EP3854943B1 - Excavation device - Google Patents

Excavation device Download PDF

Info

Publication number
EP3854943B1
EP3854943B1 EP20153275.1A EP20153275A EP3854943B1 EP 3854943 B1 EP3854943 B1 EP 3854943B1 EP 20153275 A EP20153275 A EP 20153275A EP 3854943 B1 EP3854943 B1 EP 3854943B1
Authority
EP
European Patent Office
Prior art keywords
positioner
control
excavation device
travel path
obstacles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20153275.1A
Other languages
German (de)
French (fr)
Other versions
EP3854943A1 (en
Inventor
Christian Heichel
Tobias Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABI Anlagentechnik Baumaschinen Industriebedarf Maschinenfabrik und Vertriebsgesellschaft mbH
Original Assignee
ABI Anlagentechnik Baumaschinen Industriebedarf Maschinenfabrik und Vertriebsgesellschaft mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69191873&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3854943(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABI Anlagentechnik Baumaschinen Industriebedarf Maschinenfabrik und Vertriebsgesellschaft mbH filed Critical ABI Anlagentechnik Baumaschinen Industriebedarf Maschinenfabrik und Vertriebsgesellschaft mbH
Priority to EP20153275.1A priority Critical patent/EP3854943B1/en
Priority to US17/113,208 priority patent/US11891893B2/en
Publication of EP3854943A1 publication Critical patent/EP3854943A1/en
Application granted granted Critical
Publication of EP3854943B1 publication Critical patent/EP3854943B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
    • E21B7/022Control of the drilling operation; Hydraulic or pneumatic means for activation or operation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • E02D7/14Components for drivers inasmuch as not specially for a specific driver construction
    • E02D7/16Scaffolds or supports for drivers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/04Guide devices; Guide frames
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • E02D7/14Components for drivers inasmuch as not specially for a specific driver construction
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/10Miscellaneous comprising sensor means

Definitions

  • the invention relates to a civil engineering device, in particular a ramming or drilling device, according to the preamble of claim 1, as it is from EP 16 554 15 A is known.
  • the invention also relates to a method for the multidimensional free positioning of a positioner of a civil engineering device according to patent claim 16.
  • the exact positioning of the working device or other work equipment such as a winch or auxiliary winch is of particular importance.
  • the clamp of a piling device must be positioned as precisely as possible in space in order to pick up a sheet piling element and then place it at a defined position in the ground and insert it into it.
  • the working tool of a drilling device for example, must first be positioned at a defined point in order to initiate drilling.
  • the soil material must be periodically removed from the threads of the drill bit by pulling the drilling tool out of the borehole, then moving it to a defined position to eject the soil material, and then returning it to the borehole.
  • Pile drivers have several degrees of freedom of movement. These are regularly: Movement of the chassis (whereby only linear forward and backward movement is assumed here for the sake of simplification), turning of the superstructure, tilting of the leader (forward and back), tilting of the leader (left, right), swiveling of the leader around a vertical axis Axis, feed of the implement carriage, pivoting of the base arm to change the reach, linear displacement of the mast. Compared to these eight degrees of freedom, drilling devices usually have only six degrees of freedom, since pivoting of the leader about a vertical axis and linear displacement of the mast are not necessary.
  • An experienced operator is required for free positioning of the working device of a special foundation engineering device in space with six or eight degrees of freedom, who is involved here as an essential "control and regulation element" in the special foundation engineering device.
  • the operator By visually detecting the position, the operator constantly carries out a target/actual comparison and forwards control commands to the actuators of the special civil engineering machine via the control lever. Due to the complex relationships between the individual movement paths of the actuators, the exact positioning of the working device represents an interactive process in which individual activations of actuators are carried out.
  • the individual actuators do not regularly describe linear movements in a Cartesian coordinate system, but movement curves with simultaneous variation of several coordinates.
  • the positioning of further components may also be necessary in the case of a special civil engineering device, for example the positioning of a cable pulley over which a cable of a cable winch is guided.
  • a special civil engineering device for example the positioning of a cable pulley over which a cable of a cable winch is guided.
  • the invention is based on the object of providing a civil engineering device, in particular a special civil engineering device such as a ramming or drilling device, which enables automated free positioning of a positioner in space. According to the invention, this object is achieved by a civil engineering device having the features of the characterizing part of patent claim 1.
  • the invention provides a civil engineering device, in particular a special civil engineering device such as a piling device, for example, which enables automated free positioning of a working device that has been picked up.
  • a piling device has in particular eight degrees of freedom and such a drilling device has in particular six degrees of freedom (in each case under the simplified assumption of a chassis that can only be moved linearly).
  • the tax and Control device has an input module for specifying a target position of at least one positioner and is connected to a computer module that is set up to determine at least one travel path along which the positioner can be moved from its current position (starting position) to the target position and, by means of inverse kinematics, the relevant
  • a defined positioning of a positioner is only possible by specifying a target position. The demands on the sensory and motor skills of the operator of the civil engineering device are reduced as a result. Only one target coordinate needs to be specified; the individual actuators are controlled by determining individual positions of the individual actuators using inverse kinematics.
  • Inverse kinematics is a term from robotics. In a robot, it enables the joint angles of the arm elements to be determined based on the pose (position and orientation) of the end effector. With inverse kinematics, the last link in the kinematic chain, the so-called end effector, is moved and brought into the desired position. The other links in the chain must then assume suitable positions according to the degrees of freedom of their joints. Methods of inverse kinematics are well known to those skilled in the field of robotics and will therefore not be discussed further at this point.
  • the computer module is set up to determine movement sequences of the individual actuators to achieve the travel path of the implement and to transfer them to the control and regulating device for their activation. This enables a targeted or sequential control of the individual actuators to move the positioner to the specified target position.
  • the at least one receptacle and/or the moving elements and/or the joints and/or the linear adjusters are provided with a Provide a sensor for detecting the position and/or the position and/or the angular position, which are connected to the control and regulation device.
  • a sensor for detecting the position and/or the position and/or the angular position which are connected to the control and regulation device.
  • This enables continuous feedback on the actual movement status.
  • the term "joint” is to be understood as meaning connection points between two components or moving elements which enable a relative movement of these components to one another, in particular a pivoting movement.
  • Linear adjusters are those connection points that enable an exclusively linear movement between two components or moving elements.
  • a geometrically descriptive model of the civil engineering device and/or at least one mathematical model of the system behavior of the civil engineering device is stored in the control and regulating device. This simplifies the acquisition of the kinematic system behavior and its regulation.
  • the positioner is preferably formed by a working carriage for receiving a working device, which is movably arranged on a leader, which is connected to the carrier device, preferably a carrier vehicle, via a swiveling and/or tilting device.
  • there is at least one system for recording the working environment which is connected to an evaluation module that is set up to determine obstacles and that is connected to the computer module, with the computer module being set up to calculate at least one travel path while avoiding through to determine the evaluation module identified obstacles.
  • the system for detecting the working environment preferably has at least one camera and/or at least one ultrasonic sensor and/or at least one radar sensor and/or at least one lidar sensor and/or at least a laser sensor. This enables continuous, detailed recording of the work environment.
  • At least one camera and/or at least one ultrasonic sensor and/or at least one radar sensor and/or at least one lidar sensor and/or at least one laser sensor is on at least one positioner and/or one implement and/or on at least one with a Positioner associated moving member arranged. This enables a complete detection of the work environment even with the most varied movement states of the civil engineering device.
  • the computer module is connected to a memory module in which defined restricted areas are stored, which are to be treated like obstacles when determining travel paths.
  • the evaluation module is set up to continuously determine obstacles even while a positioner is being positioned along a travel path, with the computer module being set up to continuously check for collisions between detected obstacles and the travel path and, if necessary, to correct this travel path. This avoids a collision when the surrounding situation changes.
  • the computer module is connected to an optical and/or acoustic signal generator and set up to actuate this signal generator in the event that the travel path cannot be corrected without a collision.
  • the input device includes a screen on which the current environment is reproduced, with a transformation module being arranged that is set up to convert an input instruction into coordinates of a specified coordinate system and to transmit this to the control and To pass control device as target coordinates.
  • the input device preferably includes a touchscreen, on which a target position can be entered by touching it.
  • the screen can also be part of a virtual reality (VR) system, in which a desired target position can be entered by defined actions, for example pointing with a finger.
  • VR virtual reality
  • At least one actuator is assigned a separate actuator controller, via which the respective actuator can be controlled on the basis of a setpoint position and/or setpoint speed and/or setpoint acceleration as an input value.
  • the actuator controllers can be specially tailored to the types of movement and degrees of freedom of an actuator and thus enable simpler control and regulation of the respective actuator.
  • the open-loop and closed-loop control device is set up for direct position control, in which the setpoint positions of the joints and/or the linear adjuster are specified to the actuator controllers at the same time. This enables accelerated positioning of a positioner, for example a working carriage with a working device held by it.
  • the open-loop and closed-loop control device is set up for cascade control, in which a time-dependent speed profile with defined acceleration and speed is calculated from the target position specification, with which the target position is to be approached and this is transferred to the actuator controllers.
  • a position control loop is preferably arranged for monitoring the current position and for controlling the respective setpoint position at a respective point in time, which results from the speed profile.
  • the positioner which is connected to a carrier device via a number of movement members that are movable relative to one another and are connected via joints and/or linear adjusters within a kinematic chain, with the movement members being connected to at least six actuators, via which their respective position and/or orientation can be changed is, based on a target position of the positioner, for example, the work carriage with the work tool picked up by it, a travel path is determined, on the basis of which the joint positions of the individual joints and the linear positions of the linear adjusters are determined. Furthermore, the actuator movements required to realize the individual joint positions and linear positions are determined and the individual actuators are then controlled to carry out the actuator movements determined.
  • At least one system is arranged for detecting the working environment, with obstacles being detected by means of an evaluation module and with the determination of the travel path taking into account collision avoidance with the detected obstacles. This avoids collisions with obstacles in the working environment.
  • the joint positions of the individual joints and the linear positions of the linear adjusters are determined by using an algorithm based on inverse kinematics.
  • Inverse kinematics from the field of robotics also known as reverse transformation referred to, allows the joint angles of the moving links within the kinematic chain to be determined based on the position and orientation of the selected recording.
  • the rotary drilling rig selected as an exemplary embodiment consists essentially of a carrier device 1, which is connected via a rocker arm 2 to a leader 3, on which a working carriage 4 is movably arranged, to which a drilling device 5 is attached.
  • the rocker 2 comprises two substantially triangular rocker plates 21 arranged parallel to one another, the corners of which are rounded.
  • the swingarm plates 21 of the swingarm 2 are opposed with a corner each pivotally connected to a boom 22 which is pivotally mounted on the carrier device 1.
  • the cantilevers 22 form the base arm.
  • the rocker plates 21 are pivotally connected to the leader 3 opposite one another at a second corner.
  • the third corner of each swing arm plate 21 is connected to a boom cylinder 23 mounted on the carrier 1 .
  • a support strut cylinder 24 is pivotally attached, the cylinder piston of which is pivotally attached to the leader 3 .
  • a feed winch 31 is arranged on the leader 3 between the rocker plates 21 and the piston of the support strut cylinder 24, via which the carriage 4 can be displaced along the leader 3.
  • An auxiliary winch 32 is arranged on the leader 3 at a distance from the feed winch 31 on the opposite side of the rocker plates 21 and a Kelly winch 33 is arranged on the leader 3 at a distance from it.
  • the Kelly cable 34 of the Kelly winch 33 is guided over a cable pulley head 35 arranged on the leader 3 and is connected at the end to the Kelly rod 51 of the drilling device 5 .
  • the drilling device 5 has, in a known manner, a drilling drive 52 and a pressure pipe 53 which can be connected to a drilling pipe 54 .
  • a control and regulating device 6 is arranged in the carrier device 1 , which has an input module 61 for specifying a target position of the working carriage 4 as a positioner and is connected to a computer module 62 . It can also be provided to use the input module to select a specific point or a certain element of the drilling device, for example the drilling tool of the drilling device 5 or the cable pulley head 35 receiving the Kelly cable and the auxiliary cable, as a positioner for which a target position is specified.
  • the input device comprises a touch screen on which the virtual environment of the rotary drilling rig can be displayed.
  • the control and regulating device 6 is connected to the boom cylinders 23, the support strut cylinders 24, the feed winch 31, the Kelly winch 33, the auxiliary winch 32 and also the pivoting unit of the superstructure 11 and the travel drive of the Chassis 12 of the carrier device 1 connected, which form actuators that can be controlled via the control and regulating device. By controlling one or more of these actuators, the position of a positioner, in this case the working carriage 4 with the drilling device held by it, can be changed.
  • the actuators allow positioning of the drilling rig in six degrees of freedom: movement of the chassis 12 (only linear forward and backward movement is assumed here for the sake of simplicity), rotation of the superstructure 11, tilting of the leader 3 (forward and back), tilting of the leader 3 (left, right), advancement of the working carriage 4 along the leader 3, pivoting of the boom 22 forming the base arm to change the range.
  • the control and regulation device 6 is connected to sensors 7 which are arranged on the working carriage 4 for the detection of position, orientation and angular position.
  • sensors 7 can be arranged on other elements of the drill.
  • the control and regulation device is connected to a computer module 62, which is set up to determine travel paths and the positions of the individual actuators required for their realization by means of inverse kinematics.
  • a geometrically descriptive model of the rotary drilling rig and a mathematical model of the system behavior of the rotary drilling rig are stored in the computer module 62 in the exemplary embodiment.
  • the computer module 62 is connected to an evaluation module 63, which is set up to determine obstacles and is connected to a system for detecting the working environment for this purpose.
  • the system for recording the working environment includes cameras 81 and lidar sensors 82 which are arranged on the carrier device 1 and the working carriage 4 and are connected to the evaluation module 63 .
  • the computer module 62 is also connected to a memory module 63 in which defined restricted areas are stored, which are to be treated like obstacles when determining travel paths. Corresponding restricted areas are definable via the input module 61.
  • the computer module 62 is set up for continuous collision checking of identified and defined obstacles with identified travel paths and, if necessary, correction of a travel path.
  • FIG 2 a simplified diagram of the rotary drilling rig is shown, in which the essential functional components for positioning the working carriage 4 are shown.
  • the position of the leader 3 with the working carriage 4 movably arranged on it can be changed via the position of the rocker arm 2 , which is connected to the superstructure 11 of the carrier device 1 via the boom 22 .
  • the cantilevers 22 form movement members which are connected to the rocker arm 2 and to the superstructure 11 of the carrier device 1 via joints so that they can pivot about a horizontal axis.
  • the rocker 2 is forcibly guided via the boom 22 and can be moved via the boom cylinder 23 along a curved path.
  • the booms 22 and the boom cylinders 23 can be pivoted together with the superstructure 11 on the chassis 12 about a vertical axis and can be moved horizontally and linearly by the chassis 12 .
  • the leader 3 is connected to the rocker 2 via joints so that it can pivot around two horizontal axes.
  • the pivoting position of the leader 3 on the swing arm 2 is adjusted via the support strut cylinder 24, which is connected to the leader 3 and to the swing arm 2 via joints so that it can pivot about two horizontal axes.
  • the working slide 4, which is connected to the leader 3 via a linear adjuster, is positioned by linear displacement along the leader 3 via the feed winch 31.
  • FIG 4 a this diagram is further simplified to illustrate the kinematics, shown without boom cylinder 23, support strut cylinder 24 and feed winch 31.
  • Figure 4 b) a lowering of the base arm formed by the cantilever 22 is shown as an example.
  • the working carriage 4 moves on a circular path around the pivot point of the boom 22 and thereby experiences changes in position by increasing the distance to the carrier device 1 (increasing the range) and at the same time a change in position by reducing the distance to the ground.
  • figure 5 is the kinematic chain of the arrangement figure 4 shown, which is composed of moving elements connected via joints and linear adjusters. This results in the six degrees of freedom mentioned above for positioning the drilling device 5 arranged on the working carriage 4.
  • the positioning of a positioner based on a defined point, in this case the working carriage 4, which accommodates the drilling device 5, is mapped by the basic principle of an inverse cinematographic algorithm in the control and regulation device.
  • the target position of this point relative to a selected basic coordinate system, for example of the carrier device, is transferred to the algorithm.
  • the setpoint values of the individual actuators for the desired positioning are then calculated via the algorithm using algebraic, geometric and numerical methods.
  • Direct position variables for the actuators can be output from the algorithm. It is also possible to use time derivatives of the position values, for example speed or acceleration.
  • Algorithms of inverse kinematics are known from the field of machine tool construction and robotics for positioning in complex joint connections.
  • actuator controllers are programmed in the control and regulation device 6 and in the computer module 61 connected to it for individual joints and linear adjusters. These modules detailing the specifics of each Joint or linear adjuster or the actuator connected to it are taken into account, receive a setpoint position or a setpoint speed as an input value.
  • Positioner position control is in figure 6 sketched.
  • the target positions of the joints and linear adjusters are specified for the actuator controllers.
  • the individual actuators and thus the system regulate themselves to the specified target position via a PID (proportional-integral-differential) controller.
  • the positioning times of the individual actuators can vary greatly. If the drilling device is to be placed closer to the carrier device 1, for example, the base arm formed from the outriggers 22 must move up and the feed winch 31 must move down at the same time. Since the feed entails higher traversing speeds than the base arm, the slowest actuator is used as a default. The maximum speed of all actuators is known. Before positioning, the maximum time required by the slowest actuator can be calculated. With this time value, the speed and acceleration value is adjusted linearly for all other actuators so that they require the same time. This avoids unnecessarily high speeds and accelerations. At the same time, simultaneous positioning of all joints is made possible.
  • a target position of the drill is selected by the operator via the touchscreen of the input module, which is transferred to the computer module as coordinates.
  • Possible travel paths are determined by the computer module on the basis of these coordinates.
  • obstacles are detected by the evaluation module on the basis of the real-time data transmitted by the cameras 81 and the sensors 82 and transferred to the computer module.
  • a travel path is selected by the computer unit on the basis of previously defined selection criteria, such as the minimized number of changes in direction or the fastest path.
  • the computer module uses algorithms the inverse kinematics determine the joint positions and linear adjuster positions required to implement this travel path and the actuator movements required for this over time and transfer them to the control and regulation device, which controls the actuators (boom cylinder 23, support strut cylinder 24, feed winch 31, swivel drive of the superstructure 11, Running gear 12) to implement the travel path determined for throwing off the drilling tool.
  • the actuators boost cylinder 23, support strut cylinder 24, feed winch 31, swivel drive of the superstructure 11, Running gear 12
  • the return of the drilling tool to the borehole on the same travel path can be triggered via the input module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Description

Die Erfindung betrifft ein Tiefbaugerät, insbesondere ein Ramm-, oder Bohrgerät, nach dem Oberbegriff des Patentanspruchs 1, so wie es aus der EP 16 554 15 A bekannt ist. Die Erfindung betrifft weiterhin ein Verfahren zur mehrdimensionalen freien Positionierung eines Positionierers eines Tiefbaugerätes nach dem Patentanspruch 16.The invention relates to a civil engineering device, in particular a ramming or drilling device, according to the preamble of claim 1, as it is from EP 16 554 15 A is known. The invention also relates to a method for the multidimensional free positioning of a positioner of a civil engineering device according to patent claim 16.

Bei der Bedienung eines Tiefbaugerätes, insbesondere eines Spezialtiefbaugerätes wie ein Ramm- oder Bohrgerät, ist die exakte Positionierung des Arbeitsgerätes oder sonstiger Arbeitsmittel wie Winde oder Hilfswinde von besonderer Bedeutung. So ist beispielsweise die Klemmzange eines Rammgerätes möglichst exakt im Raum zu positionieren, um ein Spundwandelement aufzunehmen und um dieses nachfolgend an einer definierten Position im Boden zu platzieren und in diesen einzubringen. Auch das Arbeitsgerät eines Bohrgerätes ist beispielsweise zunächst an einer definierten Stelle zu positionieren, um eine Bohrung zu initiieren. Während der Bohrung muss das Erdmaterial in bestimmten Abständen aus den Gewindegängen des Bohrers entfernt werden, wozu das Bohrwerkzeug aus dem Bohrloch gezogen, anschließend zu einer definierten Position zum Abschleudern des Erdmaterials bewegt und sodann wieder in das Bohrloch zurück positioniert werden muss.When operating a civil engineering device, in particular a special civil engineering device such as a piling or drilling device, the exact positioning of the working device or other work equipment such as a winch or auxiliary winch is of particular importance. For example, the clamp of a piling device must be positioned as precisely as possible in space in order to pick up a sheet piling element and then place it at a defined position in the ground and insert it into it. The working tool of a drilling device, for example, must first be positioned at a defined point in order to initiate drilling. During drilling, the soil material must be periodically removed from the threads of the drill bit by pulling the drilling tool out of the borehole, then moving it to a defined position to eject the soil material, and then returning it to the borehole.

Rammgeräte verfügen über mehrere Bewegungsfreiheitsgrade. Diese sind regelmäßig: Verfahren des Fahrwerks (wobei hier zur Vereinfachung nur lineares Vor- und Zurückfahren angenommen wird), Drehen des Oberwagens, Neigen des Mäklers (vor und zurück), Neigen des Mäklers (links, rechts), Verschwenken des Mäklers um eine vertikale Achse, Vorschub des Arbeitsgeräteschlittens, Verschwenken des Grundarms zur Veränderung der Reichweite, lineare Verschiebung des Mastes. Gegenüber diesen acht Freiheitsgraden weisen Bohrgeräte üblicherweise nur sechs Freiheitsgrade auf, da ein Verschwenken des Mäklers um eine vertikale Achse sowie eine lineare Verschiebung des Mastes nicht erforderlich sind.Pile drivers have several degrees of freedom of movement. These are regularly: Movement of the chassis (whereby only linear forward and backward movement is assumed here for the sake of simplification), turning of the superstructure, tilting of the leader (forward and back), tilting of the leader (left, right), swiveling of the leader around a vertical axis Axis, feed of the implement carriage, pivoting of the base arm to change the reach, linear displacement of the mast. Compared to these eight degrees of freedom, drilling devices usually have only six degrees of freedom, since pivoting of the leader about a vertical axis and linear displacement of the mast are not necessary.

Für eine freie Positionierungen des Arbeitsgerätes eines Spezialtiefbaugerätes im Raum mit sechs oder acht Freiheitsgraden ist ein erfahrener Bediener erforderlich, der hier als wesentliches "Steuer- und Regelelement" in das Spezialtiefbaugerät eingebunden wird. Durch eine visuelle Positionserfassung führt der Bediener permanent einen Soll-Ist-Abgleich durch und leitet über Steuerhebel des Spezialtiefbaugeräts Steuerbefehle an dessen Aktoren weiter. Durch die komplexen Zusammenhänge zwischen den einzelnen Bewegungsbahnen der Aktoren stellt die exakte Positionierung des Arbeitsgerätes einen interaktiven Vorgang dar, bei dem einzelne Ansteuerungen von Aktoren ausgeführt werden. Die einzelnen Aktoren beschreiben regelmäßig keine linearen Bewegungen in einem kartesischen Koordinatensystem, sondern Bewegungskurven mit zeitgleicher Variation mehrerer Koordinaten.An experienced operator is required for free positioning of the working device of a special foundation engineering device in space with six or eight degrees of freedom, who is involved here as an essential "control and regulation element" in the special foundation engineering device. By visually detecting the position, the operator constantly carries out a target/actual comparison and forwards control commands to the actuators of the special civil engineering machine via the control lever. Due to the complex relationships between the individual movement paths of the actuators, the exact positioning of the working device represents an interactive process in which individual activations of actuators are carried out. The individual actuators do not regularly describe linear movements in a Cartesian coordinate system, but movement curves with simultaneous variation of several coordinates.

Über die Positionierung eines Arbeitsgerätes (bzw. des Arbeitsgeräteschlittens) hinaus kann bei einem Spezialtiefbaugerät auch die Positionierung weiterer Bauteile erforderlich sein, beispielsweise die Positionierung einer Seilrolle, über die ein Seil einer Seilwinde geführt ist. Nachfolgend werden zu positionierende Bauteile des Spezialtiefbaugerätes wie bspw. Schlitten oder Seilrollen unter dem Begriff "Positionierer" zusammengefasst.In addition to the positioning of a working device (or the working device carriage), the positioning of further components may also be necessary in the case of a special civil engineering device, for example the positioning of a cable pulley over which a cable of a cable winch is guided. In the following, components of the special civil engineering device to be positioned, such as carriages or cable pulleys, are summarized under the term "positioner".

Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Tiefbaugerät, insbesondere ein Spezialtiefbaugerät wie beispielsweise ein Ramm- oder Bohrgerät bereitzustellen, das eine automatisierte freie Positionierung eines Positionierers im Raum ermöglicht. Gemäß der Erfindung wird diese Aufgabe durch ein Tiefbaugerät mit den Merkmalen des kennzeichnenden Teils des Patentanspruchs 1 gelöst.Against this background, the invention is based on the object of providing a civil engineering device, in particular a special civil engineering device such as a ramming or drilling device, which enables automated free positioning of a positioner in space. According to the invention, this object is achieved by a civil engineering device having the features of the characterizing part of patent claim 1.

Mit der Erfindung ist ein Tiefbaugerät, insbesondere ein Spezialtiefbaugerät wie beispielsweise ein Rammgerät bereitgestellt, das eine automatisierte freie Positionierung eines aufgenommenen Arbeitsgerätes ermöglicht. Dabei weist ein solches Rammgerät insbesondere acht Freiheitsgrade bzw. ein solches Bohrgerät insbesondere sechs Freiheitsgrade auf (jeweils unter der vereinfachten Annahme eines lediglich linear verfahrbaren Fahrwerks). Dadurch, dass die Steuer- und Regeleinrichtung ein Eingabemodul zur Vorgabe einer Zielposition wenigstens eines Positionierers aufweist und mit einem Rechnermodul verbunden ist, das eingerichtet ist, wenigstens einen Verfahrweg zu ermitteln, entlang dessen der Positionierer von seiner aktuellen Position (Startposition) zu der Zielposition verfahrbar ist und mittels inverser Kinematik die hierzu erforderlichen Lagen der einzelnen Aktoren zur Realisierung des Verfahrweges des Positionierers zu ermitteln und zu deren Ansteuerung an die Steuer- und Regeleinrichtung zu übergeben, ist eine definierte Positionierung eines Positionierers lediglich durch Vorgabe einer Zielposition ermöglicht. Die Anforderungen an die sensorischen und motorischen Fähigkeiten des Bedieners des Tiefbaugeräts sind hierdurch reduziert. Es ist lediglich eine Zielkoordinate vorzugeben; die Ansteuerung der einzelnen Aktoren erfolgt durch Ermittlung einzelner Lagen der einzelnen Aktoren mit Hilfe der inversen Kinematik.The invention provides a civil engineering device, in particular a special civil engineering device such as a piling device, for example, which enables automated free positioning of a working device that has been picked up. Such a piling device has in particular eight degrees of freedom and such a drilling device has in particular six degrees of freedom (in each case under the simplified assumption of a chassis that can only be moved linearly). Because the tax and Control device has an input module for specifying a target position of at least one positioner and is connected to a computer module that is set up to determine at least one travel path along which the positioner can be moved from its current position (starting position) to the target position and, by means of inverse kinematics, the relevant To determine the required positions of the individual actuators for realizing the travel path of the positioner and to transfer them to the control and regulating device for their activation, a defined positioning of a positioner is only possible by specifying a target position. The demands on the sensory and motor skills of the operator of the civil engineering device are reduced as a result. Only one target coordinate needs to be specified; the individual actuators are controlled by determining individual positions of the individual actuators using inverse kinematics.

Die inverse Kinematik (auch Rückwärtstransformation genannt) ist ein Begriff aus der Robotik. Sie ermöglicht bei einem Roboter die Bestimmung der Gelenkwinkel der Armelemente anhand der Pose (Position und Orientierung) des Endeffektors. Bei der inversen Kinematik wird das letzte Glied der kinematischen Kette, der sogenannte Endeffektor, bewegt und in die gewünschte Lage gebracht. Die übrigen Glieder der Kette müssen dann entsprechend den Freiheitsgraden ihrer Gelenke passende Lagen einnehmen. Methoden der inversen Kinematik sind dem Fachmann aus dem Bereich der Robotik hinreichend bekannt und werden daher an dieser Stelle nicht weiter vertieft.Inverse kinematics (also called reverse transformation) is a term from robotics. In a robot, it enables the joint angles of the arm elements to be determined based on the pose (position and orientation) of the end effector. With inverse kinematics, the last link in the kinematic chain, the so-called end effector, is moved and brought into the desired position. The other links in the chain must then assume suitable positions according to the degrees of freedom of their joints. Methods of inverse kinematics are well known to those skilled in the field of robotics and will therefore not be discussed further at this point.

In Weiterbildung der Erfindung ist das Rechnermodul eingerichtet, Bewegungsabläufe der einzelnen Aktoren zur Erzielung des Verfahrweges des Arbeitsgerätes zu ermitteln und zu deren Ansteuerung an die Steuer- und Regeleinrichtung zu übergeben. Hierdurch ist eine gezielte oder auch zeitlich abfolgende Ansteuerung der einzelnen Aktoren zur Bewegung des Positionierers an die vergebene Zielposition ermöglicht.In a further development of the invention, the computer module is set up to determine movement sequences of the individual actuators to achieve the travel path of the implement and to transfer them to the control and regulating device for their activation. This enables a targeted or sequential control of the individual actuators to move the positioner to the specified target position.

In Ausgestaltung der Erfindung sind die wenigstens eine Aufnahme und/oder die Bewegungsglieder und/oder die Gelenke und/oder die Linearversteller mit einem Sensor zur Detektion der Position und/oder der Lage und/oder der Winkelstellung versehen, die mit der Steuer- und Regeleinrichtung verbunden sind. Hierdurch ist eine kontinuierliche Rückmeldung des tatsächlichen Bewegungszustandes ermöglicht. Unter dem Begriff "Gelenk" sind vorliegend Verbindungsstellen zwischen zwei Bauteilen bzw. Bewegungsgliedern zu verstehen, die eine Relativbewegung dieser Bauteile zueinander, insbesondere eine Schwenkbewegung, ermöglichen. Bei Linearverstellern handelt es sich um solche Verbindungsstellen, die eine ausschließlich lineare Bewegung zwischen zwei Bauteilen bzw. Bewegungsgliedern ermöglichen.In an embodiment of the invention, the at least one receptacle and/or the moving elements and/or the joints and/or the linear adjusters are provided with a Provide a sensor for detecting the position and/or the position and/or the angular position, which are connected to the control and regulation device. This enables continuous feedback on the actual movement status. In the present case, the term "joint" is to be understood as meaning connection points between two components or moving elements which enable a relative movement of these components to one another, in particular a pivoting movement. Linear adjusters are those connection points that enable an exclusively linear movement between two components or moving elements.

In weiterer Ausgestaltung der Erfindung ist in der Steuer- und Regeleinrichtung ein geometrisch beschreibendes Modell des Tiefbaugerätes und/oder wenigstens ein mathematisches Modell des Systemverhaltens des Tiefbaugerätes hinterlegt. Hierdurch ist die Erfassung des kinematischen Systemverhaltens und dessen Regelung vereinfacht.In a further embodiment of the invention, a geometrically descriptive model of the civil engineering device and/or at least one mathematical model of the system behavior of the civil engineering device is stored in the control and regulating device. This simplifies the acquisition of the kinematic system behavior and its regulation.

Bevorzugt ist der Positionierer durch einen Arbeitsschlitten zur Aufnahme eines Arbeitsgerätes gebildet, der an einem Mäkler verfahrbar angeordnet ist, der über eine Schwenk- und/oder Neigevorrichtung mit dem Trägergerät, bevorzugt einem Trägerfahrzeug, verbunden ist.The positioner is preferably formed by a working carriage for receiving a working device, which is movably arranged on a leader, which is connected to the carrier device, preferably a carrier vehicle, via a swiveling and/or tilting device.

In Weiterbildung der Erfindung ist wenigstens ein System zur Erfassung der Arbeitsumgebung angeordnet, das mit einem Auswertungsmodul verbunden ist, dass zur Ermittlung von Hindernissen eingerichtet ist, und das mit dem Rechnermodul verbunden ist, wobei das Rechnermodul eingerichtet ist, wenigstens einen Verfahrweg unter Vermeidung von durch das Auswertungsmodul identifizierten Hindernissen zu ermitteln. Hierdurch ist einer Kollision eines Positionierers, beispielsweise eines Arbeitsschlittens mit einem von diesem aufgenommenen Arbeitsgerät, mit in der Arbeitsumgebung befindlichen Hindernissen vermieden. Bevorzugt weist das System zur Erfassung der Arbeitsumgebung wenigstens eine Kamera und/oder wenigstens einen Ultraschallsensor und/oder wenigstens einen Radarsensor und/oder wenigstens einen Lidarsensor und/oder wenigstens einem Lasersensor auf. Hierdurch ist eine kontinuierliche, detaillierte Erfassung der Arbeitsumgebung ermöglicht.In a further development of the invention, there is at least one system for recording the working environment, which is connected to an evaluation module that is set up to determine obstacles and that is connected to the computer module, with the computer module being set up to calculate at least one travel path while avoiding through to determine the evaluation module identified obstacles. In this way, a collision of a positioner, for example a working carriage with a working device picked up by it, with obstacles in the working environment is avoided. The system for detecting the working environment preferably has at least one camera and/or at least one ultrasonic sensor and/or at least one radar sensor and/or at least one lidar sensor and/or at least a laser sensor. This enables continuous, detailed recording of the work environment.

In weiterer Ausgestaltung der Erfindung ist wenigstens eine Kamera und/oder wenigstens ein Ultraschallsensor und/oder wenigstens ein Radarsensor und/oder wenigstens ein Lidarsensor und/oder wenigstens ein Lasersensor an wenigstens einem Positionierer und/oder einem Arbeitsgerät und/oder an wenigstens einem mit einem Positionierer verbundenen Bewegungsglied angeordnet. Hierdurch ist eine lückenlose Erfassung der Arbeitsumgebung auch bei verschiedensten Bewegungszuständen des Tiefbaugeräts ermöglicht.In a further embodiment of the invention, at least one camera and/or at least one ultrasonic sensor and/or at least one radar sensor and/or at least one lidar sensor and/or at least one laser sensor is on at least one positioner and/or one implement and/or on at least one with a Positioner associated moving member arranged. This enables a complete detection of the work environment even with the most varied movement states of the civil engineering device.

In weiterer Ausgestaltung der Erfindung ist das Rechnermodul mit einem Speichermodul verbunden, in dem definierte Sperrbereiche hinterlegt sind, die bei der Ermittlung von Verfahrwegen wie Hindernisse zu behandeln sind. Hierdurch ist eine Einschränkung möglicher Verfahrwege des von einer Aufnahme aufgenommenen Arbeitsgerätes ermöglicht.In a further embodiment of the invention, the computer module is connected to a memory module in which defined restricted areas are stored, which are to be treated like obstacles when determining travel paths. As a result, a limitation of possible travel paths of the working device picked up by a receptacle is made possible.

In weiterer Ausgestaltung der Erfindung ist das Auswertemodul zur kontinuierlichen Ermittlung von Hindernissen auch während der Positionierung eines Positionierers entlang eines Verfahrweges eingerichtet, wobei das Rechnermodul zur kontinuierlichen Kollisionsprüfung ermittelter Hindernisse mit dem Verfahrweg und erforderlichenfalls Korrektur dieses Verfahrweges eingerichtet ist. Hierdurch ist einer Kollision bei veränderten Umgebungssituationen vermieden.In a further embodiment of the invention, the evaluation module is set up to continuously determine obstacles even while a positioner is being positioned along a travel path, with the computer module being set up to continuously check for collisions between detected obstacles and the travel path and, if necessary, to correct this travel path. This avoids a collision when the surrounding situation changes.

In vorteilhafter Ausgestaltung ist das Rechnermodul mit einem optischen und/oder akustischen Signalgeber verbunden und eingerichtet, diesen Signalgeber in dem Fall, dass eine Korrektur des Verfahrweges ohne Kollision nicht möglich ist, zu betätigen.In an advantageous embodiment, the computer module is connected to an optical and/or acoustic signal generator and set up to actuate this signal generator in the event that the travel path cannot be corrected without a collision.

In Weiterbildung der Erfindung umfasst das Eingabegerät einen Bildschirm, auf dem die aktuelle Umgebung wiedergegeben ist, wobei ein Transformationsmodul angeordnet ist, das eingerichtet ist, eine Eingabeanweisung in Koordinaten eines vorgegebenen Koordinatensystems umzuwandeln und diese an die Steuer- und Regeleinrichtung als Zielkoordinaten zu übergeben. Vorzugsweise umfasst das Eingabegerät einen Touchscreen, auf den durch Berührung eine Zielposition eingebbar ist. Alternativ kann der Bildschirm auch Bestandteil eines Virtual Reality (VR)-Systems sein, in dem durch definierte Aktionen, beispielsweise Zeigen mit einem Finger, eine gewünschte Zielposition eingebbar ist.In a further development of the invention, the input device includes a screen on which the current environment is reproduced, with a transformation module being arranged that is set up to convert an input instruction into coordinates of a specified coordinate system and to transmit this to the control and To pass control device as target coordinates. The input device preferably includes a touchscreen, on which a target position can be entered by touching it. Alternatively, the screen can also be part of a virtual reality (VR) system, in which a desired target position can be entered by defined actions, for example pointing with a finger.

In Ausgestaltung der Erfindung ist wenigstens einem Aktor, vorzugsweise allen Aktoren ein separater Aktorregler zugeordnet, über den der jeweilige Aktor auf Basis einer Sollposition und/oder Sollgeschwindigkeit und/oder Sollbeschleunigung als Eingangswert ansteuerbar ist. Die Aktorregler können speziell auf die Bewegungsformen und Freiheitsgrade eines Aktors abgestimmt werden und ermöglichen so eine einfachere Ansteuerung und Regelung des jeweiligen Aktors.In an embodiment of the invention, at least one actuator, preferably all actuators, is assigned a separate actuator controller, via which the respective actuator can be controlled on the basis of a setpoint position and/or setpoint speed and/or setpoint acceleration as an input value. The actuator controllers can be specially tailored to the types of movement and degrees of freedom of an actuator and thus enable simpler control and regulation of the respective actuator.

In weiterer Ausgestaltung der Erfindung ist die Steuer- und Regeleinrichtung zur direkten Lageregelung eingerichtet, bei der den Aktorreglern zeitgleich die Sollpositionen der Gelenke und/oder der Linearversteller vorgegeben werden. Hierdurch ist eine beschleunigte Positionierung eines Positionierers, beispielsweise eines Arbeitsschlitten mit einem von diesem aufgenommenen Arbeitsgerät, ermöglicht.In a further embodiment of the invention, the open-loop and closed-loop control device is set up for direct position control, in which the setpoint positions of the joints and/or the linear adjuster are specified to the actuator controllers at the same time. This enables accelerated positioning of a positioner, for example a working carriage with a working device held by it.

In weiterer Ausgestaltung der Erfindung ist die Steuer- und Regeleinrichtung zur Kaskadenregelung eingerichtet, bei dem aus der Zielpositionsvorgabe ein zeitabhängiges Geschwindigkeitsprofil mit definierter Beschleunigung und Geschwindigkeit berechnet wird, mit dem die Sollposition angefahren werden soll und diese den Aktorreglern übergeben wird. Dabei ist vorzugsweise ein Lageregelkreis zur Überwachung der aktuellen Position und eine Regelung der jeweiligen Sollposition zu einem jeweiligen Zeitpunkt, die sich aus dem Geschwindigkeitsprofil ergibt, angeordnet.In a further embodiment of the invention, the open-loop and closed-loop control device is set up for cascade control, in which a time-dependent speed profile with defined acceleration and speed is calculated from the target position specification, with which the target position is to be approached and this is transferred to the actuator controllers. In this case, a position control loop is preferably arranged for monitoring the current position and for controlling the respective setpoint position at a respective point in time, which results from the speed profile.

Der vorliegenden Erfindung liegt weiterhin die Aufgabe zugrunde, ein Verfahren zur mehrdimensionalen freien Positionierung eines Positionierers eines Tiefbaugerätes bereitzustellen, das eine automatisierte Positionierung des Positionierers, beispielsweise eines Arbeitsschlittens mit einem von diesem aufgenommenen Arbeitsgerät, lediglich durch Vorgabe einer Zielposition ermöglicht. Gemäß der Erfindung wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 16 gelöst. Zur Positionierung des Positionierers, der über mehrere relativ zueinander bewegliche, über Gelenke und/oder Linearversteller verbundene Bewegungsglieder innerhalb einer kinematischen Kette mit einem Trägergerät verbunden ist, wobei die Bewegungsglieder mit wenigstens sechs Aktoren verbunden sind, über die ihre jeweilige Position und/oder Orientierung veränderbar ist, wird auf Basis einer Zielposition des Positionierers, beispielsweise des Arbeitsschlittens mit dem von diesem aufgenommenen Arbeitsgerät, ein Verfahrweg ermittelt, auf Basis dessen die Gelenkpositionen der einzelnen Gelenke sowie die Linearpositionen der Linearversteller ermittelt werden. Weiterhin werden die zur Realisierung der einzelnen Gelenkpositionen und Linearpositionen erforderlichen Aktorbewegungen ermittelt und nachfolgend die einzelnen Aktoren zur Durchführung der ermittelten Aktorbewegungen angesteuert.The present invention is also based on the object of providing a method for the multi-dimensional free positioning of a positioner of a civil engineering device that enables automated positioning of the positioner, for example a working carriage with a Working device, only made possible by specifying a target position. According to the invention, this object is achieved by a method having the features of claim 16. For positioning the positioner, which is connected to a carrier device via a number of movement members that are movable relative to one another and are connected via joints and/or linear adjusters within a kinematic chain, with the movement members being connected to at least six actuators, via which their respective position and/or orientation can be changed is, based on a target position of the positioner, for example, the work carriage with the work tool picked up by it, a travel path is determined, on the basis of which the joint positions of the individual joints and the linear positions of the linear adjusters are determined. Furthermore, the actuator movements required to realize the individual joint positions and linear positions are determined and the individual actuators are then controlled to carry out the actuator movements determined.

In Weiterbildung der Erfindung ist wenigstens ein System zur Erfassung der Arbeitsumgebung angeordnet, wobei mittels eines Auswertungsmoduls Hindernisse detektiert werden und wobei die Ermittlung des Verfahrweges unter Berücksichtigung der Kollisionsvermeidung mit den detektierten Hindernissen erfolgt. Hierdurch sind Kollisionen mit in der Arbeitsumgebung befindlichen Hindernissen vermieden.In a development of the invention, at least one system is arranged for detecting the working environment, with obstacles being detected by means of an evaluation module and with the determination of the travel path taking into account collision avoidance with the detected obstacles. This avoids collisions with obstacles in the working environment.

In Ausgestaltung der Erfindung werden mehrere mögliche Verfahrwege ermittelt und nachfolgend wird durch Vergleich der ermittelten Verfahrwege auf Basis vorgegebener Parameter wie bspw. "schnellster Weg", "kürzester Weg", "minimale Anzahl an Richtungsänderungen" oder "maximaler Abstand von Punkt (x, y, z)" ein Verfahrweg ausgewählt. Hierdurch ist, je nach Vorgabe, ein besonders schneller oder auch ein besonders schonender Verfahrweg ermöglicht.In an embodiment of the invention, several possible travel paths are determined and then, by comparing the determined travel paths on the basis of specified parameters such as "fastest path", "shortest path", "minimum number of direction changes" or "maximum distance from point (x, y , z)" a traversing path is selected. Depending on the specification, this enables a particularly fast or even a particularly gentle travel path.

In weiterer Ausgestaltung der Erfindung erfolgt die Ermittlung der Gelenkpositionen der einzelnen Gelenke und der Linearpositionen der Linearversteller durch Anwendung eines Algorithmus auf Basis einer inversen Kinematik. Die aus dem Bereich der Robotik stammende inverse Kinematik, auch als Rückwärtstransformation bezeichnet, ermöglicht die Bestimmung der Gelenkwinkel der Bewegungsglieder innerhalb der kinematischen Kette anhand der Position und Orientierung der gewählten Aufnahme.In a further embodiment of the invention, the joint positions of the individual joints and the linear positions of the linear adjusters are determined by using an algorithm based on inverse kinematics. Inverse kinematics from the field of robotics, also known as reverse transformation referred to, allows the joint angles of the moving links within the kinematic chain to be determined based on the position and orientation of the selected recording.

Andere Weiterbildungen und Ausgestaltungen der Erfindung sind in den übrigen Unteransprüchen angegeben. Ein Ausführungsbeispiel der Erfindung wird in den Zeichnungen dargestellt und ist nachfolgend im Einzelnen beschrieben. Es zeigen:

Figur 1
die schematische Darstellung einer Drehbohranlage;
Figur 2
die Darstellung der Drehbohranlage aus Figur 1 in einer vereinfachten Ersatzdarstellung;
Figur 3
die Detaildarstellung der Stützstrebenzylinderanordnung der Drehbohranlage aus Figur 2;
Figur 4
eine weiter vereinfachte Ersatzdarstellung der Drehbohranlage aus Figur 2
  1. a) in der Position "Mäkler angehoben";
  2. b) in der Position "Mäkler abgesenkt";
  3. c) in der Position "Mäkler geneigt";
Figur 5
die Darstellung eines vereinfachten Gelenkschemas der Drehbohranlage aus Figur 2
Figur 6
die schematische Darstellung der Lageregelung der mit dem Rechnermodul verbundenen Steuer- und Regeleinrichtung der Bohranlage aus Figur 1.
Other developments and refinements of the invention are specified in the remaining dependent claims. An embodiment of the invention is illustrated in the drawings and is described in detail below. Show it:
figure 1
the schematic representation of a rotary drilling rig;
figure 2
the representation of the rotary drilling rig figure 1 in a simplified substitute representation;
figure 3
the detailed view of the support strut cylinder arrangement of the rotary drilling rig figure 2 ;
figure 4
a further simplified representation of the rotary drilling rig figure 2
  1. a) in the position "leader raised";
  2. b) in the position "leader lowered";
  3. c) in the position "leader inclined";
figure 5
the representation of a simplified joint scheme of the rotary drilling rig figure 2
figure 6
the schematic representation of the position control of the control and regulation device of the drilling rig connected to the computer module figure 1 .

Die als Ausführungsbeispiel gewählte Drehbohranlage besteht im Wesentlichen aus einem Trägergerät 1, das über eine Schwinge 2 mit einem Mäkler 3 verbunden ist, an dem ein Arbeitsschlitten 4 verfahrbar angeordnet ist, an dem ein Bohrgerät 5 befestigt ist.The rotary drilling rig selected as an exemplary embodiment consists essentially of a carrier device 1, which is connected via a rocker arm 2 to a leader 3, on which a working carriage 4 is movably arranged, to which a drilling device 5 is attached.

Die Schwinge 2 umfasst zwei parallel zueinander angeordnete, im Wesentlichen dreieckförmig ausgebildete Schwingenplatten 21, deren Ecken abgerundet sind. Die Schwingenplatten 21 der Schwinge 2 sind gegenüberliegend mit einer Ecke mit jeweils einem Ausleger 22 schwenkbar verbunden, der auf dem Trägergerät 1 schwenkbar befestigt ist. Die Ausleger 22 bilden den Grundarm aus. Mit einer zweiten Ecke sind die Schwingenplatten 21 gegenüberliegend schwenkbar mit dem Mäkler 3 verbunden. Die dritte Ecke der Schwingenplatten 21 ist jeweils mit einem Auslegerzylinder 23 verbunden, der auf dem Trägergerät 1 angeordnet ist. Beabstandet zu dem Auslegerzylinder 23 ist im Bereich der dritten Ecke der Schwingenplatten 21 jeweils ein Stützstrebenzylinder 24 schwenkbar befestigt, dessen Zylinderkolben jeweils schwenkbar an dem Mäkler 3 befestigt ist.The rocker 2 comprises two substantially triangular rocker plates 21 arranged parallel to one another, the corners of which are rounded. The swingarm plates 21 of the swingarm 2 are opposed with a corner each pivotally connected to a boom 22 which is pivotally mounted on the carrier device 1. The cantilevers 22 form the base arm. The rocker plates 21 are pivotally connected to the leader 3 opposite one another at a second corner. The third corner of each swing arm plate 21 is connected to a boom cylinder 23 mounted on the carrier 1 . At a distance from the boom cylinder 23 , in the area of the third corner of the rocker plates 21 , a support strut cylinder 24 is pivotally attached, the cylinder piston of which is pivotally attached to the leader 3 .

Zwischen den Schwingenplatten 21 und den Kolben der Stützstrebenzylinder 24 ist an dem Mäkler 3 eine Vorschubwinde 31 angeordnet, über die der Schlitten 4 entlang dem Mäkler 3 verschiebbar ist. Beabstandet zur Vorschubwinde 31 ist auf der gegenüberliegenden Seite der Schwingenplatten 21 an dem Mäkler 3 eine Hilfswinde 32 sowie beabstandet zu dieser eine Kellywinde 33 an dem Mäkler 3 angeordnet. Das Kellyseil 34 der Kellywinde 33 ist über einen auf dem Mäkler 3 angeordneten Seilrollenkopf 35 geführt und endseitig mit der Kellystange 51 des Bohrgerätes 5 verbunden. Das Bohrgerät 5 weist in bekannter Weise einen Bohrantrieb 52 auf, sowie ein Druckrohr 53, das mit einem Bohrrohr 54 verbindbar ist.A feed winch 31 is arranged on the leader 3 between the rocker plates 21 and the piston of the support strut cylinder 24, via which the carriage 4 can be displaced along the leader 3. An auxiliary winch 32 is arranged on the leader 3 at a distance from the feed winch 31 on the opposite side of the rocker plates 21 and a Kelly winch 33 is arranged on the leader 3 at a distance from it. The Kelly cable 34 of the Kelly winch 33 is guided over a cable pulley head 35 arranged on the leader 3 and is connected at the end to the Kelly rod 51 of the drilling device 5 . The drilling device 5 has, in a known manner, a drilling drive 52 and a pressure pipe 53 which can be connected to a drilling pipe 54 .

In dem Trägergerät 1 ist eine Steuer-und Regeleinrichtung 6 angeordnet, die ein Eingabemodul 61 zur Vorgabe einer Zielposition des Arbeitsschlittens 4 als Positionierer aufweist und mit einem Rechnermodul 62 verbunden ist. Es kann auch vorgesehen sein, über das Eingabemodul einen spezifischen Punkt oder ein bestimmtes Element des Bohrgerätes, beispielsweise des Bohrwerkzeugs des Bohrgerätes 5 oder des das Kellyseil und das Hilfsseil aufnehmenden Seilrollenkopfes 35, als Positionierer auszuwählen, für das eine Zielposition angegeben wird. Die Eingabevorrichtung umfasst im Ausführungsbeispiel einen Touch-Bildschirm, auf dem die virtuelle Umgebung der Drehbohranlage darstellbar ist.A control and regulating device 6 is arranged in the carrier device 1 , which has an input module 61 for specifying a target position of the working carriage 4 as a positioner and is connected to a computer module 62 . It can also be provided to use the input module to select a specific point or a certain element of the drilling device, for example the drilling tool of the drilling device 5 or the cable pulley head 35 receiving the Kelly cable and the auxiliary cable, as a positioner for which a target position is specified. In the exemplary embodiment, the input device comprises a touch screen on which the virtual environment of the rotary drilling rig can be displayed.

Die Steuer- und Regeleinrichtung 6 ist mit den Auslegerzylindern 23, den Stützstrebenzylindern 24, der Vorschubwinde 31, der Kellywinde 33, der Hilfswinde 32 sowie auch der Schwenkeinheit des Oberwagens 11 und dem Fahrantrieb des Fahrwerks 12 des Trägergerätes 1 verbunden, welche Aktoren bilden, die über die Steuer- und Regeleinrichtung ansteuerbar sind. Über die Ansteuerung eines oder mehrerer dieser Aktoren ist die Position eines Positionierers, vorliegend dem Arbeitsschlitten 4 mit dem von diesem aufgenommenen Bohrgerät, veränderbar.The control and regulating device 6 is connected to the boom cylinders 23, the support strut cylinders 24, the feed winch 31, the Kelly winch 33, the auxiliary winch 32 and also the pivoting unit of the superstructure 11 and the travel drive of the Chassis 12 of the carrier device 1 connected, which form actuators that can be controlled via the control and regulating device. By controlling one or more of these actuators, the position of a positioner, in this case the working carriage 4 with the drilling device held by it, can be changed.

Über die Aktoren ist eine Positionierung des Bohrgerätes in sechs Freiheitsgraden ermöglicht: Verfahren des Fahrwerks 12 (wobei hier zur Vereinfachung nur lineares Vor- und Zurückfahren angenommen wird), Drehen des Oberwagens 11, Neigen des Mäklers 3 (vor und zurück), Neigen des Mäklers 3 (links, rechts), Vorschub des Arbeitsschlittens 4 entlang des Mäklers 3, Verschwenken der den Grundarm bildenden Ausleger 22 zur Veränderung der Reichweite.The actuators allow positioning of the drilling rig in six degrees of freedom: movement of the chassis 12 (only linear forward and backward movement is assumed here for the sake of simplicity), rotation of the superstructure 11, tilting of the leader 3 (forward and back), tilting of the leader 3 (left, right), advancement of the working carriage 4 along the leader 3, pivoting of the boom 22 forming the base arm to change the range.

Die Steuer- und Regeleinrichtung 6 ist mit Sensoren 7 verbunden, die zur Detektion von Position, Lage und Winkelstellung an dem Arbeitsschlitten 4 angeordnet sind. Zusätzlich können Sensoren 7 an weiteren Elementen des Bohrgerätes angeordnet sein. Weiterhin ist die Steuer- und Regeleinrichtung mit einem Rechnermodul 62 verbunden, das zur Ermittlung von Verfahrwegen und der zur deren Realisierung erforderlichen Lagen der einzelnen Aktoren mittels inverser Kinematik eingerichtet ist. Hierzu ist in dem Rechnermodul 62 im Ausführungsbeispiel ein geometrisch beschreibendes Modell der Drehbohranlage sowie ein mathematisches Modell des Systemverhaltens der Drehbohranlage hinterlegt.The control and regulation device 6 is connected to sensors 7 which are arranged on the working carriage 4 for the detection of position, orientation and angular position. In addition, sensors 7 can be arranged on other elements of the drill. Furthermore, the control and regulation device is connected to a computer module 62, which is set up to determine travel paths and the positions of the individual actuators required for their realization by means of inverse kinematics. For this purpose, a geometrically descriptive model of the rotary drilling rig and a mathematical model of the system behavior of the rotary drilling rig are stored in the computer module 62 in the exemplary embodiment.

Das Rechnermodul 62 ist mit einem Auswertungsmodul 63 verbunden, das zur Ermittlung von Hindernissen eingerichtet ist und hierzu mit einem System zur Erfassung der Arbeitsumgebung verbunden ist. Im Ausführungsbeispiel umfasst das System zu Erfassung der Arbeitsumgebung Kameras 81 sowie Lidar-Sensoren 82, die auf dem Trägergerät 1 sowie dem Arbeitsschlitten 4 angeordnet und mit dem Auswertungsmodul 63 verbunden sind.The computer module 62 is connected to an evaluation module 63, which is set up to determine obstacles and is connected to a system for detecting the working environment for this purpose. In the exemplary embodiment, the system for recording the working environment includes cameras 81 and lidar sensors 82 which are arranged on the carrier device 1 and the working carriage 4 and are connected to the evaluation module 63 .

Das Rechnermodul 62 ist weiterhin mit einem Speichermodul 63 verbunden, in dem definierte Sperrbereiche hinterlegt sind, die bei der Ermittlung von Verfahrwegen wie Hindernisse zu behandeln sind. Entsprechende Sperrbereiche sind über das Eingabemodul 61 definierbar. Das Rechnermodul 62 ist zur kontinuierlichen Kollisionsprüfung ermittelter und definierter Hindernisse mit ermittelten Verfahrwegen und erforderlichenfalls Korrektur eines Verfahrweges eingerichtet.The computer module 62 is also connected to a memory module 63 in which defined restricted areas are stored, which are to be treated like obstacles when determining travel paths. Corresponding restricted areas are definable via the input module 61. The computer module 62 is set up for continuous collision checking of identified and defined obstacles with identified travel paths and, if necessary, correction of a travel path.

In Figur 2 ist ein vereinfachtes Schaubild der Drehbohranlage gezeigt, bei dem die wesentlichen Funktionsbauteile zur Positionierung des Arbeitsschlittens 4 dargestellt sind. Die Lage des Mäklers 3 mit dem an diesem verfahrbar angeordneten Arbeitsschlitten 4 ist über die Position der Schwinge 2 veränderbar, die über die Ausleger 22 mit dem Oberwagen 11 des Trägergerätes 1 verbunden ist. Die Ausleger 22 bilden Bewegungsglieder, die über Gelenke um eine horizontale Achse schwenkbar mit der Schwinge 2 sowie mit dem Oberwagen 11 des Trägergerätes 1 verbunden sind. Die Schwinge 2 ist über die Ausleger 22 zwangsgeführt und über die Auslegerzylinder 23 entlang einer Kurvenbahn bewegbar. Die Ausleger 22 und die Auslegerzylinder 23 sind gemeinsam mit dem Oberwagen 11 auf dem Fahrwerk 12 um eine vertikale Achse verschwenkbar sowie durch das Fahrwerk 12 horizontal linear verfahrbar.In figure 2 a simplified diagram of the rotary drilling rig is shown, in which the essential functional components for positioning the working carriage 4 are shown. The position of the leader 3 with the working carriage 4 movably arranged on it can be changed via the position of the rocker arm 2 , which is connected to the superstructure 11 of the carrier device 1 via the boom 22 . The cantilevers 22 form movement members which are connected to the rocker arm 2 and to the superstructure 11 of the carrier device 1 via joints so that they can pivot about a horizontal axis. The rocker 2 is forcibly guided via the boom 22 and can be moved via the boom cylinder 23 along a curved path. The booms 22 and the boom cylinders 23 can be pivoted together with the superstructure 11 on the chassis 12 about a vertical axis and can be moved horizontally and linearly by the chassis 12 .

Der Mäkler 3 ist mit der Schwinge 2 über Gelenke um zwei horizontale Achsen schwenkbar verbunden. Die Einstellung der Schwenklage des Mäklers 3 an der Schwinge 2 erfolgt über die Stützstrebenzylinder 24, die mit dem Mäkler 3 sowie mit der Schwinge 2 über Gelenke um zwei horizontale Achsen schwenkbar verbunden sind. Die Positionierung des Arbeitsschlittens 4, der über einen Linearversteller mit dem Mäkler 3 verbunden ist, erfolgt durch Linearverschiebung entlang des Mäklers 3 über die Vorschubwinde 31.The leader 3 is connected to the rocker 2 via joints so that it can pivot around two horizontal axes. The pivoting position of the leader 3 on the swing arm 2 is adjusted via the support strut cylinder 24, which is connected to the leader 3 and to the swing arm 2 via joints so that it can pivot about two horizontal axes. The working slide 4, which is connected to the leader 3 via a linear adjuster, is positioned by linear displacement along the leader 3 via the feed winch 31.

In Figur 4 a) ist zur Veranschaulichung der Kinematik dieses Schaubild weiter vereinfacht, ohne Auslegerzylinder 23, Stützstrebenzylinder 24 und Vorschubwinde 31 dargestellt. In Figur 4 b) ist beispielhaft ein Ablassen des durch die Ausleger 22 gebildeten Grundarms dargestellt. Dabei bewegt sich die der Arbeitsschlitten 4 auf einer Kreisbahn um den Drehpunkt der Ausleger 22 herum und erfährt hierdurch Positionsveränderungen durch Vergrößerung des Abstandes zum Trägergerät 1 (Erhöhung der Reichweite) und zeitgleich einer Positionsänderung durch Verkleinerung des Abstandes zum Erdboden. Soll beim Ablassen der Ausleger 22 nur die horizontale Position des Arbeitsschlittens 4 (delta y) verändert werden, wohingegen dessen vertikale Position (detla z) gleich bleiben soll, ist zum Ausgleich der vertikalen Positionsänderung der Arbeitsschlitten 4 über die Vorschubwinde 31 entlang des Mäklers 3 linear nach oben zu verschieben. In Figur 4 c) ist zusätzlich der Mäkler 3 über die Stützstrebenzylinder 24 in einem Winkel zum Boden angestellt. Hierdurch ist die horizontale sowie auch die vertikale Position des Arbeitsschlittens 4 verändert.In figure 4 a) this diagram is further simplified to illustrate the kinematics, shown without boom cylinder 23, support strut cylinder 24 and feed winch 31. In Figure 4 b) a lowering of the base arm formed by the cantilever 22 is shown as an example. The working carriage 4 moves on a circular path around the pivot point of the boom 22 and thereby experiences changes in position by increasing the distance to the carrier device 1 (increasing the range) and at the same time a change in position by reducing the distance to the ground. Should when draining the boom 22, only the horizontal position of the working carriage 4 (delta y) is to be changed, whereas its vertical position (detla z) should remain the same, to compensate for the vertical change in position, the working carriage 4 is linearly upwards along the leader 3 via the feed winch 31 move. In Figure 4 c) the leader 3 is additionally employed via the support strut cylinder 24 at an angle to the ground. As a result, the horizontal as well as the vertical position of the working carriage 4 is changed.

In Figur 5 ist die kinematische Kette der Anordnung aus Figur 4 dargestellt, die sich aus über Gelenke und Linearversteller verbundenen Bewegungsgliedern zusammensetzt. Danach ergeben sich vorliegend die vorstehend angeführten sechs Freiheitsgrade zur Positionierung des an dem Arbeitsschlitten 4 angeordneten Bohrgerätes 5.In figure 5 is the kinematic chain of the arrangement figure 4 shown, which is composed of moving elements connected via joints and linear adjusters. This results in the six degrees of freedom mentioned above for positioning the drilling device 5 arranged on the working carriage 4.

Mathematisch wird die Positionierung eines in Form eines definierten Punktes zugrunde gelegten Positionierers, vorliegend des Arbeitsschlittens 4, der das Bohrgerät 5 aufnimmt, durch das Grundprinzip eines inversen kinematografischen Algorithmus in der Steuer- und Regeleinrichtung abgebildet. Dabei wird die Sollposition dieses Punktes relativ zu einem gewählten Grundkoordinatensystem, beispielsweise des Trägergerätes, an den Algorithmus übergeben. Über den Algorithmus werden dann über algebraische, geometrische und numerische Methoden die Sollgrößen der einzelnen Aktoren für die gewünschte Positionierung berechnet. Als Ausgabe des Algorithmus können direkte Positionsgrößen für die Aktoren erfolgen. Es können auch Ableitungen der Positionsgrößen nach der Zeit, beispielsweise Geschwindigkeit oder Beschleunigung verwendet werden. Algorithmen der inversen Kinematik sind aus dem Bereich des Werkzeugmaschinenbaus und der Robotik zur Positionierung bei komplexen Gelenkzusammenhängen bekannt.Mathematically, the positioning of a positioner based on a defined point, in this case the working carriage 4, which accommodates the drilling device 5, is mapped by the basic principle of an inverse cinematographic algorithm in the control and regulation device. The target position of this point relative to a selected basic coordinate system, for example of the carrier device, is transferred to the algorithm. The setpoint values of the individual actuators for the desired positioning are then calculated via the algorithm using algebraic, geometric and numerical methods. Direct position variables for the actuators can be output from the algorithm. It is also possible to use time derivatives of the position values, for example speed or acceleration. Algorithms of inverse kinematics are known from the field of machine tool construction and robotics for positioning in complex joint connections.

Zur Vereinfachung des Systemdesigns sind in der Steuer- und Regelungseinrichtung 6 sowie dem mit dieser verbundenen Rechnermodul 61 für einzelne Gelenke und Linearversteller separate Regelmodule, die als Aktorregler bezeichnet werden, programmiert. Diese Module, in denen die Besonderheiten des jeweiligen Gelenkes oder Linearverstellers bzw. des mit diesem verbundenen Aktors berücksichtigt sind, erhalten als Eingangswert eine Sollposition oder eine Sollgeschwindgkeit.To simplify the system design, separate control modules, which are referred to as actuator controllers, are programmed in the control and regulation device 6 and in the computer module 61 connected to it for individual joints and linear adjusters. These modules detailing the specifics of each Joint or linear adjuster or the actuator connected to it are taken into account, receive a setpoint position or a setpoint speed as an input value.

Die Lageregelung des Positionierers ist in Figur 6 skizziert. Den Aktorreglern werden zeitgleich die Sollstellungen der Gelenke und Linearversteller vorgegeben. Über einen PID (Proportional-Integral-Differential)-Regler regeln sich die einzelnen Aktoren und damit das System auf die vorgegebene Sollposition ein. Dabei können die Positionierzeiten der einzelnen Aktoren stark differenzieren. Soll das Bohrgerät beispielsweise näher an das Trägergerät 1 platziert werden, muss zeitgleich der aus den Auslegern 22 gebildete Grundarm auffahren und die Vorschubwinde 31 abfahren. Da der Vorschub höhere Verfahrgeschwindigkeiten als der Grundarm mit sich bringt, erfolgt eine Vorgabe durch den langsamsten Aktor. Von allen Aktoren ist die maximale Geschwindigkeit bekannt. Vor der Positionierung kann berechnet werden, wieviel Zeit der langsamste Aktor maximal benötigt. Mit diesem Zeitwert wird für alle anderen Aktoren der Geschwindigkeits- und Beschleunigungswert linear angepasst, sodass diese dieselbe Zeit benötigen. Hierdurch werden unnötig hohe Geschwindigkeiten und Beschleunigungen vermieden. Gleichzeitig wird ein gleichzeitiges Positionieren aller Gelenke ermöglicht.Positioner position control is in figure 6 sketched. At the same time, the target positions of the joints and linear adjusters are specified for the actuator controllers. The individual actuators and thus the system regulate themselves to the specified target position via a PID (proportional-integral-differential) controller. The positioning times of the individual actuators can vary greatly. If the drilling device is to be placed closer to the carrier device 1, for example, the base arm formed from the outriggers 22 must move up and the feed winch 31 must move down at the same time. Since the feed entails higher traversing speeds than the base arm, the slowest actuator is used as a default. The maximum speed of all actuators is known. Before positioning, the maximum time required by the slowest actuator can be calculated. With this time value, the speed and acceleration value is adjusted linearly for all other actuators so that they require the same time. This avoids unnecessarily high speeds and accelerations. At the same time, simultaneous positioning of all joints is made possible.

Bei der Anwendung des Kellybohrverfahrens ist es beispielsweise notwendig, in regelmäßigen Zyklen das Bohrwerkzeug aus dem Bohrloch herauszuziehen und auf einem geeigneten Platz zum Abschleudern zu positionieren. Hierzu wird vom Bediener über den Touchscreen des Eingabemoduls eine Zielposition des Bohrgerätes ausgewählt, die dem Rechnermodul als Koordinaten übergeben wird. Auf Basis dieser Koordinaten werden von dem Rechnermodul mögliche Verfahrwege ermittelt. Hierzu werden von dem Auswertungsmodul auf Basis der von den Kameras 81 und den Sensoren 82 übermittelten Echtzeitdaten Hindernisse detektiert und an das Rechnermodul übergeben. Auf Basis zuvor festgelegter Auswahlkriterien, wie beispielsweise minimierte Anzahl an Richtungsänderungen oder schnellster Weg, wird von der Rechnereinheit ein Verfahrweg ausgewählt. Nachfolgend werden durch das Rechnermodul durch Anwendung von Algorithmen der inversen Kinematik die zur Realisierung dieses Verfahrweges erforderlichen Gelenkpositionen und Linearverstellerpositionen und die hierfür erforderlichen Aktorbewegungen über die Zeit ermittelt und an die Steuer- und Regeleinrichtung übergeben, welche die Ansteuerung der Aktoren (Auslegerzylinder 23, Stützstrebenzylinder 24, Vorschubwinde 31, Schwenkantrieb des Oberwagens 11, Fahrwerk 12) zur Realisierung des zum Abschleudern des Bohrwerkzeugs ermittelten Verfahrweges vornimmt. Im Ausführungsbeispiel kann über das Eingabemodul die Rückführung des Bohrwerkzeugs zum Bohrloch auf demselben Verfahrweg ausgelöst werden.When using the Kelly drilling method, for example, it is necessary to pull the drilling tool out of the borehole in regular cycles and to position it in a suitable place for centrifuging. For this purpose, a target position of the drill is selected by the operator via the touchscreen of the input module, which is transferred to the computer module as coordinates. Possible travel paths are determined by the computer module on the basis of these coordinates. For this purpose, obstacles are detected by the evaluation module on the basis of the real-time data transmitted by the cameras 81 and the sensors 82 and transferred to the computer module. A travel path is selected by the computer unit on the basis of previously defined selection criteria, such as the minimized number of changes in direction or the fastest path. Subsequently, the computer module uses algorithms the inverse kinematics determine the joint positions and linear adjuster positions required to implement this travel path and the actuator movements required for this over time and transfer them to the control and regulation device, which controls the actuators (boom cylinder 23, support strut cylinder 24, feed winch 31, swivel drive of the superstructure 11, Running gear 12) to implement the travel path determined for throwing off the drilling tool. In the exemplary embodiment, the return of the drilling tool to the borehole on the same travel path can be triggered via the input module.

Claims (19)

  1. Excavation device, in particular pile driving or drilling device, having at least one positioner, in particular a work carriage for receiving an implement, which is connected within a kinematic chain to a carrier apparatus (1) via a plurality of movement members, which are movable relative to one another and are connected via joints and/or linear adjusters, wherein the movement members are connected to at least six actuators, via which their respective position and/or orientation can be varied and which are connected to a control and regulating device (6), via which they can be controlled, characterised in that the control and regulating device (6) has an input module (61) for presetting a target position of at least one positioner and is connected to a computer module (62), which is set up to determine at least one travel path, along which the positioner can be moved from its current position - the starting position - to the target position and to determine, by means of inverse kinematics, the positions of the individual actuators required for this purpose in order to implement the travel path of the positioner and to transfer them to the control and regulating device (6) in order to control them.
  2. Excavation device according to claim 1, characterised in that the computer module (62) is set up to determine movement sequences of the individual actuators in order to achieve the travel path of the positioner and to transfer them to the control and regulating device (6) in order to control them.
  3. Excavation device according to claim 1 or 2, characterised in that the at least one positioner and/or the movement members and/or the joints and/or the linear adjusters are provided with a sensor (7) for the detection of the position and/or location and/or the angular position, which are connected to the control and regulating device (6).
  4. Excavation device according to one of the previous claims, characterised in that in the control and regulating device (6) or the computer module (62) a geometrically descriptive model of the excavation device and/or at least one mathematical model of the system behaviour of the excavation device is stored.
  5. Excavation device according to one of the previous claims, characterised in that a positioner is formed by a work carriage for receiving an implement, which is movably arranged on a leader (3), which is connected to the carrier apparatus (1), preferably a carrier vehicle, via a swivelling and/or tilting device.
  6. Excavation device according to one of the previous claims, characterised in that at least one system for detecting the working environment is arranged, which is connected to an evaluation module (63), which is arranged to detect obstacles and which is connected to the computer module (62), wherein the computer module (62) is arranged to determine at least one travel path while avoiding obstacles identified by the evaluation module (63).
  7. Excavation device according to claim 6, characterised in that the system for detecting the working environment comprises at least one camera (81) and/or at least one ultrasonic sensor and/or at least one radar sensor and/or at least one lidar sensor (82) and/or at least one laser sensor.
  8. Excavation device according to claim 7, characterised in that at least one camera (81) and/or at least one ultrasonic sensor and/or at least one radar sensor and/or at least one lidar sensor (82) and/or at least one laser sensor is arranged on at least one positioner and/or an implement and/or at least one movement member connected to a positioner.
  9. Excavation device according to one of claims 6 to 8, characterised in that the computer module (62) is connected to a memory module (64), in which defined blocking areas are stored, which are to be treated as obstacles when determining travel paths.
  10. Excavation device according to one of claims 6 to 9, characterised in that the evaluation module (63) for the continuous detection of obstacles is arranged for continuously detecting obstacles even during the positioning of the positioner along a travel path, wherein the computer module (62) is arranged for continuously collision-checking detected obstacles with the travel path and, if necessary, correcting this travel path.
  11. Excavation device according to one of the previous claims, characterised in that the input module (61) comprises a screen, in particular a touch screen, on which the current environment is reproduced, wherein a transformation module is arranged, which is set up to convert a touch detected by an input instruction, in particular a touch detected on a touch screen, into coordinates of a predetermined coordinate system and to transfer these to the control and regulating device (6) as target coordinates.
  12. Excavation device according to the previous claims, characterised in that a separate actuator controller is assigned to at least one actuator, preferably to all actuators, via which the actuator can be controlled on the basis of a setpoint position and/or setpoint speed and/or setpoint acceleration as input value.
  13. Excavation device according to claim 12, characterised in that the control and regulating device (6) is set up for direct position control, in which the setpoint positions of the joints and/or the linear adjusters are simultaneously specified to the actuator controllers.
  14. Excavation device according to claim 12, characterised in that the control and regulating unit (6) is set up for cascade control, in which a time-dependent speed profile with defined acceleration and speed is calculated from the target position specification, by means of which the setpoint position is to be approached and this is transmitted to the actuator controllers.
  15. Excavation device according to claim 14, characterised in that a position control loop is arranged for monitoring the current position and regulating the respective setpoint position at a respective point in time, which results from the speed profile.
  16. Method for the multi-dimensional free positioning of a positioner of an excavation device, in particular an excavation device according to one of the previous claims, which is connected within a kinematic chain to a carrier apparatus (1) via a plurality of movement members which are movable relative to one another and are connected via joints and/or linear adjusters, wherein the movement members and/or the linear adjusters are connected to at least six actuators, by means of which their respective position and/or orientation can be changed, wherein a travel path is determined on the basis of a target position of the positioner, the joint positions of the individual joints and the linear positions of the linear adjusters are determined on the basis of this travel path, the actuator movements required to implement the individual joint positions and linear positions are determined, and subsequently the individual actuators are controlled in order to carry out the determined actuator movements.
  17. Method according to claim 16, characterised in that at least one system for detecting the working environment is arranged, wherein obstacles are detected by means of an evaluation module and wherein the determination of the travel path takes place taking into account the collision avoidance with the detected obstacles.
  18. Method according to claim 16 or 17, characterised in that several possible travel paths are determined and a travel path is subsequently selected by comparing the determined travel paths on the basis of predetermined parameters.
  19. Method according to one of claims 16 to 18, characterised in that the determination of the joint positions of the individual joints and the linear positions of the linear adjusters is performed by applying an algorithm on the basis of inverse kinematics.
EP20153275.1A 2020-01-23 2020-01-23 Excavation device Active EP3854943B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20153275.1A EP3854943B1 (en) 2020-01-23 2020-01-23 Excavation device
US17/113,208 US11891893B2 (en) 2020-01-23 2020-12-07 Civil engineering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20153275.1A EP3854943B1 (en) 2020-01-23 2020-01-23 Excavation device

Publications (2)

Publication Number Publication Date
EP3854943A1 EP3854943A1 (en) 2021-07-28
EP3854943B1 true EP3854943B1 (en) 2022-06-08

Family

ID=69191873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20153275.1A Active EP3854943B1 (en) 2020-01-23 2020-01-23 Excavation device

Country Status (2)

Country Link
US (1) US11891893B2 (en)
EP (1) EP3854943B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063567B1 (en) * 2021-03-25 2023-10-18 BAUER Spezialtiefbau GmbH Construction method and assembly for performing a construction project
CN114233378B (en) * 2021-12-17 2023-11-10 中国十七冶集团有限公司 Goaf self-walking drilling grouting integrated equipment and installation and use method
DE102022123785A1 (en) 2022-09-16 2024-03-21 Liebherr-Werk Nenzing Gmbh Working device with a mechanical diaphragm wall grab and method for carrying out a working step of such

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655415A1 (en) 2004-11-08 2006-05-10 BAUER Maschinen GmbH Machine for construction work with mast and adjustable return pulley
DE102008057142A1 (en) 2008-04-29 2009-11-05 Siemens Aktiengesellschaft Method for computer-aided motion planning of a robot
EP2378053A1 (en) 2010-04-16 2011-10-19 BAUER Maschinen GmbH Construction machine with computer unit for determining an adjustment range
US8145355B2 (en) 2001-08-31 2012-03-27 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Coordinated joint motion control system
EP2672057A1 (en) 2012-06-07 2013-12-11 Sandvik Mining and Construction Oy Dynamic working area
US20170067341A1 (en) 2014-02-28 2017-03-09 Penguin Automated Systems Inc. System and method for hang-up assessment and removal
DE102016004466A1 (en) 2016-04-08 2017-10-12 Hydac Electronic Gmbh Method for moving the last link of a kinematic chain and device and working machine for carrying out the method
EP3443908A1 (en) 2017-08-15 2019-02-20 Siemens Healthcare GmbH Method for operating an x-ray device comprising an articulated arm and x-ray device with an articulated arm

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162253A (en) * 1961-01-06 1964-12-22 Joy Mfg Co Drilling device
NL2004062C2 (en) * 2010-01-06 2011-07-07 Kloosterman Waterbouw DEVICE AND METHOD FOR INSTALLING ANCHORINGS.
WO2017174861A1 (en) * 2016-04-08 2017-10-12 Junttan Oy A method and a system for controlling the driving engine and hydraulic pumps of a hydraulic machine, as well as a pile driving rig
EP3584370B1 (en) * 2018-06-18 2023-06-07 BAUER Spezialtiefbau GmbH Construction equipment and method for operating same
CN109113572B (en) * 2018-11-19 2019-07-30 中国铁建重工集团股份有限公司 A kind of control method and drill jumbo for drill jumbo
EP3964649B1 (en) * 2020-09-03 2022-07-13 ABI Anlagentechnik-Baumaschinen-Industriebedarf Maschinenfabrik und Vertriebsgesellschaft mbH Construction machine for specialised civil engineering

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8145355B2 (en) 2001-08-31 2012-03-27 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Coordinated joint motion control system
EP1655415A1 (en) 2004-11-08 2006-05-10 BAUER Maschinen GmbH Machine for construction work with mast and adjustable return pulley
DE102008057142A1 (en) 2008-04-29 2009-11-05 Siemens Aktiengesellschaft Method for computer-aided motion planning of a robot
EP2378053A1 (en) 2010-04-16 2011-10-19 BAUER Maschinen GmbH Construction machine with computer unit for determining an adjustment range
EP2672057A1 (en) 2012-06-07 2013-12-11 Sandvik Mining and Construction Oy Dynamic working area
US20170067341A1 (en) 2014-02-28 2017-03-09 Penguin Automated Systems Inc. System and method for hang-up assessment and removal
DE102016004466A1 (en) 2016-04-08 2017-10-12 Hydac Electronic Gmbh Method for moving the last link of a kinematic chain and device and working machine for carrying out the method
EP3443908A1 (en) 2017-08-15 2019-02-20 Siemens Healthcare GmbH Method for operating an x-ray device comprising an articulated arm and x-ray device with an articulated arm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KLAUS WÜST: "Grundlagen der Robotik", STUDIENGANG BSC INGENIEUR-INFORMATIK DER TECHNISCHEN HOCHSCHULE MITTELHESSEN, 2014, XP093033408

Also Published As

Publication number Publication date
US20210230942A1 (en) 2021-07-29
EP3854943A1 (en) 2021-07-28
US11891893B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
EP3854943B1 (en) Excavation device
EP2212753B1 (en) Method for allowing a manipulator to cover a predetermined trajectory, and control device for carrying out said method
DE102012104194B4 (en) Robot and spot welding robot with learning control function
EP2905111B1 (en) Method for programming an industrial robot and associated industrial robot
EP2868445B1 (en) Method for programming sequences of movements of a redundant industrial robot and associated industrial robot
DE102008062622B9 (en) Method and device for entering commands into a controller of a manipulator
EP2546711B2 (en) Method for programming a robot
DE10296748T5 (en) robot
EP2851162A2 (en) Method for manually handled adjustment of the pose of an industrial robot manipulator arm of an industrial robot and associated industrial robot
EP2000872B1 (en) Industrial robot and method for programming an industrial robot
DE3741632A1 (en) METHOD AND DEVICE FOR DETECTING AND CONTROLLING A SPACE TARGET
DE19644962A1 (en) Method of controlling the operation of an excavator
DE102009049172A1 (en) Method and device for controlling a manipulator
DE19648735A1 (en) Device for controlling the operation of an excavator
DE102009007181A1 (en) Method for inputting commands into controller of e.g. multi-axis robot, involves comparing detected force with stored force, and outputting commands associated with stored force to controller if detected force corresponds to stored force
DE102018104332A1 (en) Attachment for drilling and / or foundation work
DE102016004466A1 (en) Method for moving the last link of a kinematic chain and device and working machine for carrying out the method
DE19810341A1 (en) Method of automatic collision prevention for manipulator in working area bounded by obstructions
EP3771952B1 (en) Working implement and method for automatically moving a working implement
DE102020107612B3 (en) Adaptive input device
EP2082852B1 (en) Method and device for monitoring a manipulator
DE102017219540A1 (en) Device and method for controlling a work machine
EP2208584A1 (en) Method and device for controlling industrial robots
WO2010075906A1 (en) Method and device for selecting a stored position of a working point of a manipulator
WO2018145917A1 (en) Device and method for regulating the driving operation of remote-controlled vehicle by means of a manipulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1497004

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001179

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502020001179

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

26 Opposition filed

Opponent name: LIEBHERR-WERK NENZING GMBH

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240102

Year of fee payment: 5