EP3812644A1 - Device and method for for determining the consumption of a gas from a gas bottle at least partially filled with gas - Google Patents

Device and method for for determining the consumption of a gas from a gas bottle at least partially filled with gas Download PDF

Info

Publication number
EP3812644A1
EP3812644A1 EP20197197.5A EP20197197A EP3812644A1 EP 3812644 A1 EP3812644 A1 EP 3812644A1 EP 20197197 A EP20197197 A EP 20197197A EP 3812644 A1 EP3812644 A1 EP 3812644A1
Authority
EP
European Patent Office
Prior art keywords
gas
consumption
oscillation
bottle
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20197197.5A
Other languages
German (de)
French (fr)
Inventor
Oliver Stoll
Udo Hermann
Tobias TIPPELT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3812644A1 publication Critical patent/EP3812644A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/034Control means using wireless transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • F17C2250/0417Level of content in the vessel with electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0465Vibrations, e.g. of acoustic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/061Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use

Definitions

  • the present invention relates to a device and a method for determining the consumption of a gas from a gas cylinder which is at least partially filled with gas.
  • gas cylinders are used in a wide variety of technical fields, but also in the field of industrial and household technology, such as, for example, in CO 2 sparkling water. In principle, the use of such devices is also conceivable in other areas of application.
  • a device for determining the consumption of a gas from a gas cylinder at least partially filled with gas, which at least largely avoids the above-mentioned disadvantages and which in particular enables a reliable and accurate determination of the gas consumption over the entire duration of the gas cylinder completely filled with liquid gas until the gas bottle is empty with an internal pressure at ambient pressure level.
  • the determination of a frequency of an oscillation generated in the gas is significantly more precise compared to a time measurement of the transit time of a pulse running back and forth and can be made more and more precise by lengthening the measurement period. This results in an advantage in terms of accuracy, which can also affect the costs of the components required, since the precise time measurement of a short interval is no longer required.
  • Consumption of the gas from the gas cylinder can be determined in particular based on a resonance frequency of the oscillation.
  • the device is designed to generate an acoustic wave. This forms a standing wave in the gas volume above the liquid volume.
  • the wavelength is correlated with the height of the gas column, so that the height of the column can be determined via this resonance frequency.
  • the transmitting unit and the receiving unit can be integrated into one unit. As a result, the device can be made compact overall.
  • the transmitting unit and / or the receiving unit can be connectable to the head end of the gas cylinder. Since gas cylinders are usually used oriented in the direction of gravity, the gas column in the gas cylinder is aligned exactly in the direction of gravity, so that the measurement of the frequency is precise.
  • the consumption of the gas from the gas cylinder can be determined based on two measured values of the frequency of the oscillation.
  • the gas consumption can thus be determined, for example, from a difference in the measured values.
  • the receiving unit or the device can have an interface for communicating with an external data processing device.
  • information about the gas consumption can also be transmitted to a spatially separate data processing device.
  • this allows remote inquiries about gas consumption, which increases user-friendliness.
  • the interface can be designed for wired or wireless communication with the external data processing device.
  • the type of communication can be selected as required.
  • the device can furthermore be designed to determine a temperature of the gas in the gas cylinder based on a frequency of the oscillation.
  • a temperature measurement can be carried out when the bottle is empty of liquids, since the speed of sound depends solely on the temperature. The temperature can thus be determined from the measured resonance frequency.
  • an optional pressure measurement of the gas in the gas bottle can also be specified, since the pressure in the bottle is not only dependent on the level but also on the temperature, which falsifies a pure pressure measurement.
  • the method can in particular be carried out using a device according to the above statements.
  • Figure 1 shows a representation of a device 10 according to the invention.
  • the device 10 is designed to determine the consumption of a gas 12 from a gas cylinder 14 which is at least partially filled with gas 12.
  • the gas 12 is, for example, CO 2 .
  • a state is shown in which the gas 12 is partially liquid, so that the gas cylinder 14 is partially filled with liquid gas 16, above which the gas 12 is in its gaseous state. In the area of a head end 18 of the gas cylinder, gas 12 is therefore in its gaseous state.
  • the device 10 comprises a transmission unit 20.
  • the transmission unit 18 can be connected to the gas cylinder 14, in particular to the head end 18.
  • the transmission unit 20 is designed to transmit at least one sound wave into the interior of the gas cylinder 14.
  • the device 10 further comprises a receiving unit 22.
  • the receiving unit 22 can also be connected to the gas bottle 14, in particular to the head end 18.
  • the receiving unit 22 is designed to detect a frequency of an oscillation generated in the gas 12 inside the gas bottle 14 by the surge wave .
  • the transmission unit 20 and the Receiving unit 22 can be integrated into one unit, as in FIG Figure 1 is shown.
  • Consumption of the gas 12 from the gas cylinder 14 can be determined based on a frequency and, more precisely, a resonance frequency of the oscillation.
  • the consumption of the gas 12 from the gas cylinder 14 can be determined based on two measured values of the frequency of the oscillation, for example in the form of a difference between the measured values.
  • the device 10 can furthermore be designed to determine a temperature of the gas 12 in the gas cylinder based on a frequency of the oscillation.
  • a temperature measurement can be carried out when a gas cylinder 14 is empty of liquids, since the speed of sound depends solely on the temperature. The temperature can thus be determined from the measured resonance frequency.
  • an optional pressure measurement of the gas 12 in the gas cylinder 14 can also be made more precise, since the pressure in the gas cylinder 14 is not only dependent on the fill level but also on the temperature, which falsifies a pure pressure measurement.
  • the device 10 can optionally have an interface 24 for communicating with an external data processing device 26, which is provided, for example, on the receiving unit.
  • the interface 24 can be designed for wired or wireless communication with the external data processing device 26.
  • a method for determining a consumption of a gas 12 from a gas cylinder 14 which is at least partially filled with gas 12 is described in more detail below. The method can be carried out using the device 10.
  • the transmission unit 20 transmits a sound wave or acoustic wave into the interior of the gas cylinder 14.
  • the sound wave forms a standing wave in the volume of the gas 12 above the volume of the liquid gas 16.
  • the vibration generated in this way in the form of the standing wave is detected by the receiving unit 22.
  • the wavelength of the detected oscillation is correlated with the height or length l of the gas column above the liquid gas 16, so that the height or length l of the gas column and thus the liquid level of the liquid gas 16 can be determined via this resonance frequency.
  • p denotes the prevailing pressure
  • the density of the gas
  • denotes the adiabatic exponent, which is 1.4 for oxygen and 1.29 for carbon dioxide, for example.

Abstract

Es wird eine Vorrichtung (10) und ein Verfahren zum Ermitteln eines Verbrauchs eines Gases (12) aus einer zumindest teilweise mit Gas (12) gefüllten Gasflasche (14) vorgeschlagen. Die Vorrichtung (10) umfasst eine Sendeeinheit (20), die mit einer Gasflasche (14) verbindbar und zum Aussenden mindestens einer Schallwelle in das Innere der Gasflasche (14) ausgebildet ist, und eine Empfangseinheit (22), die mit der Gasflasche (14) verbindbar und zum Erfassen einer Frequenz einer in einem Gas (12) im Inneren der Gasflasche (14) durch die Schwallwelle erzeugten Schwingung ausgebildet ist. Ein Verbrauch des Gases (12) aus der Gasflasche (14) ist basierend auf einer Frequenz der Schwingung ermittelbar.A device (10) and a method are proposed for determining the consumption of a gas (12) from a gas cylinder (14) at least partially filled with gas (12). The device (10) comprises a transmitting unit (20) which can be connected to a gas bottle (14) and is designed to transmit at least one sound wave into the interior of the gas bottle (14), and a receiving unit (22) which is connected to the gas bottle (14) ) connectable and designed to detect a frequency of an oscillation generated in a gas (12) inside the gas cylinder (14) by the surge wave. Consumption of the gas (12) from the gas bottle (14) can be determined based on a frequency of the oscillation.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zum Ermitteln eines Verbrauchs eines Gases aus einer zumindest teilweise mit Gas gefüllten Gasflasche. Derartige Gasflaschen finden in vielfältigen technischen Gebieten Anwendung, aber auch im Bereich der Industrie- und Haushaltstechnik, wie beispielsweise in CO2-Trinkwassersprudlern. Grundsätzlich ist der Einsatz solcher Vorrichtungen auch in anderen Einsatzgebieten denkbar.The present invention relates to a device and a method for determining the consumption of a gas from a gas cylinder which is at least partially filled with gas. Such gas cylinders are used in a wide variety of technical fields, but also in the field of industrial and household technology, such as, for example, in CO 2 sparkling water. In principle, the use of such devices is also conceivable in other areas of application.

Aus dem Stand der Technik ist es bekannt, dass über den Verbrauch des Gases aus einer Gasflasche für Flüssiggas durch einzelne Messmethoden wie beispielsweise der Messung des Füllstandes der Flüssigkeit in der Gasflasche, der Messung des Gasdruckes in der Gasflasche oder der Messung des Gewichtes der Gasflasche Informationen gewonnen werden können.From the prior art it is known that information about the consumption of the gas from a gas cylinder for liquid gas by individual measurement methods such as measuring the level of the liquid in the gas cylinder, measuring the gas pressure in the gas cylinder or measuring the weight of the gas cylinder can be won.

Trotz der durch diese Messmethoden bewirkten Vorteile besteht nach wie vor ein Verbesserungsbedarf. So liefern einzelne Messmethoden nur jeweils über bestimmte Zeiträume Informationen zum Gasverbrauch aus einer Gasflasche mit Flüssiggas und können durch externe Effekte wie Temperaturschwankungen verfälscht werden. Beispielsweise liefert die Bestimmung der Füllstandshöhe des Flüssiggases im Inneren der Gasflasche mithilfe eines Ultraschallpulses, welcher an der Oberfläche der flüssigen Phase reflektiert wird und bei dem anhand der Flugzeit die Strecke bestimmt wird, nur begrenzt genau Informationen zum Gasverbrauch aus einer Gasflasche mit Flüssiggas. Eine Zeitmessung der Laufzeit eines hin- und zurücklaufenden Pulses kann somit unter Umständen nicht sehr genau gemessen werden.Despite the advantages brought about by these measurement methods, there is still a need for improvement. For example, individual measurement methods only provide information on gas consumption from a gas cylinder with liquefied gas over certain periods of time and can be falsified by external effects such as temperature fluctuations. For example, determining the level of the liquid gas inside the gas cylinder with the help of an ultrasonic pulse, which is reflected on the surface of the liquid phase and in which the distance is determined based on the flight time, only provides limited information on the gas consumption from a gas cylinder with liquid gas. A time measurement of the transit time of a pulse going back and forth cannot therefore be measured very precisely under certain circumstances.

Offenbarung der ErfindungDisclosure of the invention

Es wird daher eine Vorrichtung zum Ermitteln eines Verbrauchs eines Gases aus einer zumindest teilweise mit Gas gefüllten Gasflasche vorgeschlagen, die die oben genannten Nachteile zumindest weitgehend vermeidet und die insbesondere eine zuverlässige und genaue Ermittlung des Gasverbrauchs über die gesamte Dauer von der vollständig mit Flüssiggas gefüllten Gasflasche bis zur leeren Gasflasche mit einem internen Druck auf Umgebungsdruckniveau erlaubt.A device is therefore proposed for determining the consumption of a gas from a gas cylinder at least partially filled with gas, which at least largely avoids the above-mentioned disadvantages and which in particular enables a reliable and accurate determination of the gas consumption over the entire duration of the gas cylinder completely filled with liquid gas until the gas bottle is empty with an internal pressure at ambient pressure level.

Eine erfindungsgemäße Vorrichtung zum Ermitteln eines Verbrauchs eines Gases aus einer zumindest teilweise mit Gas gefüllten Gasflasche, umfasst eine Sendeeinheit, die mit einer Gasflasche verbindbar und zum Aussenden mindestens einer Schallwelle in das Innere der Gasflasche ausgebildet ist, und eine Empfangseinheit, die mit der Gasflasche verbindbar und zum Erfassen einer Frequenz einer in einem Gas im Inneren der Gasflasche durch die Schwallwelle erzeugten Schwingung ausgebildet ist. Ein Verbrauch des Gases aus der Gasflasche ist dabei basierend auf einer Frequenz der Schwingung ermittelbar.A device according to the invention for determining the consumption of a gas from a gas cylinder at least partially filled with gas comprises a transmission unit that can be connected to a gas cylinder and is designed to emit at least one sound wave into the interior of the gas cylinder, and a receiving unit that can be connected to the gas cylinder and is designed to detect a frequency of an oscillation generated in a gas inside the gas cylinder by the surge wave. Consumption of the gas from the gas cylinder can be determined based on a frequency of the oscillation.

Die Bestimmung einer Frequenz einer im Gas erzeugten Schwingung ist im Vergleich zu einer Zeitmessung der Laufzeit eines hin- und zurücklaufenden Pulses deutlich präziser und kann durch eine Verlängerung des Messzeitraumes immer weiter präzisiert werden. Dadurch ergibt sich ein Vorteil in der Genauigkeit, welcher sich auch auf die Kosten der benötigten Komponenten auswirken kann, da nicht mehr die präzise Zeitmessung eines kurzen Intervalls benötigt wird.The determination of a frequency of an oscillation generated in the gas is significantly more precise compared to a time measurement of the transit time of a pulse running back and forth and can be made more and more precise by lengthening the measurement period. This results in an advantage in terms of accuracy, which can also affect the costs of the components required, since the precise time measurement of a short interval is no longer required.

Ein Verbrauch des Gases aus der Gasflasche ist insbesondere basierend auf einer Resonanzfrequenz der Schwingung ermittelbar. Mit anderen Worten ist die Vorrichtung ausgebildet, eine akustische Welle zu erzeugen. Diese bildet eine stehende Welle im Gasvolumen oberhalb des Flüssigkeitsvolumens. Dabei ist die Wellenlänge mit der Höhe der Gassäule korelliert, so dass über diese Resonanzfrequenz die Höhe der Säule bestimmt werden kann.Consumption of the gas from the gas cylinder can be determined in particular based on a resonance frequency of the oscillation. In other words, the device is designed to generate an acoustic wave. This forms a standing wave in the gas volume above the liquid volume. The wavelength is correlated with the height of the gas column, so that the height of the column can be determined via this resonance frequency.

Die Sendeeinheit und die Empfangseinheit können zu einer Einheit integriert sein. Dadurch lässt sich die Vorrichtung insgesamt kompakt gestalten.The transmitting unit and the receiving unit can be integrated into one unit. As a result, the device can be made compact overall.

Die Sendeeinheit und/oder die Empfangseinheit kann mit dem Kopfende der Gasflasche verbindbar sein. Da Gasflaschen üblicherweise in Schwerkraftrichtung orientiert verwendet werden, ist die Gassäule in der Gasflasche exakt in Schwerkraftrichtung ausgerichtet, so dass die Messung der Frequenz präzise ist.The transmitting unit and / or the receiving unit can be connectable to the head end of the gas cylinder. Since gas cylinders are usually used oriented in the direction of gravity, the gas column in the gas cylinder is aligned exactly in the direction of gravity, so that the measurement of the frequency is precise.

Der Verbrauch des Gases aus der Gasflasche kann basierend auf zwei Messwerten der Frequenz der Schwingung ermittelbar sein. Somit lässt sich der Gasverbrauch beispielsweise über eine Differenz der Messwerte ermitteln.The consumption of the gas from the gas cylinder can be determined based on two measured values of the frequency of the oscillation. The gas consumption can thus be determined, for example, from a difference in the measured values.

Die Empfangseinheit bzw. die Vorrichtung kann eine Schnittstelle zum Kommunizieren mit einer externen Datenverarbeitungsvorrichtung aufweisen. Damit lassen sich Informationen über den Gasverbrauch auch an eine räumlich getrennte Datenverarbeitungsvorrichtung übermitteln. Entsprechend erlaubt dies eine Fernabfrage über den Gasverbrauch, was die Benutzerfreundlichkeit erhöht.The receiving unit or the device can have an interface for communicating with an external data processing device. In this way, information about the gas consumption can also be transmitted to a spatially separate data processing device. Correspondingly, this allows remote inquiries about gas consumption, which increases user-friendliness.

Die Schnittstelle kann zum kabelgebundenen oder kabellosen Kommunizieren mit der externen Datenverarbeitungsvorrichtung ausgebildet sein. Somit kann die Art der Kommunikation nach Bedarf gewählt werden.The interface can be designed for wired or wireless communication with the external data processing device. Thus, the type of communication can be selected as required.

Die Vorrichtung kann weiterhin zum Ermitteln einer Temperatur des Gases in der Gasflasche basierend auf einer Frequenz der Schwingung ausgebildet sein. So kann insbesondere bei einer von Flüssigkeiten leeren Flasche eine Temperaturmessung durchgeführt werden, da die Schallgeschwindigkeit alleine von der Temperatur abhängt. Somit kann aus der gemessenen Resonanzfrequenz die Temperatur bestimmt werden. Dadurch kann auch eine optionale Druckmessung des Gases in der Gasflasche präzisiert werden, da der Druck in der Flasche nicht nur vom Füllstand, sondern auch von der Temperatur abhängig ist, was eine reine Druckmessung verfälscht.The device can furthermore be designed to determine a temperature of the gas in the gas cylinder based on a frequency of the oscillation. In particular, a temperature measurement can be carried out when the bottle is empty of liquids, since the speed of sound depends solely on the temperature. The temperature can thus be determined from the measured resonance frequency. As a result, an optional pressure measurement of the gas in the gas bottle can also be specified, since the pressure in the bottle is not only dependent on the level but also on the temperature, which falsifies a pure pressure measurement.

In einem weiteren Aspekt wird ein Verfahren zum Ermitteln eines Verbrauchs eines Gases aus einer zumindest teilweise mit Gas gefüllten Gasflasche vorgeschlagen. Das Verfahren umfasst die folgenden Schritte, bevorzugt in der angegebenen Reihenfolge:

  • Aussenden einer Schallwelle in das Innere der Gasflasche derart, dass eine Schwingung in dem Gas erzeugt wird,
  • Erfassen der erzeugten Schwingung und
  • Ermitteln eines Verbrauchs des Gases aus der Gasflasche basierend auf einer Frequenz der Schwingung.
In a further aspect, a method for determining the consumption of a gas from a gas cylinder at least partially filled with gas is proposed. The method comprises the following steps, preferably in the order given:
  • Sending a sound wave into the interior of the gas cylinder in such a way that an oscillation is generated in the gas,
  • Detecting the generated vibration and
  • Determining a consumption of the gas from the gas cylinder based on a frequency of the oscillation.

Das Verfahren kann insbesondere unter Verwendung einer Vorrichtung nach den vorstehenden Ausführungen durchgeführt werden.The method can in particular be carried out using a device according to the above statements.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Weitere optionale Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele, welche in den Figuren schematisch dargestellt sind.Further optional details and features of the invention emerge from the following description of preferred exemplary embodiments, which are shown schematically in the figures.

Es zeigt:

Figur 1
eine Darstellung einer erfindungsgemäßen Vorrichtung.
It shows:
Figure 1
a representation of a device according to the invention.

Ausführungsformen der ErfindungEmbodiments of the invention

Figur 1 zeigt eine Darstellung einer erfindungsgemäßen Vorrichtung 10. Die Vorrichtung 10 ist zum Ermitteln eines Verbrauchs eines Gases 12 aus einer zumindest teilweise mit Gas 12 gefüllten Gasflasche 14 ausgebildet. Das Gas 12 ist beispielsweise CO2. Lediglich beispielhaft ist ein Zustand dargestellt, in dem das Gas 12 teilweise flüssig ist, so dass die Gasflasche 14 teilweise mit Flüssiggas 16 gefüllt ist, über dem sich das Gas 12 in seinem gasförmigen Zustand befindet. Im Bereich eines Kopfendes 18 der Gasflasche befindet sich somit Gas 12 in seinem gasförmigen Zustand. Figure 1 shows a representation of a device 10 according to the invention. The device 10 is designed to determine the consumption of a gas 12 from a gas cylinder 14 which is at least partially filled with gas 12. The gas 12 is, for example, CO 2 . Merely by way of example, a state is shown in which the gas 12 is partially liquid, so that the gas cylinder 14 is partially filled with liquid gas 16, above which the gas 12 is in its gaseous state. In the area of a head end 18 of the gas cylinder, gas 12 is therefore in its gaseous state.

Die Vorrichtung 10 umfasst eine Sendeeinheit 20. Die Sendeeinheit 18 ist mit der Gasflasche 14 verbindbar, insbesondere mit dem Kopfende 18. Die Sendeeinheit 20 ist zum Aussenden mindestens einer Schallwelle in das Innere der Gasflasche 14 ausgebildet ist.The device 10 comprises a transmission unit 20. The transmission unit 18 can be connected to the gas cylinder 14, in particular to the head end 18. The transmission unit 20 is designed to transmit at least one sound wave into the interior of the gas cylinder 14.

Die Vorrichtung 10 umfasst weiterhin eine Empfangseinheit 22. Die Empfangseinheit 22 ist ebenfalls mit der Gasflasche 14 verbindbar, insbesondere mit dem Kopfende 18. Die Empfangseinheit 22 ist zum Erfassen einer Frequenz einer in dem Gas 12 im Inneren der Gasflasche 14 durch die Schwallwelle erzeugten Schwingung ausgebildet. Die Sendeeinheit 20 und die Empfangseinheit 22 können zu einer Einheit integriert sein, wie in Figur 1 gezeigt ist. Ein Verbrauch des Gases 12 aus der Gasflasche 14 ist basierend auf einer Frequenz und genauer einer Resonanzfrequenz der Schwingung ermittelbar. Beispielsweise kann der Verbrauch des Gases 12 aus der Gasflasche 14 basierend auf zwei Messwerten der Frequenz der Schwingung ermittelbar sein, beispielsweise in Form einer Differenz der Messwerte. Die Vorrichtung 10 kann weiterhin zum Ermitteln einer Temperatur des Gases 12 in der Gasflasche basierend auf einer Frequenz der Schwingung ausgebildet sein. So kann insbesondere bei einer von Flüssigkeiten leeren Gasflasche 14 eine Temperaturmessung durchgeführt werden, da die Schallgeschwindigkeit alleine von der Temperatur abhängt. Somit kann aus der gemessenen Resonanzfrequenz die Temperatur bestimmt werden. Dadurch kann auch eine optionale Druckmessung des Gases 12 in der Gasflasche 14 präzisiert werden, da der Druck in der Gasflasche 14 nicht nur vom Füllstand, sondern auch von der Temperatur abhängig ist, was eine reine Druckmessung verfälscht.The device 10 further comprises a receiving unit 22. The receiving unit 22 can also be connected to the gas bottle 14, in particular to the head end 18. The receiving unit 22 is designed to detect a frequency of an oscillation generated in the gas 12 inside the gas bottle 14 by the surge wave . The transmission unit 20 and the Receiving unit 22 can be integrated into one unit, as in FIG Figure 1 is shown. Consumption of the gas 12 from the gas cylinder 14 can be determined based on a frequency and, more precisely, a resonance frequency of the oscillation. For example, the consumption of the gas 12 from the gas cylinder 14 can be determined based on two measured values of the frequency of the oscillation, for example in the form of a difference between the measured values. The device 10 can furthermore be designed to determine a temperature of the gas 12 in the gas cylinder based on a frequency of the oscillation. In particular, a temperature measurement can be carried out when a gas cylinder 14 is empty of liquids, since the speed of sound depends solely on the temperature. The temperature can thus be determined from the measured resonance frequency. As a result, an optional pressure measurement of the gas 12 in the gas cylinder 14 can also be made more precise, since the pressure in the gas cylinder 14 is not only dependent on the fill level but also on the temperature, which falsifies a pure pressure measurement.

Optional kann die Vorrichtung 10 eine Schnittstelle 24 zum Kommunizieren mit einer externen Datenverarbeitungsvorrichtung 26 aufweisen, die beispielsweise an der Empfangseinheit vorgesehen ist. Die Schnittstelle 24 kann zum kabelgebundenen oder kabellosen Kommunizieren mit der externen Datenverarbeitungsvorrichtung 26 ausgebildet sein.The device 10 can optionally have an interface 24 for communicating with an external data processing device 26, which is provided, for example, on the receiving unit. The interface 24 can be designed for wired or wireless communication with the external data processing device 26.

Nachstehend wird ein Verfahren zum Ermitteln eines Verbrauchs eines Gases 12 aus einer zumindest teilweise mit Gas 12 gefüllten Gasflasche 14 ausführlicher beschrieben. Das Verfahren kann unter Verwendung der Vorrichtung 10 durchgeführt werden.A method for determining a consumption of a gas 12 from a gas cylinder 14 which is at least partially filled with gas 12 is described in more detail below. The method can be carried out using the device 10.

Die Sendeeinheit 20 sendet eine Schallwelle bzw. akustische Welle in das Innere der Gasflasche 14 aus. Die Schallwelle bildet eine stehende Welle im Volumen des Gases 12 oberhalb des Volumens des Flüssiggases 16. Die so erzeugte Schwingung in Form der stehenden Welle wird von der Empfangseinheit 22 erfasst. Dabei ist die Wellenlänge der erfassten Schwingung mit der Höhe oder Länge l der Gassäule oberhalb des Flüssiggases 16 korelliert, so dass über diese Resonanzfrequenz die Höhe bzw. Länge l der Gassäule und somit der Flüssigkeitsstand des Flüssiggases 16 bestimmt werden kann. Eine stehende Welle in einer Röhre der Länge l hat die die Wellenlänge λ = 2l mit der Frequenz f = c/λ = c/2l. Dabei bezeichnet c die Schallgeschwindigkeit in der Gassäule, welche entsprechend dem idealen Gasgesetz als c = κ p ρ

Figure imgb0001
definiert ist. Dabei bezeichnet p den herrschenden Druck und ρ die Dichte des Gases und κ bezeichnet den Adiabatenexponent, welcher beispielsweise 1,4 für Sauerstoff und 1,29 für Kohlenstoffdioxid ist. Ausgehend beispielsweise von einer Flüssiggasflasche 14 gefüllt mit Kohlenstoffdioxid, welche beispielsweise 50 cm hoch ist und im vollen Zustand eine Füllhöhe von 45 cm hat ergibt sich eine Resonanzfrequenz bei einem herrschenden Druck von 57,3 bar als der Dampfdruck von Kohlenstoffdioxid bei 20 °C von etwa 2500 Hz für die volle Flasche und etwa 250 Hz für die von Flüssigkeiten leere Flasche.The transmission unit 20 transmits a sound wave or acoustic wave into the interior of the gas cylinder 14. The sound wave forms a standing wave in the volume of the gas 12 above the volume of the liquid gas 16. The vibration generated in this way in the form of the standing wave is detected by the receiving unit 22. The wavelength of the detected oscillation is correlated with the height or length l of the gas column above the liquid gas 16, so that the height or length l of the gas column and thus the liquid level of the liquid gas 16 can be determined via this resonance frequency. A standing wave in a tube of length l has the wavelength λ = 2l with the frequency f = c / λ = c / 2l. Here, c denotes the speed of sound in the gas column, which according to the ideal gas law as c = κ p ρ
Figure imgb0001
is defined. Here p denotes the prevailing pressure and ρ the density of the gas and κ denotes the adiabatic exponent, which is 1.4 for oxygen and 1.29 for carbon dioxide, for example. Starting, for example, from a liquid gas bottle 14 filled with carbon dioxide, which is for example 50 cm high and has a filling height of 45 cm when full, the result is a resonance frequency at a prevailing pressure of 57.3 bar than the vapor pressure of carbon dioxide at 20 ° C of about 2500 Hz for the full bottle and about 250 Hz for the bottle empty of liquids.

Bei einer von Flüssigkeiten leeren Flasche kann eine Temperaturmessung durchgeführt werden, da die Schallgeschwindigkeit alleine von der Temperatur abhängt, somit kann aus der gemessenen Resonanzfrequenz die Temperatur bestimmt werden.When the bottle is empty of liquids, a temperature measurement can be carried out, since the speed of sound depends solely on the temperature, so the temperature can be determined from the measured resonance frequency.

Claims (10)

Vorrichtung (10) zum Ermitteln eines Verbrauchs eines Gases (12) aus einer zumindest teilweise mit Gas (12) gefüllten Gasflasche (14), umfassend: eine Sendeeinheit (20), die mit einer Gasflasche (14) verbindbar und zum Aussenden mindestens einer Schallwelle in das Innere der Gasflasche (14) ausgebildet ist, und eine Empfangseinheit (22), die mit der Gasflasche (14) verbindbar und zum Erfassen einer Frequenz einer in einem Gas (12) im Inneren der Gasflasche (14) durch die Schwallwelle erzeugten Schwingung ausgebildet ist, wobei ein Verbrauch des Gases (12) aus der Gasflasche (14) basierend auf einer Frequenz der Schwingung ermittelbar ist. Device (10) for determining consumption of a gas (12) from a gas cylinder (14) at least partially filled with gas (12), comprising: a transmitting unit (20) which can be connected to a gas bottle (14) and is designed to emit at least one sound wave into the interior of the gas bottle (14), and a receiving unit (22) which can be connected to the gas bottle (14) and is designed to detect a frequency of an oscillation generated in a gas (12) inside the gas bottle (14) by the surge wave, consumption of the gas (12) being off of the gas cylinder (14) can be determined based on a frequency of the oscillation. Vorrichtung (10) nach dem vorhergehenden Anspruch, wobei ein Verbrauch des Gases (12) aus der Gasflasche (14) basierend auf einer Resonanzfrequenz der Schwingung ermittelbar ist.Device (10) according to the preceding claim, wherein consumption of the gas (12) from the gas bottle (14) can be determined based on a resonance frequency of the oscillation. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Sendeeinheit (20) und die Empfangseinheit (22) zu einer Einheit integriert sind.Device (10) according to one of the preceding claims, wherein the transmitting unit (20) and the receiving unit (22) are integrated into one unit. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Sendeeinheit (20) und/oder die Empfangseinheit (22) mit einem Kopfende (18) der Gasflasche (14) verbindbar sind.Device (10) according to one of the preceding claims, wherein the transmitting unit (20) and / or the receiving unit (22) can be connected to a head end (18) of the gas cylinder (14). Vorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei der Verbrauch des Gases (12) aus der Gasflasche (14) basierend auf zwei Messwerten der Frequenz der Schwingung ermittelbar ist.Device (10) according to one of the preceding claims, wherein the consumption of the gas (12) from the gas cylinder (14) can be determined based on two measured values of the frequency of the oscillation. Vorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Empfangseinheit (22) eine Schnittstelle (24) zum Kommunizieren mit einer externen Datenverarbeitungsvorrichtung (26) aufweist.Device (10) according to one of the preceding claims, wherein the receiving unit (22) has an interface (24) for communicating with an external data processing device (26). Vorrichtung (10) nach dem vorhergehenden Anspruch, wobei die Schnittstelle (24) zum kabelgebundenen oder kabellosen Kommunizieren mit der externen Datenverarbeitungsvorrichtung (26) ausgebildet ist.Device (10) according to the preceding claim, wherein the interface (24) is designed for wired or wireless communication with the external data processing device (26). Vorrichtung (10) nach dem vorhergehenden Anspruch, wobei die Vorrichtung (10) weiterhin zum Ermitteln einer Temperatur des Gases (12) in der Gasflasche (14) basierend auf einer Frequenz der Schwingung ausgebildet ist.Device (10) according to the preceding claim, wherein the device (10) is further designed to determine a temperature of the gas (12) in the gas cylinder (14) based on a frequency of the oscillation. Verfahren zum Ermitteln eines Verbrauchs eines Gases (12) aus einer zumindest teilweise mit Gas gefüllten Gasflasche (14), umfassend: Aussenden einer Schallwelle in das Innere der Gasflasche (14) derart, dass eine Schwingung in dem Gas (12) im Inneren der Gasflasche (14) erzeugt wird, Erfassen der erzeugten Schwingung und Ermitteln eines Verbrauchs des Gases (12) aus der Gasflasche (14) basierend auf einer Frequenz der Schwingung. Method for determining a consumption of a gas (12) from a gas cylinder (14) at least partially filled with gas, comprising: Sending a sound wave into the interior of the gas bottle (14) in such a way that an oscillation is generated in the gas (12) inside the gas bottle (14), Detecting the generated vibration and Determining a consumption of the gas (12) from the gas bottle (14) based on a frequency of the oscillation. Verfahren nach dem vorhergehenden Anspruch, wobei das Verfahren unter Verwendung einer Vorrichtung (10) nach einem der Ansprüche 1 bis 8 durchgeführt wird.Method according to the preceding claim, wherein the method is carried out using a device (10) according to one of Claims 1 to 8.
EP20197197.5A 2019-10-25 2020-09-21 Device and method for for determining the consumption of a gas from a gas bottle at least partially filled with gas Withdrawn EP3812644A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019216499.4A DE102019216499A1 (en) 2019-10-25 2019-10-25 Device and method for determining the consumption of a gas from a gas cylinder at least partially filled with gas

Publications (1)

Publication Number Publication Date
EP3812644A1 true EP3812644A1 (en) 2021-04-28

Family

ID=72603423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20197197.5A Withdrawn EP3812644A1 (en) 2019-10-25 2020-09-21 Device and method for for determining the consumption of a gas from a gas bottle at least partially filled with gas

Country Status (2)

Country Link
EP (1) EP3812644A1 (en)
DE (1) DE102019216499A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115577246B (en) * 2022-12-09 2023-04-21 杭州贝斯特气体有限公司 Method for detecting vibration resistance of gas cylinder protective cover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003094A1 (en) * 2000-01-25 2001-07-26 Hamilton Bonaduz Ag Bonaduz Non-contact ultrasonic filling characteristic measuring method for medical/pharmaceutical material, involves estimating resonance oscillation frequency of gas under ultrasonic excitation and comparing with reference frequency
JP2005265625A (en) * 2004-03-18 2005-09-29 Yamaha Corp Liquefied gas storage tank and method for detecting remaining amount of liquefied gas
DE202011110687U1 (en) * 2011-08-19 2015-07-27 Truma Gerätetechnik GmbH & Co. KG Mobile measuring device for filling stock determination for containers of all kinds
US20180044159A1 (en) * 2015-05-28 2018-02-15 Sonicu, Llc Container fill level indication system using a machine learning algorithm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003094A1 (en) * 2000-01-25 2001-07-26 Hamilton Bonaduz Ag Bonaduz Non-contact ultrasonic filling characteristic measuring method for medical/pharmaceutical material, involves estimating resonance oscillation frequency of gas under ultrasonic excitation and comparing with reference frequency
JP2005265625A (en) * 2004-03-18 2005-09-29 Yamaha Corp Liquefied gas storage tank and method for detecting remaining amount of liquefied gas
DE202011110687U1 (en) * 2011-08-19 2015-07-27 Truma Gerätetechnik GmbH & Co. KG Mobile measuring device for filling stock determination for containers of all kinds
US20180044159A1 (en) * 2015-05-28 2018-02-15 Sonicu, Llc Container fill level indication system using a machine learning algorithm

Also Published As

Publication number Publication date
DE102019216499A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
EP3298266B1 (en) Device for measuring the injection rate and measuring method
EP3084414B1 (en) Device and method for determining the concentrations of components of a gas mixture
EP3577427B1 (en) Ultrasonic meter and method for sensing a flow variable
DE102006039726B4 (en) Method and device for determining the Q-factor in flowmeters
DE102018127526A1 (en) Vibronic multi-sensor
AT515552B1 (en) Method and device for determining a density value
DE102011075113A1 (en) Apparatus and method for operating a device for determining and / or monitoring at least one physical process variable
EP3006916B1 (en) Method and device for determining the filling quality of an oscillator
DE102016108986A1 (en) Method for the detection of pipe vibrations and measuring device
AT516281B1 (en) Method for determining the degree of filling of a transducer tube of a bending vibrator and bending vibrator
EP2729781A1 (en) Method for testing the quality of a vacuum
EP3812644A1 (en) Device and method for for determining the consumption of a gas from a gas bottle at least partially filled with gas
EP3314210B1 (en) Field device having a compensation circuit for eliminating environmental influences
DE102004037135B4 (en) Method and device for synchronous pressure and temperature determination in a high-pressure vessel by means of ultrasonic transit time measurement
DE102009047728B4 (en) Apparatus and method for determining at least two process variables of a liquid and / or gaseous medium in a container
EP1954938B1 (en) Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids
DE10322718B4 (en) Ultrasonic position measuring system and method therefor
EP0379855B1 (en) Process for the measurement of lengths, and device for carrying out the process
DE3724411A1 (en) Device for continuous measurement of filling levels
DE102011115691B4 (en) Method for determining the viscosity of a flowing or static fluid
DE102020215036A1 (en) Bubble machine
EP3517929B1 (en) Method for measuring the density of a medium flowing through or residing in a tube, measuring device and data carrier
DE102010003733A1 (en) Method for detecting gas bubble in liquid medium, involves comparing electrical reception signals indicating vibration of liquid medium to determine whether gas bubbles are present in liquid medium
DE102010003734A1 (en) Method for detecting gas bubbles in liquid medium in container during e.g. fermentation process, involves determining presence of gas bubbles in liquid medium and/or proportion of gas bubbles in medium
DE102015106187A1 (en) Method and device for measuring the level

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211029