EP3733586A1 - Method for collision-free movement of a load with a crane - Google Patents

Method for collision-free movement of a load with a crane Download PDF

Info

Publication number
EP3733586A1
EP3733586A1 EP19171945.9A EP19171945A EP3733586A1 EP 3733586 A1 EP3733586 A1 EP 3733586A1 EP 19171945 A EP19171945 A EP 19171945A EP 3733586 A1 EP3733586 A1 EP 3733586A1
Authority
EP
European Patent Office
Prior art keywords
load
safe
obstacle
crane
state variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19171945.9A
Other languages
German (de)
French (fr)
Inventor
Uwe Ladra
Alois Recktenwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP19171945.9A priority Critical patent/EP3733586A1/en
Priority to EP20710787.1A priority patent/EP3924288A1/en
Priority to CN202080032639.1A priority patent/CN113784910A/en
Priority to US17/607,156 priority patent/US11565916B2/en
Priority to SG11202111346YA priority patent/SG11202111346YA/en
Priority to PCT/EP2020/054965 priority patent/WO2020221490A1/en
Publication of EP3733586A1 publication Critical patent/EP3733586A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track
    • B66C15/045Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists
    • B66C2700/084Protection measures

Definitions

  • the invention relates to a method for the collision-free movement of a load with a crane in a room with at least one obstacle.
  • the invention also relates to a controller for carrying out such a method.
  • the invention also relates to an autonomous, safe observer module for collision detection which has such a controller.
  • the invention relates to a system with a crane for moving a load which comprises such an observer module.
  • the load in particular rope-guided, is guided through a 2D or 3D space with at least one obstacle with the aid of sensors, with hardware and software solutions ensuring that no collision occurs.
  • systems such as sway control, also known as “sway control”, path calculation in 2D or 3D space and systems for the detection of obstacles and disturbances are used.
  • the laid-open specification describes WO 2005/049285 A1 a system for vibration control.
  • the system includes a first device connected to measure an acceleration of a first object suspended from a second object, the first device generating a first signal representative of the acceleration of the first object; a second device connected to measure an acceleration of a second object, the second device generating a second signal representing the acceleration of the second object; a processor in connection with the first and second devices, which is configured to determine an oscillation of the first object with respect to the second object on the basis of at least partially the first and second signals, the oscillation a relative displacement of the first object with respect to the second Object represents.
  • WO 2018/007203 A1 describes a method for preventing a load of a crane from colliding with an obstacle.
  • a solution for collision avoidance that fulfills a safety level a solution is proposed in which the load is moved along a trajectory, using at least two sensors Distance measurement, a height profile is detected at least along the trajectory, with signals from the sensors being sent via at least two communication channels to a controller with at least two operating systems, at least one of which has a security program in a safe area, with an obstacle being detected along the trajectory based on the height profile becomes.
  • the controller also has a secure communication interface for transmitting signals from the controller to a crane control.
  • the invention is based on the object of specifying a method for the collision-free movement of a load with a crane which fulfills a safety level in the simplest possible way.
  • the object is achieved according to the invention by a method for the collision-free movement of a load with a method for the collision-free movement of a load with a crane in a space with at least one obstacle, a position of the obstacle being provided, with at least one safe state variable of the load being provided, a safety zone surrounding the load is determined from the safe state variable, the safety zone being monitored dynamically in relation to the position of the obstacle.
  • a controller for carrying out such a method, which includes a safety program in a safe area.
  • an autarkic, safe observer module for collision detection which has such a controller.
  • the object is achieved according to the invention by a system with a crane for moving a load, which system comprises such an observer module.
  • the invention is based on the idea of providing a self-sufficient, safe observer module for collision detection in order to supplement a sensor-supported load movement by an automatically operated crane system, which in itself has a high level of reliability but is not certified in terms of safety.
  • a collision detection ensures a safety level according to SIL and / or PL, e.g. at least SIL3 and / or PLe, achievable without having to certify the actual crane system in terms of safety.
  • a position of an obstacle is provided.
  • a load position is provided via suitable sensors, in particular laser distance sensors.
  • at least one safe state variable of the load that is moved by the crane is provided.
  • a state variable is, for example, a position of at least one movement axis, a speed or an acceleration.
  • a safe state variable of the load is provided for example by safe encoder systems, in particular at least certified according to SIL and / or PL, and / or by redundant encoder systems.
  • a safety space is calculated, which is monitored in relation to the determined position information of the obstacle.
  • the safety space is spherical or ellipsoidal and at least partially surrounds the load. If this safety area is violated, for example, a countermeasure is initiated to prevent a collision.
  • Such a method can be described with a very simple mathematical model and implemented with little computing effort will.
  • a security certification described above is enormously simplified.
  • Another advantage is that the systems used for sensor-supported load movement in automated crane operation, such as "sway control" and path calculation, can still be used as a non-safe system for movement control.
  • the self-sufficient, safe observer for safe collision detection which is designed in particular as at least one module, supplements a system with high reliability, which, however, is classified as not safe, to form a safe overall system.
  • the self-sufficient, safe observer module which works according to the method described above, ensures safe automated crane operation regardless of the systems used for automated crane operation.
  • a safe position of the obstacle is detected, in particular by means of sensors for distance measurement.
  • Sensors for distance measurement are, for example, laser or radar sensors.
  • Safe position detection is achieved, for example, with the help of safe sensors for distance measurement, in particular certified according to SIL and / or PL. Reliable detection of the position of the obstacle increases the reliability of the method.
  • the at least one safe state variable of the load is determined from a safe state variable of at least one chassis, a hoist and / or a trolley of the crane.
  • Corresponding safe encoder systems which are certified according to SIL and / or PL, for example, are commercially available.
  • a stop signal is particularly advantageously sent to a crane control when the obstacle is detected in the safety zone surrounding the load.
  • a crane stop triggered by a stop signal simply and reliably prevents a collision.
  • a size of the safety zone is adapted to the safe state variable of the load.
  • the size of the safety zone is defined in particular by a volume.
  • the volume of the safety zone is increased as the speed or acceleration of the load increases in order to compensate for a longer delay time in the event of a countermeasure. In this way, a collision is prevented even more reliably.
  • the safety zone is determined with a controller that includes a safety program in a safe area.
  • the safety program in the safe area can be implemented, for example, through redundancy, multiple channels and / or internal checking and test algorithms, whereby a safety certification, e.g. according to SIL and / or PL, can be implemented.
  • the safety program sends a safe stop signal to a crane control when the obstacle is detected in the safety zone surrounding the load.
  • This defines a safety area surrounding the load, within which the crane is immediately and safely stopped if an obstacle occurs.
  • the safe state variable of the load includes a position and a speed and / or an acceleration.
  • a speed and / or an acceleration is determined by differentiation from a change in the position.
  • the security zone is particularly advantageously determined in real time.
  • a determination in real time is achieved by simple mathematical models, which enables a reliable reaction to changes in the position of the obstacle.
  • the safety zone is determined periodically at time intervals that depend on the safe state variable of the load. For example, the time intervals are shorter at a higher speed of the load in order to react to a longer braking distance. Such state variable-dependent intervals enable a reliable reaction to changes in the system.
  • the safety zone is determined using a pendulum model.
  • the pendulum model models, for example, a load swinging out in the event of an abrupt deceleration, so that in such a case, for example, the safety zone is enlarged to prevent a collision.
  • the method can particularly advantageously be carried out independently of the movement of a load.
  • the method is thus not influenced by crane operation, for example by errors that occur during operation, which leads to an improvement in reliability.
  • a height profile for determining the position of the obstacle is created with the aid of sensors for distance measurement. If the crane is e.g. around a container crane, which unloads containers as loads in a container terminal, the stacking heights of the containers as a height profile, as it were, result in a mountain of containers. Such a height profile facilitates the calculation of the trajectory for the automated movement of the load by means of the crane.
  • the described components of the embodiments each represent individual features of the invention that are to be considered independently of one another, which also develop the invention independently of one another and are therefore also to be regarded as part of the invention individually or in a combination other than the one shown. Furthermore, the described embodiments can also be supplemented by further features of the invention already described.
  • FIG 1 shows a perspective view of a crane 2, which is exemplified as a bridge crane.
  • a load 4 for example a container, which is attached to a container harness 6, also called a “spreader”, is conveyed by means of a trolley 8, also called a “trolley”, by means of a chassis 10 and / or by means of a hoist 12 along a, in particular three-dimensionally executed, trajectory 14 moves.
  • the movement of the load 4 by means of the crane 2 is particularly automated.
  • a safe position of an obstacle 18, in FIG 1 a "container mountain", recorded by creating a height profile.
  • a known position of the obstacle 18 provided.
  • a safe position of the obstacle 18 is determined by at least SIL- and / or PL-certified sensors.
  • Such at least SIL- and / or PL-certified sensors 16 for distance measurement work, for example, with radar and / or laser methods.
  • the sensors 16 for distance measurement are redundant.
  • the secure position detection of the obstacle 18 takes place in particular dynamically, for example by periodically updating the height profile.
  • the obstacle 18 prevents the load 4 from being able to be transported to its destination in a direct, that is to say straight, path.
  • a trajectory 14 is therefore calculated on the basis of the height profile in order to overcome the obstacle 18, for example in a parabolic movement. Swinging of the load 4 while it is being moved along the trajectory 14 is minimized by sway damping, also called “sway control", in order to avoid collisions or damage to the load and / or to increase load transport efficiency.
  • FIG 2 shows an enlarged schematic representation of a crane 2 in the area of a load 4 that is moved over an obstacle 18.
  • the crane 2 includes an autonomous, safe observer module for collision detection, to which a safe state variable of the load 4 is transmitted, the safe state variable being a position, a speed or an acceleration of the load 4 includes.
  • a safe position of the load 4 is determined via a safe, in particular at least according to SIL and / or PL-certified, encoder system on the trolley 8, on the chassis 10 and on the hoist 12, with a speed and / or an acceleration of the load 4 can be calculated directly from a change in the safe position.
  • the self-sufficient, safe observer module calculates in a safe controller in real time from at least one safe state variable, for example from a position and a speed, a safety zone surrounding the load 4 20.
  • the safety zone 20 is calculated periodically at time intervals depending on the safe state variable of the load 4.
  • a safe controller includes a safety program in a safe area.
  • the security zone 20 is, for example, as in FIG FIG 2 to see, spherical or ellipsoidal.
  • a size of the safety zone 20 is adapted to a safe state variable of the load 4, for example to a speed or an acceleration.
  • the volume of the safety zone 20 is increased when the speed or the acceleration of the load 4 is increased.
  • a pendulum model is included in the calculation of the safety zone 20 in order, for example, to take account of the load 4 swinging out in the event of an abrupt deceleration.
  • the position of the obstacle 18 is reliably detected as in FIG FIG 1 described.
  • the self-sufficient, safe observer module dynamically monitors the safety zone 20 in relation to the position of the obstacle 18. For example, a stop signal is sent to a crane control when the obstacle 18 in the safety zone 20 surrounding the load 4 is detected.
  • the further version of the crane 2 in FIG 2 corresponds to the in FIG 1 .
  • FIG 3 shows a schematic representation of a collision-free movement of a load 4 from a starting point 22 to a target point 24, the load movement being carried out, in particular automatically, with the aid of a crane 2.
  • the load movement from a container ship 26 as starting point 22 to a truck 28 as destination point 24 is shown by way of example, the obstacle 18, which is designed as a "container mountain", as shown in FIG FIG 1 is overcome in a parabolic movement along a, in particular precalculated, trajectory 14.
  • the crane 2 comprises an autarkic, safe observer module 19 for collision detection, which, as in FIG 2 , in a secure controller 19a, the safety zone 20 surrounding the load 4 is calculated in real time.
  • the size the safety zone 20, which surrounds the load 4 is adapted, for example, to a speed and / or an acceleration.
  • the temporal change in the volume of the security zone 20, shown as an example in the form of a sphere, is shown schematically in FIG FIG 2 for a given obstacle 18, the trajectory 14, as in FIG FIG 1 , is calculated based on the determined height profile of the obstacle 18.
  • the further version of the crane 2, in particular the self-sufficient, safe observer module, in FIG 3 corresponds to the in FIG 2 .
  • FIG 4 shows a flow chart of a method for the collision-free movement of a load 4.
  • the automated movement 28 of the load 4 takes place with high reliability by means of pendulum damping 30, geometric calculation 32 of the trajectory 14, disturbance variable monitoring 34 and, in particular dynamic, object detection 36 the detection of the position of the obstacle 18 takes place as in FIG FIG 1 described, safe, in particular using a height profile through at least SIL and / or PL-certified sensors.
  • a safe state variable acquisition 38 of the load 4 takes place in parallel as in FIG FIG 2 described, for example by a safety-certified encoder system on the trolley 8, on the chassis 10 and on the hoist 12, for example according to SIL and / or according to PL.
  • An independent, safe observer module 40 performs a safety zone calculation 42 based on the determined safe state variable.
  • Dynamic room monitoring 44 takes place in that the safely detected safety zone 20 is monitored in relation to the safely detected position of the obstacle 18.
  • a safe stop 46 for example by sending a stop signal to a crane control, is initiated by the self-sufficient, safe observer module 40 when the obstacle 18 in the safety zone 20 of the load 4 is detected.
  • the invention relates to a method for the collision-free movement of a load 4 with a crane 2 in one Room with at least one obstacle 18.
  • a position of the obstacle 18 be detected, with at least one safe state variable of the load 4 being determined, with one surrounding the load 4 from the safe state variable Safety zone 20 is determined, the safety zone 20 being monitored dynamically in relation to the position of the obstacle 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur kollisionsfreien Bewegung einer Last (4) mit einem Kran (2) in einem Raum mit mindestens einem Hindernis (18). Um auf möglichst einfache Weise einen Sicherheitslevel zu erfüllen, wird vorgeschlagen, dass eine Position des Hindernisses (18) bereitgestellt wird, wobei zumindest eine sichere Zustandsgröße der Last (4) bereitgestellt wird, wobei aus der sicheren Zustandsgröße eine die Last (4) umgebende Sicherheitszone (20) ermittelt wird, wobei die Sicherheitszone (20) in Relation zur Position des Hindernisses (18) dynamisch überwacht wird.The invention relates to a method for the collision-free movement of a load (4) with a crane (2) in a space with at least one obstacle (18). In order to meet a safety level in the simplest possible way, it is proposed that a position of the obstacle (18) be provided, with at least one safe state variable of the load (4) being provided, a safety zone surrounding the load (4) from the safe state variable (20) is determined, the safety zone (20) being monitored dynamically in relation to the position of the obstacle (18).

Description

Die Erfindung betrifft ein Verfahren zur kollisionsfreien Bewegung einer Last mit einem Kran in einem Raum mit mindestens einem Hindernis.The invention relates to a method for the collision-free movement of a load with a crane in a room with at least one obstacle.

Die Erfindung betrifft ferner einen Controller zur Durchführung eines derartigen Verfahrens.The invention also relates to a controller for carrying out such a method.

Überdies betrifft die Erfindung ein autarkes, sicheres Beobachter-Modul zur Kollisionserkennung, welches einen derartigen Controller aufweist.The invention also relates to an autonomous, safe observer module for collision detection which has such a controller.

Darüber hinaus betrifft die Erfindung ein System mit einem Kran zur Bewegung einer Last, welcher ein derartiges Beobachter-Modul umfasst.In addition, the invention relates to a system with a crane for moving a load which comprises such an observer module.

Im Kranumfeld, beispielsweise im Hafenbereich, kann es bei einer Be- und Entladung von Lasten, beispielweise von Containern, immer wieder zu Kollisionen einer, insbesondere seilgeführten, Last mit einem Hindernis, auch Objekt genannt, kommen. Bei einem manuell betriebenen Kran liegt die volle Verantwortung für den Kran und die von ihm geführte Last beim Kranfahrer. Er muss sicherstellen, dass es zu keiner Kollision mit einem anderen Objekt kommt.In the crane environment, for example in the port area, when loads, for example containers, are loaded and unloaded, collisions between a load, in particular a rope-guided load, with an obstacle, also called an object, can occur again and again. With a manually operated crane, full responsibility for the crane and the load it guides rests with the crane operator. He must ensure that there is no collision with another object.

Bei einem automatisiert betriebenen Kran wird bei einer Automatikfahrt die, insbesondere seilgeführte, Last sensorgestützt durch einen 2D oder 3D Raum mit zumindest einem Hindernis geführt, wobei durch Hardware- und Softwarelösungen sichergestellt sein muss, dass es zu keiner Kollision kommt. Beispielsweise kommen Systeme wie eine Pendeldämpfung, auch "Sway-Control" genannt, Bahnberechnung im 2D oder 3D Raum und Systeme zur Erfassung von Hindernissen und Störgrößen zur Anwendung.In the case of an automated crane, the load, in particular rope-guided, is guided through a 2D or 3D space with at least one obstacle with the aid of sensors, with hardware and software solutions ensuring that no collision occurs. For example, systems such as sway control, also known as "sway control", path calculation in 2D or 3D space and systems for the detection of obstacles and disturbances are used.

Eine derartige Lösung mit mehreren Systemen vollständig sicherheitstechnisch zu zertifizieren stellt einen erheblichen Aufwand dar, da jedes der Teilsysteme einzeln sicherheitstechnisch zertifiziert werden muss. Eine sichere Funktion des Gesamtsystems ist nur gewährleistet, wenn alle Teilsysteme die sicherheitsrelevanten Anforderungen erfüllen.To fully certify such a solution with several systems in terms of safety technology represents a considerable effort, since each of the subsystems has to be individually certified in terms of safety technology. Safe functioning of the overall system is only guaranteed if all subsystems meet the safety-relevant requirements.

Beispielsweise beschreibt die Offenlegungsschrift WO 2005/049285 A1 ein System zur Schwingsteuerung. Das System umfasst eine erste Vorrichtung, die dazu angeschlossen ist, eine Beschleunigung eines ersten Objekts zu messen, das von einem zweiten Objekt herabhängt, wobei die erste Vorrichtung ein erstes Signal erzeugt, das die Beschleunigung des ersten Objekts darstellt; eine zweite Vorrichtung, die dazu angeschlossen ist, eine Beschleunigung eines zweiten Objekts zu messen, wobei die zweite Vorrichtung ein zweites Signal erzeugt, das die Beschleunigung des zweiten Objekts darstellt; einen Prozessor in Verbindung mit den ersten und zweiten Vorrichtungen, der dazu eingerichtet ist, ein Schwingen des ersten Objekts gegenüber des zweiten Objekts auf der Grundlage wenigstens teilweise der ersten und zweiten Signale zu ermitteln, wobei das Schwingen eine relative Verstellung des ersten Objekts gegenüber dem zweiten Objekt darstellt.For example, the laid-open specification describes WO 2005/049285 A1 a system for vibration control. The system includes a first device connected to measure an acceleration of a first object suspended from a second object, the first device generating a first signal representative of the acceleration of the first object; a second device connected to measure an acceleration of a second object, the second device generating a second signal representing the acceleration of the second object; a processor in connection with the first and second devices, which is configured to determine an oscillation of the first object with respect to the second object on the basis of at least partially the first and second signals, the oscillation a relative displacement of the first object with respect to the second Object represents.

Bei einer Routenplanung in Echtzeit, einer sogenannten "Realtime Routenplanung", im 2D/3D Raum würde man Vereinfachungen in den Algorithmen benötigen, die für eine Sicherheitszertifizierung einen erheblichen Aufwand hinsichtlich einer Beweisführung einer sicheren Funktion darstellen. Bei Systemen wie "Sway-Control" wird versucht, eine Sicherheitszertifizierung durch Redundanz zu erreichen.In the case of route planning in real time, a so-called "real-time route planning", in 2D / 3D space, simplifications in the algorithms would be required, which represent a considerable effort in terms of proving a safe function for a security certification. With systems like "Sway-Control" attempts are made to achieve a security certification through redundancy.

Die Offenlegungsschrift WO 2018/007203 A1 beschreibt ein Verfahren zur Vermeidung einer Kollision einer Last eines Krans mit einem Hindernis. Um eine Lösung zur Kollisionsvermeidung anzugeben, die einen Sicherheitslevel erfüllt, wird eine Lösung vorgeschlagen, bei der die Last entlang einer Trajektorie bewegt wird, wobei mittels zumindest zweier Sensoren zur Entfernungsmessung ein Höhenprofil zumindest entlang der Trajektorie erfasst wird, wobei Signale der Sensoren über zumindest zwei Kommunikationskanäle an einen Controller mit zumindest zwei Betriebssystemen gesendet werden, von denen zumindest eines ein Sicherheitsprogramm in einem sicheren Bereich aufweist, wobei ein Hindernis entlang der Trajektorie anhand des Höhenprofils erkannt wird. Der Controller weist weiter eine sichere Kommunikationsschnittstelle zur Übertragung von Signalen vom Controller an eine Kransteuerung auf.The disclosure document WO 2018/007203 A1 describes a method for preventing a load of a crane from colliding with an obstacle. In order to specify a solution for collision avoidance that fulfills a safety level, a solution is proposed in which the load is moved along a trajectory, using at least two sensors Distance measurement, a height profile is detected at least along the trajectory, with signals from the sensors being sent via at least two communication channels to a controller with at least two operating systems, at least one of which has a security program in a safe area, with an obstacle being detected along the trajectory based on the height profile becomes. The controller also has a secure communication interface for transmitting signals from the controller to a crane control.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur kollisionsfreien Bewegung einer Last mit einem Kran anzugeben, das auf möglichst einfache Weise einen Sicherheitslevel erfüllt.The invention is based on the object of specifying a method for the collision-free movement of a load with a crane which fulfills a safety level in the simplest possible way.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur kollisionsfreien Bewegung einer Last mit einem Verfahren zur kollisionsfreien Bewegung einer Last mit einem Kran in einem Raum mit mindestens einem Hindernis gelöst, wobei eine Position des Hindernisses bereitgestellt wird, wobei zumindest eine sichere Zustandsgröße der Last bereitgestellt wird, wobei aus der sicheren Zustandsgröße eine die Last umgebende Sicherheitszone ermittelt wird, wobei die Sicherheitszone in Relation zur Position des Hindernisses dynamisch überwacht wird.The object is achieved according to the invention by a method for the collision-free movement of a load with a method for the collision-free movement of a load with a crane in a space with at least one obstacle, a position of the obstacle being provided, with at least one safe state variable of the load being provided, a safety zone surrounding the load is determined from the safe state variable, the safety zone being monitored dynamically in relation to the position of the obstacle.

Ferner wird die Aufgabe erfindungsgemäß gelöst durch einen Controller zur Durchführung eines derartigen Verfahrens, welcher ein Sicherheitsprogramm in einem sicheren Bereich umfasst.Furthermore, the object is achieved according to the invention by a controller for carrying out such a method, which includes a safety program in a safe area.

Überdies wird die Aufgabe erfindungsgemäß gelöst durch ein autarkes, sicheres Beobachter-Modul zur Kollisionserkennung, welches einen derartigen Controller aufweist.In addition, the object is achieved according to the invention by an autarkic, safe observer module for collision detection which has such a controller.

Darüber hinaus wird die Aufgabe erfindungsgemäß gelöst durch ein System mit einem Kran zur Bewegung einer Last, welcher ein derartiges Beobachter-Modul umfasst.In addition, the object is achieved according to the invention by a system with a crane for moving a load, which system comprises such an observer module.

Die in Bezug auf das Verfahren nachstehend angeführten Vorteile und bevorzugten Ausgestaltungen lassen sich sinngemäß auf den Controller, das Beobachter-Modul und das System übertragen.The advantages and preferred refinements listed below with regard to the method can be applied analogously to the controller, the observer module and the system.

Der Erfindung liegt die Überlegung zugrunde, ein autarkes, sicheres Beobachter-Modul zur Kollisionserkennung bereitzustellen, um eine sensorgestützte Lastbewegung durch eine automatisiert betriebene Krananlage, die an sich eine hohe Zuverlässigkeit aufweist, jedoch nicht sicherheitstechnisch zertifiziert ist, zu ergänzen. Durch eine derartige Kollisionserkennung ist ein Sicherheitslevel nach SIL und/oder PL, z.B. zumindest SIL3 und/oder PLe, erreichbar, ohne die eigentliche Krananlage sicherheitstechnisch zertifizieren zu müssen.The invention is based on the idea of providing a self-sufficient, safe observer module for collision detection in order to supplement a sensor-supported load movement by an automatically operated crane system, which in itself has a high level of reliability but is not certified in terms of safety. Such a collision detection ensures a safety level according to SIL and / or PL, e.g. at least SIL3 and / or PLe, achievable without having to certify the actual crane system in terms of safety.

Es wird eine Position eines Hindernisses bereitgestellt. Beispielsweise wird eine Lastposition über geeignete Sensorik, insbesondere Laser-Entfernungs-Sensorik, bereitgestellt. Darüber hinaus wird zumindest eine sichere Zustandsgröße der Last, welche durch den Kran bewegt wird, bereitgestellt. Eine Zustandsgröße ist beispielsweise eine Position mindestens einer Bewegungsachse, eine Geschwindigkeit oder eine Beschleunigung. Eine sichere Zustandsgröße der Last wird beispielsweise durch sichere, insbesondere zumindest nach SIL- und/oder PL-zertifizierte, Gebersysteme und/oder durch redundante Gebersysteme bereitgestellt. Auf Basis der zumindest einen sicheren Zustandsgröße der Last wird ein Sicherheitsraum berechnet, der in Relation zur ermittelten Positionsinformationen des Hindernissen überwacht wird. Beispielsweise ist der Sicherheitsraum kugelförmig oder ellipsoid ausgebildet und umgibt die Last zumindest teilweise. Bei einer Verletzung dieses Sicherheitsraumes wird beispielsweise eine Gegenmaßnahme eingeleitet, um eine Kollision zu verhindern.A position of an obstacle is provided. For example, a load position is provided via suitable sensors, in particular laser distance sensors. In addition, at least one safe state variable of the load that is moved by the crane is provided. A state variable is, for example, a position of at least one movement axis, a speed or an acceleration. A safe state variable of the load is provided for example by safe encoder systems, in particular at least certified according to SIL and / or PL, and / or by redundant encoder systems. On the basis of the at least one safe state variable of the load, a safety space is calculated, which is monitored in relation to the determined position information of the obstacle. For example, the safety space is spherical or ellipsoidal and at least partially surrounds the load. If this safety area is violated, for example, a countermeasure is initiated to prevent a collision.

Ein solches Verfahren kann mit einem sehr einfachen mathematischen Modell beschrieben und mit geringem Rechenaufwand realisiert werden. Eine oben beschriebene Sicherheitszertifizierung wird enorm vereinfacht. Ein weiterer Vorteil besteht darin, dass die für die sensorgestützte Lastbewegung im automatisierten Kranbetrieb verwendeten Systeme, wie "Sway Control" und Bahnberechnung, als ein nicht sicheres System für die Bewegungsführung weiterhin verwendbar sind. Der autarke, sichere Beobachter zur sicheren Kollisionserkennung, der insbesondere als zumindest ein Modul ausgeführt ist, ergänzt ein System mit hoher Zuverlässigkeit, welches jedoch als nicht sicher eingestuft ist, zu einem sicheren Gesamtsystem. Das autarke, sichere Beobachter-Modul, welches nach oben beschriebenem Verfahren arbeitet, gewährleistet einen sicheren automatisierten Kranbetrieb unabhängig von den für den automatisierten Kranbetrieb verwendeten Systemen.Such a method can be described with a very simple mathematical model and implemented with little computing effort will. A security certification described above is enormously simplified. Another advantage is that the systems used for sensor-supported load movement in automated crane operation, such as "sway control" and path calculation, can still be used as a non-safe system for movement control. The self-sufficient, safe observer for safe collision detection, which is designed in particular as at least one module, supplements a system with high reliability, which, however, is classified as not safe, to form a safe overall system. The self-sufficient, safe observer module, which works according to the method described above, ensures safe automated crane operation regardless of the systems used for automated crane operation.

In einer bevorzugten Ausgestaltung wird eine sichere Position des Hindernisses, insbesondere mittels Sensoren zur Entfernungsmessung, erfasst. Sensoren zur Entfernungsmessung sind beispielsweise Laser- oder Radarsensoren. Eine sichere Positionserfassung wird beispielsweise mit Hilfe von sicheren, insbesondere nach SIL und/oder nach PL zertifizierten, Sensoren zur Entfernungsmessung erreicht. Eine sichere Positionserfassung des Hindernisses erhöht die Zuverlässigkeit des Verfahrens.In a preferred embodiment, a safe position of the obstacle is detected, in particular by means of sensors for distance measurement. Sensors for distance measurement are, for example, laser or radar sensors. Safe position detection is achieved, for example, with the help of safe sensors for distance measurement, in particular certified according to SIL and / or PL. Reliable detection of the position of the obstacle increases the reliability of the method.

Bei einer weiteren vorteilhaften Ausführungsform wird die zumindest eine sichere Zustandsgröße der Last aus einer sicheren Zustandsgröße zumindest eines Fahrwerks, eines Hubwerks und/oder einer Laufkatze des Krans ermittelt. Entsprechende sichere Gebersysteme, die beispielsweise nach SIL und/oder nach PL zertifiziert sind, sind kommerziell erhältlich.In a further advantageous embodiment, the at least one safe state variable of the load is determined from a safe state variable of at least one chassis, a hoist and / or a trolley of the crane. Corresponding safe encoder systems, which are certified according to SIL and / or PL, for example, are commercially available.

Besonders vorteilhaft wird ein Stoppsignal an eine Kransteuerung gesendet, wenn das Hindernis in der die Last umgebenden Sicherheitszone erfasst wird. Durch einen durch ein Stoppsignal ausgelösten Kranstopp wird eine Kollision einfach und zuverlässig verhindert.A stop signal is particularly advantageously sent to a crane control when the obstacle is detected in the safety zone surrounding the load. A crane stop triggered by a stop signal simply and reliably prevents a collision.

In einer bevorzugten Ausgestaltung wird eine Größe der Sicherheitszone an die sichere Zustandsgröße der Last angepasst. Die Größe der Sicherheitszone wird insbesondere durch ein Volumen definiert. Beispielsweise wird das Volumen der Sicherheitszone vergrößert, wenn sich die Geschwindigkeit oder die Beschleunigung der Last erhöht, um eine höhere Verzögerungszeit im Falle einer Gegenmaßnahme zu kompensieren. Auf diese Weise wird eine Kollision noch zuverlässiger verhindert.In a preferred embodiment, a size of the safety zone is adapted to the safe state variable of the load. The size of the safety zone is defined in particular by a volume. For example, the volume of the safety zone is increased as the speed or acceleration of the load increases in order to compensate for a longer delay time in the event of a countermeasure. In this way, a collision is prevented even more reliably.

Bei einer weiteren vorteilhaften Ausführungsform wird die Sicherheitszone mit einem Controller ermittelt, der ein Sicherheitsprogramm in einem sicheren Bereich umfasst. Das Sicherheitsprogramm im sicheren Bereich ist beispielsweise durch Redundanz, Mehrkanaligkeit und/oder interne Prüf- und Test-Algorithmen realisierbar, wodurch eine Sicherheitszertifizierung, z.B. nach SIL und/oder PL, realisierbar ist.In a further advantageous embodiment, the safety zone is determined with a controller that includes a safety program in a safe area. The safety program in the safe area can be implemented, for example, through redundancy, multiple channels and / or internal checking and test algorithms, whereby a safety certification, e.g. according to SIL and / or PL, can be implemented.

Besonders vorteilhaft wird vom Sicherheitsprogramm ein sicheres Stoppsignal an eine Kransteuerung gesendet wird, wenn das Hindernis in der die Last umgebenden Sicherheitszone erfasst wird. Hierdurch wird ein die Last umgebender Sicherheitsbereich definiert, innerhalb dessen bei Auftreten eines Hindernisses der Kran umgehend und sicher gestoppt wird.It is particularly advantageous if the safety program sends a safe stop signal to a crane control when the obstacle is detected in the safety zone surrounding the load. This defines a safety area surrounding the load, within which the crane is immediately and safely stopped if an obstacle occurs.

In einer bevorzugten Ausgestaltung umfasst die sichere Zustandsgröße der Last eine Position und eine Geschwindigkeit und/oder eine Beschleunigung. Beispielsweise wird eine Geschwindigkeit und/oder eine Beschleunigung durch Differentiation aus einer Änderung der Position ermittelt. Durch Kenntnis der Position und der Geschwindigkeit und/oder der Beschleunigung der Last wird die Zuverlässigkeit der Überwachung der Last optimiert.In a preferred embodiment, the safe state variable of the load includes a position and a speed and / or an acceleration. For example, a speed and / or an acceleration is determined by differentiation from a change in the position. By knowing the position and the speed and / or the acceleration of the load, the reliability of the monitoring of the load is optimized.

Besonders vorteilhaft wird die Sicherheitszone in Echtzeit ermittelt. Eine Ermittlung in Echtzeit wird durch einfache mathematische Modelle erreicht, was eine zuverlässige Reaktion auf Änderungen der Position des Hindernisses ermöglicht. In einer bevorzugten Ausgestaltung wird die Sicherheitszone periodisch in von der sicheren Zustandsgröße der Last abhängigen zeitlichen Abständen ermittelt. Beispielsweise werden die zeitlichen Abstände bei einer höheren Geschwindigkeit der Last geringer, um auf einen verlängerten Bremsweg zu reagieren. Derartige zustandsgrößenabhängige Intervalle ermöglichen eine zuverlässige Reaktion auf Änderungen im System.The security zone is particularly advantageously determined in real time. A determination in real time is achieved by simple mathematical models, which enables a reliable reaction to changes in the position of the obstacle. In a preferred embodiment, the safety zone is determined periodically at time intervals that depend on the safe state variable of the load. For example, the time intervals are shorter at a higher speed of the load in order to react to a longer braking distance. Such state variable-dependent intervals enable a reliable reaction to changes in the system.

Bei einer weiteren vorteilhaften Ausführungsform wird die Sicherheitszone mit einem Pendelmodell ermittelt. Das Pendelmodell modelliert beispielsweise ein Ausschwingen der Last bei einer abrupten Verzögerung, sodass in einem solchen Fall beispielsweise die Sicherheitszone vergrößert wird, um eine Kollision zu verhindern.In a further advantageous embodiment, the safety zone is determined using a pendulum model. The pendulum model models, for example, a load swinging out in the event of an abrupt deceleration, so that in such a case, for example, the safety zone is enlarged to prevent a collision.

Besonders vorteilhaft ist das Verfahren unabhängig von der Bewegung einer Last durchführbar. Somit wird das Verfahren vom Kranbetrieb, beispielsweise durch auftretende Fehler während des Betriebes, nicht beeinflusst, was zu einer Verbesserung der Zuverlässigkeit führt.The method can particularly advantageously be carried out independently of the movement of a load. The method is thus not influenced by crane operation, for example by errors that occur during operation, which leads to an improvement in reliability.

In einer weiteren vorteilhaften Ausgestaltung wird mit Hilfe von Sensoren zur Entfernungsmessung ein Höhenprofil zur Ermittlung der Position des Hindernisses erstellt. Handelt es sich bei dem Kran z.B. um einen Containerkran, der als Lasten Container in einem Container-Terminal entlädt, so ergeben die Stapelhöhen der Container als Höhenprofil gewissermaßen ein Containergebirge. Durch ein derartiges Höhenprofil wird die Berechnung der Trajektorie zur automatisierten Bewegung der Last mittels des Krans erleichtert.In a further advantageous embodiment, a height profile for determining the position of the obstacle is created with the aid of sensors for distance measurement. If the crane is e.g. around a container crane, which unloads containers as loads in a container terminal, the stacking heights of the containers as a height profile, as it were, result in a mountain of containers. Such a height profile facilitates the calculation of the trajectory for the automated movement of the load by means of the crane.

Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.

FIG 1
eine perspektivische schematische Darstellung eines Krans,
FIG 2
eine vergrößerte schematische Darstellung eines Krans im Bereich einer Last,
FIG 3
eine schematische Darstellung einer kollisionsfreien Bewegung einer Last von einem Startpunkt zu einem Zielpunkt und
FIG 4
ein Ablaufdiagramm eines Verfahrens zur kollisionsfreien Bewegung einer Last.
The invention is described and explained in more detail below using the exemplary embodiments shown in the figures.
FIG 1
a perspective schematic representation of a crane,
FIG 2
an enlarged schematic representation of a crane in the area of a load,
FIG 3
a schematic representation of a collision-free movement of a load from a starting point to a target point and
FIG 4
a flowchart of a method for collision-free movement of a load.

Bei den im Folgenden erläuterten Ausführungsbeispielen handelt es sich um bevorzugte Ausführungsformen der Erfindung. Bei den Ausführungsbeispielen stellen die beschriebenen Komponenten der Ausführungsformen jeweils einzelne, unabhängig voneinander zu betrachtende Merkmale der Erfindung dar, welche die Erfindung jeweils auch unabhängig voneinander weiterbilden und damit auch einzeln oder in einer anderen als der gezeigten Kombination als Bestandteil der Erfindung anzusehen sind. Des Weiteren sind die beschriebenen Ausführungsformen auch durch weitere der bereits beschriebenen Merkmale der Erfindung ergänzbar.The exemplary embodiments explained below are preferred embodiments of the invention. In the exemplary embodiments, the described components of the embodiments each represent individual features of the invention that are to be considered independently of one another, which also develop the invention independently of one another and are therefore also to be regarded as part of the invention individually or in a combination other than the one shown. Furthermore, the described embodiments can also be supplemented by further features of the invention already described.

Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.The same reference symbols have the same meaning in the various figures.

FIG 1 zeigt eine perspektivische Darstellung eines Krans 2, die beispielhaft als Brückenkran ausgeführt ist. Eine Last 4, beispielhaft ein Container, die an einem Containergeschirr 6, auch "Spreader" genannt, befestigt ist, wird mittels einer Laufkatze 8, auch "Trolley" genannt, mittels eines Fahrwerks 10 und/oder mittels eines Hubwerks 12 entlang einer, insbesondere dreidimensional ausgeführten, Trajektorie 14 bewegt. Die Bewegung der Last 4 mittels des Krans 2 erfolgt insbesondere automatisiert. Durch mindestens einen Sensor 16 zur Entfernungsmessung wird eine sichere Position eines Hindernisses 18, in FIG 1 ein "Containergebirge", erfasst indem ein Höhenprofil erstellt wird. Alternativ wird eine bekannte Position des Hindernisses 18 bereitgestellt. Insbesondere wird eine sichere Position des Hindernisses 18 durch zumindest SIL-und/oder PL-zertifizierte Sensorik ermittelt. Derartige zumindest SIL- und/oder PL-zertifizierte Sensoren 16 zur Entfernungsmessung arbeiten beispielsweise mit Radar- und/oder Laserverfahren. Insbesondere sind die Sensoren 16 zur Entfernungsmessung redundant ausgeführt. Die sichere Positionserfassung des Hindernisses 18 erfolgt insbesondere dynamisch, indem beispielsweise das Höhenprofil periodisch aktualisiert wird. Das Hindernis 18 verhindert, dass die Last 4 auf direktem, das heißt geradem, Wege an ihr Ziel transportierbar ist. Daher wird anhand des Höhenprofils eine Trajektorie 14 berechnet, um das Hindernis 18, beispielswiese in einer parabolischen Bewegung, zu überwinden. Ein Schwingen der Last 4, während diese entlang der Trajektorie 14 bewegt wird, wird durch Pendeldämpfung, auch "Sway Control" genannt, minimiert, um Kollisionen oder Beschädigung der Last zu vermeiden und/oder eine Lasttransporteffizienz zu steigern. FIG 1 shows a perspective view of a crane 2, which is exemplified as a bridge crane. A load 4, for example a container, which is attached to a container harness 6, also called a "spreader", is conveyed by means of a trolley 8, also called a "trolley", by means of a chassis 10 and / or by means of a hoist 12 along a, in particular three-dimensionally executed, trajectory 14 moves. The movement of the load 4 by means of the crane 2 is particularly automated. A safe position of an obstacle 18, in FIG 1 a "container mountain", recorded by creating a height profile. Alternatively, a known position of the obstacle 18 provided. In particular, a safe position of the obstacle 18 is determined by at least SIL- and / or PL-certified sensors. Such at least SIL- and / or PL-certified sensors 16 for distance measurement work, for example, with radar and / or laser methods. In particular, the sensors 16 for distance measurement are redundant. The secure position detection of the obstacle 18 takes place in particular dynamically, for example by periodically updating the height profile. The obstacle 18 prevents the load 4 from being able to be transported to its destination in a direct, that is to say straight, path. A trajectory 14 is therefore calculated on the basis of the height profile in order to overcome the obstacle 18, for example in a parabolic movement. Swinging of the load 4 while it is being moved along the trajectory 14 is minimized by sway damping, also called "sway control", in order to avoid collisions or damage to the load and / or to increase load transport efficiency.

FIG 2 zeigt eine vergrößerte schematische Darstellung eines Krans 2 im Bereich einer Last 4, die über ein Hindernis 18 hinwegbewegt wird. Um eine kollisionsfreie Bewegung der Last 4 sicher zu gewährleisten, umfasst der Kran 2 ein autarkes, sicheres Beobachter-Modul zur Kollisionserkennung, an welches eine sichere Zustandsgröße der Last 4 übermittelt wird, wobei die sichere Zustandsgröße eine Position, eine Geschwindigkeit oder eine Beschleunigung der Last 4 umfasst. Beispielsweise wird eine sichere Position der Last 4 über ein sicheres, insbesondere zumindest nach SIL- und/oder PL-zertifiziertes, Gebersystem an der Laufkatze 8, am Fahrwerk 10 und am Hubwerk 12 ermittelt, wobei eine Geschwindigkeit und/oder eine Beschleunigung der Last 4 direkt aus einer Änderung der sicheren Position berechenbar sind. FIG 2 shows an enlarged schematic representation of a crane 2 in the area of a load 4 that is moved over an obstacle 18. In order to ensure a collision-free movement of the load 4, the crane 2 includes an autonomous, safe observer module for collision detection, to which a safe state variable of the load 4 is transmitted, the safe state variable being a position, a speed or an acceleration of the load 4 includes. For example, a safe position of the load 4 is determined via a safe, in particular at least according to SIL and / or PL-certified, encoder system on the trolley 8, on the chassis 10 and on the hoist 12, with a speed and / or an acceleration of the load 4 can be calculated directly from a change in the safe position.

Das autarke, sichere Beobachter-Modul berechnet in einem sicheren Controller in Echtzeit aus mindestens einer sicheren Zustandsgröße, beispielsweise aus einer Position und einer Geschwindigkeit, eine die Last 4 umgebende Sicherheitszone 20. Beispielswiese wird die Sicherheitszone 20 periodisch in von der sicheren Zustandsgröße der Last 4 anhängigen zeitlichen Abständen berechnet. Ein sicherer Controller umfasst ein Sicherheitsprogramm in einem sicheren Bereich. Die Sicherheitszone 20 ist beispielsweise, wie in FIG 2 zu sehen, kugelförmig oder ellipsoid ausgebildet. Insbesondere wird eine Größe der Sicherheitszone 20 an eine sichere Zustandsgröße der Last 4, beispielsweise an eine Geschwindigkeit oder eine Beschleunigung, angepasst. Beispielsweise wird das Volumen der Sicherheitszone 20 vergrößert, wenn die Geschwindigkeit oder die Beschleunigung der Last 4 erhöht wird. Optional wird ein Pendelmodell bei der Berechnung der Sicherheitszone 20 mit einbezogen, um beispielsweise ein Ausschwingen der Last 4 bei einer abrupten Verzögerung mit zu berücksichtigen.The self-sufficient, safe observer module calculates in a safe controller in real time from at least one safe state variable, for example from a position and a speed, a safety zone surrounding the load 4 20. For example, the safety zone 20 is calculated periodically at time intervals depending on the safe state variable of the load 4. A safe controller includes a safety program in a safe area. The security zone 20 is, for example, as in FIG FIG 2 to see, spherical or ellipsoidal. In particular, a size of the safety zone 20 is adapted to a safe state variable of the load 4, for example to a speed or an acceleration. For example, the volume of the safety zone 20 is increased when the speed or the acceleration of the load 4 is increased. Optionally, a pendulum model is included in the calculation of the safety zone 20 in order, for example, to take account of the load 4 swinging out in the event of an abrupt deceleration.

Die sichere Positionserfassung des Hindernisses 18 erfolgt wie in FIG 1 beschrieben. Das autarke, sichere Beobachter-Modul überwacht die Sicherheitszone 20 in Relation zur Position des Hindernisses 18 dynamisch. Beispielsweise wird ein Stoppsignal an eine Kransteuerung gesendet, wenn das Hindernis 18 in der die Last 4 umgebenden Sicherheitszone 20 erfasst wird. Die weitere Ausführung des Krans 2 in FIG 2 entspricht der in FIG 1.The position of the obstacle 18 is reliably detected as in FIG FIG 1 described. The self-sufficient, safe observer module dynamically monitors the safety zone 20 in relation to the position of the obstacle 18. For example, a stop signal is sent to a crane control when the obstacle 18 in the safety zone 20 surrounding the load 4 is detected. The further version of the crane 2 in FIG 2 corresponds to the in FIG 1 .

FIG 3 zeigt eine schematische Darstellung einer kollisionsfreien Bewegung einer Last 4 von einem Startpunkt 22 zu einem Zielpunkt 24, wobei die Lastbewegung mit Hilfe eines Krans 2 insbesondere automatisiert, erfolgt. Beispielhaft ist die Lastbewegung von einem Containerschiff 26 als Startpunkt 22 zu einem Lastkraftwagen 28 als Zielpunkt 24 dargestellt, wobei das Hindernis 18, welches als "Containergebirge" ausgeführt ist, wie in FIG 1 beschrieben, in einer parabolischen Bewegung entlang einer, insbesondere vorberechneten, Trajektorie 14 überwunden wird. Um eine kollisionsfreie Bewegung sicher zu gewährleisten, umfasst der Kran 2 ein autarkes, sicheres Beobachter-Modul 19 zur Kollisionserkennung, das, wie in FIG 2, in einem sicheren Controller 19a die die Last 4 umgebende Sicherheitszone 20 in Echtzeit berechnet. Die Größe der Sicherheitszone 20, welche die Last 4 umgibt, wird beispielsweise an eine Geschwindigkeit und/oder eine Beschleunigung, angepasst. Die zeitliche Änderung des Volumens der, exemplarisch kugelförmig dargestellten, Sicherheitszone 20 ist schematisch in FIG 2 für ein gegebenes Hindernis 18 dargestellt, wobei die Trajektorie 14, wie in FIG 1, anhand des ermittelten Höhenprofils des Hindernisses 18 berechnet wird. Die weitere Ausführung des Krans 2, insbesondere des autarken, sicheren Beobachter-Moduls, in FIG 3 entspricht der in FIG 2. FIG 3 shows a schematic representation of a collision-free movement of a load 4 from a starting point 22 to a target point 24, the load movement being carried out, in particular automatically, with the aid of a crane 2. The load movement from a container ship 26 as starting point 22 to a truck 28 as destination point 24 is shown by way of example, the obstacle 18, which is designed as a "container mountain", as shown in FIG FIG 1 is overcome in a parabolic movement along a, in particular precalculated, trajectory 14. In order to ensure a safe collision-free movement, the crane 2 comprises an autarkic, safe observer module 19 for collision detection, which, as in FIG 2 , in a secure controller 19a, the safety zone 20 surrounding the load 4 is calculated in real time. The size the safety zone 20, which surrounds the load 4, is adapted, for example, to a speed and / or an acceleration. The temporal change in the volume of the security zone 20, shown as an example in the form of a sphere, is shown schematically in FIG FIG 2 for a given obstacle 18, the trajectory 14, as in FIG FIG 1 , is calculated based on the determined height profile of the obstacle 18. The further version of the crane 2, in particular the self-sufficient, safe observer module, in FIG 3 corresponds to the in FIG 2 .

FIG 4 zeigt ein Ablaufdiagramm eines Verfahrens zur kollisionsfreien Bewegung einer Last 4. Die automatisierte Bewegung 28 der Last 4 erfolgt durch mit hoher Zuverlässigkeit durch Pendeldämpfung 30, geometrische Berechnung 32 der Trajektorie 14, Störgrößenüberwachung 34 und, insbesondere dynamische, Objekterfassung 36. Die Objekterfassung 36, also die Erfassung der Position des Hindernisses 18, erfolgt, wie in FIG 1 beschrieben, sicher, insbesondere anhand eines Höhenprofils durch zumindest SIL und/oder PL-zertifizierte Sensorik. FIG 4 shows a flow chart of a method for the collision-free movement of a load 4. The automated movement 28 of the load 4 takes place with high reliability by means of pendulum damping 30, geometric calculation 32 of the trajectory 14, disturbance variable monitoring 34 and, in particular dynamic, object detection 36 the detection of the position of the obstacle 18 takes place as in FIG FIG 1 described, safe, in particular using a height profile through at least SIL and / or PL-certified sensors.

Eine sichere Zustandsgrößenerfassung 38 der Last 4 erfolgt parallel wie in FIG 2 beschrieben, beispielsweise durch ein beispielsweise nach SIL und/oder nach PL, sicherheitszertifiziertes Gebersystem an der Laufkatze 8, am Fahrwerk 10 und am Hubwerk 12. Ein autarkes, sicheres Beobachter-Modul 40 führt eine Sicherheitszonenberechnung 42 anhand der ermittelten sicheren Zustandsgröße durch. Eine dynamische Raumüberwachung 44 erfolgt, indem die sicher erfasste Sicherheitszone 20 in Relation zur sicher erfassten Position des Hindernisses 18 überwacht wird. Ein sicherer Halt 46, beispielsweise durch Senden eines Stoppsignals an eine Kransteuerung, wird vom autarken, sicheren Beobachter-Modul 40 initiiert, wenn das Hindernis 18 in der Sicherheitszone 20 der Last 4 detektiert wird.A safe state variable acquisition 38 of the load 4 takes place in parallel as in FIG FIG 2 described, for example by a safety-certified encoder system on the trolley 8, on the chassis 10 and on the hoist 12, for example according to SIL and / or according to PL. An independent, safe observer module 40 performs a safety zone calculation 42 based on the determined safe state variable. Dynamic room monitoring 44 takes place in that the safely detected safety zone 20 is monitored in relation to the safely detected position of the obstacle 18. A safe stop 46, for example by sending a stop signal to a crane control, is initiated by the self-sufficient, safe observer module 40 when the obstacle 18 in the safety zone 20 of the load 4 is detected.

Zusammenfassend betrifft die Erfindung ein Verfahren zur kollisionsfreien Bewegung einer Last 4 mit einem Kran 2 in einem Raum mit mindestens einem Hindernis 18. Um auf möglichst einfache Weise einen Sicherheitslevel zu erfüllen, wird vorgeschlagen, dass eine Position des Hindernisses 18 erfasst wird, wobei zumindest eine sichere Zustandsgröße der Last 4 ermittelt wird, wobei aus der sicheren Zustandsgröße eine die Last 4 umgebende Sicherheitszone 20 ermittelt wird, wobei die Sicherheitszone 20 in Relation zur Position des Hindernisses 18 dynamisch überwacht wird.In summary, the invention relates to a method for the collision-free movement of a load 4 with a crane 2 in one Room with at least one obstacle 18. In order to meet a safety level in the simplest possible way, it is proposed that a position of the obstacle 18 be detected, with at least one safe state variable of the load 4 being determined, with one surrounding the load 4 from the safe state variable Safety zone 20 is determined, the safety zone 20 being monitored dynamically in relation to the position of the obstacle 18.

Claims (15)

Verfahren zur kollisionsfreien Bewegung einer Last (4) mit einem Kran (2) in einem Raum mit mindestens einem Hindernis (18),
wobei eine Position des Hindernisses (18) bereitgestellt wird,
wobei zumindest eine sichere Zustandsgröße der Last (4) bereitgestellt wird,
wobei aus der sicheren Zustandsgröße eine die Last (4) umgebende Sicherheitszone (20) ermittelt wird,
wobei die Sicherheitszone (20) in Relation zur Position des Hindernisses (18) dynamisch überwacht wird.
Method for the collision-free movement of a load (4) with a crane (2) in a room with at least one obstacle (18),
wherein a position of the obstacle (18) is provided,
at least one safe state variable of the load (4) being provided,
a safety zone (20) surrounding the load (4) being determined from the safe state variable,
wherein the safety zone (20) is dynamically monitored in relation to the position of the obstacle (18).
Verfahren nach Anspruch 1,
wobei eine sichere Position des Hindernisses (18), insbesondere mittels Sensoren (16) zur Entfernungsmessung, erfasst wird.
Method according to claim 1,
a safe position of the obstacle (18) being detected, in particular by means of sensors (16) for distance measurement.
Verfahren nach einem der Ansprüche 1 oder 2,
wobei die zumindest eine sichere Zustandsgröße der Last (4) aus einer sicheren Zustandsgröße zumindest eines Fahrwerks (10), eines Hubwerks (12) und/oder einer Laufkatze (8) des Krans (2) ermittelt wird.
Method according to one of Claims 1 or 2,
wherein the at least one safe state variable of the load (4) is determined from a safe state variable of at least one chassis (10), a hoist (12) and / or a trolley (8) of the crane (2).
Verfahren nach einem der vorherigen,
wobei ein Stoppsignal an eine Kransteuerung gesendet wird, wenn das Hindernis (18) in der die Last (4) umgebenden Sicherheitszone (20) erfasst wird.
Procedure according to one of the previous,
wherein a stop signal is sent to a crane control when the obstacle (18) is detected in the safety zone (20) surrounding the load (4).
Verfahren nach einem der vorherigen Ansprüche,
wobei eine Größe der Sicherheitszone (20) an die sichere Zustandsgröße der Last (4) angepasst wird.
Method according to one of the preceding claims,
wherein a size of the safety zone (20) is adapted to the safe state variable of the load (4).
Verfahren nach einem der vorherigen Ansprüche,
wobei die Sicherheitszone (20) mit einem Controller (9a) ermittelt wird, der ein Sicherheitsprogramm in einem sicheren Bereich umfasst.
Method according to one of the preceding claims,
wherein the safety zone (20) is determined with a controller (9a) which comprises a safety program in a safe area.
Verfahren nach Anspruch 6,
wobei vom Sicherheitsprogramm ein Stoppsignal an eine Kransteuerung gesendet wird, wenn das Hindernis (18) in der die Last (4) umgebenden Sicherheitszone (20) erfasst wird.
Method according to claim 6,
wherein the safety program sends a stop signal to a crane control when the obstacle (18) is detected in the safety zone (20) surrounding the load (4).
Verfahren nach einem der vorherigen Ansprüche,
wobei die sichere Zustandsgröße der Last (4) eine Position und eine Geschwindigkeit und/oder eine Beschleunigung umfasst.
Method according to one of the preceding claims,
wherein the safe state variable of the load (4) comprises a position and a speed and / or an acceleration.
Verfahren nach einem der vorherigen Ansprüche,
wobei die Sicherheitszone (20) in Echtzeit ermittelt wird.
Method according to one of the preceding claims,
wherein the security zone (20) is determined in real time.
Verfahren nach einem der vorherigen Ansprüche,
wobei die Sicherheitszone (20) periodisch in von der sicheren Zustandsgröße der Last (4) anhängigen zeitlichen Abständen ermittelt wird.
Method according to one of the preceding claims,
wherein the safety zone (20) is determined periodically at time intervals dependent on the safe state variable of the load (4).
Verfahren nach einem der vorherigen Ansprüche,
wobei die Sicherheitszone (20) mit einem Pendelmodell ermittelt wird.
Method according to one of the preceding claims,
wherein the safety zone (20) is determined with a pendulum model.
Verfahren nach einem der vorherigen Ansprüche,
welches unabhängig von der Bewegung einer Last (4) durchführbar ist.
Method according to one of the preceding claims,
which can be carried out independently of the movement of a load (4).
Controller (19a) zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 12, welcher ein Sicherheitsprogramm in einem sicheren Bereich umfasst.Controller (19a) for carrying out a method according to one of Claims 1 to 12, which comprises a safety program in a safe area. Autarkes, sicheres Beobachter-Modul (19, 40) zur Kollisionserkennung, welches einen Controller (19a) nach Anspruch 13 aufweist.Autonomous, safe observer module (19, 40) for collision detection, which has a controller (19a) according to Claim 13. System mit einem Kran (2) zur Bewegung einer Last (4), welcher ein Beobachter-Modul (19, 40) nach Anspruch 14 umfasst.System with a crane (2) for moving a load (4), which system comprises an observer module (19, 40) according to Claim 14.
EP19171945.9A 2019-04-30 2019-04-30 Method for collision-free movement of a load with a crane Withdrawn EP3733586A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19171945.9A EP3733586A1 (en) 2019-04-30 2019-04-30 Method for collision-free movement of a load with a crane
EP20710787.1A EP3924288A1 (en) 2019-04-30 2020-02-26 Method for moving a load with a crane in a collision-free manner
CN202080032639.1A CN113784910A (en) 2019-04-30 2020-02-26 Method for collision-free movement of a load by means of a crane
US17/607,156 US11565916B2 (en) 2019-04-30 2020-02-26 Method for moving a load with a crane in a collision-free manner
SG11202111346YA SG11202111346YA (en) 2019-04-30 2020-02-26 Method for moving a load with a crane in a collision-free manner
PCT/EP2020/054965 WO2020221490A1 (en) 2019-04-30 2020-02-26 Method for moving a load with a crane in a collision-free manner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19171945.9A EP3733586A1 (en) 2019-04-30 2019-04-30 Method for collision-free movement of a load with a crane

Publications (1)

Publication Number Publication Date
EP3733586A1 true EP3733586A1 (en) 2020-11-04

Family

ID=66349356

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19171945.9A Withdrawn EP3733586A1 (en) 2019-04-30 2019-04-30 Method for collision-free movement of a load with a crane
EP20710787.1A Pending EP3924288A1 (en) 2019-04-30 2020-02-26 Method for moving a load with a crane in a collision-free manner

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20710787.1A Pending EP3924288A1 (en) 2019-04-30 2020-02-26 Method for moving a load with a crane in a collision-free manner

Country Status (5)

Country Link
US (1) US11565916B2 (en)
EP (2) EP3733586A1 (en)
CN (1) CN113784910A (en)
SG (1) SG11202111346YA (en)
WO (1) WO2020221490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046955A1 (en) 2021-02-23 2022-08-24 Siemens Aktiengesellschaft Method for collision-free movement of a crane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4156104A1 (en) 2021-09-28 2023-03-29 Siemens Aktiengesellschaft Method for detecting a target position
EP4279435A1 (en) 2022-09-19 2023-11-22 Siemens Aktiengesellschaft Operating method for a loading system and automation system for controlling a loading system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049285A1 (en) 2003-11-14 2005-06-02 Siemens Technology-To-Business Center, Llc Systems and methods for sway control
EP2402280A1 (en) * 2010-06-30 2012-01-04 ABB Research Ltd. Calculation of collision avoiding trajectory
KR20140087929A (en) * 2012-12-31 2014-07-09 주식회사 포스코아이씨티 Method and Apparatus for Controlling Movement of Crane
EP2927178A1 (en) * 2012-11-27 2015-10-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Crane operation assistance device
WO2018007203A1 (en) 2016-07-04 2018-01-11 Siemens Aktiengesellschaft Method and system for avoiding collisions in cranes
US20190100382A1 (en) * 2017-09-29 2019-04-04 B&R Industrial Automation GmbH Method for controlling a lifting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143651A (en) * 1976-05-24 1977-11-30 Hitachi Ltd Device for preventing collision
ATE322454T1 (en) * 2000-10-19 2006-04-15 Liebherr Werk Nenzing CRANE OR EXCAVATOR FOR HANDLING A LOAD HANGING ON A LOADS WITH LOAD SWING DAMPING
JP2008137738A (en) * 2006-11-30 2008-06-19 Asyst Technologies Japan Inc Overhead traveling carrying device
US20090114612A1 (en) * 2007-11-01 2009-05-07 Roger Gail Nelson Universal collision avoidance override control system for overhead bridge cranes
FI121402B (en) * 2009-04-15 2010-10-29 Konecranes Oyj System for identification and / or position determination of container processing machine
FI126364B (en) * 2012-05-25 2016-10-31 Konecranes Global Oy Determining the travel distance of the hoist
JP6007880B2 (en) * 2013-10-10 2016-10-12 株式会社ダイフク Ceiling transport vehicle
GB201406180D0 (en) 2014-04-04 2014-05-21 Dan Mcnally Ltd Hoist appartus
AT517784B1 (en) * 2015-10-01 2021-01-15 B & R Ind Automation Gmbh Process for the automated control of a machine component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049285A1 (en) 2003-11-14 2005-06-02 Siemens Technology-To-Business Center, Llc Systems and methods for sway control
EP2402280A1 (en) * 2010-06-30 2012-01-04 ABB Research Ltd. Calculation of collision avoiding trajectory
EP2927178A1 (en) * 2012-11-27 2015-10-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Crane operation assistance device
KR20140087929A (en) * 2012-12-31 2014-07-09 주식회사 포스코아이씨티 Method and Apparatus for Controlling Movement of Crane
WO2018007203A1 (en) 2016-07-04 2018-01-11 Siemens Aktiengesellschaft Method and system for avoiding collisions in cranes
US20190100382A1 (en) * 2017-09-29 2019-04-04 B&R Industrial Automation GmbH Method for controlling a lifting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046955A1 (en) 2021-02-23 2022-08-24 Siemens Aktiengesellschaft Method for collision-free movement of a crane
WO2022179758A1 (en) 2021-02-23 2022-09-01 Siemens Aktiengesellschaft Method for the collision-free movement of a crane

Also Published As

Publication number Publication date
WO2020221490A1 (en) 2020-11-05
CN113784910A (en) 2021-12-10
US20220204319A1 (en) 2022-06-30
US11565916B2 (en) 2023-01-31
SG11202111346YA (en) 2021-11-29
EP3924288A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
EP3733586A1 (en) Method for collision-free movement of a load with a crane
EP3285163B1 (en) Fault-tolerant method and device for controlling an autonomous technical plant by means of diverse trajector planning
EP3455153B1 (en) Method and system for avoiding collisions by cranes
EP1690730B1 (en) Driver assistance system comprising redundant decision unit
EP3709106B1 (en) Securing of a machine
DE102013208735A1 (en) Method and device for determining and compensating for a misalignment angle of a radar sensor of a vehicle
DE102016009808A1 (en) AUTONOMOUS EMERGENCY BRAKING SYSTEM AND METHOD FOR CONTROLLING AND CONTROLLING THEREOF
WO2020015923A1 (en) Method for operating an autonomous vehicle, and autonomous vehicle
DE102019110882A1 (en) Securing a moving machine part
WO2006066853A1 (en) Position determination system
EP3287902A1 (en) Fault-tolerant method and device of controlling an autonomous technical plant on the basis of a consolidated environmental model
DE102016114366B4 (en) FAILSAFE REDUCED ORDER INERTIAL UNIT MEASURING SYSTEM
DE102007037298A1 (en) Method for checking sensor signal of sensor cluster, involves detecting one or multiple physical measured variable in one measuring area by sensor cluster with sensors
EP3924240A1 (en) System having a mobile part movable on a travel surface of the system
EP4124789B1 (en) Securing of a movable part of a machine
EP4040034B1 (en) Safety device and safety method for monitoring a machine
EP3249476B1 (en) Sensor
EP1405752B1 (en) Device for producing actuator signals in a motor vehicle
EP4055346A1 (en) Method and device for determining emergency routes and for operating automated vehicles
EP3948343A1 (en) Radar measurement apparatus with integrated safety zone monitoring
DE202021104622U1 (en) security system
DE202017001537U1 (en) Safety device for a vehicle, in particular for a driverless vehicle
DE102020206498A1 (en) Determination of the running times of control commands in a vehicle convoy
EP3882668A1 (en) Method for determining a safe position of a vehicle
CN116795121A (en) Unmanned vehicle control system and unmanned vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210505