit- und Signalformanalysen, insbesondere auch bei Vorhandensein von Mehrfachreflexionen des Messfeldes, äußerst genau durchgeführt werden.It is therefore advantageous that the ultra-broadband signals that can be used through the use of the ultra-broadband microwave unit and antenna, i.e. with a large bandwidth and at the same time low center frequencies, particularly in the single-digit GHz range, can penetrate a wide variety of materials, which on the one hand supports a volumetric measurement and on the other hand the the technical requirements of the electronics required for this are minimized. The measurement signals obtained in this way can then be processed and, in particular, evaluated by subordinate digital algorithms depending on the application. In other words, the signal evaluation shifted away from ultra-broadband electronics to digital algorithms with the system according to the invention allows measurements down to the bottom and in a wide variety of areas including corners of a measuring cell, ie in particular up to the bottom of the container and up to the corners of a measuring cell Container, in particular taking into account transit time and signal shape analyzes, in particular also in the presence of multiple reflections of the measurement field, can be carried out extremely precisely.

Da ferner das Trägersubstrat der Ultrabreitbandantenne einen Teil der in den Innenraum gerichteten Oberfläche der Messzellwand ersetzt oder sich im Innenraum beabstandet von der Messzellenwand erstreckt und die daran oder darin angeordneten Strahlerelemente eine zumindest im Wesentlichen halbkugelförmige Strahlungscharakteristik besitzen, können Totbereiche im Wesentlichen vollständig vermieden werden und das System kann somit auch für Messungen im Nahbereich der Antenne eingesetzt werden.Furthermore, since the carrier substrate of the ultra-broadband antenna replaces part of the surface of the measuring cell wall directed into the interior space or extends in the interior space at a distance from the measuring cell wall and the radiator elements arranged thereon or in it have an at least essentially hemispherical radiation characteristic, dead areas can essentially be completely avoided and that The system can therefore also be used for measurements in the vicinity of the antenna.

Es hat sich ferner gezeigt, dass besonders zweckmäßige Strahlungscharakteristika einrichtbar sind, wenn das System zwei am oder im Trägersubstrat angeordnete planare Strahlerelemente besitzt, die sich im Wesentlichen parallel zum Trägersubstrat erstreckend von diesem in einer gemeinsamen Ebene gehalten sind und zusammen einen Flächendipol ausbilden. Von Vorteil ist, dass es sich bei den Strahlerelementen grundsätzlich um beliebige Formen handeln kann, um eine Vielzahl von möglichen Antennenstrukturen auszubilden, wie beispielsweise Kreis-, Ellipsen- und Ringstrukturen oder auch Schmetterlingsstrukturen, Fliegenstrukturen, d.h. "Bow Tie"-Strukturen, und sogenannte Batwing-Strukturen. Mit diesen Strahlerelementen ist dann zweckmäßig ein Koaxialleiteranschluss verbunden, mit welchem auch die Ultrabreitband-Mikrowelleneinheit verbunden ist, und zwar zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zwischen den Strahlerelementen und der Ultrabreitband-Mikrowelleneinheit.It has also been shown that particularly useful radiation characteristics can be set up if the system has two planar radiator elements arranged on or in the carrier substrate, which extend essentially parallel to the carrier substrate and are held in a common plane and together form a surface dipole. It is advantageous that the radiator elements can basically be of any shape in order to form a large number of possible antenna structures, such as, for example, circular, elliptical and ring structures or also butterfly structures, fly structures, ie "bow tie" structures and so-called Batwing structures. A coaxial conductor connection, to which the ultra-broadband microwave unit is also connected, is then expediently connected to these radiator elements, specifically for the wired transmission of an ultra-broadband signal between the radiator elements and the ultra-broadband microwave unit.

In weiterer besonders bevorzugter Ausführung sieht die Erfindung ferner vor, dass das System horizontal und/oder vertikal parallel zu den zwei planaren Strahlerelementen mit wenigstens zwei weiteren planaren Strahlerelementen eingerichtet ist, wobei jeweils zwei dieser wenigstens zwei weiteren planaren Strahlerelemente sich im Wesentlichen parallel zum Trägersubstrat erstreckend von diesem in jeweils einer gemeinsamen Ebene zueinander gehalten sind, und zusammen einen Flächendipol ausbilden.In a further particularly preferred embodiment, the invention also provides that the system is set up horizontally and / or vertically parallel to the two planar radiator elements with at least two further planar radiator elements, two of these at least two further planar radiator elements extending essentially parallel to the carrier substrate are held by this in each case in a common plane to each other, and together form a surface dipole.

Hierbei ist in bevorzugter Weiterbildung vorgesehen, dass auch mit diesen jeweils zwei weiteren, einen Flächendipol ausbildenden Strahlerelementen ein Koaxialleiteranschluss zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zwischen diesen Strahlerelementen und der auch mit diesem Koaxialleiteranschluss verbundenen Ultrabreitband-Mikrowelleneinheit verbunden ist. Von Vorteil ist, dass die zwei planaren Strahlerelementen und die jeweils wenigstens zwei weiteren planaren Strahlerelementen über denselben Koaxialleiteranschluss oder auch unterschiedliche Koaxialleiteranschlüsse verbunden sein können, so dass mit solchen weiteren Flächendipolen anwendungsspezifisch eine Vielzahl von individuell unterschiedlichen bi-statischen und mono-statischen Antennenstrukturen ausbildbar sind.A preferred development provides that a coaxial conductor connection for the wired transmission of an ultra-broadband signal between these radiator elements and the ultra-wideband microwave unit also connected to this coaxial conductor connection is connected to each of these two further emitter elements forming a surface dipole. It is advantageous that the two planar radiator elements and the at least two further planar radiator elements can be connected via the same coaxial conductor connection or also different coaxial conductor connections, so that a large number of individually different bi-static and monostatic antenna structures can be formed with such further surface dipoles, depending on the application .

Zweckmäßigerweise ist jeder Koaxialleiteranschluss jeweils über wenigstens ein Anpassglied, insbesondere zur Impedanzwandlung, zweckmäßig einen Balun-Übertrager umfassend, mit den jeweils einen Flächendipol ausbildenden Strahlerelementen verbunden.Each coaxial conductor connection is expediently connected via at least one matching element, in particular for impedance conversion, expediently comprising a balun transformer, to the radiator elements each forming a surface dipole.

Ferner ist in ergänzender und/oder alternativer Ausführung vorgesehen, dass die Ultrabreitband-Antenne eine vom Trägersubstrat aus betrachtet zu der ersten Seite hin, d.h. insbesondere auf der vom sensorisch zu erfassenden Füllstandbereich abgewandten Seite, und zum Trägersubstrat beabstandet angeordnete Abschirmung umfasst. Eine Wellenausbreitung des Ultrabreitbandsignals in diese Richtung kann somit auf einfache Weise vermieden und die Feldausbreitung hinter der Antenne minimiert werden. Hierbei ist insbesondere vorgesehen, dass die Abschirmung nicht mit der Ultrabreitband-Mikrowelleneinheit verbunden ist und/oder, dass die Abschirmung durch eine metallische Messzellenwand oder durch einen Deckel der Ultrabreitband-Antenne direkt ausgebildet ist.Furthermore, it is provided in a supplementary and / or alternative embodiment that the ultra-broadband antenna comprises a shielding arranged at a distance from the carrier substrate towards the first side, ie in particular on the side facing away from the filling level area to be sensed by sensors, when viewed from the carrier substrate. Wave propagation of the ultra-broadband signal in this direction can thus be avoided in a simple manner and the field propagation behind the antenna can be minimized. It is provided in particular that the shield is not connected to the ultra-broadband microwave unit and / or that the shield is formed directly by a metallic measuring cell wall or by a cover of the ultra-broadband antenna.

Bei Verwendung eines Anpassgliedes und einer Abschirmung ist ferner gemäß einer bevorzugten Weiterbildung vorgesehen, dass das Anpassglied zwischen der Abschirmung und dem Trägersubstrat angeordnet ist.When using an adapter and a shield, it is further provided according to a preferred development that the adapter is arranged between the shield and the carrier substrate.

Ergänzend und/oder alternativ zur Abschirmung kann auch eine benachbart zum Trägersubstrat zur ersten Seite gerichteten Oberfläche hin als Schutzschicht eine nichtleitfähige Schicht, insbesondere zur Abdeckung, und/oder eine Absorberschicht, insbesondere zur elektromagnetischen Absorption, angeordnet sein. Mit wenigstens einer solchen zur Abdeckung und/oder Absorption ausgebildeten Schicht lassen sich somit auf einfache Weise zusätzliche Reflexionen an rückseitigen Schichten, insbesondere auch massegeerdeten Schichten vermeiden.In addition and / or as an alternative to the shielding, a surface facing the first side adjacent to the carrier substrate can also be arranged as a protective layer, a non-conductive layer, in particular for covering, and / or an absorber layer, in particular for electromagnetic absorption. With at least one such layer designed for covering and / or absorption, additional reflections on rear-side layers, in particular also grounded layers, can thus be avoided in a simple manner.

In diesem Fall ist gemäß einer zweckmäßigen Ausführung das Anpassglied in die Schutzschicht eingebettet.In this case, according to an expedient embodiment, the adapter element is embedded in the protective layer.

Es hat sich ferner als besonders zweckmäßig erwiesen, wenn die Ultrabreitband-Mikrowelleneinheit für ein kontinuierlich-periodisches Signal als Ultrabreitbandsignal eingerichtet ist, wobei sich als besonders zweckmäßig ein ultrabreitbandiges M-Sequenzsignal gezeigt hat, also insbesondere ein pseudo-kodiertes bzw. pseudozufälliges Maximal- bzw. Rauschfolgen-signal.It has also proven to be particularly expedient if the ultra-broadband microwave unit is set up for a continuously periodic signal as an ultra-broadband signal, an ultra-broadband M-sequence signal having been shown to be particularly expedient, i.e. in particular a pseudo-coded or pseudo-random maximum or maximum signal Noise Sequence Signal.

Darüber hinaus besitzt die Ultrabreitband-Mikrowelleneinheit zumindest ein Sendemodul zum Generieren des Ultrabreitbandsignals und kann in zweckmäßiger Ausführung auch ein Auswertemodul zum Auswerten eines empfangenen UltraBreitbandsignals umfassen.In addition, the ultra-broadband microwave unit has at least one transmission module for generating the ultra-broadband signal and, in an expedient embodiment, can also include an evaluation module for evaluating a received ultra-broadband signal.

Gemäß einer bevorzugten Ausgestaltung ist ferner vorgesehen, dass das System mit wenigstens einer weiteren Ultrabreitband-Antenne gemäß vorgeschriebenen Merkmalen eingerichtet ist, wobei diese wenigstens eine weitere Ultrabreitband-Antenne zumindest mit einem Auswertemodul zum Auswerten eines empfangenen Ultrabreitbandsignals verbunden ist.According to a preferred embodiment it is further provided that the system is set up with at least one further ultra-wideband antenna according to prescribed features, this at least one further ultra-wideband antenna being connected to at least one evaluation module for evaluating a received ultra-wideband signal.

Folglich können auch mehrere Ultrabreitband-Antennen mit jeweils wenigstens einem Trägersubstrat, das einen Teil der in den Innenraum gerichteten Oberfläche der Messzellenwand ersetzt, oder sich im Innenraum und beabstandet vor der Messzellenwand erstreckt, eingesetzt werden, und zwar insbesondere zum Auswerten eines empfangenen Ultrabreitbandsignals an verschiedenen Orten innerhalb der Messzelle.As a result, several ultra-broadband antennas, each with at least one carrier substrate, which replaces part of the surface of the measuring cell wall directed into the interior, or extends in the interior and at a distance in front of the measuring cell wall, can be used, in particular for evaluating a received ultra-broadband signal at various Locations within the measuring cell.

Als Trägersubstrat kann zweckmäßig auch eine mehrlagige Platine eingesetzt sein und/oder die Strahlerelemente können in dem Substrat eingebettet sein.A multi-layer circuit board can expediently also be used as the carrier substrate and / or the radiator elements can be embedded in the substrate.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung einiger bevorzugter Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen. Die Zeichnungen zeigen jeweils skizzenhaft in stark vereinfachter nicht maßstabstreuer Darstellung:

Fig. 1
eine erste Ausführungsform eines erfindungsgemäßen Systems zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen in einem beliebig strukturierten Behälter als Beispiel einer möglichen Messzelle,
Fig. 2
eine zweite Ausführungsform eines erfindungsgemäßen Systems zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen in einem beliebig strukturierten Behälter als Beispiel einer möglichen Messzelle,
Fig. 3
eine dritte Ausführungsform eines erfindungsgemäßen Systems zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen in einem beliebig strukturierten Behälter als Beispiel einer möglichen Messzelle,
Fig. 4
in Draufsicht eine erste Ausführungsform einer Dipolantenne für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 5
in Querschnittsansicht eine zweite Ausführung einer Dipolantenne mit eingebetteten Strahlerelementen für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 6
in Draufsicht eine dritte Ausführung einer Dipolantenne, insbesondere für bistatische Messungen für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 7
in Querschnittsansicht eine vierte Ausführung einer Dipolantenne mit eingebetteten Strahlerelementen für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 8
in Querschnittsansicht eine fünfte Ausführung einer Dipolantenne mit eingebetteten Strahlerelementen und rückseitiger Abschirmung für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 9
in Querschnittsansicht eine sechste Ausführung einer Dipolantenne mit eingebetteten Strahlerelementen für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 10
in Querschnittsansicht eine siebte Ausführung einer Dipolantenne mit eingebetteten Strahlerelementen für den Einsatz innerhalb eines Systems gemäß der Erfindung für den Einsatz innerhalb eines Systems gemäß der Erfindung,
Fig. 11
im Querschnitt ein Messsystem nach dem Stand der Technik mit bündelnden Hochfrequenzantennen bei der Füllstanderfassung in einem Behälter,
Fig. 12
im Querschnitt das Messsystem nach dem Stand der Technik mit bündelnden Hochfrequenzantennen bei der Objekterfassung in einem Behälter, und
Fig. 13
im Querschnitt das Messsystem nach dem Stand der Technik mit bündelnden Hochfrequenzantennen bei der Objekterfassung in einem anderen Behälter.
Further advantages and features of the invention emerge from the following description of some preferred embodiments with reference to the accompanying drawings. The drawings each show a sketch in a greatly simplified, not to scale representation:
Fig. 1
a first embodiment of a system according to the invention for recognizing and / or determining the volume of bodies or substances in any structured container as an example of a possible measuring cell,
Fig. 2
a second embodiment of a system according to the invention for recognizing and / or determining the volume of bodies or substances in any structured container as an example of a possible measuring cell,
Fig. 3
a third embodiment of a system according to the invention for recognizing and / or determining the volume of bodies or substances in any structured container as an example of a possible measuring cell,
Fig. 4
in plan view a first embodiment of a dipole antenna for use within a system according to the invention,
Fig. 5
a cross-sectional view of a second embodiment of a dipole antenna with embedded radiator elements for use within a system according to the invention,
Fig. 6
a top view of a third embodiment of a dipole antenna, in particular for bistatic measurements for use within a system according to the invention,
Fig. 7
a cross-sectional view of a fourth embodiment of a dipole antenna with embedded radiator elements for use within a system according to the invention,
Fig. 8
a cross-sectional view of a fifth embodiment of a dipole antenna with embedded radiator elements and rear shielding for use within a system according to the invention,
Fig. 9
a cross-sectional view of a sixth embodiment of a dipole antenna with embedded radiator elements for use within a system according to the invention,
Fig. 10
a cross-sectional view of a seventh embodiment of a dipole antenna with embedded radiator elements for use within a system according to the invention for use within a system according to the invention,
Fig. 11
a cross-section of a measuring system according to the state of the art with bundling high-frequency antennas for level detection in a container,
Fig. 12
in cross section the measuring system according to the state of the art with bundling high-frequency antennas for the detection of objects in a container, and
Fig. 13
in cross-section the measuring system according to the state of the art with bundling high-frequency antennas when detecting objects in another container.

Nachfolgend wird zur weiteren Beschreibung einiger bevorzugter Ausführungsformen der Erfindung auf die Figuren Bezug genommen, wobei zur verbesserten Gegenüberstellung der erfindungsgemäßen Systeme zunächst kurz auf die in den Fign. 11 bis 13 dargestellten Systemen eingegangen wird, welche Messsysteme nach dem Stand der Technik mit bündelnden Hochfrequenzantennen bei der Füllstand- und Objekterfassung in verschiedenen Behältern zeigen.In the following, for a further description of some preferred embodiments of the invention, reference is made to the figures, whereby, for an improved comparison of the systems according to the invention, first briefly refer to the FIGS Figs. 11 to 13 The systems shown here show which measuring systems according to the state of the art with bundling high-frequency antennas for level and object detection in different containers.

Insbesondere zeigen die in den Fign. 11 bis 13 im Querschnitt dargestellten Systeme jeweils ein Füllstandradar 100 mit Hochfrequenzstrahlen bündelnden Antennen (oder eine Antenne) 102. Die jeweilige Antennenstruktur der bündelnden Antenne 102 kann hierbei aus einem nicht näher dargestellten leitfähigen Material sein und insbesondere und aus einem einzelnem Patchstrahler oder einem Array aus mehreren Einzelpatches aufgebaut sein, wie beispielsweise in der DE 10 2006 019 688 B4 beschrieben. Die bündelnden Antennen 102 sind jeweils mit einer rückseitig angeordneten, d.h. auf der vom sensorisch zu erfassenden Füllstandbereich abgewandten Seite, mit einer Massefläche bzw. Reflektorschicht 103 elektrisch leitend verbunden, wobei ein Hochfrequenzanschluss 104 von der bündelnden Antenne 102 zu einer Mikrowellenelektronik 101 führt. Gemäß der Fign. 11 und 12 ist jeweils ein "quader-" oder auch "zylinderförmiger" Behälter 300 mit einer Behälterwand 301 dargestellt, durch welchen eine Messzelle definiert ist. D. h., die Behälterwand 301 bildet die Messzellenwand aus, sodass die in den Innenraum gerichteten Oberfläche der Behälterwand 301 letztlich den sensorisch zu erfassenden Füllstandbereich definiert. Ein solcher Füllstandbereich ist folglich im Wesentlichen "hohlquader-" oder auch "hohlzylinderförmig" ausgebildet. In Abwandlung zu den Fign. 11 und 12 ist bei Fig. 13 kein lediglich "quader-" oder auch "zylinderförmiger" Behälter, sondern ein Behälter 400 mit einer im Wesentlichen beliebigen Struktur, insbesondere beliebig komplexen Struktur, gezeigt, der folglich auch eine dieser beliebigen Struktur folgende Behälterwand 401 umfasst. Eine hierdurch definierte Messzelle definiert und also auch der durch die in den Innenraum gerichtete Oberfläche der Behälterwand 401 definierte, sensorisch zu erfassende Füllstandbereich ist folglich auch nicht lediglich "hohlquader-" oder auch "hohlzylinderförmiger" ausgebildet, sondern kann Absätze, Ecken, Schrägen und dergleichen umfassen.In particular, those in the Figs. 11 to 13 Systems shown in cross-section each have a level radar 100 with antennas (or an antenna) 102 that bundle high-frequency beams be, for example in the DE 10 2006 019 688 B4 described. The bundling antennas 102 are each electrically conductively connected to a rear side, ie on the side facing away from the fill level area to be detected by sensors, to a ground surface or reflector layer 103, a high-frequency connection 104 leading from the bundling antenna 102 to microwave electronics 101. According to the Figs. 11 and 12 each shows a “cuboid” or also “cylindrical” container 300 with a container wall 301, through which a measuring cell is defined. That is to say, the container wall 301 forms the measuring cell wall, so that the surface of the container wall 301 directed into the interior ultimately defines the fill level range to be detected by sensors. Such a filling level area is consequently essentially “hollow cuboid” or also “hollow cylindrical”. As a modification of the Figs. 11 and 12 is at Fig. 13 not a merely “cuboid” or also “cylindrical” container, but a container 400 with an essentially arbitrary structure, in particular arbitrarily complex Structure shown, which consequently also comprises a container wall 401 following this arbitrary structure. A measuring cell defined in this way is defined and thus also the fill level area defined by the surface of the container wall 401 directed into the interior space, which is to be detected by sensors, is consequently not only "hollow cuboid" or also "hollow cylindrical", but can be steps, corners, bevels and the like include.

Ein jeweils mittels der bündelnden Antenne 102 erzeugtes Messfeld 600 ist gleichermaßen in den Fign. 11 bis 13 skizziert. Wie zu sehen, ist das erzeugte Messfeld 600 ein gebündeltes Messfeld und weist folglich insbesondere eine entsprechend gebündelte Richtkeule 601 auf, die den Bereich eingrenzen, in dem ein Sendesignal 602 mit einer bestimmten Mindestfeldstärke erzeugt bzw. ein Empfangssignal 603 mit einer bestimmten Mindestsignalstärke empfangen werden kann.A measurement field 600 generated in each case by means of the bundling antenna 102 is likewise shown in FIG Figs. 11 to 13 outlined. As can be seen, the generated measuring field 600 is a bundled measuring field and consequently has in particular a correspondingly bundled directional lobe 601 which delimits the area in which a transmission signal 602 can be generated with a certain minimum field strength or a reception signal 603 can be received with a certain minimum signal strength .

Befindet sich im Behälter 300 gemäß Fig. 11 als Füllgut 500 beispielsweise eine Flüssigkeit oder ein Schüttgut, sodass sich der Füllstandbereich und sich also das Innere der Messzelle im Wesentlichen homogen vom Boden aufwärts mit der Flüssigkeit oder dem Schüttgut füllt, kann folglich über die jeweilige Füllgutoberfläche 501 auch eine Füllstanderfassung mit dem bei Fig. 11 gezeigten Messsystem nach dem Stand der Technik im Wesentlichen zufrieden stellend durchgeführt werden, da in einem solchen Fall einer homogenen Füllgutverteilung eine gebündelte Richtkeule 601 in der Regel keine negative Auswirkungen auf das Messergebnis hat.Located in the container 300 according to Fig. 11 as filling material 500, for example, a liquid or a bulk material, so that the filling level area and thus the interior of the measuring cell are filled with the liquid or the bulk material essentially homogeneously from the bottom upwards, a level detection with the at Fig. 11 The measurement system shown according to the prior art can essentially be carried out satisfactorily, since in such a case of a homogeneous product distribution a bundled directional lobe 601 generally does not have any negative effects on the measurement result.

Befinden sich im Behälter 300 gemäß Fign. 12 und 13 als Füllgut jedoch mehrere Körper oder Stoffe, wie z.B. die mit 502 und 503 gekennzeichneten, die den Füllstandbereich und also das Innere der Messzelle nicht homogen vom Boden aufwärts füllen oder im Innern der Messzelle verteilt voneinander angeordnet sind, kann folglich die gebündelte Richtkeule 601 dazu führen, dass lediglich ein Teil der Körper oder Stoffe bzw. nur einzelne Körper oder Stoffe innerhalb des Bereichs der Richtkeule sensorisch erfasst, d.h. erkannt werden können, bei den Fign. 12 und 13 z.B. nur der mit 502 gekennzeichnete Körper. Aber auch eine in Bezug auf einen erkannten Körper basierende Füllstandmessung bzw. gemäß Fign. 12 und 13 eine Volumenbestimmung kann bei diesen Ausführungsbeispielen bereits zu unterschiedlichen Ergebnissen führen. Liegt nämlich wie bei Fig. 12 zu sehen, z.B. der Körper 502 auf dem Boden des dort "quader-" oder auch "zylinderförmiger" ausgebildeten Behälters und reicht Messfeld 600 innerhalb der Richtkeule 601 um den Körper 502 herum bis auf den Behälterboden, so kann anhand der sensorisch erfassten Körperoberfläche 504 des Körpers 502 zusätzlich zur reinen Erkennung des Körpers in der Regel auch eine Volumenbestimmung des Körpers mit entsprechender Elektronik durchgeführt werden. Befindet sich hingegen der Körper im Nahfeldbereich der Antenne, wie z.B. der Körper 502 bei Fig. 13, wird folglich mit dem bei Fig. 13 gezeigten Messsystem nach dem Stand der Technik nur ein Teil des Körpers 502 erfasst. Folglich kann zwar anhand der sensorisch erfassten Körperoberfläche 504 des Körpers 502 der Körper 502 grundsätzlich erkannt, jedoch in der Regel keine Volumenbestimmung des Körpers mehr durchgeführt werden. Negativ ergänzend wirkt sich darüber hinaus aus, wenn der Körper, wie z.B. der Körper 502 bei Fig. 13 nicht auf dem Boden eines lediglich "quader-" oder auch "zylinderförmiger" ausgebildeten Behälters liegt, sondern z.B. auf einem Absatz oder auch auf anderen einzeln unter dem Körper befindlichen weiteren verteilt angeordneten Körpern. Die sensorisch erfassten Körperoberfläche 504 des Körpers 502 kann nämlich in einem solchen Fall eine unkorrekte Füllstandhöhe widerspiegeln. Der bei den Fign. 12 und 13 außerhalb der Richtkeule 601 befindliche Körper 503 kann indessen überhaupt nicht erfasst werden, insbesondere da auch dessen Körperoberfläche 504 nicht mehr mittels des Messfeldes 600 sensorisch erfasst wird.Located in the container 300 according to Figs. 12 and 13 However, as filling material, several bodies or substances, such as those marked with 502 and 503, which do not fill the filling level area and thus the interior of the measuring cell upwards homogeneously or are arranged in the interior of the measuring cell distributed from one another, the bundled directional lobe 601 can consequently lead to this that only some of the bodies or substances or only individual bodies or substances within the area of the directional lobe are sensed, ie can be recognized in the Figs. 12 and 13 eg only the body marked with 502. But also a level measurement based on a recognized body or according to Figs. 12 and 13 a volume determination can already lead to different results in these exemplary embodiments. It is like that with Fig. 12 to see, for example, the body 502 on the bottom of the "cuboid" or "cylindrical" container there and the measuring field 600 extends within the directional lobe 601 around the body 502 to the bottom of the container Body 502, in addition to the mere detection of the body, a volume determination of the body can generally also be carried out using appropriate electronics. If, on the other hand, the body is in the near field area of the antenna, such as the body 502 in FIG Fig. 13 , is therefore associated with the Fig. 13 The measurement system shown according to the prior art only detects part of the body 502. Consequently, the body 502 can in principle be recognized on the basis of the body surface 504 of the body 502 detected by sensors, but the volume of the body can generally no longer be determined. In addition, it has a negative complementary effect when the body, such as the body 502, for example Fig. 13 does not lie on the bottom of a merely "cuboid" or "cylindrical" container, but rather, for example, on a shoulder or on other further bodies arranged individually under the body. The body surface 504 of the body 502 detected by sensors can in fact reflect an incorrect fill level in such a case. Of both Figs. 12 and 13 However, bodies 503 located outside of directional lobe 601 cannot be detected at all, in particular since its body surface 504 is no longer detected by sensors by means of measurement field 600 either.

Im Gegensatz hierzu zeigen die Fign. 1 bis 3 in stark vereinfachter Darstellung verschiedene Messsysteme nach gemäß der Erfindung. Insbesondere sind drei unterschiedliche Ausführungsformen eines erfindungsgemäßen Systems 200 zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen in einem beliebig strukturierten Behälter als Beispiel einer möglichen Messzelle 400 skizziert.In contrast, the Figs. 1 to 3 in a greatly simplified representation various measuring systems according to the invention. In particular, three different embodiments of a system 200 according to the invention for recognizing and / or determining the volume of bodies or substances in an arbitrarily structured container are sketched as an example of a possible measuring cell 400.

Wie nachfolgend ersichtlich, eignet sich ein solches erfindungsgemäßes System 200 zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen aus dielektrischem und/oder leitfähigen Material 500, 502, 503, 504 innerhalb eines Innenraums der Messzelle 400, und also insbesondere in Art eines Behälters, mit einer leitfähigen und/oder nichtleitfähigen Messzellenwand 401, die eine in den Innenraum gerichtete Oberfläche aufweist. Auch in den vorliegenden Ausführungsbeispielen bildet somit die Behälterwand die Messzellenwand 401 aus, sodass die in den Innenraum gerichtete Oberfläche der Behälterwand letztlich den sensorisch zu erfassenden Füllstandbereich definiert. Eine solche oder ähnliche Messzelle und also auch der im Innern der Messzelle sensorisch zu erfassende Füllstandbereich ist folglich in der Regel auch nicht lediglich "hohlquader-" oder auch "hohlzylinderförmiger" ausgebildet, sondern kann Absätze, Ecken, Schrägen und dergleichen umfassen, wie dies auch in den Fign. 1 bis 3 zu sehen ist.As can be seen below, such a system 200 according to the invention is suitable for recognizing and / or determining the volume of bodies or substances made of dielectric and / or conductive material 500, 502, 503, 504 within an interior of the measuring cell 400, and thus in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall 401, which has a surface directed into the interior. In the present exemplary embodiments, too, the container wall thus forms the measuring cell wall 401, so that the surface of the container wall directed into the interior space ultimately defines the fill level range to be detected by sensors. Such a or similar measuring cell and thus also the filling level area to be detected by sensors inside the measuring cell is consequently not just "hollow cuboid" or "hollow cylinder-shaped", but can include steps, corners, bevels and the like, as well in the Figs. 1 to 3 you can see.

Das System gemäß der Erfindung besitzt hierbei eine Ultrabreitband-Mikrowelleneinheit 201 und wenigstens eine Ultrabreitband-Antenne 202. Diese ist in praktischer Ausführung mit der Ultrabreitband-Mikrowelleneinheit 201 verbunden. Bestandteil der Ultrabreitband-Antenne 202 ist wenigstens ein scheibenförmiges Trägersubstrat mit einer zu einer ersten Seite gerichteten ersten Oberfläche und einer entgegengesetzten ersten Oberfläche gerichteten zweiten Oberfläche. Diese zweite Oberfläche bildet eine Außenseite der Antenne und das Trägersubstrat 205 ist derart angeordnet und vorgesehen, bei Betrieb, das heißt insbesondere nach Befestigung der Ultrabreitband-Antenne an der Messzelle, wie beispielsweise in den Fign. 1 bis 3 angedeutet, einen Teil der in den Innenraum gerichteten Oberfläche der Messzellenwand zu ersetzen. Alternativ kann das Trägersubstrat, jedoch auch beabstandet vor der Messzellenwand, sich im Innenraum erstrecken. Wie beispielsweise den Fign 4 bis 10 zu entnehmen, sind am oder im Trägersubstrat 205 Strahlerelemente 206a, 206b, 207a, 207b angeordnet und zwar derart, dass diese als eine elektrisch kurze Antenne mit einer zumindest im Wesentlichen halbkugelförmigen Strahlungscharakteristik eingerichtet sind, um ein volumenhaftes Messfeld 700, wie den Fign 1 bis 3 beispielhaft zu entnehmen, abzudecken.The system according to the invention here has an ultra-broadband microwave unit 201 and at least one ultra-broadband antenna 202. This is connected to the ultra-broadband microwave unit 201 in a practical embodiment. A component of the ultra-wideband antenna 202 is at least one disk-shaped carrier substrate with a first surface directed towards a first side and a second surface directed towards a first surface. This second surface forms an outside of the antenna and the carrier substrate 205 is arranged and provided in such a way during operation, that is to say in particular after the ultra-broadband antenna has been attached to the measuring cell, for example in the Figs. 1 to 3 indicated to replace part of the surface of the measuring cell wall directed into the interior. Alternatively, the carrier substrate can, however, also extend in the interior space at a distance in front of the measuring cell wall. Such as the Figures 4 to 10 As can be seen, emitter elements 206a, 206b, 207a, 207b are arranged on or in the carrier substrate 205 in such a way that they are set up as an electrically short antenna with an at least substantially hemispherical radiation pattern in order to create a voluminous measurement field 700, such as the Figures 1 to 3 to be taken as an example, to cover.

Bekanntermaßen handelt es sich um eine elektrisch kurze Antenne, wenn der elektrische Leiter der Antenne viel kleiner als die halbe Betriebswellenlänge λ ist: Im vorliegenden Fall, d.h. bei Einsatz einer Ultrabreitband-Mikrowelleneinheit und -Antenne und den damit nutzbaren Ultrabreitbandsignalen, d.h. bei Signalen insbesondere innerhalb eines Frequenzbereichs zwischen 0,1 bis 6 GHz, bewegen sich die Wellenlängen bei Betrieb ungefähr im Bereich zwischen 30dm bis 5cm, Je nach gewünschter Anwendung bewegt sich eine halbe Betriebswellenlänge folglich bevorzugt zwischen 15dm bis 2,5cm und der elektrische Leiter bzw. die Leiterstruktur der die Antenne ausmachenden Strahlerelemente ist entsprechend möglichst anzupassen. Insbesondere ist vorgesehen, dass der elektrische Leiter bzw. die Leiterstruktur der Strahlerelemente gemäß Definition aus " Lehrbuch der Hochfrequenztechnik", erster Band, zweite Auflage Seite 261, Kapitel 6.2.2, aus 1973, ISBN 3-540-05974-1 , zur Einrichtung einer elektrisch kurzen Antenne kleiner als oder gleich λ/8 ist.As is well known, it is an electrically short antenna if the electrical conductor of the antenna is much smaller than half the operating wavelength λ: In the present case, i.e. when using an ultra-broadband microwave unit and antenna and the ultra-broadband signals that can be used with it, i.e. for signals especially within one Frequency range between 0.1 to 6 GHz, the wavelengths move approximately in the range between 30dm to 5cm during operation, depending on the desired application, half an operating wavelength therefore preferably moves between 15dm to 2.5cm and the electrical conductor or the conductor structure of the The antenna elements that make up the antenna must be adapted accordingly as far as possible. In particular, it is provided that the electrical conductor or the conductor structure of the radiator elements according to the definition from " Textbook of High Frequency Technology ", first volume, second edition, page 261, chapter 6.2.2, from 1973, ISBN 3-540-05974-1 , to set up an electrically short antenna is less than or equal to λ / 8.

Wie bereits erläutert, sind Ultrabreitbandsignale mit niedrigen Frequenzen vorgesehen, um besonders gut verschiedenste dielektrische Materialien durchdringen zu können. Außerdem sind für kleine Messzellen entsprechend kleine Antennen mit Strahlerelementen im Zentimeterbereich erforderlich und vorgesehen. Bei Betrachtung des gesamten nutzbaren Frequenzbereichs handelt es sich damit definitionsgemäß um elektrisch kurze Antennen, die keine oder eine geringe Richtwirkung aufweisen und damit zweckmäßig eine volumenhafte Feldausbreitung bzw. Messung unterstützen,As already explained, ultra-broadband signals with low frequencies are provided in order to be able to penetrate a wide variety of dielectric materials particularly well. In addition, correspondingly small antennas with radiator elements in the centimeter range are required and provided for small measuring cells. When considering the entire usable frequency range, it is by definition electrically short antennas that have little or no directional effect and thus expediently support a volumetric field spread or measurement,

Mit anderen Worten, sind die am oder im Trägersubstrat 205 angeordneten Strahlerelemente 206a, 206b, 207a, 207b eingerichtet, zum Abdecken eines volumenhaften Messfeldes 700 über einen Raumwinkel von wenigstens 2π.In other words, the radiator elements 206a, 206b, 207a, 207b arranged on or in the carrier substrate 205 are set up to cover a volumetric measurement field 700 over a solid angle of at least 2π.

Hierdurch können im Gegenstand zum vorbeschriebenen Stand der Technik mit einem System gemäß der Erfindung auch in geometrisch komplexen Messzellen und also geometrisch komplexen, sensorisch zu erfassenden Füllstandbereichen Totbereiche im Wesentlichen vollständig vermieden werden und es kann somit auch für Messungen, insbesondere Radarmessungen, zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen im Nahbereich der Antenne eingesetzt werden.In this way, in the subject matter of the prior art described above, with a system according to the invention, even in geometrically complex measuring cells and thus geometrically complex fill level areas to be detected by sensors, dead areas can be essentially completely avoided and it can therefore also be used for measurements, in particular radar measurements, for detection and / or volume determination of bodies or substances in the vicinity of the antenna can be used.

Insbesondere, wenn das Trägersubstrat sich bei Betrieb beabstandet vor der Messzellenwand im Innenraum erstreckt, haben sich auch Strahlungscharakteristik als besonders bevorzugt gezeigt, mit denen ein volumenhaftes Messfeld 700 über einen Raumwinkel von weit mehr als 2π bis hin zu 4π abdeckbar ist und die Strahlungscharakteristik also bis hin zu einer vollkugelförmigen Strahlungscharakteristik reicht.In particular, when the carrier substrate extends at a distance in front of the measuring cell wall in the interior during operation, radiation characteristics have also been shown to be particularly preferred with which a voluminous measuring field 700 over a Solid angles of far more than 2π up to 4π can be covered and the radiation pattern thus extends to a fully spherical radiation pattern.

Auch beim Messsystem 200 gemäß der Erfindung führt von der Ultrabreitband-Antenne 202 wiederum zweckmäßig ein Hochfrequenzanschluss 203 zur Ultrabreitband-Mikrowelleneinheit 201, zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zur Ultrabreitband-Mikrowelleneinheit 201, d.h. insbesondere ein mit den Strahlerelementen verbundener Koaxialanschluss zum leitungsgebundenen Übertragen des Ultrabreitbandsignals zwischen den Strahlerelementen und der Ultrabreitband-Mikrowelleneinheit 201.In the measuring system 200 according to the invention, too, a high-frequency connection 203 expediently leads from the ultra-wideband antenna 202 to the ultra-wideband microwave unit 201, for the wired transmission of an ultra-wideband signal to the ultra-wideband microwave unit 201, ie in particular a coaxial connection connected to the radiator elements for the wired transmission of the ultra-wideband signal between the radiating elements and the ultra-wideband microwave unit 201.

Befinden sich folglich in einer Messzelle 400 mit Absätze, Ecken, Schrägen und dergleichen, also beispielsweise im Behälter gemäß Fig. 1 oder 2, der eine ähnliche, d.h. beliebig komplexe Struktur wie der Behälter nach Fig. 13 besitzt, als Füllgut jedoch mehrere Körper oder Stoffe, wie z.B. wiederum die mit 502 und 503 gekennzeichneten, die den Füllstandbereich und also das Innere der Messzelle nicht homogen vom Boden aufwärts füllen oder im Innern der Messzelle verteilt voneinander angeordnet sind, können folglich aufgrund des Abdeckens des volumenhaften Messfeldes 700 über einen Raumwinkel von wenigstens 2π, anhand der sensorisch erfassten Körperoberflächen 504 sowohl des Körpers 502 und auch des Körpers 503 auch die mehreren Körper oder Stoffe erkannt und/oder, insbesondere je nach applikationsspezifischer weiterer Ausgestaltung von zur Signalauswertung eingesetzten digitalen Algorithmen, in deren jeweiligen Volumen bestimmt werden. Auch können, wie in den Fign. skizziert, mit Hilfe der zumindest im Wesentlichen halbkugelförmigen Strahlungscharakteristik der erfindungsgemäßen Ultrabreitband-Antenne somit Totbereiche im Wesentlichen vollständig vermieden werden und das System 200 kann somit auch für Messungen im Nahbereich der Antenne eingesetzt werden.There are consequently in a measuring cell 400 with shoulders, corners, slopes and the like, for example in the container according to FIG Fig. 1 or 2 , which has a similar, ie arbitrarily complex structure as the container according to Fig. 13 has, however, as filling material, several bodies or substances, such as those marked with 502 and 503, which do not fill the filling level area and thus the interior of the measuring cell homogeneously from the bottom upwards or are arranged inside the measuring cell distributed from one another, can consequently due to the covering of the volumetric measurement field 700 over a solid angle of at least 2π, based on the body surfaces 504 detected by sensors, both of the body 502 and also of the body 503, also the multiple bodies or substances recognized and / or, in particular depending on the application-specific further configuration of digital algorithms used for signal evaluation, can be determined in their respective volume. As in FIGS. outlined, with the help of the at least substantially hemispherical radiation characteristic of the ultra-broadband antenna according to the invention, dead areas are thus substantially completely avoided and the system 200 can thus also be used for measurements in the vicinity of the antenna.

Zum Generieren des für die Messung eingesetzten Ultrabreitbandsignals besitzt die Ultrabreitband-Mikrowelleneinheit folglich zweckmäßig ein in den Figuren aus Gründen der Übersichtlichkeit nicht näher dargestelltes Sendemodul und/oder zum Auswerten eines empfangenen Ultrabreitbandsignals zweckmäßig ein gleichermaßen in den Figuren aus Gründen der Übersichtlichkeit nicht näher dargestelltes Auswertemodule.In order to generate the ultra-broadband signal used for the measurement, the ultra-broadband microwave unit consequently expediently has a transmission module and / or for the transmission module (not shown in greater detail in the figures for reasons of clarity) Evaluation of a received ultra-wideband signal is expediently an evaluation module, which is likewise not shown in detail in the figures for reasons of clarity.

Beispielhafte Sendesignale sowie auch an der Messzellenwand reflektierte Sendesignale innerhalb des volumenhaften Messfeldes 700 sind in den Fign. 1 und 2 mit 702 bzw. 704 gekennzeichnet und beispielhafte Empfangssignale sowie auch an der Messzellenwand reflektierte Empfangssignale sind mit 703 bzw. 705 gekennzeichnet.Exemplary transmission signals and also transmission signals reflected on the measuring cell wall within the volumetric measuring field 700 are shown in FIG Figs. 1 and 2 marked with 702 and 704 and exemplary received signals as well as received signals reflected on the measuring cell wall are marked with 703 and 705, respectively.

Mit dem erfindungsgemäßen System können folglich Messungen, insbesondere Radarmessungen bis hin zum Boden und in die verschiedensten Bereiche einschl. Ecken einer Messzelle, d.h. insbesondere bis zum Behälterboden und bis in die Ecken eines Behälters, zweckmäßiger Weise einschl. unter Nutzung reflektierter Signale durchgeführt und unter Berücksichtigung von Laufzeitanalysen und Mehrfachreflexionen, äußerst genau, insbesondere unter Verwendung digitaler Algorithmen ausgewertet werden. Es sei jedoch hierbei angemerkt, dass die Signalauswertung selbst, insbesondere unter Einsatz entsprechender Algorithmen nicht Gegenstand der Erfindung ist und folglich nicht weiter diskutiert wird.With the system according to the invention, measurements, in particular radar measurements down to the floor and in a wide variety of areas including corners of a measuring cell, ie in particular up to the container floor and up to the corners of a container, expediently including using reflected signals and taking into account of time-of-flight analyzes and multiple reflections, can be evaluated extremely precisely, in particular using digital algorithms. It should be noted here, however, that the signal evaluation itself, in particular when using appropriate algorithms, is not the subject of the invention and is consequently not discussed further.

Allerdings sei ferner darauf hingewiesen, dass die Ultrabreitband-Antenne 202 nicht zwingend als Sende- und Empfangsantenne ausgebildet sein muss. So ist im Rahmen der Erfindung insbesondere auch vorgesehen, dass das System mit wenigstens einer weiteren Ultrabreitband-Antenne eingerichtet ist, so dass eine erste der Antennen als Sendeantenne und eine oder auch mehrere weitere Antenne(n) als Empfangsantennen eingerichtet sind. Insbesondere in diesem Fall ist diese wenigstens eine weitere Ultrabreitband-Antenne zumindest mit einem Auswertemodul zum Auswerten eines empfangenen Ultrabreitbandsignals verbunden. Bei diesem Auswertemodul handelt es sich in bevorzugter Weise um das vorstehend in Bezug auf die Ultrabreitband-Mikrowelleneinheit bereits erwähnte Auswertemodul, wobei auch mehrere Auswertemodule zur gemeinschaftlichen Signalauswertung miteinander verbunden sein können. Alternativ können auch mehrere Antennen als Sendeantennen eingerichtet sein und lediglich eine oder auch mehrere der weiteren Antenne(n) als Empfangsantenne. Ferner alternativ können auch mehrere Antennen als Sende- und Empfangsantennen eingerichtet sein oder in weiterer Alternative mehrere Antennen als Sende- und Empfangsantennen eingerichtet sein und eine oder mehrere Antennen als Empfangsantennen.However, it should also be pointed out that the ultra-broadband antenna 202 does not necessarily have to be designed as a transmitting and receiving antenna. In the context of the invention, it is also provided in particular that the system is set up with at least one further ultra-broadband antenna, so that a first of the antennas is set up as a transmitting antenna and one or more further antenna (s) are set up as receiving antennas. In this case in particular, this at least one further ultra-broadband antenna is connected to at least one evaluation module for evaluating a received ultra-broadband signal. This evaluation module is preferably the evaluation module already mentioned above in relation to the ultra-broadband microwave unit, with several evaluation modules also being able to be connected to one another for joint signal evaluation. Alternatively, several antennas can also be set up as transmitting antennas and only one or more of the further antenna (s) as receiving antenna. Furthermore, alternatively, several antennas can also be set up as transmitting and receiving antennas or, in a further alternative, several antennas can be set up as transmitting and receiving antennas and one or more antennas can be set up as receiving antennas.

Infolge dessen kann das System gemäß Erfindung somit auch mehre Ultrabreitband-Antennen mit jeweils einem Trägersubstrat, das nach Befestigung der jeweiligen Ultrabreitband-Antenne an einer anderen Stelle der Messzelle dort einen Teil der in den Innenraum gerichteten Oberfläche der Messzellenwand ersetzt, oder sich dort im Innenraum und beabstandet vor der Messzellenwand erstreckt, eingesetzt werden. Mit somit an verteilten Orten der Messzelle am oder im jeweiligen Trägersubrat angeordneten Strahlerelementen kann folglich eine Radarmessung mit Stützpunkten an verschiedenen Orten innerhalb der Messzelle durchführt werden, welches der möglichen Strukturkomplexität der sensorisch zu erfassenden Füllstandbereiche bei der Anwendbarkeit des erfindungsgemäßen Gegenstandes im Wesentlichen keine Grenzen mehr setzt. Ein einfaches Beispiel von an verteilten Orten der Messzelle befestigten Ultrabreitband-Antennen ist der Fig. 3 zu entnehmen, bei welcher zusätzlich zur Ultrabreitband-Antenne 202, ähnlich wie bei den Fign. 1 und 2 eine solche weitere Ultrabreitband-Antenne 212 eingesetzt ist. Es sei erwähnt, dass auch eine Vielzahl n solcher oder ähnlich weiterer Ultrabreitband-Antennen 212 im Rahmen der Erfindung einsetzbar sindAs a result, the system according to the invention can also have several ultra-broadband antennas, each with a carrier substrate which, after the respective ultra-broadband antenna is attached to another point of the measuring cell, replaces part of the surface of the measuring cell wall directed into the interior, or is located there in the interior and extends at a distance in front of the measuring cell wall. With radiator elements thus arranged at distributed locations of the measuring cell on or in the respective carrier substrate, a radar measurement with support points at different locations within the measuring cell can consequently be carried out, which essentially no longer sets any limits to the possible structural complexity of the fill level areas to be detected by sensors in the applicability of the object according to the invention . A simple example of ultra-broadband antennas attached to distributed locations in the measuring cell is the Fig. 3 can be seen in which in addition to the ultra-wideband antenna 202, similar to the Figs. 1 and 2 such a further ultra-wideband antenna 212 is used. It should be mentioned that a multiplicity of n such or similarly further ultra-broadband antennas 212 can also be used within the scope of the invention

Nachfolgend wird insbesondere auf einzelne bevorzugte Ausführungsformen in Verbindung mit am oder im Trägersubstrat 205 angeordneten Strahlerelementen eingegangen, welche mit einem, wie vorstehend bereits erwähnten Koaxialleiteranschluss als Hochfrequenzanschluss 203 verbunden sind, der zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zwischen den Strahlerelementen und der Ultrabreitband-Mikrowelleneinheit 201 auch mit dieser verbundenen ist.In the following, individual preferred embodiments in connection with radiator elements arranged on or in the carrier substrate 205, which are connected to a coaxial conductor connection as a high-frequency connection 203, as mentioned above, which is also used for the wired transmission of an ultra-wideband signal between the radiator elements and the ultra-wideband microwave unit 201, will be discussed in particular is associated with this.

Wie beispielsweise mit Fig. 4 anhand einer ersten Ausführungsform einer Dipolantenne in Draufsicht skizziert, sind zweckmäßig zumindest zwei planare Strahlerelemente 206a, 206b am oder im Trägersubstrat 205 der Ultrabreitband-Antenne 202 angeordnet. Die planaren Strahlerelemente 206a, 206b erstrecken sich im Wesentlichen parallel zum Trägersubstrat 205, sind vom Trägersubstrat 205 in einer gemeinsamen Ebene gehalten, d.h. insbesondere eine durch die planaren Strahlerelemente aufgespannte gemeinsame planare Ebene erstreckt sich folglich im Wesentlichen parallel zu einer vom Trägersubstrat aufgespannten Ebene, und bilden zusammen einen Flächendipol aus. Aufgrund der Ausbildung der Antenne als elektrisch kurze Antenne, ist ein entsprechend ausgebildeter Flächendipol folglich nicht an die Anregungsfrequenzen angepasst. Auch besitzen die Strahlerelemente somit zweckmäßig ferner eine horizontale Ausdehnung zur Trägersubstratebene.For example with Fig. 4 Outlined in plan view using a first embodiment of a dipole antenna, at least two planar radiator elements are expedient 206a, 206b arranged on or in the carrier substrate 205 of the ultra-broadband antenna 202. The planar radiator elements 206a, 206b extend essentially parallel to the carrier substrate 205, are held by the carrier substrate 205 in a common plane, ie in particular a common planar plane spanned by the planar radiator elements consequently extends essentially parallel to a plane spanned by the carrier substrate, and together form a surface dipole. Due to the design of the antenna as an electrically short antenna, a correspondingly designed surface dipole is consequently not adapted to the excitation frequencies. The emitter elements thus expediently also have a horizontal extent to the plane of the carrier substrate.

Wie ferner angezeigt bei Fig. 4, ist der Hochfrequenzanschluss 203 zweckmäßig ferner über ein Anpassglied 204 mit den diesen Flächendipol ausbildenden Strahlerelementen 206a, 206b verbunden. Hierdurch lassen sich insbesondere Impedanzwandlungen zwischen dem leitungsgebundenen unsymmetrischen Übertragungsweg der Ultrabreitbandsignale und den damit einhergehenden elektromagnetischen Signalwellen des symmetrischen Flächendipols sowie dem im Innenraum der Messzelle basierenden, also insbesondere auf dem Medium Luft basierenden oder allgemein gesagt leitungsungebundenen Übertragungsweg der Ultrabreitbandsignale und den damit einhergehenden elektromagnetischen Signalwellen applikationsspezifisch vornehmen, wie es an und für sich für einen Fachmann bekannt ist. So beträgt z.B. die Wellenimpedanz typischer Koaxialkabel 50Ω und die Impedanz des Flächendipols unterscheidet sich davon frequenzabhängig signifikant. Ein Anpassglied 204, in bevorzugter Ausführung z.B. einen breitbandigen Balun-Übertrager umfassend, ist folglich in der Regel zweckmäßig, um beim Übergang zwischen den leitungsgebundenen, elektromagnetischen Signalwellen und dem Flächendipol entsprechende Anpassungen in Bezug auf die Wellenimpedanz der Leitung vorzunehmen.As also indicated at Fig. 4 , the high-frequency connection 203 is expediently also connected via an adapter 204 to the radiator elements 206a, 206b that form this surface dipole. This allows in particular impedance conversions between the line-bound asymmetrical transmission path of the ultra-broadband signals and the associated electromagnetic signal waves of the symmetrical surface dipole as well as the transmission path of the ultra-broadband signals that is based in the interior of the measuring cell, i.e. in particular based on the medium of air or generally speaking, non-line-bound transmission path of the ultra-broadband signals and the associated electromagnetic signal waves application-specific make as it is known in and of itself to a person skilled in the art. For example, the wave impedance of typical coaxial cables is 50Ω and the impedance of the surface dipole differs significantly depending on the frequency. A matching element 204, in a preferred embodiment, for example, a broadband balun transformer, is therefore generally useful to make appropriate adjustments to the wave impedance of the line at the transition between the line-bound electromagnetic signal waves and the surface dipole.

Die Ultrabreitband-Antenne 202 gemäß Fig. 4 kann folglich als Sende- und Empfangsantenne ausgebildet sein und zwar insbesondere monostatisch. In diesem Fall ist die Ultrabreitband-Antenne 202 und also gemäß vorliegendem Beispiel die beiden Strahlerelementen 206a, 206b somit zweckmäßig mit einem von der Ultrabreitband-Mikrowelleneinheit umfassten Sendemodul zum Generieren eines für die Messung eingesetzten Ultrabreitbandsignals und gleichzeitig mit einem Auswertemodul zum Auswerten eines empfangenen Ultrabreitbandsignals verbunden, welches jedoch aus Gründen der Übersichtlichkeit nicht näher dargestellt ist.The ultra-wideband antenna 202 of FIG Fig. 4 can consequently be designed as a transmitting and receiving antenna, in particular monostatic. In this case, the ultra-wideband antenna 202 is the two, according to the present example Radiator elements 206a, 206b are thus expediently connected to a transmission module comprised by the ultra-broadband microwave unit for generating an ultra-broadband signal used for the measurement and, at the same time, with an evaluation module for evaluating a received ultra-broadband signal, which, however, is not shown in more detail for reasons of clarity.

Alternativ oder in Ergänzung hierzu skizziert Fig. 5 in Querschnittsansicht eine Ausführung einer Dipolantenne mit im Trägersubstrat 205 eingebetteten Strahlerelementen 206a, 206b für den Einsatz innerhalb eines Systems gemäß der Erfindung.Alternatively or in addition to this outlined Fig. 5 a cross-sectional view of an embodiment of a dipole antenna with radiator elements 206a, 206b embedded in the carrier substrate 205 for use within a system according to the invention.

In Abwandlung zu den Fign. 4 und 5 skizziert Fig. 6 in Draufsicht eine Ausführung einer Dipolantenne, insbesondere für bi-statische Messungen für den Einsatz innerhalb eines Systems gemäß der Erfindung. Ergänzend zu den zwei planaren Strahlerelementen 206a, 206b, und zwar horizontal parallel zu diesen zwei planaren Strahlerelementen 206a, 206b sind wenigstens zwei weitere planare Strahlerelemente, im dargestellten Beispiel zwei weitere planare Strahlerelemente 207a, 207b von der Ultrabreitband-Antenne 202 umfasst. Jeweils zwei 207a, 207b solcher wenigstens zwei weiteren planaren Strahlerelemente sich hierbei im Wesentlichen parallel zum Trägersubstrat 205 erstreckend von diesem in jeweils einer gemeinsamen Ebene zueinander gehalten sind und auch zusammen einen Flächendipol ausbilden, Wie zu sehen, sind im dargestellten Beispiel mit den jeweils zwei weiteren, einen Flächendipol ausbildenden Strahlerelementen ein insbesondere als Koaxialleiteranschluss ausgebildeter Hochfrequenzanschluss 203 zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zwischen diesen Strahlerelementen 207a, 207b und der folglich in zweckmäßiger Weise auch mit diesem Hochfrequenzanschluss verbundenen Ultrabreitband-Mikrowelleneinheit (nicht dargestellt) verbunden. Da ferner in dem dargestellten Beispiel jeweils ein eigener Hochfrequenzanschluss 203 mit den Strahlerelementen 206a, 206b sowie mit den Strahlerelementen 207a, 207b verbunden ist, und zwar wiederum in zweckmäßiger Ausbildung jeweils über ein separates Anpassglied 204, kann die Ultrabreitband-Antenne 202 in diesem Fall somit insbesondere auch für bi-statische Messung eingerichtet sein, d.h. zwei der einen Flächendipol ausbildenden Strahlerelemente, z.B. die Strahlerelemente 206a, 206b sind zum Aussenden eines für die Messung eingesetzten Ultrabreitbandsignals eingerichtet und somit zweckmäßig zumindest mit einem Sendemodul zum Generieren des für die Messung eingesetzten Ultrabreitbandsignals verbunden und zwei andere, einen Flächendipol ausbildenden Strahlerelemente, z.B. die Strahlerelemente 207a, 2067 sind zum Empfangen des für die Messung eingesetzten Ultrabreitbandsignals eingerichtet und somit zweckmäßig zumindest mit einem Auswertemodul zum Auswerten des empfangenen Ultrabreitbandsignals verbunden. Wie ferner ersichtlich können sich hierbei die jeweils einen gemeinsamen Flächendipol ausbildenden Strahlerelemente ein gemeinsames Trägersubstrat teilen, d.h. sie sind am oder im selben Trägersubstrat 205 angeordnet. Alternativ käme jedoch auch die Anordnung auf grundsätzlich einem geteilten Trägersubstrat in Betracht, d.h. die einen gemeinsamen Flächendipol ausbildenden Strahlerelemente sind jeweils auf einem Teil-Trägersubstrat angeordnet.As a modification of the Figs. 4 and 5 outlined Fig. 6 in plan view an embodiment of a dipole antenna, in particular for bi-static measurements for use within a system according to the invention. In addition to the two planar radiator elements 206a, 206b, namely horizontally parallel to these two planar radiator elements 206a, 206b, at least two further planar radiator elements, in the example shown, two further planar radiator elements 207a, 207b are included by the ultra-wideband antenna 202. In each case, two 207a, 207b of such at least two further planar radiator elements are held essentially parallel to the carrier substrate 205, extending from this in a common plane to each other and also together form a surface dipole , radiator elements forming a surface dipole, a high-frequency connection 203 designed in particular as a coaxial conductor connection for the wired transmission of an ultra-broadband signal between these radiator elements 207a, 207b and the ultra-wideband microwave unit (not shown) which is consequently also expediently connected to this high-frequency connection. Since, in the example shown, a separate high-frequency connection 203 is connected to the radiator elements 206a, 206b and to the radiator elements 207a, 207b, again in an expedient manner via a separate adapter 204, the ultra-wideband antenna 202 in this case can in particular also be set up for bi-static measurement, ie two of the one Radiator elements forming a surface dipole, e.g. the radiator elements 206a, 206b, are set up to transmit an ultra-broadband signal used for the measurement and are therefore expediently connected to at least one transmission module for generating the ultra-broadband signal used for the measurement and two other radiator elements forming a surface dipole, e.g. the radiator elements 207a, 2067 are set up to receive the ultra-wideband signal used for the measurement and are therefore expediently connected to at least one evaluation module for evaluating the received ultra-wideband signal. As can also be seen, the radiator elements each forming a common surface dipole can share a common carrier substrate, ie they are arranged on or in the same carrier substrate 205. As an alternative, however, the arrangement on a fundamentally divided carrier substrate would also come into consideration, ie the emitter elements forming a common surface dipole are each arranged on a partial carrier substrate.

Ähnlich zur Fig. 5 skizziert Fig. 7 in Querschnittsansicht eine weitere Ausführung einer Dipolantenne mit im Trägersubstrat 205 eingebetteten Strahlerelementen für den Einsatz innerhalb eines Systems gemäß der Erfindung. In weiterer Abwandlung zur Fig. 5 und auch zur Fig. 6 sind beim Ausführungsbeispiel gemäß Fig. 7 jedoch ergänzend zu den zwei planaren Strahlerelementen 206a, 206b, und zwar vertikal parallel zu diesen zwei planaren Strahlerelementen 206a, 206b, wenigstens zwei weitere planare Strahlerelemente, im dargestellten Beispiel die zwei weiteren planaren Strahlerelemente 207a, 207b von der Ultrabreitband-Antenne 202 umfasst. Auch diese beiden weiteren planaren Strahlerelemente werden hierbei sich im Wesentlichen parallel zum Trägersubstrat 205 erstreckend von diesem in jeweils einer gemeinsamen Ebene zueinander gehalten und bilden jeweils zusammen grundsätzliche einen Flächendipol aus. Da im dargestellten Beispiel alle vier dargestellten jeweils zwei 207a, 207b solcher wenigstens zwei weiteren planaren Strahlerelemente in das Trägersubstrat 205 eingebettet gezeigt sind, ist ersichtlich, dass ein solches Trägersubstrat 205 beispielsweise auch als mehrlagige Platine ausgebildet sein kann. Dies hat z.B. auch den Vorteil eine vertikal parallel zueinander gewünschte Einbettung von Strahlerelementen auf einfache Weise herstellen zu können. Eine mehrlagige Platine als Trägersubstrat 205 kann jedoch selbstverständlich auch ohne eingebettete Strahlerelemente zum Einsatz kommen.Similar to the Fig. 5 outlined Fig. 7 a cross-sectional view of a further embodiment of a dipole antenna with emitter elements embedded in the carrier substrate 205 for use within a system according to the invention. In a further modification of the Fig. 5 and also to Fig. 6 are in accordance with the exemplary embodiment Fig. 7 however, in addition to the two planar radiator elements 206a, 206b, namely vertically parallel to these two planar radiator elements 206a, 206b, at least two further planar radiator elements, in the example shown, the two further planar radiator elements 207a, 207b comprised by the ultra-wideband antenna 202. These two further planar radiator elements are also held in this case, extending essentially parallel to the carrier substrate 205, in each case in a common plane to one another and each together basically form a surface dipole. Since in the example shown, all four shown two 207a, 207b of such at least two further planar radiator elements are shown embedded in the carrier substrate 205, it can be seen that such a carrier substrate 205 can also be designed, for example, as a multi-layer circuit board. This also has the advantage, for example, of being able to produce embedding elements in a simple manner, which is desired vertically parallel to one another. A multi-layer circuit board as a carrier substrate 205 can of course also be used without embedded radiator elements.

Ferner kann bei einer Ausführungsform nach Fig. 7 gemäß einer Variante vorgesehen sein, dass jeweils ein eigener Hochfrequenzanschluss 203 mit den Strahlerelementen 206a, 206b sowie mit den Strahlerelementen 207a, 207b verbunden ist, und zwar wiederum in zweckmäßiger Ausbildung jeweils über ein separates Anpassglied 204, welches aus Gründen der Überschaubarkeit jedoch nicht dargestellt ist. In einer alternativen Variante kann jedoch auch vorgesehen sein, dass die Strahlerelemente 206a, 206b und die Strahlerelemente 207a, 207b mit einem gemeinsamen Hochfrequenzanschluss 203 verbunden sind. Hierbei wird zweckmäßig jedes Strahlerelement 206a, 206b, die zusammen einen Flächendipol ausbilden, mit jeweils einem anderen, der zusammen einen weiteren Flächendipol ausbildenden Strahlerelemente 207a, 207b elektrisch verbunden. Gemäß Fig. 7 also insbesondere das Strahlerelement 206a mit dem Strahlerelement 207a und das Strahlerelement 206b mit dem Strahlerelement 207b. Auch diese Variante ist aus Gründen der Überschaubarkeit jedoch nicht dargestellt.Furthermore, in one embodiment according to Fig. 7 According to a variant, it can be provided that a separate high-frequency connection 203 is connected to each of the radiator elements 206a, 206b and to the radiator elements 207a, 207b, again in an expedient manner via a separate adapter 204, which, however, is not shown for reasons of clarity . In an alternative variant, however, it can also be provided that the radiator elements 206a, 206b and the radiator elements 207a, 207b are connected to a common high-frequency connection 203. In this case, each radiator element 206a, 206b, which together form a surface dipole, is expediently electrically connected to a different one of the radiator elements 207a, 207b which together form a further surface dipole. According to Fig. 7 thus in particular the radiator element 206a with the radiator element 207a and the radiator element 206b with the radiator element 207b. However, this variant is also not shown for reasons of clarity.

Die jeweilige applikationsspezifische Einrichtung einer Ultrabreitband-Antenne 202 d.h. insbesondere für bi-statische oder mono-statische Messungen sowie als Sende- und/oder Empfangsantenne, ist folglich im Rahmen und unter Anwendung der Erfindung äußerst flexibel. Es sei darauf hingewiesen, dass auch Mischformen von horizontal und vertikal parallel zu den zwei planaren Strahlerelementen 206a, 206b angeordneten weiteren planaren Strahlerelemente im Rahmen der Erfindung liegen. Z.B. jeweils zwei horizontal und zwei vertikal parallel zu den zwei planaren Strahlerelementen 206a, 206b angeordnete weitere planare Strahlerelemente.The respective application-specific device of an ultra-wideband antenna 202, i.e. in particular for bi-static or monostatic measurements and as a transmitting and / or receiving antenna, is consequently extremely flexible within the scope and application of the invention. It should be pointed out that mixed forms of further planar radiator elements arranged horizontally and vertically parallel to the two planar radiator elements 206a, 206b are also within the scope of the invention. For example, two further planar radiator elements arranged horizontally and two vertically parallel to the two planar radiator elements 206a, 206b.

Fig. 8 skizziert im Querschnittsansicht eine weitere Ausführung einer Antenne gemäß der Erfindung, im dargestellten Beispiel einer Dipolantenne mit zwei im Trägersubstrat 205 eingebetteten Strahlerelementen 206a, 206b, wobei zusätzlich eine rückseitige Abschirmung 402, d.h. auf der vom sensorisch zu erfassenden Füllstandbereich abgewandten Seite, mitumfasst ist. Es hat sich hierbei als zweckmäßig gezeigt, wenn eine solche oder ähnliche Abschirmung 402 nicht mit der Ultrabreitband-Mikrowelleneinheit 201 verbunden ist. Ferner hat sich in ergänzender oder auch alternativer Weise zweckmäßig gezeigt, wenn die Abschirmung 402 durch die metallische Messzellenwand selbst oder durch einen metallischen Deckel der Ultrabreitband-Antenne 202 ausgebildet ist. Eine rückseitige Wellenausbreitung des Ultrabreitbandsignals kann somit auf einfache Weise vermieden, zumindest jedoch reduziert werden. Fig. 8 Outlines a cross-sectional view of a further embodiment of an antenna according to the invention, in the example shown a dipole antenna with two radiator elements 206a, 206b embedded in the carrier substrate 205, with a rear shield 402, ie on the side facing away from the fill level area to be detected by sensors, also included. It has been shown to be useful if such or a similar shield 402 is not connected to the ultra-wideband microwave unit 201. Furthermore, it has been shown to be expedient in a complementary or alternative manner if the shielding 402 is formed by the metallic measuring cell wall itself or by a metallic cover of the ultra-broadband antenna 202. Rearward wave propagation of the ultra-wideband signal can thus be avoided in a simple manner, or at least reduced.

Wie ferner zu erkennen, ist die Abschirmung 402 also vom Trägersubstrat aus betrachtet zu der ersten Seite hin und zweckmäßig zum Trägersubstrat 205 beabstandet angeordnet. Wie dargestellt, kann zwischen der Abschirmung 402 und dem Trägersubstrat 205 hierbei zweckmäßig auch ein eingesetztes Anpassglied 204 angeordnet sein. Zwischen Abschirmung 402 und Trägersubstrat 205 ist folglich ferner in praktischer Ausführung eine Kaverne 210 vorhanden. Diese kann je nach Applikation z.B. auch mit einem geeigneten Gas (z. B. Luft) oder Vakuum gefüllt sein, insbesondere um weitere, jeweils gewünschte Dielektrizitätseigenschaften zur Verbesserung der Radarmessung zur Verfügung zu stellen.As can also be seen, the shielding 402, viewed from the carrier substrate, is thus arranged towards the first side and expediently at a distance from the carrier substrate 205. As shown, an inserted adapter 204 can expediently also be arranged between the shield 402 and the carrier substrate 205. In a practical embodiment, a cavity 210 is consequently also present between the shield 402 and the carrier substrate 205. Depending on the application, this can also be filled with a suitable gas (e.g. air) or vacuum, in particular to provide further, respectively desired dielectric properties to improve the radar measurement.

Bei der in Fig. 9 in Querschnittsansicht skizzierten Ausführung einer Antenne gemäß der Erfindung, im dargestellten Beispiel einer Dipolantenne mit zwei im Trägersubstrat 205 eingebetteten Strahlerelementen 206a, 206b, ist in Abwandlung zur Fig. 8 insbesondere benachbart zum Trägersubstrat 205 und zur ersten Seite gerichteten ersten Oberfläche hin eine Schutzschicht 209 angeordnet, die zweckmäßig durch eine nicht-leitfähige Schicht, insbesondere zur Abdeckung, und/oder durch eine Absorberschicht ausgebildet ist. Auch mit wenigstens einer solchen zur Abdeckung und/oder Absorption ausgebildeten Schutzschicht lassen sich somit auf einfache Weise zusätzliche Reflexionen an rückseitigen Schichten, insbesondere auch massegeerdeten Schichten vermeiden. Als eine solche Schutzschicht 209 hat sich z.B. auch ein breitbandiges HF-Material in Form einer Folie oder eines Schaums als besonders zweckmäßig gezeigt. Wie dargestellt, kann hierbei ein im Rahmen der Erfindung eingesetztes Anpassglied 204 in die Schutzschicht 209 eingebettet sein und/oder innerhalb einer in der Schutzschicht 209 ausgebildeten Kaverne 210 eingesetzt sein. Im letzteren Fall kann ein vorhandener Freiraum in der Kaverne 210 zwischen Anpassglied 204 und Schutzschicht 209, je nach Applikation z.B. auch wieder mit einem geeigneten Gas (z. B. Luft) oder Vakuum gefüllt sein.At the in Fig. 9 The embodiment of an antenna according to the invention sketched in a cross-sectional view, in the example shown of a dipole antenna with two radiator elements 206a, 206b embedded in the carrier substrate 205, is a modification of FIG Fig. 8 In particular, a protective layer 209 is arranged adjacent to the carrier substrate 205 and the first surface facing the first side, which is expediently formed by a non-conductive layer, in particular for covering, and / or by an absorber layer. Even with at least one such protective layer designed for covering and / or absorption, additional reflections on back layers, in particular also grounded layers, can thus be avoided in a simple manner. A broadband HF material in the form of a film or a foam has also proven to be particularly useful as such a protective layer 209, for example. As shown, an adapter 204 used within the scope of the invention can be embedded in the protective layer 209 and / or inserted within a cavity 210 formed in the protective layer 209. In the latter case, a existing free space in the cavern 210 between adapter 204 and protective layer 209, depending on the application, for example, can also be filled again with a suitable gas (for example air) or vacuum.

Bei der in Fig. 10 in Querschnittsansicht skizzierten Ausführung ist eine Mischform aus den in den Fign. 8 und 9 skizzierten Ausführungen gezeigt.At the in Fig. 10 in cross-sectional view sketched embodiment is a hybrid of the in the Figs. 8 and 9 shown.

Von Vorteil ist, dass es sich bei den vorbeschriebenen Strahlerelementen 206a, 206b, 207a, 207b grundsätzlich um beliebige Formen handeln kann. Je nach Erfordernis bzw. applikationsspezifisch kann folglich für eine jeweils besonders geeignete Ausbildung eines jeweiligen durch die Strahlerelemente aufgebauten Flächendipols auf eine Vielzahl von möglichen Antennenstrukturen zurückgegriffen werden. Bewährt haben sich Strahlerelemente im Rahmen der Erfindung beispielsweise zum Ausbilden von Kreis-, Ellipsen- und Ringstrukturen oder auch mit Schmetterlingsstrukturen, Fliegenstrukturen, d.h. "Bow Tie"-Strukturen, und sogenannten Batwing-Strukturen. Auch hat sich ferner als besonders zweckmäßig erwiesen, wenn die Ultrabreitband-Mikrowelleneinheit für ein kontinuierlich-periodisches Signal als Ultrabreitbandsignal eingerichtet ist, wobei sich als besonders zweckmäßig ein ultrabreitbandiges M-Sequenzsignal gezeigt hat.It is advantageous that the radiator elements 206a, 206b, 207a, 207b described above can in principle be of any shape. Depending on the requirement or application-specific, a large number of possible antenna structures can consequently be used for a particularly suitable design of a respective surface dipole built up by the radiator elements. Radiator elements have proven themselves within the scope of the invention, for example, for the formation of circular, elliptical and ring structures or also with butterfly structures, fly structures, i.e. "bow tie" structures, and so-called batwing structures. It has also proven to be particularly expedient if the ultra-broadband microwave unit is set up for a continuously periodic signal as an ultra-broadband signal, an ultra-broadband M-sequence signal having been shown to be particularly expedient.

Unter Würdigung vorstehender Beschreibung kann somit zusammenfassend festgehalten werden, dass mit der Erfindung ein industrietaugliches Sensorsystem zur Präsenzerkennung von Füllgütern in kleinen und/oder kompliziert-strukturierten Messzellen, insbesondere Behältern, insbesondere zur Leererkennung, zur Füllstandmessung und zur Volumenbestimmung von Füllgütern geschaffen ist.In consideration of the above description, it can thus be summarized that the invention creates a sensor system suitable for industrial use for the presence detection of filling goods in small and / or complex-structured measuring cells, in particular containers, in particular for empty detection, for filling level measurement and for determining the volume of filling goods.

Durch die berührungslose volumenhafte Erfassung des Füllstandbereichs und der Präsenz des Füllgutes in geometrisch-komplizierten Volumen, z.B. auch innerhalb von metallischen oder nicht-metallischen Vorrats- und Prozessbehältern, in denen das Füllgut verschiedene Aggregatzustände und Formen annehmen kann, können gemäß Erfindung Totbereiche vermieden und also auch Messungen im Nahbereich der Antenne ermöglicht werden. Bei einem insgesamt kostengünstigen Aufbau sind dabei Messungen bis zum Behälterboden und bis in die Ecken von Behälter möglich.Due to the contactless volumetric detection of the filling level range and the presence of the filling material in geometrically complex volumes, e.g. also within metallic or non-metallic storage and process containers, in which the filling material can assume different physical states and shapes, dead areas can be avoided according to the invention and thus also measurements in the vicinity of the antenna be made possible. With an overall cost-effective structure, measurements down to the bottom of the container and into the corners of the container are possible.

Basierend auf dem System gemäß Erfindung können dann für die nachfolgende Signalauswertung und Datenanalyse betreffend die Präsenzerkennung und Berechnung der physikalischen Eigenschaften des Füllgutes, z.B. unter Nutzung einer zeitbasierten Impedanzsprung-Detektierung, eine Vielzahl digitaler Algorithmen eingesetzt werden, unter anderem auch unter Nutzung von KI (künstlicher Intelligenz) einschließlich maschinellen Lernens, einem Teilgebiet der künstlichen Intelligenz, bei welchem durch das Erkennen von Mustern in vorliegenden Datenbeständen ein System in die Lage versetzt wird, eigenständige Analysen und Problemlösungen zu bewirken., zur Präsenzerkennung Berechnung der physikalischen Eigenschaften des FüllgutesBased on the system according to the invention, a large number of digital algorithms can then be used for the subsequent signal evaluation and data analysis relating to the presence detection and calculation of the physical properties of the filling material, e.g. using a time-based impedance jump detection, including using KI (artificial Intelligence) including machine learning, a sub-area of artificial intelligence in which the recognition of patterns in existing data sets enables a system to carry out independent analyzes and problem solutions., For presence detection, calculation of the physical properties of the product

Die im Rahmen der Erfindung eingerichteten Ultrabreitband-Antennen weisen eine hohe dispersive/ungerichtete Strahlungscharakteristik auf bzw. besitzen derartige Feldausbreitungseigenschaften. Die Ausbreitung des hierbei unter Nutzung der Ultrabreitbandsignale erzeugten elektromagnetischen Feldes erfolgt kugelförmig, zumindest halbkugelförmig und also volumenförmig in die Messzelle, insbesondere Behälter, d.h. ähnlich wie bei einem kapazitiven Näherungssensor, nicht-direkt in Richtung des Füllgutes. Es können hierbei auch Mehrfachreflexion an metallischen Wänden und Einbauten auftreten, welches selbstverständlich entsprechend auch berücksichtigt werden muss.The ultra-broadband antennas set up within the scope of the invention have a high dispersive / non-directional radiation characteristic or have such field propagation properties. The electromagnetic field generated using the ultra-broadband signals is propagated in a spherical, at least hemispherical and thus volumetric manner into the measuring cell, in particular container, i.e. similar to a capacitive proximity sensor, not directly in the direction of the product. Multiple reflections on metallic walls and fixtures can also occur here, which of course must also be taken into account accordingly.

Die gemäß der Erfindung anstelle von Patchantennen vorgeschlagenen Dipolstrukturen können wesentlich komplexer ausgestaltet werden und sich unter Verwendung einer Mehrlagen-Leiterplatte auch in Richtung des Messzellenraums, d.h. des sensorisch zu erfassenden Füllstandbereichs erstrecken. Auch können sie gänzlich in das Trägersubstrat, z.B. in eine Mehrlagen-Platine, eingebettet sein, welches insbesondere auch über eine vertikale Integrationstechnik erfolgen kann; auch ein eingesetztes Anpassglied kann hierbei mit eingebettet werden.The dipole structures proposed according to the invention instead of patch antennas can be made much more complex and, using a multilayer printed circuit board, can also extend in the direction of the measuring cell area, ie the filling level area to be detected by sensors. They can also be completely embedded in the carrier substrate, for example in a multi-layer circuit board, which in particular can also be done using a vertical integration technique; an inserted adapter can also be embedded here.

BezugszeichenlisteList of reference symbols

100100
Füllstandradar mit bündelnden AntennenLevel radar with bundling antennas
101101
MikrowellenelektronikMicrowave electronics
102102
Bündelnde AntenneBundling antenna
103103
Massefläche bzw. ReflektorschichtGround plane or reflector layer
104104
HochfrequenzanschlussHigh frequency connection
200200
Messsystem gemäß ErfindungMeasurement system according to the invention
201201
Ultrabreitband-MikrowelleneinheitUltra wideband microwave unit
202202
Ultrabreitband-AntenneUltra broadband antenna
203203
HochfrequenzanschlussHigh frequency connection
204204
AnpassgliedAdapter
205205
TrägersubstratCarrier substrate
206206
Strahlerelement des FlächendipolsRadiator element of the surface dipole
207207
Strahlerelement eines weiteren FlächendipolsRadiator element of a further surface dipole
209209
SchutzschichtProtective layer
210210
Kavernecavern
212212
n-te Ultrabreitband-Antennenth ultra-wideband antenna
300300
Behältercontainer
301301
BehälterwandContainer wall
400400
Messzelle, insbesondere in Art eines beliebig-strukturierter BehälterMeasuring cell, especially in the form of an arbitrarily structured container
401401
Messzellenwand, insbesondere ausgebildet durch die BehälterwandMeasuring cell wall, in particular formed by the container wall
402402
Abschirmungshielding
403403
Geschirmter BereichShielded area
500500
FüllgutFilling material
501501
FüllgutoberflächeProduct surface
502502
dielektrischer Körper oder Stoffdielectric body or fabric
503503
n-ter dielektrischer Körper oder Stoffnth dielectric body or substance
504504
Oberfläche eines Körpers oder StoffsSurface of a body or substance
600600
Gebündeltes MessfeldBundled measuring field
601601
RichtkeuleDirectional lobe
602602
SendesignalTransmission signal
603603
EmpfangssignalReceived signal
700700
Volumenhaftes MessfeldVoluminous measuring field
702702
SendesignalTransmission signal
703703
EmpfangssignalReceived signal
704704
reflektiertes Sendesignalreflected transmission signal
705705
reflektiertes Empfangssignalreflected received signal

Claims (15)

System zur Erkennung und/oder Volumenbestimmung von Körpern oder Stoffen aus dielektrischem und/oder leitfähigen Material (500, 502, 503, 504) innerhalb eines Innenraums einer Messzelle (400), insbesondere in Art eines Behälters, mit einer leitfähigen und/oder nichtleitfähigen Messzellenwand (401), die eine in den Innenraum gerichtete Oberfläche aufweist, umfassend: - eine Ultrabreitband-Mikrowelleneinheit (201), und - wenigstens eine Ultrabreitband-Antenne (202) mit wenigstens einem scheibenförmigen Trägersubstrat (205) mit einer zu einer ersten Seite gerichteten ersten Oberfläche und einer entgegengesetzt zur ersten Oberfläche gerichteten zweiten Oberfläche, welche eine Außenseite der Antenne bildet, wobei das Trägersubtrat angeordnet und vorgesehen ist, bei Betrieb, insbesondere nach Befestigung der Ultrabreitband-Antenne an der Messzelle, einen Teil der in den Innenraum gerichteten Oberfläche der Messzellenwand zu ersetzen oder sich im Innenraum beabstandet vor der Messzellenwand zu erstrecken dadurch gekennzeichnet, dass
die Ultrabreitband-Antenne mit am oder im Trägersubstrat angeordneten Strahlerelementen als eine elektrisch kurze Antenne mit einer zumindest im Wesentlichen halbkugelförmigen Strahlungscharakteristik eingerichtet ist, zum Abdecken eines volumenhaften Messfeldes (700).
System for the detection and / or volume determination of bodies or substances made of dielectric and / or conductive material (500, 502, 503, 504) within an interior of a measuring cell (400), in particular in the form of a container, with a conductive and / or non-conductive measuring cell wall (401) having an interior-facing surface comprising: - an ultra-wideband microwave unit (201), and - At least one ultra-broadband antenna (202) with at least one disk-shaped carrier substrate (205) with a first surface directed towards a first side and a second surface directed opposite to the first surface, which forms an outer side of the antenna, the carrier substrate being arranged and provided to replace part of the surface of the measuring cell wall directed into the interior space or to extend in the interior space at a distance in front of the measuring cell wall during operation, in particular after fastening the ultra-broadband antenna to the measuring cell characterized in that
the ultra-wideband antenna with radiator elements arranged on or in the carrier substrate is set up as an electrically short antenna with an at least substantially hemispherical radiation characteristic, for covering a voluminous measurement field (700).
System nach Anspruch 1, wobei - am oder im Trägersubstrat zwei planare Strahlerelemente (206a, 206b) angeordnet sind, die sich im Wesentlichen parallel zum Trägersubstrat erstreckend von diesem in einer gemeinsamen Ebene gehalten sind und zusammen einen Flächendipol ausbilden, und - ein mit den Strahlerelementen (206a, 206b) verbundener Hochfrequenzanschluss (203), mit welchem auch die Ultrabreitband-Mikrowelleneinheit (201) verbundenen ist, zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zwischen den Strahlerelementen und der Ultrabreitband-Mikrowelleneinheit (201), The system of claim 1, wherein - two planar radiator elements (206a, 206b) are arranged on or in the carrier substrate, which are held in a common plane and extend essentially parallel to the carrier substrate and together form a surface dipole, and - A high-frequency connection (203) connected to the radiator elements (206a, 206b), to which the ultra-broadband microwave unit (201) is also connected, for the wired transmission of an ultra-broadband signal between the radiator elements and the Ultra wideband microwave unit (201), System nach Anspruch 2, wobei horizontal und/oder vertikal parallel zu den zwei planaren Strahlerelementen (206a, 206b) wenigstens zwei weitere planare Strahlerelemente (207a, 207b) umfasst sind, wobei jeweils zwei dieser wenigstens zwei weiteren planaren Strahlerelemente sich im Wesentlichen parallel zum Trägersubstrat erstreckend von diesem in jeweils einer gemeinsamen Ebene zueinander gehalten sind und zusammen einen Flächendipol ausbilden.System according to claim 2, wherein horizontally and / or vertically parallel to the two planar radiator elements (206a, 206b) at least two further planar radiator elements (207a, 207b) are included, two of these at least two further planar radiator elements being essentially parallel to the carrier substrate extending from this are held in each case in a common plane to one another and together form a surface dipole. System nach Anspruch 3, wobei mit den jeweils zwei weiteren, einen Flächendipol ausbildenden Strahlerelementen ein Hochfrequenzanschluss (203) zum leitungsgebundenen Übertragen eines Ultrabreitbandsignals zwischen diesen Strahlerelementen und der auch mit diesem Hochfrequenzanschluss verbundenen Ultrabreitband-Mikrowelleneinheit (201) verbunden ist.System according to claim 3, wherein a high-frequency connection (203) for wired transmission of an ultra-broadband signal between these radiating elements and the ultra-wideband microwave unit (201) which is also connected to this high-frequency connection is connected to the two further emitter elements forming a surface dipole. System nach einem der vorstehenden Ansprüche, wobei jeder Hochfrequenzanschluss jeweils über ein Anpassglied (204), insbesondere zur Impedanzwandlung, mit den jeweils einen Flächendipol ausbildenden Strahlerelementen verbunden ist.System according to one of the preceding claims, wherein each high-frequency connection is connected via a matching element (204), in particular for impedance conversion, to the radiator elements each forming a surface dipole. System nach einem der vorstehenden Ansprüche, wobei die Ultrabreitband-Antenne (202) eine vom Trägersubstrat aus betrachtet zu der ersten Seite hin und zum Trägersubstrat (205) beabstandet angeordnete Abschirmung (402) umfasst.System according to one of the preceding claims, wherein the ultra-wideband antenna (202) comprises a shielding (402) arranged at a distance from the carrier substrate towards the first side and from the carrier substrate (205). System nach vorstehendem Anspruch, wobei die Abschirmung (402) nicht mit der Ultrabreitband-Mikrowelleneinheit (201) verbunden ist und/oder wobei die Abschirmung (402) durch die metallische Messzellenwand oder einen Deckel der Ultrabreitband-Antenne (202) ausgebildet ist.System according to the preceding claim, wherein the shield (402) is not connected to the ultra-broadband microwave unit (201) and / or wherein the shield (402) is formed by the metallic measuring cell wall or a cover of the ultra-broadband antenna (202). System zumindest nach vorstehenden Ansprüchen 5 und 6, wobei das Anpassglied (204) zwischen der Abschirmung und dem Trägersubstrat angeordnet ist.System at least according to the preceding claims 5 and 6, wherein the adapter (204) is between the shield and the carrier substrate is arranged. System nach einem der vorstehenden Ansprüche, wobei benachbart zum Trägersubstrat zur ersten Seite gerichteten ersten Oberfläche hin als Schutzschicht (209) eine nicht-leitfähige und/oder Absorberschicht angeordnet ist.System according to one of the preceding claims, wherein a non-conductive and / or absorber layer is arranged as a protective layer (209) adjacent to the carrier substrate towards the first side. System zumindest nach vorstehendem Anspruch 5 und 9, wobei das Anpassglied (204) in die Schutzschicht (209) eingebettet ist.System at least according to the preceding claims 5 and 9, wherein the adapter (204) is embedded in the protective layer (209). System nach einem der vorstehenden Ansprüche, wobei von der Ultrabreitband-Mikrowelleneinheit für den Einsatz eines kontinuierlich-periodisches Signals als Ultrabreitbandsignal eingerichtet ist.System according to one of the preceding claims, wherein the ultra-wideband microwave unit is set up for the use of a continuously periodic signal as the ultra-wideband signal. System nach einem der vorstehenden Ansprüche, wobei die Ultrabreitband-Mikrowelleneinheit ein Sendemodul umfasst zum Generieren eines Ultrabreitbandsignals.The system of any preceding claim, wherein the ultra-wideband microwave unit comprises a transmitter module for generating an ultra-wideband signal. System nach einem der vorstehenden Ansprüche, wobei die Ultrabreitband-Mikrowelleneinheit ein Auswertemodul umfasst zum Auswerten eines empfangenen Ultrabreitbandsignals.System according to one of the preceding claims, wherein the ultra-broadband microwave unit comprises an evaluation module for evaluating a received ultra-broadband signal. System nach einem der vorstehenden Ansprüche, wobei wenigstens eine weitere Ultrabreitband-Antenne (212) mit den Merkmalen gemäß einem der vorstehenden Ansprüche 1 bis 6 eingerichtet ist, wobei die Ultrabreitband-Antenne (212) zumindest mit einem Auswertemodul zum Auswerten eines empfangenen Ultrabreitbandsignals verbunden istSystem according to one of the preceding claims, wherein at least one further ultra-wideband antenna (212) is set up with the features according to one of the preceding claims 1 to 6, wherein the ultra-wideband antenna (212) is connected to at least one evaluation module for evaluating a received ultra-wideband signal System nach einem der vorstehenden Ansprüche, wobei das Trägersubstrat eine mehrlagige Platine ist, und/oder die Strahlerelemente in das Trägersubstrat eingebettet sind.System according to one of the preceding claims, wherein the carrier substrate is a multi-layer circuit board, and / or the radiator elements are embedded in the carrier substrate.
EP20174239.2A 2020-05-12 2020-05-12 System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material Pending EP3910326A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20174239.2A EP3910326A1 (en) 2020-05-12 2020-05-12 System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material
CA3116798A CA3116798A1 (en) 2020-05-12 2021-04-30 System for recognizing and/or determining the volume of bodies or substances made of dielectric and/or conductive material
AU2021202812A AU2021202812B2 (en) 2020-05-12 2021-05-04 System for recognizing and/or determining the volume of bodies or substances made of dielectric and/or conductive material
US17/316,347 US11860025B2 (en) 2020-05-12 2021-05-10 System for recognizing and/or determining the volume of bodies or substances made of dielectric and/or conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20174239.2A EP3910326A1 (en) 2020-05-12 2020-05-12 System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material

Publications (1)

Publication Number Publication Date
EP3910326A1 true EP3910326A1 (en) 2021-11-17

Family

ID=70682666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20174239.2A Pending EP3910326A1 (en) 2020-05-12 2020-05-12 System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material

Country Status (4)

Country Link
US (1) US11860025B2 (en)
EP (1) EP3910326A1 (en)
AU (1) AU2021202812B2 (en)
CA (1) CA3116798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202021106006U1 (en) 2021-11-03 2023-02-07 Rechner Industrie-Elektronik Gesellschaft mit beschränkter Haftung System for determining the volume of bodies or substances made of dielectric and/or conductive material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049995A1 (en) * 2000-10-10 2002-04-11 Endress Hauser Gmbh Co level meter
DE10149851A1 (en) * 2001-10-10 2003-04-24 Endress & Hauser Gmbh & Co Kg Container filling level measuring device uses reflection of measuring signal from surface of container contents
DE102006019688B4 (en) 2006-04-27 2014-10-23 Vega Grieshaber Kg Patch antenna with ceramic disc as cover
WO2016011530A1 (en) * 2014-07-21 2016-01-28 MOUSAVI, Pedram Sensing system and method for measuring a parameter of at least a dielectric substance in a tank layer thickness and dielectric property measurements in multilayer systems
WO2017037516A1 (en) * 2015-09-04 2017-03-09 Stellenbosch University Multi-mode composite antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935646A1 (en) * 1999-07-29 2001-02-01 Endress Hauser Gmbh Co Device for determining the level of a product in a container
DE10110230A1 (en) * 2001-03-02 2002-09-05 Endress & Hauser Gmbh & Co Kg Device for determining the filling level of a material or liquid in a reservoir using radar based measuring with a spiral antenna that provides more accurate measurements when the fluid level approaches the antenna
DE10392902T5 (en) * 2002-07-08 2005-07-07 Saab Rosemount Tank Radar Ab Level measurement system
US7255002B2 (en) * 2005-04-07 2007-08-14 Rosemount, Inc. Tank seal for guided wave radar level measurement
DE102006062223A1 (en) * 2006-12-22 2008-06-26 Endress + Hauser Gmbh + Co. Kg Level gauge for determining and monitoring a level of a medium in the process space of a container
DE102014107781A1 (en) * 2014-06-03 2015-12-03 Endress + Hauser Gmbh + Co. Kg Device for determining or monitoring a physical or chemical process variable
US9618617B2 (en) * 2015-03-20 2017-04-11 Honeywell International Inc. Level measurement using correlation between a pair of secondary reference signals
US10247596B2 (en) * 2016-01-28 2019-04-02 Endress+Hauser SE+Co. KG Level measurement device
US11428656B2 (en) * 2018-07-05 2022-08-30 AhuraTech LLC Electroluminescent methods and system for real-time measurements of physical properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049995A1 (en) * 2000-10-10 2002-04-11 Endress Hauser Gmbh Co level meter
DE10149851A1 (en) * 2001-10-10 2003-04-24 Endress & Hauser Gmbh & Co Kg Container filling level measuring device uses reflection of measuring signal from surface of container contents
DE102006019688B4 (en) 2006-04-27 2014-10-23 Vega Grieshaber Kg Patch antenna with ceramic disc as cover
WO2016011530A1 (en) * 2014-07-21 2016-01-28 MOUSAVI, Pedram Sensing system and method for measuring a parameter of at least a dielectric substance in a tank layer thickness and dielectric property measurements in multilayer systems
WO2017037516A1 (en) * 2015-09-04 2017-03-09 Stellenbosch University Multi-mode composite antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JALILVAND M ET AL: "Broadband miniaturised bow-tie antenna for 3D microwave tomography", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 50, no. 4, 13 February 2014 (2014-02-13), pages 244 - 246, XP006046766, ISSN: 0013-5194, DOI: 10.1049/EL.2013.3974 *
YOUNG-GON KIM ET AL: "Design of bow-tie-type UWB antennas using an ultra-wideband balun", ANTENNAS AND PROPAGATION INTERNATIONAL SYMPOSIUM, 2007 IEEE, IEEE, PISCATAWAY, NJ, USA, June 2007 (2007-06-01), pages 1989 - 1992, XP031169557, ISBN: 978-1-4244-0877-1, DOI: 10.1109/APS.2007.4395913 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202021106006U1 (en) 2021-11-03 2023-02-07 Rechner Industrie-Elektronik Gesellschaft mit beschränkter Haftung System for determining the volume of bodies or substances made of dielectric and/or conductive material

Also Published As

Publication number Publication date
US11860025B2 (en) 2024-01-02
AU2021202812A1 (en) 2021-12-02
CA3116798A1 (en) 2021-11-12
US20210356312A1 (en) 2021-11-18
AU2021202812B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
EP2698869B1 (en) Microwave window and fill level measuring device operating according to the radar principle
EP2901110B1 (en) Fill level measurement device
EP2631993B1 (en) Dielectric antenna and fill level measuring device operating according to the radar principle
EP3209979B1 (en) Topology determination of a filling material surface with uniform line scanning
EP1701142B1 (en) Method for measuring the level of a medium inside a container based on the radar principle
EP3105554B1 (en) Determining a topology of the surface of a material filled into a container
DE60214755T2 (en) Horn antenna for a level measuring device
DE102017210781A1 (en) Radar antenna for a level gauge
EP3105815B1 (en) Fill level and topology determination
EP3918313B1 (en) Measuring device for determining a dielectric constant
DE102018217173A1 (en) REFLECTOR SYSTEM IN A RADAR TARGET SIMULATOR FOR TESTING THE OPERATION OF A RADAR SENSOR AND METHOD FOR TESTING THE OPERATION OF A RADAR SENSOR
EP3910326A1 (en) System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material
WO2014090565A1 (en) Fill state measuring device
DE102021100694A1 (en) Antenna arrangement for a topology detecting radar system
EP3256824B1 (en) Device having two coupling elements for determining and monitoring a fill level
DE102009013458A1 (en) Method for detecting presence of solid, liquid or gaseous substance, involves generating high-frequency power, and frequency lies in microwave range of three hundred megahertz to three hundred gigahertz
EP3105556B1 (en) Determining a fill level and topology
DE102018130260A1 (en) Measuring device
EP2343778A1 (en) Antenna
WO2023078953A1 (en) System and method for determining the volume of bodies or substances composed of dielectric and/or conductive material
DE102017202214B4 (en) Method and arrangement for measuring properties of a material web
EP3884246B1 (en) Measuring device
EP3448581B1 (en) Device and method for applying pasty or liquid substances onto and/or introducing them into vehicle body components
DE10118009A1 (en) Container level detecting and monitoring device has antenna unit and transmission-reception circuitry mounted on dielectric carrier
DE102022114723A1 (en) Method and device for measuring fill levels in pipette tips

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201116

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221130

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE UNIVERSITAET ILMENAU

Owner name: RECHNER INDUSTRIE-ELEKTRONIK GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RECHNER INDUSTRIE-ELEKTRONIK GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230803