EP3869278B1 - Vertical clutch device for a timepiece - Google Patents

Vertical clutch device for a timepiece Download PDF

Info

Publication number
EP3869278B1
EP3869278B1 EP20217971.9A EP20217971A EP3869278B1 EP 3869278 B1 EP3869278 B1 EP 3869278B1 EP 20217971 A EP20217971 A EP 20217971A EP 3869278 B1 EP3869278 B1 EP 3869278B1
Authority
EP
European Patent Office
Prior art keywords
vertical
wheel
force
spring
clutch device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20217971.9A
Other languages
German (de)
French (fr)
Other versions
EP3869278A1 (en
Inventor
M. Polychronis Nakis KARAPATIS
Marc Stranczl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montres Breguet SA
Original Assignee
Montres Breguet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Breguet SA filed Critical Montres Breguet SA
Publication of EP3869278A1 publication Critical patent/EP3869278A1/en
Application granted granted Critical
Publication of EP3869278B1 publication Critical patent/EP3869278B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B11/00Click devices; Stop clicks; Clutches
    • G04B11/006Clutch mechanism between two rotating members with transfer of movement in only one direction (free running devices)
    • G04B11/008Clutch mechanism between two rotating members with transfer of movement in only one direction (free running devices) with friction members, e.g. click springs or jumper
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/02Back-gearing arrangements between gear train and hands
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B11/00Click devices; Stop clicks; Clutches
    • G04B11/001Clutch mechanism between two rotating members with transfer of movement in both directions, possibly with limitation on the transfer of power
    • G04B11/003Clutch mechanism between two rotating members with transfer of movement in both directions, possibly with limitation on the transfer of power with friction member, e.g. with spring action
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/04Hands; Discs with a single mark or the like
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • G04F7/0823Watches or clocks with stop devices, e.g. chronograph with couplings between the chronograph mechanism and the base movement
    • G04F7/0833Watches or clocks with stop devices, e.g. chronograph with couplings between the chronograph mechanism and the base movement acting perpendicular to the plane of the movement

Definitions

  • the present invention relates to a vertical clutch device for a timepiece, more particularly for a chronograph.
  • Disengaging devices are used in the field of watchmaking and in particular for chronographs.
  • the chronograph wheel which carries the chronograph hand is connected to the seconds wheel via a clutch.
  • the clutch can occupy an engaged position, corresponding to the running position of the chronograph, where the chronograph wheel is driven by the seconds wheel, and a disengaged position, corresponding to the stop position of the chronograph, where the chronograph is not driven by the seconds wheel.
  • US 2008/304370 A1 discloses an example of a vertical clutch.
  • the operation of a vertical clutch device 1 within a partially represented chronograph mechanism 8 is illustrated in figures 1a and 1b for respectively the disengaged position and the engaged position.
  • the clutch device generally comprises on the same axis a first wheel 3, a second wheel 2 and a clutch disc 4.
  • the first wheel 3 is the driving element which rotates permanently and which is engaged with the seconds 9.
  • the second wheel 2 is engaged with the chronograph wheel 10.
  • the clutch disc 4 cooperates with a pair of clamps 5 whose opening and closing is controlled by a column wheel (not shown). Closing the clamps 5 lifts the clutch disc 4 against the action of a spring 6 as shown schematically in picture 1a .
  • the clutch disc 4 In this disengaged position, the clutch disc 4 is not in contact with the first wheel 3 with the corollary that the second wheel 2 is not driven.
  • the disc clutch 4 presses against the first wheel 3 under the action of the spring 6 ( fig.1b ).
  • the first wheel 3 drives the second wheel 2 by friction.
  • the engaged force F e In order for the friction to be sufficient, the engaged force F e must be high, ie. that a significant preload must be applied to the spring.
  • the springs are made of standard materials such as steel which exhibit elastic behavior over a few tenths of a percent before entering the plastic domain.
  • the spring In operation, the spring must work in its elastic range to avoid any irreversible deformation.
  • the spring In this elastic domain, the spring has a linear behavior with a restoring force proportional to the displacement.
  • There figure 2 typically represents the force-displacement curve in the elastic domain.
  • the engaged force (F e ) is fixed by the preload applied (displacement p) on the spring and the disengaged force (F d ) is fixed by the displacement (d) required to separate the clutch disc from the first wheel.
  • the spring works at the limit of its elastic capacities because it is subjected to a significant pre-stress with a risk of plastic deformation during displacement when disengaging. Apart from the risk of inducing irreversible deformation of the spring, these large deformations cause premature fatigue of the spring. Moreover, the behavior of the spring being linear in the elastic range, any increase in the engaged force leads to an increase in the disengaged force which will have to be provided by the clamps.
  • the distance of the clutch disc from the first wheel by a distance d requires a significant force F d of 1.5 N to counter the return force of the spring.
  • the disengaged force F d is thus more than twice greater than the engaged force F e .
  • the object of the present invention is to provide a clutch device providing a maximized engaged force for a disengaged force which, for its part, is minimized.
  • the object of the invention is to reduce the ratio between the disengaged force and the engaged force.
  • the present invention proposes a clutch device comprising a spring made of a shape memory alloy used at room temperature for its superelastic properties.
  • the spring made of a shape memory alloy has a non-linear behavior in the elastic domain with a stress which peaks at an almost constant value over a wide range of deformation. These properties of superelasticity and this nonlinear behavior make it possible to easily adjust the disengaged force and the engaged force according to the required operating conditions. Thus, a significant pre-stress can be applied to the spring without the risk of entering the plastic domain when disengaging the mechanism.
  • the spring is no longer stressed to the limit of its elastic capacities unlike the spring of the prior art, which makes it possible to avoid premature fatigue of the spring in use.
  • the disengaged force can be minimized by stressing the spring in the area where the stress, and therefore the force, peaks at an almost constant value.
  • the spring can be sized to increase the engaged force while maintaining an equivalent disengaged force or, conversely, be sized to reduce the disengaged force while maintaining an equivalent engaged force.
  • the ratio between the disengaged force and the engaged force is between 1.1 and 2.0.
  • the invention relates to a clutch device comprising a spring made of a shape memory alloy. She relates more specifically to a clutch device intended to equip a chronograph mechanism 8 of a timepiece 11 ( fig.7 ).
  • the superelastic properties of the shape memory alloy are used to reduce the difference between the engaged force and the disengaged force.
  • FIG. 3 illustrates the superelastic behavior of a shape memory alloy which exhibits an austenitic structure at room temperature which transforms into martensite under the application of a stress ⁇ , which makes it possible to deform the material reversibly by several percent.
  • the tensile curve first exhibits linear elastic behavior up to a critical stress where the martensitic transformation induces superelastic behavior with increasing strain under near constant stress. This is the plateau that we observe on the picture 3 .
  • the reverse transformation from martensite to austenite takes place and the alloy returns to its original size.
  • a spring made of this material makes it possible to obtain a constraint, and therefore a force, as a function of the displacement which is not proportional but caps at a certain value on the plateau of the curve, unlike a conventional material such as 'steel.
  • the nickel-titanium base alloy consists of nickel, with a weight percentage between 52.5 and 63%, and titanium with a percentage by weight between 36.5 and 47%, for a total percentage of 100% and a content of possible impurities less than or equal to 0.5%.
  • This alloy presents at room temperature, in the absence of stresses, an austenitic microstructure.
  • the spring 6 comprises a central annular part 6a and several lugs 6b starting from said central annular part 6a as illustrated in figure 5a .
  • the number of legs can be 3.
  • the thickness of the spring is between 0.05 and 0.4 mm.
  • the tabs 6b are inclined with respect to the plane defined by the central annular part 6a as shown schematically in figures 1a and 1b . Depending on the level of preload applied to the dropouts in the engaged position ( fig.1b ), the latter are more or less inclined with respect to the plane of the annular part.
  • the spring 6 is arranged within the clutch device 1 as previously described with reference to the figures 1a and 1b with the clutch disc 4, the first wheel 3 and the second wheel 2.
  • the sizing of the spring namely the number of legs, the active length of each leg and the section of the legs will define the corresponding force-displacement curve of the spring produced. in this material as schematized in figure 6 for the dashed curve.
  • the spring is sized to work with a disengaged force F d which is on the upper level of the hysteresis and with a engaged force F e which is on the lower level of the hysteresis.
  • F d disengaged force which is on the upper level of the hysteresis
  • F e which is on the lower level of the hysteresis.
  • the shape of the hysteresis may vary depending on the grade chosen for the shape memory alloy.
  • the force on the upper bearing and the lower bearing can be more or less constant depending on the grade chosen.
  • the spring operates in a prestressed mode with the deformation of the spring, and advantageously of the legs of the spring, which defines the engaged force F e on the lower bearing.
  • the clutch force can thus be adjusted depending on the preload applied to the spring.
  • the material being superelastic a significant preload can be applied without the risk of plastically deforming the spring.
  • the disengaged force F d can be adjusted according to the minimum displacement d required to avoid any contact between the clutch disc and the first wheel.
  • the ratio between the disengaged force and the engaged force is minimized and between 1.1 and 2.0, preferably between 1.3 and 1.6.
  • the vertical force F d is between 1 and 3 N and the vertical force F e is between 0.5 and 2 N, with F d greater than F e , for a vertical displacement d between the engaged position and the disengaged position between 0.05 and 0.3 mm.
  • Another way of defining the nonlinear superelastic behavior of the spring in use is to characterize it according to its rigidity which is not constant during deformation.
  • the slope of the straight line connecting the origin of the XY axes to the point (F e , p) is greater than the slope of the straight line connecting the origin of the XY axes to the point (F d , p+d).
  • the angle ⁇ 2 is greater than the angle ⁇ 1 .
  • FIG. 4 represents the mechanical properties of the shape memory alloy based on nickel and titanium with the aforementioned composition.
  • FIG 6 represents the corresponding force-displacement curve for a spring made of this alloy and having the dimensions referred to the figure 5a .
  • This spring has a thickness of 0.2 mm and has three legs with a length of 0.85 mm for a width of 0.06 mm.
  • the active length of each lug is approximately 0.5 mm ( fig.5b ).
  • a disengaged force F d of 1.5 N was chosen with the same disengagement stroke d of 0.1 mm.
  • the clutch force F e could be maximized at 1.05 N, corresponding to a preload distance p of 0.15 mm, compared to 0.67 N for steel, which guarantees that the clutch does not slip.
  • the disengaged force to engaged force ratio is 1.4 compared to 2.2 for steel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Operated Clutches (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Springs (AREA)

Description

Domaine de l'inventionField of invention

La présente invention concerne un dispositif d'embrayage vertical pour une pièce d'horlogerie, plus particulièrement pour un chronographe.The present invention relates to a vertical clutch device for a timepiece, more particularly for a chronograph.

Arrière-plan de l'inventionBackground of the invention

Des dispositifs de débrayage sont utilisés dans le domaine de l'horlogerie et en particulier pour les chronographes. Dans un chronographe, la roue de chronographe qui porte l'aiguille de chronographe est reliée à la roue de secondes par l'intermédiaire d'un embrayage. L'embrayage peut occuper une position embrayée, correspondant à la position de marche du chronographe, où la roue de chronographe est entraînée par la roue de secondes, et une position débrayée, correspondant à la position d'arrêt du chronographe, où la roue de chronographe n'est pas entraînée par la roue de secondes. Le document US 2008/304370 A1 divulgue un exemple d'embrayage vertical.Disengaging devices are used in the field of watchmaking and in particular for chronographs. In a chronograph, the chronograph wheel which carries the chronograph hand is connected to the seconds wheel via a clutch. The clutch can occupy an engaged position, corresponding to the running position of the chronograph, where the chronograph wheel is driven by the seconds wheel, and a disengaged position, corresponding to the stop position of the chronograph, where the chronograph is not driven by the seconds wheel. The document US 2008/304370 A1 discloses an example of a vertical clutch.

Le fonctionnement d'un dispositif d'embrayage vertical 1 au sein d'un mécanisme de chronographe 8 partiellement représenté, est illustré aux figures 1a et 1b pour respectivement la position débrayée et la position embrayée. Le dispositif d'embrayage comprend généralement sur un même axe une première roue 3, une seconde roue 2 et un disque d'embrayage 4. La première roue 3 est l'élément moteur qui tourne en permanence et qui est en prise avec la roue de secondes 9. La seconde roue 2 est en prise avec la roue de chronographe 10. Le disque d'embrayage 4 coopère avec une paire de pinces 5 dont l'ouverture et la fermeture est commandée par une roue à colonnes (non représentée). La fermeture des pinces 5 vient soulever le disque d'embrayage 4 contre l'action d'un ressort 6 comme schématisé à la figure 1a. Dans cette position débrayée, le disque d'embrayage 4 n'est pas en contact avec la première roue 3 avec pour corollaire que la seconde roue 2 n'est pas entraînée. Lors de l'ouverture des pinces 5, le disque d'embrayage 4 vient se plaquer contre la première roue 3 sous l'action du ressort 6 (fig.1b). Dans cette position embrayée, la première roue 3 entraîne la seconde roue 2 par friction. Afin que la friction soit suffisante, la force embrayée Fe doit être importante, c.à.d. qu'une précontrainte importante doit être appliquée sur le ressort.The operation of a vertical clutch device 1 within a partially represented chronograph mechanism 8 is illustrated in figures 1a and 1b for respectively the disengaged position and the engaged position. The clutch device generally comprises on the same axis a first wheel 3, a second wheel 2 and a clutch disc 4. The first wheel 3 is the driving element which rotates permanently and which is engaged with the seconds 9. The second wheel 2 is engaged with the chronograph wheel 10. The clutch disc 4 cooperates with a pair of clamps 5 whose opening and closing is controlled by a column wheel (not shown). Closing the clamps 5 lifts the clutch disc 4 against the action of a spring 6 as shown schematically in picture 1a . In this disengaged position, the clutch disc 4 is not in contact with the first wheel 3 with the corollary that the second wheel 2 is not driven. When the clamps 5 open, the disc clutch 4 presses against the first wheel 3 under the action of the spring 6 ( fig.1b ). In this engaged position, the first wheel 3 drives the second wheel 2 by friction. In order for the friction to be sufficient, the engaged force F e must be high, ie. that a significant preload must be applied to the spring.

Selon l'art antérieur, les ressorts sont réalisés dans des matériaux standards tels que l'acier qui présentent un comportement élastique sur quelques dixièmes de pourcent avant d'entrer dans le domaine plastique. En fonctionnement, le ressort doit travailler dans son domaine élastique pour éviter toute déformation irréversible. Dans ce domaine élastique, le ressort a un comportement linéaire avec une force de rappel proportionnelle au déplacement. La figure 2 représente typiquement la courbe force-déplacement dans le domaine élastique. La force embrayée (Fe) est fixée par la précontrainte appliquée (déplacement p) sur le ressort et la force débrayée (Fd) est fixée par le déplacement (d) requis pour écarter le disque d'embrayage de la première roue. En pratique, le ressort travaille à la limite de ses capacités élastiques car il est soumis à une précontrainte importante avec un risque de déformation plastique lors du déplacement au débrayage. Outre le risque d'induire une déformation irréversible du ressort, ces grandes déformations provoquent une fatigue prématurée du ressort. Par ailleurs, le comportement du ressort étant linéaire dans le domaine élastique, toute augmentation de la force embrayée entraîne une augmentation de la force débrayée qui va devoir être fournie par les pinces.According to the prior art, the springs are made of standard materials such as steel which exhibit elastic behavior over a few tenths of a percent before entering the plastic domain. In operation, the spring must work in its elastic range to avoid any irreversible deformation. In this elastic domain, the spring has a linear behavior with a restoring force proportional to the displacement. There figure 2 typically represents the force-displacement curve in the elastic domain. The engaged force (F e ) is fixed by the preload applied (displacement p) on the spring and the disengaged force (F d ) is fixed by the displacement (d) required to separate the clutch disc from the first wheel. In practice, the spring works at the limit of its elastic capacities because it is subjected to a significant pre-stress with a risk of plastic deformation during displacement when disengaging. Apart from the risk of inducing irreversible deformation of the spring, these large deformations cause premature fatigue of the spring. Moreover, the behavior of the spring being linear in the elastic range, any increase in the engaged force leads to an increase in the disengaged force which will have to be provided by the clamps.

Dans l'exemple illustré, partant d'une force embrayée Fe suffisante pour que l'embrayage ne patine pas, à savoir 0.67 N dans l'exemple, l'éloignement du disque d'embrayage de la première roue d'une distance d, égale à 0.1 mm dans l'exemple, nécessite une force Fd importante de 1.5 N pour contrer la force de rappel du ressort. Typiquement, la force débrayée Fd est ainsi plus de deux fois supérieure à la force embrayée Fe.In the example illustrated, starting from a clutch force F e sufficient for the clutch not to slip, namely 0.67 N in the example, the distance of the clutch disc from the first wheel by a distance d , equal to 0.1 mm in the example, requires a significant force F d of 1.5 N to counter the return force of the spring. Typically, the disengaged force F d is thus more than twice greater than the engaged force F e .

Résumé de l'inventionSummary of the invention

L'objet de la présente invention est de proposer un dispositif d'embrayage fournissant une force embrayée maximisée pour une force débrayée qui, quant à elle, est minimisée. En d'autres mots, l'objet de l'invention est de réduire le rapport entre la force débrayée et la force embrayée.The object of the present invention is to provide a clutch device providing a maximized engaged force for a disengaged force which, for its part, is minimized. In other words, the object of the invention is to reduce the ratio between the disengaged force and the engaged force.

A cet effet, la présente invention propose un dispositif d'embrayage comprenant un ressort réalisé dans un alliage à mémoire de forme utilisé à température ambiante pour ses propriétés de superélasticité. Le ressort réalisé dans un alliage à mémoire de forme a un comportement non linéaire dans le domaine élastique avec une contrainte qui plafonne à une valeur quasi constante sur une large plage de déformation. Ces propriétés de superélasticité et ce comportement non linéaire permettent d'ajuster aisément la force débrayée et la force embrayée en fonction des conditions de fonctionnement requises. Ainsi, une précontrainte importante peut être appliquée sur le ressort sans risque d'entrer dans le domaine plastique lors du débrayage du mécanisme. En corollaire, le ressort n'est plus sollicité à la limite de ses capacités élastiques contrairement au ressort de l'art antérieur, ce qui permet d'éviter une fatigue prématurée du ressort en utilisation. Par ailleurs, la force débrayée peut être minimisée en sollicitant le ressort dans le domaine où la contrainte, donc la force, plafonne à une valeur quasi constante.To this end, the present invention proposes a clutch device comprising a spring made of a shape memory alloy used at room temperature for its superelastic properties. The spring made of a shape memory alloy has a non-linear behavior in the elastic domain with a stress which peaks at an almost constant value over a wide range of deformation. These properties of superelasticity and this nonlinear behavior make it possible to easily adjust the disengaged force and the engaged force according to the required operating conditions. Thus, a significant pre-stress can be applied to the spring without the risk of entering the plastic domain when disengaging the mechanism. As a corollary, the spring is no longer stressed to the limit of its elastic capacities unlike the spring of the prior art, which makes it possible to avoid premature fatigue of the spring in use. Furthermore, the disengaged force can be minimized by stressing the spring in the area where the stress, and therefore the force, peaks at an almost constant value.

Selon l'invention, le ressort peut être dimensionné pour augmenter la force embrayée tout en maintenant une force débrayée équivalente ou inversement être dimensionné pour réduire la force débrayée tout en maintenant une force embrayée équivalente. Avantageusement, le rapport entre la force débrayée et la force embrayée est compris entre 1.1 et 2.0.According to the invention, the spring can be sized to increase the engaged force while maintaining an equivalent disengaged force or, conversely, be sized to reduce the disengaged force while maintaining an equivalent engaged force. Advantageously, the ratio between the disengaged force and the engaged force is between 1.1 and 2.0.

Brève description des figuresBrief description of figures

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés.

  • Les figures 1a et 1b illustrent schématiquement le fonctionnement d'un dispositif d'embrayage avec ce dernier en position débrayée à la figure 1a et en position embrayée à la figure 1b. Ces figures se rapportent à l'art antérieur mais elles sont également d'application pour un dispositif d'embrayage selon l'invention.
  • La figure 2 représente la courbe force-déplacement pour un alliage standard utilisé dans un dispositif d'embrayage selon l'art antérieur.
  • La figure 3 représente la courbe de traction (contrainte-déformation) typique d'un alliage à mémoire de forme.
  • La figure 4 représente la courbe de traction d'un alliage à mémoire de forme en Ni-Ti utilisé dans le dispositif d'embrayage selon l'invention.
  • La figure 5a représente la géométrie du ressort, selon une variante de l'invention, utilisé dans le dispositif d'embrayage selon l'invention. La figure 5b représente à l'aide d'une vue en plan les dimensions respectives de la seconde roue, de la douille de l'axe du chronographe et du ressort.
  • La figure 6 représente la courbe force-déplacement pour le ressort ayant les propriétés mécaniques de la figure 4 et la géométrie des figures 5a et 5b.
  • La figure 7 représente une montre munie d'un mécanisme de chronographe selon l'invention.
Other characteristics and advantages of the invention will appear on reading the detailed description which follows, with reference to the appended drawings.
  • THE figures 1a and 1b schematically illustrate the operation of a clutch device with the latter in the disengaged position at the picture 1a and in the engaged position figure 1b . These figures relate to the prior art but they also apply to a clutch device according to the invention.
  • There picture 2 represents the force-displacement curve for a standard alloy used in a clutch device according to the prior art.
  • There picture 3 represents the typical tensile (stress-strain) curve of a shape memory alloy.
  • There figure 4 represents the traction curve of a Ni-Ti shape memory alloy used in the clutch device according to the invention.
  • There figure 5a represents the geometry of the spring, according to a variant of the invention, used in the clutch device according to the invention. There figure 5b shows with the aid of a plan view the respective dimensions of the second wheel, the sleeve of the chronograph axis and the spring.
  • There figure 6 represents the force-displacement curve for the spring having the mechanical properties of the figure 4 and the geometry of figure 5a And 5b .
  • There figure 7 represents a watch provided with a chronograph mechanism according to the invention.

Description de l'inventionDescription of the invention

L'invention concerne un dispositif d'embrayage comprenant un ressort réalisé dans un alliage à mémoire de forme. Elle se rapporte plus spécifiquement à un dispositif d'embrayage destiné à équiper un mécanisme de chronographe 8 d'une pièce d'horlogerie 11 (fig.7).The invention relates to a clutch device comprising a spring made of a shape memory alloy. She relates more specifically to a clutch device intended to equip a chronograph mechanism 8 of a timepiece 11 ( fig.7 ).

Selon l'invention, les propriétés de superélasticité de l'alliage à mémoire de forme sont mises à profit pour réduire l'écart entre la force embrayée et la force débrayée. La figure 3 illustre le comportement superélastique d'un alliage à mémoire de forme qui présente à température ambiante une structure austénitique qui se transforme en martensite sous l'application d'une contrainte σ, ce qui permet de déformer le matériau de façon réversible de plusieurs pourcents. La courbe de traction présente d'abord un comportement linéaire élastique jusqu'à une contrainte critique où la transformation martensitique induit un comportement superélastique avec une déformation croissante sous une contrainte quasi constante. C'est le plateau qu'on observe sur la figure 3. Dès que la contrainte est relâchée, la transformation inverse de la martensite vers l'austénite s'opère et l'alliage reprend sa dimension première. Ainsi, un ressort réalisé dans ce matériau permet d'obtenir une contrainte, et donc une force, en fonction du déplacement qui n'est pas proportionnelle mais plafonne à une certaine valeur sur le plateau de la courbe contrairement à un matériau conventionnel tel que l'acier.According to the invention, the superelastic properties of the shape memory alloy are used to reduce the difference between the engaged force and the disengaged force. There picture 3 illustrates the superelastic behavior of a shape memory alloy which exhibits an austenitic structure at room temperature which transforms into martensite under the application of a stress σ, which makes it possible to deform the material reversibly by several percent. The tensile curve first exhibits linear elastic behavior up to a critical stress where the martensitic transformation induces superelastic behavior with increasing strain under near constant stress. This is the plateau that we observe on the picture 3 . As soon as the stress is released, the reverse transformation from martensite to austenite takes place and the alloy returns to its original size. Thus, a spring made of this material makes it possible to obtain a constraint, and therefore a force, as a function of the displacement which is not proportional but caps at a certain value on the plateau of the curve, unlike a conventional material such as 'steel.

L'alliage à mémoire de forme selon l'invention est un alliage à base de cuivre ou un alliage à base de nickel et de titane. L'alliage à base de cuivre est un des alliages ayant, pour un pourcentage total de 100% et une teneur en impuretés éventuelles inférieure ou égale à 0.5%, la composition suivante en poids :

  • Cu entre 64.5 et 85%, Zn entre 9.5 et 25% et Al entre 4.5 et 10%,
  • Cu entre 79.5 et 84%, Al entre 12.5 et 14% et Ni entre 2.5 et 6%,
  • Cu entre 87 et 88%, Al entre 11 et 12% et Be entre 0.3 et 0.7%.
The shape memory alloy according to the invention is a copper-based alloy or an alloy based on nickel and titanium. The copper-based alloy is one of the alloys having, for a total percentage of 100% and a content of possible impurities less than or equal to 0.5%, the following composition by weight:
  • Cu between 64.5 and 85%, Zn between 9.5 and 25% and Al between 4.5 and 10%,
  • Cu between 79.5 and 84%, Al between 12.5 and 14% and Ni between 2.5 and 6%,
  • Cu between 87 and 88%, Al between 11 and 12% and Be between 0.3 and 0.7%.

L'alliage à base de nickel et de titane est constitué de nickel, avec un pourcentage en poids compris entre 52.5 et 63%, et de titane avec un pourcentage en poids compris entre 36.5 et 47%, pour un pourcentage total de 100% et une teneur en impuretés éventuelles inférieure ou égale à 0.5%.The nickel-titanium base alloy consists of nickel, with a weight percentage between 52.5 and 63%, and titanium with a percentage by weight between 36.5 and 47%, for a total percentage of 100% and a content of possible impurities less than or equal to 0.5%.

Cet alliage présente à température ambiante, en l'absence de contraintes, une microstructure austénitique.This alloy presents at room temperature, in the absence of stresses, an austenitic microstructure.

Préférentiellement, le ressort 6 comporte une partie annulaire centrale 6a et plusieurs pattes 6b partant de ladite partie annulaire centrale 6a comme illustré à la figure 5a. Par exemple, le nombre de pattes peut être de 3. Typiquement, l'épaisseur du ressort est comprise entre 0.05 et 0.4 mm. Préférentiellement, les pattes 6b sont inclinées par rapport au plan défini par la partie annulaire centrale 6a comme schématisé aux figures 1a et 1b. Selon le niveau de précontrainte appliqué sur les pattes en position embrayée (fig.1b), ces dernières sont plus ou moins inclinées par rapport au plan de la partie annulaire.Preferably, the spring 6 comprises a central annular part 6a and several lugs 6b starting from said central annular part 6a as illustrated in figure 5a . For example, the number of legs can be 3. Typically, the thickness of the spring is between 0.05 and 0.4 mm. Preferably, the tabs 6b are inclined with respect to the plane defined by the central annular part 6a as shown schematically in figures 1a and 1b . Depending on the level of preload applied to the dropouts in the engaged position ( fig.1b ), the latter are more or less inclined with respect to the plane of the annular part.

Le ressort 6 est agencé au sein du dispositif d'embrayage 1 tel que précédemment décrit en référence aux figures 1a et 1b avec le disque d'embrayage 4, la première roue 3 et la seconde roue 2.The spring 6 is arranged within the clutch device 1 as previously described with reference to the figures 1a and 1b with the clutch disc 4, the first wheel 3 and the second wheel 2.

Partant de la courbe contrainte-déformation du matériau en alliage à mémoire de forme, le dimensionnement du ressort, à savoir le nombre de pattes, la longueur active de chaque patte et la section des pattes va définir la courbe correspondante force-déplacement du ressort réalisé dans ce matériau tel que schématisé à la figure 6 pour la courbe en pointillés. En utilisation, le ressort est dimensionné pour travailler avec une force débrayée Fd qui se trouve sur le palier supérieur de l'hystérèse et avec une force embrayée Fe qui se trouve sur le palier inférieur de l'hystérèse. On précisera que la forme de l'hystérèse peut varier en fonction de la nuance choisie pour l'alliage à mémoire de forme. Ainsi, la force sur le palier supérieur et le palier inférieur peut être plus ou moins constante selon la nuance choisie.Starting from the stress-strain curve of the shape memory alloy material, the sizing of the spring, namely the number of legs, the active length of each leg and the section of the legs will define the corresponding force-displacement curve of the spring produced. in this material as schematized in figure 6 for the dashed curve. In use, the spring is sized to work with a disengaged force F d which is on the upper level of the hysteresis and with a engaged force F e which is on the lower level of the hysteresis. It will be specified that the shape of the hysteresis may vary depending on the grade chosen for the shape memory alloy. Thus, the force on the upper bearing and the lower bearing can be more or less constant depending on the grade chosen.

Le ressort fonctionne dans un mode précontraint avec la déformation du ressort, et avantageusement des pattes du ressort, qui définit la force embrayée Fe sur le palier inférieur. La force embrayée peut ainsi être ajustée en fonction de la précontrainte appliquée sur le ressort. Le matériau étant superélastique, une précontrainte importante peut être appliquée sans risque de déformer plastiquement le ressort. En outre, la force débrayée Fd peut être ajustée en fonction du déplacement d minimum requis pour éviter tout contact entre le disque d'embrayage et la première roue.The spring operates in a prestressed mode with the deformation of the spring, and advantageously of the legs of the spring, which defines the engaged force F e on the lower bearing. The clutch force can thus be adjusted depending on the preload applied to the spring. The material being superelastic, a significant preload can be applied without the risk of plastically deforming the spring. Furthermore, the disengaged force F d can be adjusted according to the minimum displacement d required to avoid any contact between the clutch disc and the first wheel.

Selon l'invention, le rapport entre la force débrayée et la force embrayée est minimisé et compris entre 1.1 et 2.0, de préférence entre 1.3 et 1.6. Exprimée en valeur absolue, la force verticale Fd est comprise entre 1 et 3 N et la force verticale Fe est comprise entre 0.5 et 2 N, avec Fd supérieur à Fe, pour un déplacement vertical d entre la position embrayée et la position débrayée compris entre 0.05 et 0.3 mm. Une autre manière de définir le comportement superélastique non linéaire du ressort en utilisation est de le caractériser en fonction de sa rigidité qui est non constante en cours de déformation. Ainsi, faisant référence à la figure 6, la pente de la droite reliant l'origine des axes X-Y au point (Fe, p) est supérieure à la pente de la droite reliant l'origine des axes X-Y au point (Fd, p+d). En d'autres mots, l'angle α2 est supérieur à l'angle α1.According to the invention, the ratio between the disengaged force and the engaged force is minimized and between 1.1 and 2.0, preferably between 1.3 and 1.6. Expressed in absolute value, the vertical force F d is between 1 and 3 N and the vertical force F e is between 0.5 and 2 N, with F d greater than F e , for a vertical displacement d between the engaged position and the disengaged position between 0.05 and 0.3 mm. Another way of defining the nonlinear superelastic behavior of the spring in use is to characterize it according to its rigidity which is not constant during deformation. Thus, referring to the figure 6 , the slope of the straight line connecting the origin of the XY axes to the point (F e , p) is greater than the slope of the straight line connecting the origin of the XY axes to the point (F d , p+d). In other words, the angle α 2 is greater than the angle α 1 .

Pour finir, la présente invention est illustrée à l'aide d'un exemple et des figures 4 à 6. La figure 4 représente les propriétés mécaniques de l'alliage à mémoire de forme à base de nickel et titane avec la composition précitée. La figure 6 représente la courbe force-déplacement correspondante pour un ressort réalisé dans cet alliage et ayant les dimensions rapportées à la figure 5a. Ce ressort a une épaisseur de 0.2 mm et comporte trois pattes avec une longueur de 0.85 mm pour une largeur de 0.06 mm. Après insertion entre la douille 7 de l'axe du chronographe et la seconde roue 2, la longueur active de chaque patte est d'environ 0.5 mm (fig.5b).Finally, the present invention is illustrated with the aid of an example and the figures 4 to 6 . There figure 4 represents the mechanical properties of the shape memory alloy based on nickel and titanium with the aforementioned composition. There figure 6 represents the corresponding force-displacement curve for a spring made of this alloy and having the dimensions referred to the figure 5a . This spring has a thickness of 0.2 mm and has three legs with a length of 0.85 mm for a width of 0.06 mm. After insertion between the sleeve 7 of the chronograph axis and the second wheel 2, the active length of each lug is approximately 0.5 mm ( fig.5b ).

Pour être comparable aux conditions de fonctionnement de la figure 2, une force débrayée Fd de 1.5 N a été choisie avec une même course de débrayage d de 0.1 mm. Pour ces valeurs Fd et d, la force embrayée Fe a pu être maximisée à 1.05 N, correspondant à une distance de précontrainte p de 0.15 mm, comparé à 0.67 N pour un acier, ce qui permet de garantir que l'embrayage ne patine pas. Ainsi, on a pu avantageusement rehausser la force embrayée sans augmenter la force débrayée tout en conservant une même course de débrayage. En conséquence, le rapport force débrayée sur force embrayée s'élève à 1.4 comparé à 2.2 pour l'acier.To be comparable to the operating conditions of the figure 2 , a disengaged force F d of 1.5 N was chosen with the same disengagement stroke d of 0.1 mm. For these values F d and d, the clutch force F e could be maximized at 1.05 N, corresponding to a preload distance p of 0.15 mm, compared to 0.67 N for steel, which guarantees that the clutch does not slip. Thus, it has advantageously been possible to increase the engaged force without increasing the disengaged force while maintaining the same disengagement travel. As a result, the disengaged force to engaged force ratio is 1.4 compared to 2.2 for steel.

Avec un acier ayant un comportement linéaire selon la figure 2, augmenter la force embrayée jusqu'à 1.05 N aurait nécessité une précontrainte p importante sur le ressort avec pour corollaire une force débrayée nettement supérieure à 1.5 N, qui aurait mené à une déformation plastique du ressort.With a steel having a linear behavior according to the figure 2 , increasing the engaged force to 1.05 N would have required a significant preload p on the spring with the corollary of a disengaged force well above 1.5 N, which would have led to a plastic deformation of the spring.

Se référant à la courbe de la figure 6, il est également envisageable d'appliquer un déplacement de précontrainte p inférieur à 0.15 mm, ce qui pour un même déplacement d au débrayage, mène à une force de débrayage moins importante que 1.5 N.Referring to the curve of the figure 6 , it is also possible to apply a preload displacement p of less than 0.15 mm, which for the same displacement d on disengagement, leads to a disengagement force less than 1.5 N.

LégendeLegend

  1. (1) Dispositif d'embrayage vertical(1) Vertical clutch device
  2. (2) Second mobile aussi appelé seconde roue(2) Second mobile also called second wheel
  3. (3) Premier mobile aussi appelé première roue(3) First mobile also called first wheel
  4. (4) Disque d'embrayage(4) Clutch disc
  5. (5) Pince(5) Clamp
  6. (6) Ressort
    1. a. Partie annulaire centrale
    2. b. Patte
    (6) Spring
    1. To. Central annular part
    2. b. Paw
  7. (7) Douille de l'axe de chronographe(7) Chronograph shaft bushing
  8. (8) Mécanisme de chronographe(8) Chronograph mechanism
  9. (9) Roue de secondes(9) Seconds wheel
  10. (10) Roue de chronographe(10) Chronograph wheel
  11. (11) Montre ou pièce d'horlogerie(11) Watch or timepiece
  12. (12) Axe vertical(12) Vertical axis
  13. (13) Pierre(13) Stone
  14. (14) Axe central
    • Fe : force embrayée
    • Fd : force débrayée
    • d : distance de débrayage
    • p : déplacement pour la précontrainte du ressort
    (14) Central axis
    • F e : engaged force
    • F d : disengaged force
    • d: disengagement distance
    • p: displacement for spring preload

Claims (11)

  1. A vertical clutch device (1) for a timepiece, comprising along a vertical axis (12) a first wheel (3) rotatably mounted about said vertical axis (12), a clutch disc (4), a spring (6) and a second wheel (2) rotatably mounted about said vertical axis (12), said vertical clutch device (1) being able to assume a clutched position where the second wheel (2) is rotated by the first wheel (3) under the action of the spring (6) exerting a vertical force Fe to press the clutch disc (4) against the first wheel (3) and a disengaged position where the clutch disc (4) is subjected against the action of the spring (6) to a vertical force Fd separating it from the first wheel (3) so that the second wheel (2) is not rotated by the first wheel (3), said vertical clutch device (1) being characterised in that the spring (6) is made of a copper-based shape memory alloy, and in that this alloy is one of the alloys having, for a total percentage of 100% and a percentage of possible impurities less than or equal to 0.5%, the following composition by weight:
    - Cu between 64.5 and 85%, Zn between 9.5 and 25% and Al between 4.5 and 10%,
    - Cu between 79.5 and 84%, Al between 12.5 and 14% and Ni between 2.5 and 6%,
    - Cu between 87 and 88%, Al between 11 and 12% and Be between 0.3 and 0.7%.
  2. The vertical clutch device (1) for a timepiece, comprising along a vertical axis (12) a first wheel (3) rotatably mounted about said vertical axis (12), a clutch disc (4), a spring (6) and a second wheel (2) rotatably mounted about said vertical axis (12), said vertical clutch device (1) being able to assume a clutched position where the second wheel (2) is rotated by the first wheel (3) under the action of the spring (6) exerting a vertical force Fe to press the clutch disc (4) against the first wheel (3) and a disengaged position where the clutch disc (4) is subjected against the action of the spring (6) to a vertical force Fd separating it from the first wheel (3) so that the second wheel (2) is not rotated by the first wheel (3), said vertical clutch device (1) being characterised in that the spring (6) is made of a nickel and titanium-based shape memory alloy, and in that this alloy consists, by weight, of nickel with a percentage comprised between 52.5 and 63% and of titanium with a percentage comprised between 36.5 and 47%, for a total percentage of 100% and a percentage of possible impurities less than or equal to 0.5%.
  3. The vertical clutch device (1) according to any one of the preceding claims, characterised in that the shape memory alloy has an austenitic microstructure at room temperature giving it superelastic properties at room temperature.
  4. The vertical clutch device (1) according to any one of the preceding claims, characterised in that it is dimensioned to have in use a ratio between the vertical force Fd and the vertical force Fe comprised between 1.1 and 2.0.
  5. The vertical clutch device (1) according to any one of the preceding claims, characterised in that it is dimensioned to have in use a ratio between the vertical force Fd and the vertical force Fe comprised between 1.3 and 1.6.
  6. The vertical clutch device (1) according to claim 4 or 5, characterised in that the vertical force Fd is comprised between 1 and 3 N and in that the vertical force Fe is comprised between 0.5 and 2 N for a vertical displacement d, between the clutched position and the disengaged position, comprised between 0.05 and 0.3 mm, said vertical force Fd being greater than said vertical force Fe.
  7. The vertical clutch device (1) according to any one of the preceding claims, characterised in that the spring (6) includes a central annular part (6a) and several tabs (6b) starting from said central annular part (6a).
  8. The vertical clutch device (1) according to any one of the preceding claims, characterised in that the thickness of the spring (6) is comprised between 0.05 and 0.4 mm.
  9. The vertical clutch device (1) according to any one of the preceding claims, characterised in that, on a force-displacement curve of said spring (6), with the force defining the axis Y and the displacement defining the axis X, the angle α2, relative to the axis X of the straight line connecting the origin of the axes X-Y to the vertical force Fe, is greater than the angle α1 relative to the axis X of the straight line connecting the origin of the axes X-Y to the vertical force Fd.
  10. A chronograph mechanism (8) characterised in that it comprises the vertical clutch device (1) according to any one of the preceding claims.
  11. A watch (11) characterised in that it comprises the chronograph mechanism (8) according to the preceding claim.
EP20217971.9A 2020-02-21 2020-12-31 Vertical clutch device for a timepiece Active EP3869278B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20158703 2020-02-21

Publications (2)

Publication Number Publication Date
EP3869278A1 EP3869278A1 (en) 2021-08-25
EP3869278B1 true EP3869278B1 (en) 2023-03-08

Family

ID=69779756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20217971.9A Active EP3869278B1 (en) 2020-02-21 2020-12-31 Vertical clutch device for a timepiece

Country Status (4)

Country Link
US (1) US11353826B2 (en)
EP (1) EP3869278B1 (en)
JP (1) JP2021135287A (en)
CN (1) CN113296383A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073016A1 (en) * 2013-11-15 2015-05-21 Massachusetts Institute Of Technology Method for controlling the energy damping of a shape memory alloy with surface roughness

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286950B2 (en) * 1993-05-31 2002-05-27 株式会社トーキン Optical fiber connecting plug, method of manufacturing the same, and optical connector using the same
JPH09230275A (en) * 1996-02-20 1997-09-05 Brother Ind Ltd Optical scanner
US5982521A (en) 1995-11-15 1999-11-09 Brother Kogyo Kabushiki Kaisha Optical scanner
EP2015145B1 (en) * 2007-06-11 2013-05-01 Chopard Manufacture SA Vertical clutch device for a timepiece
EP2085832B1 (en) 2008-02-04 2013-04-10 Blancpain SA. Chronograph device with friction coupling
JP5979881B2 (en) * 2012-01-06 2016-08-31 セイコーインスツル株式会社 Clock with chronograph mechanism
EP2915012B1 (en) * 2012-11-02 2021-03-31 Omega SA Vorrichtung zur ausrichtung eines geschraubten elements einer uhr
KR102430508B1 (en) * 2013-08-09 2022-08-09 애플 인크. Tactile switch for an electronic device
CN105637607A (en) * 2013-10-03 2016-06-01 普雷斯弗雷克斯股份公司 Liquid filled bellows activated switch and voltage source made therefrom, timepieces and methods related thereto
CH708945A2 (en) * 2013-12-09 2015-06-15 Montres Breguet Sa Piton watch.
EP3264198B1 (en) 2016-07-01 2020-01-15 Montres Breguet S.A. Timepiece comprising a device for switching a mechanism of said timepiece
CN206301154U (en) 2016-12-16 2017-07-04 惠贯有限公司 The vertical clutch structure of wrist-watch
US11604436B2 (en) * 2017-11-13 2023-03-14 Rolex Sa System for fixing a timepiece movement in a watch case
EP3483667A1 (en) 2017-11-13 2019-05-15 Rolex Sa System for securing a clock movement in a watch case

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073016A1 (en) * 2013-11-15 2015-05-21 Massachusetts Institute Of Technology Method for controlling the energy damping of a shape memory alloy with surface roughness

Also Published As

Publication number Publication date
US20210271205A1 (en) 2021-09-02
CN113296383A (en) 2021-08-24
US11353826B2 (en) 2022-06-07
EP3869278A1 (en) 2021-08-25
JP2021135287A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
EP1904901B2 (en) Reinforced micromechanical part
EP2757423B1 (en) Part for clockwork
EP1548342B1 (en) Valve for space applications with SMA actuator
EP2860592A1 (en) Assembly system using a planar resilient locking member
EP3273303A1 (en) Part for clock movement
EP3869278B1 (en) Vertical clutch device for a timepiece
CH707504A2 (en) Metal pivoting axle e.g. non-magnetic balance axle, for clockwork movement of watch, has pivot arranged at end, where axle is made of metal e.g. titanium and titanium alloy, in order to limit sensitivity of pivoting axle to magnetic fields
EP1498565A2 (en) Cable tensioning device for a window regulator
FR2504284A1 (en) EYEGLASS FRAME
CH717161A2 (en) Vertical clutch device for a timepiece.
EP3379342B1 (en) Device comprising a quick-adjustment spring engaging with a mobile of a timepiece
CH712718A2 (en) Pivot axis for watch movement.
EP3670014A1 (en) Method for straightening a shaft by applying a radial variable strain hardening force on the shaft in rotation
EP3273305B1 (en) Part for clock movement
FR3074073A1 (en) DEVICE FOR HOLLOW AXIS HANDLING FOR CREATING A PIVOT BOND BETWEEN A FIRST ELEMENT AND A SECOND ELEMENT
CH719289A2 (en) Watch box with rotating bezel.
EP4202569A1 (en) Watch case with rotating bezel
BE1004433A3 (en) Device for adjusting the relative position of two parts of the same piece by strain, using a screw cone, a zone connecting through these two parties.
FR3019847A1 (en) ARTICULATION SYSTEM WITH CONTROLLED OPENING SPEED, IN PARTICULAR FOR OPENING OF THE AUTOMOTIVE VEHICLE COVER
EP3223085B1 (en) Device comprising a quick-adjustment spring for a clock movement
CH707505B1 (en) Metal pivot pin for watch movement and method of manufacturing such a pin.
FR2859253A1 (en) Part e.g. metallic piece of lever, and driving shaft assembly for motor vehicle, has part with hole having periphery on which two recesses are formed, where recesses assure locking and rotation of part on shaft without using clamping screw
EP3291027A1 (en) Membrane shock absorber
FR2668729A1 (en) BRAZING OF PARTS OF MATERIALS HAVING DIFFERENT COEFFICIENTS OF THERMAL EXPANSION.
EP4240884A1 (en) Hard paramagnetic stainless steel and method for manufacturing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220225

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTG Intention to grant announced

Effective date: 20220624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20230118

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1552997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020008692

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230308

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1552997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020008692

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 4

Ref country code: DE

Payment date: 20231121

Year of fee payment: 4

26N No opposition filed

Effective date: 20231211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 4