EP3700695B1 - Process and apparatus for bulk metallic glass casting - Google Patents

Process and apparatus for bulk metallic glass casting Download PDF

Info

Publication number
EP3700695B1
EP3700695B1 EP18789433.2A EP18789433A EP3700695B1 EP 3700695 B1 EP3700695 B1 EP 3700695B1 EP 18789433 A EP18789433 A EP 18789433A EP 3700695 B1 EP3700695 B1 EP 3700695B1
Authority
EP
European Patent Office
Prior art keywords
piston
crucible
melting
coil
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18789433.2A
Other languages
German (de)
French (fr)
Other versions
EP3700695A1 (en
Inventor
José FEIGENBLUM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RocTool SA
Original Assignee
RocTool SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RocTool SA filed Critical RocTool SA
Publication of EP3700695A1 publication Critical patent/EP3700695A1/en
Application granted granted Critical
Publication of EP3700695B1 publication Critical patent/EP3700695B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2038Heating, cooling or lubricating the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • B22D17/04Plunger machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/203Injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated

Definitions

  • the invention relates to a method and a device for molding, in particular, a metallic glass.
  • the invention is more particularly, but not exclusively, suitable for the manufacture of shells for electronic equipment, more particularly intended for smart telephones.
  • metallic glasses which are in the form of an amorphous, non-crystallized or partially crystallized metal, which due to the absence of grain boundaries in the structure of the metal, exhibit characteristics of hardness, elasticity. and corrosion resistance, which make them particularly efficient for this type of application and make unnecessary the protective cases in which consumers wrap their smartphone to protect it from bumps, scratches and make it waterproof.
  • such shells are obtained from a sheet of an amorphous metal alloy, which is shaped by a blow molding process, similar to the glass forming processes, in a die in the shape of said shell after having heated said sheet to a relatively low temperature compared to the temperature which it would be necessary to reach with the same crystallized metal alloy in order to obtain an equivalent forming.
  • the methods of the prior art use a vacuum molding technique of a solid metallic glass alloy (“ Bulk Metallic Glass ” or BMG).
  • BMG Bulk Metallic Glass
  • the use of a BMG makes it possible to reduce the critical cooling rate allowing the material to solidify into an amorphous material.
  • the material must be molded under conditions which avoid its contamination by impurities, in particular by nitrogen and oxygen.
  • the melting and casting operations are carried out under vacuum or in a neutral atmosphere. The material is melted in a crucible by means of induction heating, then injected into the mold.
  • the techniques of the prior art use either a crucible made of a material transparent to the magnetic field, such as a zirconia hollow, or a cold sectorized copper crucible.
  • a channel generally referred to as an injection or casting crucible, enables the contents of the melting crucible to be placed in communication with the cavity of the mold while keeping the assembly under vacuum.
  • the communication between the melting crucible and the injection crucible must be closed during the melting operation and then opened to allow casting, which is achieved by movable closing means, such as a trap, a piston or a movable finger.
  • the melting crucible When the melting crucible is placed vertically, for example above the mold, and gravity tends to bring the molten charge closer to the mobile closing means, the latter must be cooled, in particular so as not to damage the means ensuring the seal between said movable closure means and the injection crucible, The molten charge cools on contact with the movable closure means and during each casting, a wafer of material remains on the surface thereof, which is likely to interfere with the operation of the device and must be eliminated.
  • the ceramic crucible also has the drawback of reacting with certain alloys.
  • the sectorized cold crucible makes it possible to move the melted charge away from the walls of the crucible by the magnetic forces of Laplace, but does not solve the problem of creating a wolf.
  • said crucible is placed horizontally, and the Lapace forces compensate for gravity, the load being levitated or pseudo-levitated inside the tube formed by the crucible.
  • Injecting the material into the mold involves the use of a cooled piston, moving through the crucible and pushing the charge into the mold cavity.
  • the crucible is placed vertically and is closed by a removable and cooled hearth, constituting a trap door between the melting crucible and the mold.
  • the molten material cools on contact with the piston or the hatch and there also remains a wolf ( skull ) of material in contact with them, which must be removed periodically, or even during of each pour.
  • the document JPH 0917421 9 discloses a crucible and a mold suitable for shell casting of an aluminum alloy, comprising a crucible disposed horizontally, and in which a previously melted material is dumped.
  • the document US2015 / 298296 describes a device and a method for molding a BMG comprising a melting crucible made of a material transparent to magnetic fields, said BMG being injected molten into the mold by means of a cooled piston.
  • the document US 5156 202 describes a sectorized mold which is closed in its lower part by a sectorized and cooled plate, comprising an opening in its center. A molten metal is introduced through the upper part of the mold closed in its lower part by the sectorized plate. A piston pushes the material against the walls of the mold and the sectorized plate in contact with which it cools.
  • the mold is surrounded by a coil supplied with high frequency alternating current.
  • the document WO2013 / 190020 describes a mold comprising induction heating means and cooling means.
  • the document US2002 / 122456 describes a melting furnace comprising a sectorized crucible surrounded by an induction coil.
  • the document JPS61119368 describes a molding device suitable for molding an aluminum alloy and comprising a horizontal pouring tube and a piston comprising induction means capable of causing pseudo-levitation of the material in the pouring tube.
  • the invention aims to resolve the drawbacks of the prior art and for this purpose relates to a device for producing a part by molding a BMG, which device according to claim 1.
  • the vertical arrangement of the melting crucible with respect to the mold facilitates the automation of the casting process by making it possible to take advantage of gravity in the implementation of several operations.
  • the sectorized crucible makes it possible to remove the molten material from the walls of the crucible and thus to avoid any contamination thereof, while the use of a sectorized piston makes it possible to put the molten load in levitation or pseudo-levitation with respect to said piston by the components of the Laplace forces of the magnetic field created by the circulation of the currents induced on the sectors of said piston.
  • the object device of the invention allows the use of BMG comprising reactive components such as titanium or zirconium capable of interacting with a crucible made of refractory material.
  • the charge does not cool on contact with the piston and does not create a wolf.
  • the invention is advantageously implemented according to the embodiments and the variants set out below, which are to be considered individually or according to any technically operative combination.
  • the means for placing the contents of the melting crucible in communication with the molding cavity comprise a device for vertical displacement of the piston.
  • said piston makes it possible to carry out the casting by gravity or by injection, always without contact of the piston with the molten charge.
  • the melting crucible is placed above the molding cavity and the piston moves downwards.
  • the melting crucible is placed below the molding cavity and the piston moves upwards.
  • the device which is the subject of the invention comprises a channel, called an injection crucible, between the melting crucible and the molding cavity.
  • a channel called an injection crucible
  • This embodiment makes it possible to place the melting device outside the shells, the passage through the shell of the melting device towards the impression being made by this injection crucible.
  • the device which is the subject of the invention comprises a coil surrounding the injection crucible and supplied with high frequency current.
  • the induction effect produced by this coil makes it possible to keep the molten charge at temperature until it enters the molding cavity as well as to move said molten charge away from the walls of the injection crucible.
  • the device which is the subject of the invention comprises, according to an embodiment compatible with the previous ones, an injection coil and means for its electrical supply, capable of producing an electromagnetic force for the injection of the contained molten material. in the melting crucible in the molding cavity.
  • This embodiment makes it possible to use the Laplace forces by said coil in order to inject the molten material into the mold without contact with said material at the time of injection.
  • the injection coil is a flat coil supplied by a discharge of capacitors.
  • This embodiment uses a configuration similar to that used in magnetoforming to apply a force to the molten material directing it towards the molding cavity.
  • the injection coil comprises a coil nested in the coil forming the melting coil, said injection coil being supplied with a high-frequency alternating current out of phase with respect to the alternating current supplying the coil. fusion coil so as to create a sliding field.
  • the combined action of the coil forming the melting inductor and of said injection coil creates a sliding field favoring the injection of the material into the molding cavity.
  • the sectors of the melting crucible and of the piston are made of stainless steel, thus providing greater durability than copper, generally used for this purpose and also making it possible to lighten the piston for faster displacement thereof. during the casting process.
  • the invention also relates to a method as described in claim 11 attached hereto.
  • the melting device of the molding device that is the subject of the invention makes it possible to keep the molten charge at high temperature until injection, while the preheating of the mold ensures good flow of the material during casting and a total filling of the impression.
  • the sectorized piston of the device which is the subject of the invention prevents the creation of a wolf on the surface of said piston during fusion and the casting and thus the cleaning operations of said piston.
  • the use of induction heating of the mold makes it possible to bring the latter quickly to the appropriate temperature for casting and thus to rapidly chain the cycles while ensuring efficient and rapid cooling of the part after casting.
  • steps iii) and iv) are carried out in parallel, so as to further reduce the cycle time.
  • the device is shown during the melting phase of the BMG.
  • the device which is the subject of the invention comprises a mold in two parts (101, 102), or more, which can be separated which, when closed, define a cavity. tight (110) waterproof. Sealing means (103) make it possible to seal the cavity under a primary vacuum, and under a slight overpressure of a neutral gas.
  • the two parts (101, 102) of the mold are for example fixed on the plates of a press in order to allow the opening and the closing of the mold.
  • At least one (101) of the parts of the mold comprises means for heating the surfaces of the molding cavity (110), in the form of inductors (120) extending in ducts made in the mold.
  • inductors are for example formed by copper tubes or multi-strand copper cables of cross section adapted to the electric induction current used.
  • the inductors (120) are connected to a high frequency current generator (not shown).
  • the two parts (101, 102) of the mold are made of a metallic material, for example steel or copper.
  • the surfaces of the conduits receiving the inductors (120) are coated with a ferromagnetic material, for example with nickel .
  • the thickness of the coating layer depends on the heating power and the frequency of the current supplied to the inductors, it is typically between 0.1mm and 1mm.
  • the inductors (120) When said inductors (120) are supplied with high frequency alternating current, they heat the walls of the conduits, and the heat thus produced is propagated by conduction to the surfaces of the molding cavity (110).
  • the heating inductors of the mold are supplied with an alternating current with a frequency between 10KHz and 200KHz by a generator with a power between 10 KW and 100 KW without these values being limiting,
  • At least one of the parts of the mold comprises channels (125) for the circulation of a heat transfer fluid and the cooling of the molding cavity (110).
  • the heat transfer fluid is a liquid such as water or oil, or a gas.
  • the cooling channels (125) are placed between the molding cavity and the inductors, as close as possible to the surface of the molding cavity so as to ensure rapid cooling and a high degree of amorphization.
  • the position of the inductors, the installed heating power, the number and distribution of the cooling channels as well as the heat transfer fluid flow rate necessary for cooling, are for example determined by numerical simulation of the mold heating and cooling cycles.
  • Means (130) make it possible to draw the molding cavity to a vacuum and to introduce therein a neutral gas, such as argon, so as to create therein a slight overpressure with respect to atmospheric pressure.
  • a neutral gas such as argon
  • Said mold comprises a melting device (150), located above the mold, according to this exemplary embodiment.
  • This device is in communication with the molding cavity and confined in an enclosure (155) sealingly assembled with the mold so that the evacuation of the molding cavity also places the melting device under vacuum, and that it is also in slight overpressure in the case of the injection of a neutral gas.
  • This melting device (150) comprises a melting crucible (160) surrounded by a melting coil (165) supplied by a very high frequency current generator.
  • Said melting crucible (160) is a sectored crucible, of generally cylindrical shape comprising a plurality of hollow sectors (161), extending along the axis of the cylinder and electrically isolated from one another.
  • Said sectors are made of a non-magnetic metallic material, for example copper or stainless steel.
  • Cooling means (170) make it possible to circulate a heat transfer fluid in said hollow sectors, in order to cool them.
  • the part of the melting crucible communicating with the molding cavity (110) is, during the melting, closed by a piston (180), connected to an operating rod (185) to retract the latter.
  • the device comprises means (186) acting on the operating rod, such as a rack pinion system, an electric cylinder, a linear motor or any other means known from the prior art for carrying out the displacement of the piston and of the operating rod.
  • Said piston (180) constitutes, during the melting of the material (190) a hearth vis-à-vis the melting crucible (160).
  • said piston (180) is sectored and comprises, similarly to the melting crucible, a plurality of hollow sectors, made of an electrically conductive metallic material and electrically insulated from each other. Means (175) allow fluid to circulate in the hollow sectors of the piston, for example through the operating rod so as to cool the latter.
  • the sectorized configuration and the electrically conductive nature of the sectors of the piston (180) by the circulation of the currents induced in its sectors during the supply of the fusion coil (165), to create Laplace forces, repelling the charge molten surface of the piston (180) in the melting crucible.
  • the molten charge (190) is levitated or in electromagnetic pseudo-levitation in the crucible, without contact with the walls.
  • the arrangement of the melting crucible in a vertical position above the mold makes it possible to load the crucible by gravity, the mold being closed.
  • the filler consists of granules of the constituent material of the BMG, or of several materials whose alloy constitutes the BMG, the alloy being produced during the melting.
  • the charge consists of a single solid piece of land, such as a cylinder.
  • a neutral gas is introduced into the molding cavity and into the enclosure comprising the melting crucible.
  • the induced currents heat said charge which melts.
  • the sectorized nature of the crucible and the magnetic field which results from it moves the molten charge away from the walls of the crucible, as well as from the walls of the piston (180), itself sectorized.
  • the melting of the charge is extremely rapid due to its direct heating by induction.
  • the Laplace forces generated keep the molten charge away from the walls of the crucible and the piston, the circulation of the currents induced in the molten charge, also ensure a stirring of said charge, which makes it possible to ensure its homogeneity, particularly when the latter. this comprises several alloying elements of different specific masses.
  • FIG. 2 the device of the figure 1 , is shown during the injection phase.
  • the charge being melted, to perform the injection the molding cavity is heated beforehand, by means of the inductors (120) to bring it to a temperature equal to or slightly lower than the glass transition temperature of the BMG.
  • the piston (180) is retracted into the mold by moving the latter downwards by its operating rod (185) thus freeing the passage towards the molding cavity (110).
  • the molten charge (190) then flows by gravity into the molding cavity.
  • the surfaces of said molding cavity having been preheated, the molten material flows into the cavity while retaining sufficient fluidity to fill it entirely.
  • An electronic control device (not shown) makes it possible to synchronize and sequence, the supply of the melting coil, the heating of the molding cavity, the retraction of the piston, the stopping of the supply of the melting coil and cooling the mold.
  • the flat coil (166) is supplied by the discharge of the capacitors in a manner synchronized with the descent of the piston (180). Feeding said flat coil (166) creates an electromagnetic force acting on the molten charge, which pushes said charge towards the mold cavity.
  • an injection coil (266) is nested in the melting coil and supplied at the time of injection by a high-frequency alternating current simultaneously with the supply of the coil (165), the two coils (165, 266) being supplied with phase-shifted alternating currents, so as to create a sliding field which tends to eject the molten charge from the melting crucible towards the molding cavity.
  • injection coil is, according to one embodiment, complementary to the use of the flat coil, for injecting the molten charge into the molding cavity.
  • the melting crucible (160) is extended by an injection crucible or cylinder (260) which is advantageously surrounded by a coil (265) supplied with a high frequency current and forming an inductor.
  • Said injection crucible is for example made of a refractory material transparent to the electromagnetic field, without this configuration being limiting. This injection crucible makes it possible to pass through the thickness of the part of the mold separating the melting crucible (160) from the molding cavity, while keeping the molten charge sufficiently hot.
  • the power supply to the coil (265) surrounding the injection crucible (260) has the effect, on the one hand, of moving the molten charge (190) of the walls of the injection crucible (260) and on the other hand to keep, by the effect of inductive heating, the molten charge at a sufficient temperature before it enters the molding cavity.
  • the supply of the injection inductor, the flat coil (166), the injection coil (266), the coil (265) surrounding the injection crucible (260) as well as the movement of the piston are controlled, sequenced and synchronized, by electronic means, for example by a programmable controller (not shown).
  • the device which is the subject of the invention comprises a piston (760) capable of pushing the load (190) into the molding cavity.
  • Said piston comprises a head (762) and an operating rod (761) for its vertical displacement, said displacement being carried out by a jack, electric, hydraulic or pneumatic acting on said rod (761), by a rack pinion system, a motor linear or any other suitable means.
  • the head (762) of the piston is, according to exemplary embodiments, a solid head or a hollow head, made of a ferromagnetic material or coated with a ferromagnetic material.
  • said head (762) moves axially in the melting crucible, where it is subjected to the effect of the induced currents generated by the melting inductor (165).
  • the response of the material constituting the piston head or its coating to the induced currents, causes rapid heating of the surface of said head.
  • said head (762) is further cooled by the circulation of a heat transfer fluid circulated by means (not shown) between the operating rod (761) and the head of the piston.
  • the dimensioning of the piston head, its constitution and the possible cooling thereof, make it possible to bring the surface of the piston head in contact with the molten load (190) during casting, at) a temperature such as: that this is high enough not to create a wolf on the surface of said head and low enough not to cause the phenomenon of sticking or welding of the molten material on said head.
  • the device which is the subject of the invention allows simple gravity casting and for this purpose only comprises the segmented piston (180), or gravity casting assisted by a field. magnetic, combination including segmented piston (180) associated with the injection coil (266) and / or the flat coil (166).
  • the device which is the subject of the invention comprises the segmented piston (180) which can be retracted acting as a sole in the lower part of the melting crucible and an injection piston (760) pushing the charge into it. 'footprint.
  • the device which is the subject of the invention further comprises an injection coil (266) capable of creating a sliding magnetic field.
  • the circulation of a heat transfer fluid in the cooling channels (125) of the mold makes it possible to rapidly cool the molding cavity and the part it contains, thus ensuring a high rate of amorphization of the mold. -this.
  • the mold is then opened, the part removed from the mold and the cycle resumes.
  • figures 1 and 2 represent the device which is the subject of the invention in an embodiment comprising an injection crucible and coils (166, 266) making it possible to promote the injection of the molten charge into the molding cavity
  • the person skilled in the art understands that these characteristics are improvements and are not essential to the operation of the device which is the subject of the invention, the simple movement of the piston (180) making it possible to carry out the casting by gravity, the latter possibly being assisted by the mechanical effect of a injection piston.
  • the melting device is placed, for example, directly in the lower part (102) of the mold, similarly to the embodiment shown. figure 3 , but with the piston (180) positioned under the melting crucible, on the side of the molding cavity (110).
  • the melting device (350) is positioned vertically under the molding cavity (310) of the mold.
  • the mold comprises at least two separable parts (301, 302) and associated sealing means (303), so that when the mold is closed, said parts define between them a cavity tight fitting (310), capable of being evacuated by suitable means, and of being filled with a neutral gas at a slight overpressure.
  • the two parts (301, 302) of the mold are for example mounted on the plates of a press, which allows the opening and closing of the mold.
  • At least one (301) of the parts of the mold advantageously comprise means for heating the surfaces of the molding cavity (310), for example in the form of inductors (320) extending in ducts made in the mold.
  • At least one of the parts of the mold advantageously comprises cooling channels (325) making it possible to rapidly cool the molding cavity (310).
  • the vertical arrangement of the melting device (350) under the mold makes it possible to deliver the charge into said gravity melting device, with the mold open.
  • the melting device (350) comprises a sectorized and cooled melting crucible (360) comprising hollow sectors, for example made of a stainless steel and electrically insulated from each other.
  • the melting crucible (360) is in communication with the molding cavity (310) by its upper end, and closed at its lower end, by a sectorized piston (380).
  • Said sectorized piston is fixed to an operating rod (385) and operating means (386) allow said operating rod (386) to be moved vertically and consequently said piston (380).
  • the fusion device (350) is inserted in a sealed enclosure (355).
  • the sectorized piston (380) is moved upwards by the means (386) acting on the operating rod (385), which has the effect of pushing the load (190) into the molding cavity, always without contact between said load and said piston (380).
  • the cooling of the piston (380) is controlled so that the temperature at the surface of the piston likely to come into contact with the load in pseudo-levitation fusion, is sufficient to avoid the creation of a wolf, but not too high to avoid sticking or welding of the molten charge to the surface of said piston.
  • the surfaces of the molding cavity (310) Prior to casting, the surfaces of the molding cavity (310) are brought to a temperature equal to or slightly lower than the glass transition temperature of the BMG used, by the high-frequency current supply to the inductors (320), of the mold, so as to promote uniform filling of the impression. Then, the molding cavity is cooled rapidly, by the circulation of a heat transfer fluid in the cooling channels (125) of the mold. The mold is then opened, the part unmolded and the cycle resumes.
  • the device which is the subject of the invention comprises an injection crucible placing the melting crucible and the molding cavity in communication, and a coil surrounding said injection crucible making it possible to maintain the temperature of the molten charge as it travels between the melting crucible and the molding cavity.
  • the latter comprises several parallel fusion and injection devices to ensure better filling of the impression.
  • the piston (185, 385) comprises a plurality of hollow sectors (481, ..., 486) made of stainless steel or another electrically conductive and non-magnetic material, perforated at both of them side ends and electrically insulated from each other by a layer of insulating material, such as ceramic. Said layer of insulating material also provides sealing between the sectors.
  • the sectors are linked to the operating rod (185, 385) by means of a water box (490) made of an electrically insulating material. Said water box is in hydraulic communication with fluid circulation means (not shown) via an orifice (491) made in the operating rod, and distributes the heat transfer fluid in all sectors (481, .. ., 486) to ensure their cooling.
  • said sectors comprise on their underside, an orifice (493) bringing the interior of the sector into contact with the water box (490).
  • a second orifice (494) at the inner radial end of the sector communicates the interior of each sector with an orifice (492) made in the operating rod, itself in hydraulic communication with the circulation means, which allows the circulation of a heat transfer fluid in the sectors of the piston.
  • the latter comprises a first step (610) of loading the melting crucible.
  • This step is carried out with a closed mold or an open mold in the case where the melting device is placed above the mold and the mold open when the crucible is placed below the mold
  • a closing step (620) the mold is closed and the cavity tight, as well as the melting crucible are evacuated.
  • a neutral gas such as argon is injected into the molding cavity and the enclosure of the melting device, said gas being at a slight overpressure with respect to atmospheric pressure.
  • a melting step (630) the feed is melted by supplying the melting coil of the melting device.
  • the mold is preheated by the inductors during a heating step (640) in order to protect the surfaces of the molding cavity at a temperature equal to or slightly lower than the glass transition temperature of the BMG. Induction heating achieves such a temperature in 1 minute or less depending on the size of the indentation.
  • a casting step (650) the piston is moved from top to bottom or from bottom to top, depending on the embodiment of the mold, and the injection coil is supplied, as well as the coil surrounding the injection crucible, if the device is so provided in order to fill the preheated molding cavity with the molten material.
  • a cooling step (660) the supply of the inductors of the mold is stopped and the coolant heat transfer fluid is circulated. in the cooling channels of the mold, providing rapid cooling of the part, until it reaches its demolding temperature.
  • a demolding step (670), the cooled mold is opened, the part is demolded, and the cycle resumes.
  • the method and the device which are the subject of the invention make it possible to produce parts in amorphous metal at high speed, more particularly thin parts, while ensuring a high rate of amorphization thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Glass Compositions (AREA)

Description

L'invention concerne un procédé et un dispositif pour le moulage, notamment d'un verre métallique. L'invention est plus particulièrement, mais non exclusivement, adaptée à la fabrication de coques pour des matériels électroniques, plus particulièrement destinées à des téléphones intelligents.The invention relates to a method and a device for molding, in particular, a metallic glass. The invention is more particularly, but not exclusively, suitable for the manufacture of shells for electronic equipment, more particularly intended for smart telephones.

En effet, les verres métalliques, se présentant sous la forme d'un métal amorphe, non cristallisé ou partiellement cristallisé, qui du fait de l'absence de joints de grains dans la structure du métal, présentent des caractéristiques de dureté, d'élasticité et de résistance à la corrosion, qui les rendent particulièrement performants pour ce type d'application et rendent inutiles les coques de protection dans lesquelles les consommateurs enveloppent leur téléphone intelligent pour le protéger des chocs, des rayures et le rendre étanche.In fact, metallic glasses, which are in the form of an amorphous, non-crystallized or partially crystallized metal, which due to the absence of grain boundaries in the structure of the metal, exhibit characteristics of hardness, elasticity. and corrosion resistance, which make them particularly efficient for this type of application and make unnecessary the protective cases in which consumers wrap their smartphone to protect it from bumps, scratches and make it waterproof.

Selon les techniques de l'art antérieur, de telles coques sont obtenues à partir d'une feuille d'un alliage métallique amorphe, laquelle est mise en forme par un procédé de moulage par soufflage, similaire aux procédés de mise en forme du verre, dans une matrice à la forme de ladite coque après avoir chauffé ladite feuille à une température relativement basse comparativement à la température qu'il serait nécessaire d'atteindre avec le même alliage métallique cristallisé pour obtenir un formage équivalent.According to the techniques of the prior art, such shells are obtained from a sheet of an amorphous metal alloy, which is shaped by a blow molding process, similar to the glass forming processes, in a die in the shape of said shell after having heated said sheet to a relatively low temperature compared to the temperature which it would be necessary to reach with the same crystallized metal alloy in order to obtain an equivalent forming.

Selon un autre mode de mise en oeuvre, les procédés de l'art antérieur, utilisent une technique de moulage sous vide d'un alliage de verre métallique massif (« Bulk Metallic Glass » ou BMG). L'utilisation d'un BMG permet de réduire la vitesse critique de refroidissement permettant la solidification du matériau en un matériau amorphe. Pour assurer un faible taux de cristallinité ou un taux élevé d'amorphisation, le matériau doit être moulé dans des conditions qui évitent sa contamination par des impuretés, notamment par l'azote et l'oxygène. À cette fin, les opérations de fusion et de coulée sont réalisées sous vide ou sous atmosphère neutre. Le matériau est mis en fusion dans un creuset au moyen d'un chauffage par induction, puis injecté dans le moule. Les techniques de l'art antérieur utilisent soit un creuset constitué d'un matériaux transparent au champ magnétique, telle qu'un creusent en zircone, ou un creuset froid sectorisé en cuivre.According to another embodiment, the methods of the prior art use a vacuum molding technique of a solid metallic glass alloy (“ Bulk Metallic Glass ” or BMG). The use of a BMG makes it possible to reduce the critical cooling rate allowing the material to solidify into an amorphous material. To ensure a low rate of crystallinity or a high rate of amorphization, the material must be molded under conditions which avoid its contamination by impurities, in particular by nitrogen and oxygen. To this end, the melting and casting operations are carried out under vacuum or in a neutral atmosphere. The material is melted in a crucible by means of induction heating, then injected into the mold. The techniques of the prior art use either a crucible made of a material transparent to the magnetic field, such as a zirconia hollow, or a cold sectorized copper crucible.

Un canal, généralement dénommé creuset d'injection ou de coulée, permet de mettre en communication le contenu de creuset de fusion avec l'empreinte du moule tout en conservant l'ensemble sous vide. La communication entre le creuset de fusion et le creuset d'injection doit être fermée pendant l'opération de fusion, puis ouverte pour permettre la coulée, ce qui est réalisé par des moyens de fermeture mobiles, tels qu'une trappe, un piston ou un doigt mobile. Lorsque le creuset de fusion est placé verticalement, par exemple au-dessus du moule, et que la gravité tend à rapprocher la charge en fusion des moyens de fermeture mobiles, ceux-ci doivent être refroidis, afin notamment de ne pas endommager les moyens assurant l'étanchéité entre lesdits moyens de fermeture mobiles et le creuset d'injection, La charge en fusion se refroidi au contact des moyens de fermeture mobile et lors de chaque coulée, il subsiste un loup de matière à la surface de ceux-ci, lequel est susceptible de gêner le fonctionnement du dispositif et doit être éliminé.A channel, generally referred to as an injection or casting crucible, enables the contents of the melting crucible to be placed in communication with the cavity of the mold while keeping the assembly under vacuum. The communication between the melting crucible and the injection crucible must be closed during the melting operation and then opened to allow casting, which is achieved by movable closing means, such as a trap, a piston or a movable finger. When the melting crucible is placed vertically, for example above the mold, and gravity tends to bring the molten charge closer to the mobile closing means, the latter must be cooled, in particular so as not to damage the means ensuring the seal between said movable closure means and the injection crucible, The molten charge cools on contact with the movable closure means and during each casting, a wafer of material remains on the surface thereof, which is likely to interfere with the operation of the device and must be eliminated.

Le creuset en céramique présente en outre l'inconvénient de réagir avec certains alliages.The ceramic crucible also has the drawback of reacting with certain alloys.

Le creuset froid sectorisé permet d'éloigner la charge mise en fusion des parois du creuset par les forces magnétiques de Laplace, mais ne résout pas le problème de la création d'un loup. Ainsi, selon l'art antérieur, ledit creuset est placé horizontalement, et les forces de Lapace compensent la gravité, la charge se trouvant en lévitation ou pseudo-lévitation à l'intérieur du tube constitué par le creuset. L'injection de la matière dans le moule implique l'utilisation d'un piston refroidi, se déplaçant dans le creuset et qui pousse la charge dans la cavité moulante. Alternativement, le creuset est placé verticalement et est fermé par une sole amovible et refroidie, constituant une trappe entre le creuset de fusion et le moule. Dans ces réalisations de l'art antérieur la matière en fusion se refroidit au contact du piston ou de la trappe et il subsiste également un loup (skull) de matière au contact de ceux-ci, lequel doit être éliminé de manière périodique, voire lors de chaque coulée.The sectorized cold crucible makes it possible to move the melted charge away from the walls of the crucible by the magnetic forces of Laplace, but does not solve the problem of creating a wolf. Thus, according to the prior art, said crucible is placed horizontally, and the Lapace forces compensate for gravity, the load being levitated or pseudo-levitated inside the tube formed by the crucible. Injecting the material into the mold involves the use of a cooled piston, moving through the crucible and pushing the charge into the mold cavity. Alternatively, the crucible is placed vertically and is closed by a removable and cooled hearth, constituting a trap door between the melting crucible and the mold. In these embodiments of the prior art, the molten material cools on contact with the piston or the hatch and there also remains a wolf ( skull ) of material in contact with them, which must be removed periodically, or even during of each pour.

Le document JPH 0917421 9 divulgue un creuset et un moule adaptés au moulage en coquille d'un alliage d'aluminium, comprenant un creuset disposé horizontalement, et dans lequel un matériau préalablement mis en fusion est déversé.The document JPH 0917421 9 discloses a crucible and a mold suitable for shell casting of an aluminum alloy, comprising a crucible disposed horizontally, and in which a previously melted material is dumped.

Le document US2015/298296 décrit un dispositif et un procédé pour le moulage d'un BMG comprenant un creuset de fusion constitué d'un matériau transparent aux champs magnétiques, ledit BMG étant injecté en fusion dans le moule par l'intermédiaire d'un piston refroidi.The document US2015 / 298296 describes a device and a method for molding a BMG comprising a melting crucible made of a material transparent to magnetic fields, said BMG being injected molten into the mold by means of a cooled piston.

Le document US 5156 202 décrit un moule sectorisé qui est fermé dans sa partie inférieure par un plaque sectorisée et refroidie, comprenant une ouverture en son centre. Un métal en fusion est introduit par la partie supérieure du moule fermé dans sa partie inférieure par la plaque sectorisée. Un piston pousse le matériau contre les parois du moule et de la plaque sectorisée au contact desquels il se refroidi. Le moule est entouré d'une bobine alimentée en courant alternatif à haute fréquence.The document US 5156 202 describes a sectorized mold which is closed in its lower part by a sectorized and cooled plate, comprising an opening in its center. A molten metal is introduced through the upper part of the mold closed in its lower part by the sectorized plate. A piston pushes the material against the walls of the mold and the sectorized plate in contact with which it cools. The mold is surrounded by a coil supplied with high frequency alternating current.

Le document WO2013/190020 décrit un moule comprenant des moyens de chauffage par induction et des moyens de refroidissent.The document WO2013 / 190020 describes a mold comprising induction heating means and cooling means.

Le document US2002/122456 décrit un four de fusion comprenant un creuset sectorisé entouré d'une bobine d'induction.The document US2002 / 122456 describes a melting furnace comprising a sectorized crucible surrounded by an induction coil.

Le document JPS61119368 décrit dispositif de moulage adapté au moulage d'un alliage d'aluminium et comportant un tube de coulée horizontal et un piston comprenant des moyens d'induction aptes à provoquer une pseudo-lévitation de la matière dans le tube de coulée.The document JPS61119368 describes a molding device suitable for molding an aluminum alloy and comprising a horizontal pouring tube and a piston comprising induction means capable of causing pseudo-levitation of the material in the pouring tube.

L'invention vise à résoudre les inconvénients de l'art antérieur et concerne à cette fin un dispositif pour la réalisation d'une pièce par moulage d'un BMG, lequel dispositif selon la revendication 1.The invention aims to resolve the drawbacks of the prior art and for this purpose relates to a device for producing a part by molding a BMG, which device according to claim 1.

Ainsi, la disposition verticale du creuset de fusion par rapport au moule, facilite l'automatisation du procédé de coulée en permettant de profiter de la gravité dans la mise en oeuvre de plusieurs opérations. Le creuset sectorisé permet d'éloigner la matière en fusion des parois du creuset et ainsi d'éviter toute contamination de celle-ci, alors que l'utilisation d'un piston sectorisé permet de mettre la charge en fusion en lévitation ou pseudo-lévitation par rapport audit piston par les composantes des forces de Laplace du champ magnétique créé par la circulation des courants induits sur les secteurs dudit piston. La charge en fusion n'étant pas en contact ni avec le creuset de fusion, ni avec le piston lors de la fusion et de la coulée, le dispositif objet de l'invention permet la mise en oeuvre de BMG comprenant des composants réactifs comme le titane ou le zirconium susceptibles d'interagir avec un creuset en matériau réfractaire. La charge ne se refroidit pas au contact du piston et ne crée pas de loup.Thus, the vertical arrangement of the melting crucible with respect to the mold facilitates the automation of the casting process by making it possible to take advantage of gravity in the implementation of several operations. The sectorized crucible makes it possible to remove the molten material from the walls of the crucible and thus to avoid any contamination thereof, while the use of a sectorized piston makes it possible to put the molten load in levitation or pseudo-levitation with respect to said piston by the components of the Laplace forces of the magnetic field created by the circulation of the currents induced on the sectors of said piston. Since the molten charge is not in contact either with the melting crucible or with the piston during melting and casting, the object device of the invention allows the use of BMG comprising reactive components such as titanium or zirconium capable of interacting with a crucible made of refractory material. The charge does not cool on contact with the piston and does not create a wolf.

L'invention est avantageusement mise en oeuvre selon les modes de réalisation et les variantes exposés ci-après, lesquels sont à considérer individuellement ou selon toute combinaison techniquement opérante.The invention is advantageously implemented according to the embodiments and the variants set out below, which are to be considered individually or according to any technically operative combination.

Avantageusement, les moyens pour mettre en communication le contenu du creuset de fusion avec la cavité moulante, comprennent un dispositif de déplacement vertical du piston. Ainsi, du fait de la disposition verticale du creuset de fusion par rapport au moule, ledit piston perrmet de réaliser la coulée par gravité ou par injection, toujours sans contact du piston avec la charge en fusion.Advantageously, the means for placing the contents of the melting crucible in communication with the molding cavity comprise a device for vertical displacement of the piston. Thus, due to the vertical arrangement of the melting crucible with respect to the mold, said piston makes it possible to carry out the casting by gravity or by injection, always without contact of the piston with the molten charge.

Ainsi, selon un premier mode de réalisation, le creuset de fusion est placé au-dessus de la cavité moulante et le piston se déplace vers le bas. Et selon un deuxième mode de réalisation le creuset de fusion est placé en-dessous de la cavité moulante et que le piston se déplace vers le haut.Thus, according to a first embodiment, the melting crucible is placed above the molding cavity and the piston moves downwards. And according to a second embodiment, the melting crucible is placed below the molding cavity and the piston moves upwards.

Avantageusement, le dispositif objet de l'invention comprend un canal, dit creuset d'injection entre le creuset de fusion et la cavité moulante. Ce mode de réalisation permet de placer le dispositif de fusion à l'extérieur des coquilles, la traversée de la coquille du dispositif de fusion vers l'empreinte étant réalisée par ce creuset d'injection.Advantageously, the device which is the subject of the invention comprises a channel, called an injection crucible, between the melting crucible and the molding cavity. This embodiment makes it possible to place the melting device outside the shells, the passage through the shell of the melting device towards the impression being made by this injection crucible.

Avantageusement, le dispositif objet de l'invention comprend une bobine entourant le creuset d'injection et alimentée en courant à haute fréquence. L'effet d'induction produit par cette bobine permet de conserver la charge en fusion en température jusqu'à son entrée dans la cavité moulante ainsi que d'éloigner ladite charge en fusion des parois du creuset d'injection.Advantageously, the device which is the subject of the invention comprises a coil surrounding the injection crucible and supplied with high frequency current. The induction effect produced by this coil makes it possible to keep the molten charge at temperature until it enters the molding cavity as well as to move said molten charge away from the walls of the injection crucible.

Avantageusement, le dispositif objet de l'invention comprend, selon un mode de réalisation compatible avec les précédents, une bobine d'injection et des moyens pour son alimentation électrique, aptes à produire une force électromagnétique pour l'injection de la matière en fusion contenue dans le creuset de fusion dans la cavité moulante. Ce mode de réalisation permet d'utiliser les forces de Laplace par ladite bobine afin d'injecter la matière en fusion dans le moule sans contact avec ladite matière au moment de l'injection.Advantageously, the device which is the subject of the invention comprises, according to an embodiment compatible with the previous ones, an injection coil and means for its electrical supply, capable of producing an electromagnetic force for the injection of the contained molten material. in the melting crucible in the molding cavity. This embodiment makes it possible to use the Laplace forces by said coil in order to inject the molten material into the mold without contact with said material at the time of injection.

Selon une première variante, la bobine d'injection est une bobine plate alimentée par une décharge de condensateurs. Ce mode de réalisation utilise une configuration similaire à ce qui est utilisé en magnétoformage pour appliquer sur la matière en fusion une force la dirigeant vers la cavité moulante.According to a first variant, the injection coil is a flat coil supplied by a discharge of capacitors. This embodiment uses a configuration similar to that used in magnetoforming to apply a force to the molten material directing it towards the molding cavity.

Selon une deuxième variante, compatible avec la première, la bobine d'injection comprend une bobine imbriquée dans la bobine formant la bobine de fusion, ladite bobine d'injection étant alimentée par un courant alternatif à haute fréquence déphasé par rapport au courant alternatif alimentant la bobine de fusion de sorte à créer un champ glissant. Ainsi l'action conjuguée de la bobine formant l'inducteur de fusion et de ladite bobine d'injection crée un champ glissant favorisant l'injection de la matière dans la cavité moulante.According to a second variant, compatible with the first, the injection coil comprises a coil nested in the coil forming the melting coil, said injection coil being supplied with a high-frequency alternating current out of phase with respect to the alternating current supplying the coil. fusion coil so as to create a sliding field. Thus the combined action of the coil forming the melting inductor and of said injection coil creates a sliding field favoring the injection of the material into the molding cavity.

Avantageusement, les secteurs du creuset de fusion et du piston son constitués d'acier inoxydable, procurant ainsi une pus grande durabilité que le cuivre, généralement utilisé à cette fin et permettant aussi d'alléger le piston pour un déplacement plus rapide de celui-ci lors du processus de coulée.Advantageously, the sectors of the melting crucible and of the piston are made of stainless steel, thus providing greater durability than copper, generally used for this purpose and also making it possible to lighten the piston for faster displacement thereof. during the casting process.

L'invention concerne également un procédé comme décrit dans la revendication 11 ci-jointe.The invention also relates to a method as described in claim 11 attached hereto.

Le dispositif de fusion du dispositif de moulage objet de l'invention, permet de conserver la charge en fusion à haute température jusqu'à l'injection, alors que le préchauffage du moule assure un bon écoulement de la matière lors de la coulée et un remplissage total de l'empreinte. Le piston sectorisé du dispositif objet de l'invention évite la création d'un loup à la surface dudit piston lors de la fusion et de la coulée et ainsi les opérations de nettoyage dudit piston. L'utilisation du chauffage par induction du moule permet de porter celui-ci rapidement à la température adéquate pour la coulée et ainsi d'enchaîner rapidement les cycles tout assurant un refroidissement efficace et rapide de la pièce après la coulée.The melting device of the molding device that is the subject of the invention makes it possible to keep the molten charge at high temperature until injection, while the preheating of the mold ensures good flow of the material during casting and a total filling of the impression. The sectorized piston of the device which is the subject of the invention prevents the creation of a wolf on the surface of said piston during fusion and the casting and thus the cleaning operations of said piston. The use of induction heating of the mold makes it possible to bring the latter quickly to the appropriate temperature for casting and thus to rapidly chain the cycles while ensuring efficient and rapid cooling of the part after casting.

Avantageusement, les étapes iii) et iv) sont réalisée de manière parallèle, de sorte à réduire encore le temps de cycle.Advantageously, steps iii) and iv) are carried out in parallel, so as to further reduce the cycle time.

L'invention est exposée ci-après selon ses modes de réalisation préférés, nullement limitatifs, et en référence aux figures 1 à 7, dans lesquelles :

  • la figure 1 représente, selon une vue en coupe un schéma de principe d'un mode de réalisation du dispositif objet de l'invention, avec un dispositif de fusion placé au-dessus du moule, au cours de la fusion de la charge ;
  • la figure 2 montre le dispositif de la figure 1 en début de coulée ;
  • la figure 3 est un schéma de principe, selon une vie en coupe, d'un autre mode de réalisation du dispositif objet de l'invention dans lequel le dispositif de fusion est placé en-dessous du moule ;
  • la figure 4 représente schématiquement selon un vue en perspective et en coupe partielle, un exemple de réalisation du piston sectorisé du dispositif objet de l'invention ;
  • la figure 5 est une vue en perspective d'un exemple de réalisation d'un secteur du piston tel que représenté figure 4 ;
  • la figure 6 montre un synopsis du procédé objet de l'invention ;
  • et la figure 7, représente selon une vue partielle du dispositif de fusion, correspondant à la coupe représentée figures 1 et 2, un exemple de réalisation du dispositif objet de l'invention comprenant un piston d'injection.
The invention is explained below according to its preferred embodiments, which are in no way limiting, and with reference to figures 1 to 7 , in which :
  • the figure 1 shows, in a sectional view a block diagram of an embodiment of the device according to the invention, with a melting device placed above the mold, during the melting of the load;
  • the figure 2 shows the device of the figure 1 at the start of casting;
  • the figure 3 is a block diagram, according to a sectional life, of another embodiment of the device according to the invention in which the melting device is placed below the mold;
  • the figure 4 shows schematically in a perspective view and in partial section, an exemplary embodiment of the sectorized piston of the device which is the subject of the invention;
  • the figure 5 is a perspective view of an exemplary embodiment of a piston sector as shown figure 4 ;
  • the figure 6 shows a synopsis of the method which is the subject of the invention;
  • and the figure 7 , shows a partial view of the melting device, corresponding to the section shown figures 1 and 2 , an exemplary embodiment of the device which is the subject of the invention comprising an injection piston.

Les dessins des figures 1 à 5 et 7 sont des représentations de principe du dispositif objet de l'invention, destinées à la compréhension du fonctionnement des moyens essentiels de l'invention. Sur toutes ces figures, l'axe y représente la direction verticale de bas en haut. Pour ne pas surcharger les figures, les moyens d'alimentation des inducteurs et des bobines n'ont pas été représentés.The drawings of figures 1 to 5 and 7 are principle representations of the device which is the subject of the invention, intended for understanding the operation of the essential means of the invention. In all these figures, the y axis represents the vertical direction from bottom to top. In order not to overload the figures, the means for supplying the inductors and coils have not been shown.

Figure 1, le dispositif est représenté pendant la phase de fusion du BMG. Selon un exemple de réalisation, le dispositif objet de l'invention comprend un moule en deux parties (101, 102), ou plus, séparables qui, fermées, définissent une cavité moulante (110) étanche. Des moyens d'étanchéité (103) permettent d'assurer l'étanchéité de la cavité sous un vide primaire, et sous une légère surpression d'un gaz neutre. Les deux parties (101, 102) du moule sont par exemple fixées sur les plateaux d'une presse afin de permettre l'ouverture et la fermeture du moule. Au moins l'une (101) des parties du moule comprend des moyens de chauffage des surfaces de la cavité moulante (110), sous la forme d'inducteurs (120) s'étendant dans des conduits pratiqués dans le moule. Ledits inducteurs sont par exemple constitués par des tubes de cuivre ou des câbles de cuivre multibrin de section adaptée au courant électrique d'induction utilisé. Les inducteurs (120) sont connectés à un générateur de courant à haute fréquence (non représenté). Les deux parties (101, 102) du moule sont constituées d'un matériau métallique, par exemple en acier ou en cuivre. Dans le cas où le matériau constituant lesdites parties du moule n'est pas ferromagnétique, par exemple si ces parties sont constituées de cuivre, les surfaces des conduits recevant les inducteurs (120) sont revêtues d'un matériau ferromagnétique, par exemple par du nickel. L'épaisseur de la couche de revêtement est fonction de la puissance de chauffage et de la fréquence du courant alimentant les inducteurs, elle est typiquement comprise entre 0,1mm et 1mm. Lorsque lesdits inducteurs (120) sont alimentés par un courant alternatif à haute fréquence, ils chauffent les parois des conduits, et la chaleur ainsi produite se propage par conduction jusqu'aux surfaces de la cavité moulante (110). Typiquement les inducteurs de chauffage du moule sont alimentés par un courant alternatif d'une fréquence comprise entre 10KHz et 200KHz par un générateur d'une puissance comprise entre 10 KW et 100 KW sans que ces valeurs ne soient limitatives, Au moins une des parties du moule comprend des canaux (125) pour la circulation d'un fluide caloporteur et le refroidissement de la cavité moulante (110). Selon des exemples de réalisation, le fluide caloporteur est un liquide tel que de l'eau ou de l'huile, ou un gaz. Selon cet exemple de réalisation, les canaux de refroidissement (125) sont placés entre la cavité moulante et les inducteurs, au plus près de la surface de la cavité moulante de sorte à en assurer un refroidissement rapide et un fort taux d'amorphisation. La position des inducteurs, la puissance de chauffage installée, le nombre et la répartition des canaux de refroidissement ainsi que le débit de fluide caloporteur nécessaire au refroidissement, sont par exemple déterminés par simulation numérique des cycles de chauffage et de refroidissement du moule. Figure 1 , the device is shown during the melting phase of the BMG. According to an exemplary embodiment, the device which is the subject of the invention comprises a mold in two parts (101, 102), or more, which can be separated which, when closed, define a cavity. tight (110) waterproof. Sealing means (103) make it possible to seal the cavity under a primary vacuum, and under a slight overpressure of a neutral gas. The two parts (101, 102) of the mold are for example fixed on the plates of a press in order to allow the opening and the closing of the mold. At least one (101) of the parts of the mold comprises means for heating the surfaces of the molding cavity (110), in the form of inductors (120) extending in ducts made in the mold. These inductors are for example formed by copper tubes or multi-strand copper cables of cross section adapted to the electric induction current used. The inductors (120) are connected to a high frequency current generator (not shown). The two parts (101, 102) of the mold are made of a metallic material, for example steel or copper. In the case where the material constituting said parts of the mold is not ferromagnetic, for example if these parts are made of copper, the surfaces of the conduits receiving the inductors (120) are coated with a ferromagnetic material, for example with nickel . The thickness of the coating layer depends on the heating power and the frequency of the current supplied to the inductors, it is typically between 0.1mm and 1mm. When said inductors (120) are supplied with high frequency alternating current, they heat the walls of the conduits, and the heat thus produced is propagated by conduction to the surfaces of the molding cavity (110). Typically the heating inductors of the mold are supplied with an alternating current with a frequency between 10KHz and 200KHz by a generator with a power between 10 KW and 100 KW without these values being limiting, At least one of the parts of the mold comprises channels (125) for the circulation of a heat transfer fluid and the cooling of the molding cavity (110). According to exemplary embodiments, the heat transfer fluid is a liquid such as water or oil, or a gas. According to this exemplary embodiment, the cooling channels (125) are placed between the molding cavity and the inductors, as close as possible to the surface of the molding cavity so as to ensure rapid cooling and a high degree of amorphization. The position of the inductors, the installed heating power, the number and distribution of the cooling channels as well as the heat transfer fluid flow rate necessary for cooling, are for example determined by numerical simulation of the mold heating and cooling cycles.

Des moyens (130) permettent de tirer la cavité moulante au vide et d'y introduire un gaz neutre, tel que de l'argon de sorte à créer dans celle-ci une légère surpression par rapport à la pression atmosphérique.Means (130) make it possible to draw the molding cavity to a vacuum and to introduce therein a neutral gas, such as argon, so as to create therein a slight overpressure with respect to atmospheric pressure.

Ledit moule comprend un dispositif de fusion (150), situé au dessus du moule, selon cet exemple de réalisation. Ce dispositif est en communication avec la cavité moulante et confiné dans une enceinte (155) assemblée de manière étanche avec le moule de sorte que le tirage au vide de la cavité moulante place également le dispositif de fusion sous vide, et qu'il soit également en légère surpression dans le cas de l'injection d'un gaz neutre. Ce dispositif de fusion (150) comprend un creuset de fusion (160) entouré par une bobine (165) de fusion alimentée par un générateur de courant à très haute fréquence. Ledit creuset de fusion (160) est un creuset sectorisé, de forme générale cylindrique comprenant une pluralité de secteurs creux (161), s'étendant le long de l'axe du cylindre et isolés électriquement les uns des autres. Lesdits secteurs sont constitués d'un matériau métallique non magnétique, par exemple du cuivre ou un acier inoxydable. Des moyens de refroidissement (170) permettent de faire circuler un fluide caloporteur dans lesdits secteurs creux, afin de les refroidir. Selon un exemple de réalisation, la partie du creuset de fusion communiquant avec la cavité moulante (110) est, pendant la fusion, fermée par un piston (180), connecté à une tige de manoeuvre (185) pour escamoter celui-ci. Le dispositif comprend à cette fin des moyens (186) agissant sur la tige de manoeuvre, tels qu'un système pignon crémaillère, un vérin électrique, un moteur linéaire ou tout autre moyen connu de l'art antérieur pour réaliser le déplacement du piston et de la tige de manoeuvre.Said mold comprises a melting device (150), located above the mold, according to this exemplary embodiment. This device is in communication with the molding cavity and confined in an enclosure (155) sealingly assembled with the mold so that the evacuation of the molding cavity also places the melting device under vacuum, and that it is also in slight overpressure in the case of the injection of a neutral gas. This melting device (150) comprises a melting crucible (160) surrounded by a melting coil (165) supplied by a very high frequency current generator. Said melting crucible (160) is a sectored crucible, of generally cylindrical shape comprising a plurality of hollow sectors (161), extending along the axis of the cylinder and electrically isolated from one another. Said sectors are made of a non-magnetic metallic material, for example copper or stainless steel. Cooling means (170) make it possible to circulate a heat transfer fluid in said hollow sectors, in order to cool them. According to an exemplary embodiment, the part of the melting crucible communicating with the molding cavity (110) is, during the melting, closed by a piston (180), connected to an operating rod (185) to retract the latter. To this end, the device comprises means (186) acting on the operating rod, such as a rack pinion system, an electric cylinder, a linear motor or any other means known from the prior art for carrying out the displacement of the piston and of the operating rod.

Ledit piston (180) constitue, au cours de la fusion de la matière (190) une sole vis-à-vis du creuset de fusion (160). Toutefois, ledit piston (180) est sectorisé et comprend, de manière similaire au creuset de fusion, une pluralité de secteurs creux, constitués d'un matériau métallique électriquement conducteur et isolés électriquement les uns des autres. Des moyens (175) permettent de réaliser une circulation de fluide dans les secteurs creux du piston, par exemple à travers la tige de manoeuvre de sorte à refroidir ceux-ci. À la différence d'une simple sole, la configuration sectorisée et la nature électriquement conductrice des secteurs du piston (180), permet, par la circulation des courants induits dans ses secteurs lors de l'alimentation de la bobine (165) de fusion, de créer des forces de Laplace, repoussant la charge en fusion de la surface du piston (180) se trouvant dans le creuset de fusion. Ainsi, la charge en fusion (190) se trouve en lévitation ou en pseudo-lévitation électromagnétique dans le creuset, sans contact avec les parois.Said piston (180) constitutes, during the melting of the material (190) a hearth vis-à-vis the melting crucible (160). However, said piston (180) is sectored and comprises, similarly to the melting crucible, a plurality of hollow sectors, made of an electrically conductive metallic material and electrically insulated from each other. Means (175) allow fluid to circulate in the hollow sectors of the piston, for example through the operating rod so as to cool the latter. Unlike a simple sole, the sectorized configuration and the electrically conductive nature of the sectors of the piston (180), by the circulation of the currents induced in its sectors during the supply of the fusion coil (165), to create Laplace forces, repelling the charge molten surface of the piston (180) in the melting crucible. Thus, the molten charge (190) is levitated or in electromagnetic pseudo-levitation in the crucible, without contact with the walls.

La disposition du creuset de fusion en position verticale au-dessus du moule, permet de charger le creuset par gravité, le moule étant fermé. La charge est constituée de granules du matériau constitutif du BMG, ou de plusieurs matériaux dont l'alliage constitue le BMG, l'alliage étant réalisé pendant la fusion. Selon une autre variante, la charge est constitué d'un seul lopin solide, tel qu'un cylindre.The arrangement of the melting crucible in a vertical position above the mold makes it possible to load the crucible by gravity, the mold being closed. The filler consists of granules of the constituent material of the BMG, or of several materials whose alloy constitutes the BMG, the alloy being produced during the melting. According to another variant, the charge consists of a single solid piece of land, such as a cylinder.

La charge solide étant introduite dans la creuset de fusion, celui-ci étant fermé à son extrémité inférieure par le piston (180) et le moule étant fermé, l'ensemble étant tiré au vide, la bobine de fusion (165) est alimentée en courant à très haute fréquence. Alternativement, après le tirage au vide, un gaz neutre est introduit dans la cavité moulante et dans l'enceinte comprenant le creuset de fusion. Les courants induits chauffent ladite charge qui entre en fusion. La nature sectorisée du creuset et le champ magnétique qui en résulte, éloigne la charge en fusion des parois du creuset, tout comme des parois du piston (180), lui même sectorisé. La mise en fusion de la charge est extrêmement rapide du fait de son chauffage direct par l'induction. Les forces de Laplace générées maintiennent la charge en fusion écartée des parois du creuset et du piston, le circulation des courants induits dans la charge en fusion, assurent aussi un brassage de ladite charge, ce qui permet d'assurer son homogénéité particulièrement lorsque celle-ci comprend plusieurs éléments d'alliages de masses spécifiques différentes.The solid charge being introduced into the melting crucible, the latter being closed at its lower end by the piston (180) and the mold being closed, the assembly being drawn under vacuum, the melting coil (165) is supplied with very high frequency current. Alternatively, after the evacuation, a neutral gas is introduced into the molding cavity and into the enclosure comprising the melting crucible. The induced currents heat said charge which melts. The sectorized nature of the crucible and the magnetic field which results from it, moves the molten charge away from the walls of the crucible, as well as from the walls of the piston (180), itself sectorized. The melting of the charge is extremely rapid due to its direct heating by induction. The Laplace forces generated keep the molten charge away from the walls of the crucible and the piston, the circulation of the currents induced in the molten charge, also ensure a stirring of said charge, which makes it possible to ensure its homogeneity, particularly when the latter. this comprises several alloying elements of different specific masses.

Selon cet exemple de réalisation, une bobine plate (166) connectée à une série de condensateurs et placée juste au-dessus du creuset de fusion.According to this exemplary embodiment, a flat coil (166) connected to a series of capacitors and placed just above the melting crucible.

Figure 2, le dispositif de la figure 1, est représenté au cours de la phase d'injection. La charge étant fondue, pour réaliser l'injection, la cavité moulante est préalablement chauffée, au moyen des inducteurs (120) pour l'amener à une température égale ou légèrement inférieure à la température de transition vitreuse du BMG. Selon cet exemple de réalisation, où le dispositif de fusion est placé au-dessus du moule, le piston (180 ) est escamoté dans le moule en déplaçant celui-ci vers le bas par sa tige de manoeuvre (185) libérant ainsi le passage vers le cavité moulante (110). La charge en fusion (190) s'écoule alors par gravité dans la cavité moulante. Les surfaces de ladite cavité moulante ayant été préchauffées, la matière en fusion s'écoule dans la cavité en conservant une fluidité suffisante pour la remplir entièrement. Un dispositif de commande électronique (non représenté) permet de synchroniser et de séquencer, l'alimentation de la bobine de fusion, le chauffage de la cavité moulante, l'escamotage du piston, l'arrêt de l'alimentation de la bobine de fusion et le refroidissement du moule. Figure 2 , the device of the figure 1 , is shown during the injection phase. The charge being melted, to perform the injection, the molding cavity is heated beforehand, by means of the inductors (120) to bring it to a temperature equal to or slightly lower than the glass transition temperature of the BMG. According to this exemplary embodiment, where the fusion device is placed above of the mold, the piston (180) is retracted into the mold by moving the latter downwards by its operating rod (185) thus freeing the passage towards the molding cavity (110). The molten charge (190) then flows by gravity into the molding cavity. The surfaces of said molding cavity having been preheated, the molten material flows into the cavity while retaining sufficient fluidity to fill it entirely. An electronic control device (not shown) makes it possible to synchronize and sequence, the supply of the melting coil, the heating of the molding cavity, the retraction of the piston, the stopping of the supply of the melting coil and cooling the mold.

Selon un mode de réalisation avantageux, la bobine plate (166) est alimentée par la décharge des condensateurs de manière synchronisée avec la descente du piston (180). L'alimentation de ladite bobine plate (166) crée une force électromagnétique agissant sur la charge en fusion, qui pousse ladite charge vers la cavité moulante.According to an advantageous embodiment, the flat coil (166) is supplied by the discharge of the capacitors in a manner synchronized with the descent of the piston (180). Feeding said flat coil (166) creates an electromagnetic force acting on the molten charge, which pushes said charge towards the mold cavity.

Selon un mode de réalisation avantageux, une bobine d'injection (266) est imbriquée dans la bobine de fusion et alimentée au moment de l'injection par un courant alternatif à haute fréquence simultanément à l'alimentation de la bobine (165), les deux bobines (165, 266) étant alimentées par des courants alternatifs déphasés, de sorte à créer un champ glissant qui tende à éjecter la charge en fusion du creuset de fusion vers la cavité moulante.According to an advantageous embodiment, an injection coil (266) is nested in the melting coil and supplied at the time of injection by a high-frequency alternating current simultaneously with the supply of the coil (165), the two coils (165, 266) being supplied with phase-shifted alternating currents, so as to create a sliding field which tends to eject the molten charge from the melting crucible towards the molding cavity.

L'utilisation d'une telle bobine d'injection, est, selon un mode de réalisation, complémentaire à l'utilisation de la bobine plate, pour réaliser l'injection de la charge en fusion dans la cavité moulante.The use of such an injection coil is, according to one embodiment, complementary to the use of the flat coil, for injecting the molten charge into the molding cavity.

Selon un mode de réalisation, le creuset de fusion (160) est prolongé par un creuset ou cylindre d'injection (260) lequel est avantageusement entouré par une bobine (265) alimentée par un courant à haute fréquence et formant un inducteur. Ledit creuset d'injection est par exemple constitué d'un matériau réfractaire transparent au champ électromagnétique, sans que cette configuration ne soit limitative. Ce creuset d'injection permet de traverser l'épaisseur de la partie du moule séparant la le creuset de fusion (160) de la cavité moulante, tout en conservant la charge en fusion suffisamment chaude. Ainsi, l'alimentation électrique de la bobine (265) entourant le creuset d'injection (260) a pour effet, d'une part, d'éloigner la charge en fusion (190) des parois du creuset d'injection (260) et d'autre part de conserver, par l'effet de chauffage inductif, la charge en fusion à une température suffisante avant son entrée dans la cavité moulante.According to one embodiment, the melting crucible (160) is extended by an injection crucible or cylinder (260) which is advantageously surrounded by a coil (265) supplied with a high frequency current and forming an inductor. Said injection crucible is for example made of a refractory material transparent to the electromagnetic field, without this configuration being limiting. This injection crucible makes it possible to pass through the thickness of the part of the mold separating the melting crucible (160) from the molding cavity, while keeping the molten charge sufficiently hot. Thus, the power supply to the coil (265) surrounding the injection crucible (260) has the effect, on the one hand, of moving the molten charge (190) of the walls of the injection crucible (260) and on the other hand to keep, by the effect of inductive heating, the molten charge at a sufficient temperature before it enters the molding cavity.

L'alimentation de l'inducteur d'injection, de la bobine plate (166), de la bobine d'injection (266), de la bobine (265) entourant le creuset d'injection (260) ainsi que le mouvement du piston sont pilotés, séquencés et synchronisés, par des moyens électroniques, par exemple par un automate programmable (non représenté).The supply of the injection inductor, the flat coil (166), the injection coil (266), the coil (265) surrounding the injection crucible (260) as well as the movement of the piston are controlled, sequenced and synchronized, by electronic means, for example by a programmable controller (not shown).

Figure 7, selon un autre mode de réalisation, le dispositif objet de l'invention comprend un piston (760) apte à pousser la charge (190) dans la cavité moulante. Ledit piston comprend une tête (762) et une tige de manoeuvre (761) pour son déplacement vertical, ledit déplacement étant réalisé par un verin, électrique, hydraulique ou pneumatique agissant sur ladite tige (761), par un système pignon crémaillère, un moteur linéaire ou tout autre moyen adapté. La tête (762) du piston est, selon des exemples de réalisation, une tête pleine ou une tête creuse, constituée d'un matériau ferromagnétique ou revêtue d'un matériau ferromagnétique. Manoeuvrée par la tige de manoeuvre (761), ladite tête (762) se déplace axialement dans le creuset de fusion, où elle est soumise à l'effet des courants induits générés par l'inducteur (165) de fusion. La réponse de la matière constituant la tête de piston ou son revêtement aux courants induits, provoque l'échauffement rapide de la surface de ladite tête. Selon un exemple de réalisation, ladite tête (762) est en outre refroidie par la circulation d'un fluide caloporteur mis en circulation par des moyens (non représenté) entre la tige de manoeuvre (761) et la tête du piston. Le dimensionnement de la tête de piston, sa constitution et l'éventuel refroidissement de celle-ci, permettent de porter la surface de la tête de piston en contact avec la charge en fusion (190) lors de la coulée, à) une température telle que celle-ci soit suffisamment élevée pour ne pas créer un loup à la surface de ladite tête et suffisamment faible pour ne pas engendrer de phénomène de collage ou de soudure de la matière en fusion sur ladite tête. Figure 7 , according to another embodiment, the device which is the subject of the invention comprises a piston (760) capable of pushing the load (190) into the molding cavity. Said piston comprises a head (762) and an operating rod (761) for its vertical displacement, said displacement being carried out by a jack, electric, hydraulic or pneumatic acting on said rod (761), by a rack pinion system, a motor linear or any other suitable means. The head (762) of the piston is, according to exemplary embodiments, a solid head or a hollow head, made of a ferromagnetic material or coated with a ferromagnetic material. Maneuvered by the operating rod (761), said head (762) moves axially in the melting crucible, where it is subjected to the effect of the induced currents generated by the melting inductor (165). The response of the material constituting the piston head or its coating to the induced currents, causes rapid heating of the surface of said head. According to an exemplary embodiment, said head (762) is further cooled by the circulation of a heat transfer fluid circulated by means (not shown) between the operating rod (761) and the head of the piston. The dimensioning of the piston head, its constitution and the possible cooling thereof, make it possible to bring the surface of the piston head in contact with the molten load (190) during casting, at) a temperature such as: that this is high enough not to create a wolf on the surface of said head and low enough not to cause the phenomenon of sticking or welding of the molten material on said head.

Selon des variantes de combinaison de ces modes de réalisation exposés ciavant, le dispositif objet de l'invention, permet la coulée par gravité simple et ne comprend à cette fin que le piston segmenté (180), ou une coulée par gravité assistée par un champs magnétique, combinaison comprenant le piston segmenté (180) associé à la bobine d'injection (266) et/ou la bobine plate (166). Selon une autre variante correspondant à une injection mécanique, le dispositif objet de l'invention comprend le piston segmenté (180) escamotable faisant office de sole en partie inférieure du creuset de fusion et un piston d'injection (760) poussant la charge dans l'empreinte. Selon une autre variante de ce dernier mode de réalisation comprenant un piston d'injection (760), le dispositif objet de l'invention comprend en plus une bobine d'injection (266) apte à créer un champ magnétique glissant.According to variant combinations of these embodiments described above, the device which is the subject of the invention allows simple gravity casting and for this purpose only comprises the segmented piston (180), or gravity casting assisted by a field. magnetic, combination including segmented piston (180) associated with the injection coil (266) and / or the flat coil (166). According to another variant corresponding to a mechanical injection, the device which is the subject of the invention comprises the segmented piston (180) which can be retracted acting as a sole in the lower part of the melting crucible and an injection piston (760) pushing the charge into it. 'footprint. According to another variant of the latter embodiment comprising an injection piston (760), the device which is the subject of the invention further comprises an injection coil (266) capable of creating a sliding magnetic field.

Après le remplissage de la cavité moulante, la circulation d'un fluide caloporteur dans les canaux de refroidissement (125) du moule permet de refroidir rapidement la cavité moulante et la pièce qu'elle contient, assurant ainsi un fort taux d'amorphisation de celle-ci. Le moule est ensuite ouvert, la pièce démoulée et le cycle reprend.After filling the molding cavity, the circulation of a heat transfer fluid in the cooling channels (125) of the mold makes it possible to rapidly cool the molding cavity and the part it contains, thus ensuring a high rate of amorphization of the mold. -this. The mold is then opened, the part removed from the mold and the cycle resumes.

Bien que les figures 1 et 2 représentent le dispositif objet de l'invention dans un mode de réalisation comprenant un creuset d'injection et des bobines (166, 266) permettant de favoriser l'injection de la charge en fusion dans la cavité moulante, l'homme du métier comprend que ces caractéristiques sont des perfectionnements et ne sont pas indispensables au fonctionnement du dispositif objet de i'invention, le simple déplacement du piston (180) permettant de réaliser la coulée par gravité, celle-ci étant éventuellement assistée par l'effet mécanique d'un piston d'injection. Dans ce cas, le dispositif de fusion est placé, par exemple, directement dans la partie inférieure (102) du moule, de manière similaire au mode de réalisation représenté figure 3, mais avec le piston (180) positionné sous le creuset de fusion, du côté de la cavité moulante (110).even though figures 1 and 2 represent the device which is the subject of the invention in an embodiment comprising an injection crucible and coils (166, 266) making it possible to promote the injection of the molten charge into the molding cavity, the person skilled in the art understands that these characteristics are improvements and are not essential to the operation of the device which is the subject of the invention, the simple movement of the piston (180) making it possible to carry out the casting by gravity, the latter possibly being assisted by the mechanical effect of a injection piston. In this case, the melting device is placed, for example, directly in the lower part (102) of the mold, similarly to the embodiment shown. figure 3 , but with the piston (180) positioned under the melting crucible, on the side of the molding cavity (110).

Figure 3, selon un autre mode de réalisation du dispositif objet de l'invention, le dispositif de fusion (350) est positionné verticalement sous la cavité moulante (310) du moule. De manière similaire aux autres modes de réalisation, le moule comprend au moins deux parties (301, 302) séparables et des moyens d'étanchéité (303) associés, de sorte qu'à la fermeture du moule, lesdites parties définissent entre elles une cavité moulante (310) étanche, susceptible d'être tirée au vide par des moyens appropriés, et d'être remplie par un gaz neutre en légère surpression. Les deux parties (301, 302) du moule sont par exemple montées sur les plateaux d'une presse, qui permet l'ouverture et la fermeture du moule. Au moins l'une (301) des parties du moule comprend avantageusement des moyens de chauffage des surfaces de la cavité moulante (310), par exemple sous la forme d'inducteurs (320) s'étendant dans des conduits pratiqués dans le moule. Au moins l'une des parties du moule comprend avantageusement des canaux (325) de refroidissement (325) permettant de refroidir rapidement la cavité moulante (310). Figure 3 , according to another embodiment of the device which is the subject of the invention, the melting device (350) is positioned vertically under the molding cavity (310) of the mold. Similarly to the other embodiments, the mold comprises at least two separable parts (301, 302) and associated sealing means (303), so that when the mold is closed, said parts define between them a cavity tight fitting (310), capable of being evacuated by suitable means, and of being filled with a neutral gas at a slight overpressure. The two parts (301, 302) of the mold are for example mounted on the plates of a press, which allows the opening and closing of the mold. At least one (301) of the parts of the mold advantageously comprise means for heating the surfaces of the molding cavity (310), for example in the form of inductors (320) extending in ducts made in the mold. At least one of the parts of the mold advantageously comprises cooling channels (325) making it possible to rapidly cool the molding cavity (310).

La disposition verticale du dispositif de fusion (350) sous le moule, permet de délivrer la charge dans ledit dispositif de fusion par gravité, moule ouvert. Le dispositif de fusion (350) comprend un creuset de fusion (360) sectorisé et refroidi comprenant de secteurs creux, par exemple constitués d'un acier inoxydable et isolés électriquement les uns des autres. Le creuset de fusion (360) est en communication avec la cavité moulante (310) par son extrémité supérieure, et fermé à son extrémité inférieure, par un piston (380) sectorisé. Ledit piston sectorisé est fixé sur une tige de manoeuvre (385) et des moyens de manoeuvre (386) permettent de déplacer verticalement ladite tige de manoeuvre (386) et par suite ledit piston (380). Une bobine d'induction (365) dite bobine de fusion, connectée à un générateur de courant à haute fréquence (non représenté) permet de générer un champ magnétique alternatif à haute fréquence dans le creuset de fusion et mettre en fusion la charge (190) qu'il contient. Le dispositif de fusion (350) est inséré dans une enceinte (355) étanche.The vertical arrangement of the melting device (350) under the mold makes it possible to deliver the charge into said gravity melting device, with the mold open. The melting device (350) comprises a sectorized and cooled melting crucible (360) comprising hollow sectors, for example made of a stainless steel and electrically insulated from each other. The melting crucible (360) is in communication with the molding cavity (310) by its upper end, and closed at its lower end, by a sectorized piston (380). Said sectorized piston is fixed to an operating rod (385) and operating means (386) allow said operating rod (386) to be moved vertically and consequently said piston (380). An induction coil (365) called a melting coil, connected to a high-frequency current generator (not shown) makes it possible to generate a high-frequency alternating magnetic field in the melting crucible and to melt the charge (190) it contains. The fusion device (350) is inserted in a sealed enclosure (355).

La charge solide étant placée dans le creuset de fusion, fermé par le piston sectorisé (380), le moule est fermé et tiré au vide. Selon la matière injectée, le tirage au vide est suivi de l'injection d'un gaz neutre dans la cavité moulant (310) et dans l'enceinte de fusion (355). L'alimentation de la bobine (365) de fusion permet de mettre la charge (190) en fusion. Les forces de Laplace résultant des courants induits circulant dans les secteurs du creuset de fusion (360) et du piston sectorisé (380), éloignent la charge en fusion de leurs parois, de sorte que ladite charge en fusion se trouve en lévitation ou pseudo-lévitation électromagnétique sans contact.The solid charge being placed in the melting crucible, closed by the sectorized piston (380), the mold is closed and vacuumed. Depending on the material injected, the evacuation is followed by the injection of an inert gas into the molding cavity (310) and into the melting chamber (355). Feeding the fusion coil (365) allows the charge (190) to melt. The Laplace forces resulting from the induced currents flowing in the sectors of the melting crucible (360) and of the sectorized piston (380), move the molten charge away from their walls, so that said molten charge is levitated or pseudo- contactless electromagnetic levitation.

Pour réaliser la coulée, le piston sectorisé (380) est déplacé vers le haut par les moyens (386) agissant sur la tige de manoeuvre (385), ce qui a pour effet de pousser la charge (190) dans la cavité moulante, toujours sans contact entre la dite charge et ledit piston (380). Le refroidissement du piston (380) est contrôlé de sorte que la température à la surface du piston susceptible d'entrer en contact avec la charge en fusion en pseudo-lévitation, soit suffisante pour éviter la création d'un loup, mais pas trop élevée pour éviter le collage ou la soudure de la charge en fusion à la surface dudit piston.To carry out the casting, the sectorized piston (380) is moved upwards by the means (386) acting on the operating rod (385), which has the effect of pushing the load (190) into the molding cavity, always without contact between said load and said piston (380). The cooling of the piston (380) is controlled so that the temperature at the surface of the piston likely to come into contact with the load in pseudo-levitation fusion, is sufficient to avoid the creation of a wolf, but not too high to avoid sticking or welding of the molten charge to the surface of said piston.

Préalablement à la coulée, les surfaces de la cavité moulante (310) sont portées à une température égale ou légèrement inférieure à la température de transition vitreuse du BMG mis en oeuvre, par l'alimentation en courant à haute fréquence des inducteurs (320), du moule, de sorte à favoriser un remplissage uniforme de l'empreinte. Puis, la cavité moulante est refroidie rapidement, par la circulation d'un fluide caloporteur dans les canaux de refroidissement (125) du moule. Le moule est alors ouvert, la pièce démoulée et le cycle reprend.Prior to casting, the surfaces of the molding cavity (310) are brought to a temperature equal to or slightly lower than the glass transition temperature of the BMG used, by the high-frequency current supply to the inductors (320), of the mold, so as to promote uniform filling of the impression. Then, the molding cavity is cooled rapidly, by the circulation of a heat transfer fluid in the cooling channels (125) of the mold. The mold is then opened, the part unmolded and the cycle resumes.

Selon une variante de ce mode de réalisation, le dispositif objet de l'invention comprend un creuset d'injection mettant en communication le creuset de fusion et la cavité moulante, et une bobine entourant ledit creuset d'injection permettant de conserver la température de la charge en fusion lors de son trajet entre le creuset de fusion et la cavité moulante.According to a variant of this embodiment, the device which is the subject of the invention comprises an injection crucible placing the melting crucible and the molding cavity in communication, and a coil surrounding said injection crucible making it possible to maintain the temperature of the molten charge as it travels between the melting crucible and the molding cavity.

Selon une variante de l'un quelconque des modes de réalisation du dispositif objet de l'invention, celui-ci comprend plusieurs dispositif de fusion et d'injection parallèles pour assurer un meilleur remplissage de l'empreinte.According to a variant of any one of the embodiments of the device which is the subject of the invention, the latter comprises several parallel fusion and injection devices to ensure better filling of the impression.

Figure 4, selon un exemple de réalisation, le piston (185, 385) comprend une pluralité de secteurs creux (481,..., 486) constitués d'acier inoxydable ou d'un autre matériau électriquement conducteur et non magnétique, ajourés à leurs deux extrémités latérales et isolés électriquement les uns des autres par une couche de matériau isolant, telle qu'une céramique. Ladite couche de matériau isolant assure également l'étanchéité entre les secteurs. Les secteurs sont liés à la tige de manoeuvre (185, 385) par l'intermédiaire d'une boîte à eau (490) constituée d'un matériau électriquement isolant. Ladite boîte à eau est en communication hydraulique avec des moyens de circulation fluide (non représentés) par l'intermédiaire d'un orifice (491) pratiqué dans la tige de manoeuvre, et répartie le fluide caloporteur dans tous les secteurs (481, ..., 486) pour assurer leur refroidissement. À cette fin, Lesdits secteur comprennent sur leur face inférieure, un orifice (493) mettant en contact l'intérieur du secteur avec la boîte à eau (490). Un second orifice (494) à l'extrémité radiale intérieure du secteur, met en communication l'intérieur de chaque secteur avec un orifice (492) pratiqué dans la tige de manoeuvre, lui même en communication hydraulique avec les moyens de circulation, ce qui permet la circulation d'un fluide caloporteur dans les secteurs du piston. Figure 4 , according to an exemplary embodiment, the piston (185, 385) comprises a plurality of hollow sectors (481, ..., 486) made of stainless steel or another electrically conductive and non-magnetic material, perforated at both of them side ends and electrically insulated from each other by a layer of insulating material, such as ceramic. Said layer of insulating material also provides sealing between the sectors. The sectors are linked to the operating rod (185, 385) by means of a water box (490) made of an electrically insulating material. Said water box is in hydraulic communication with fluid circulation means (not shown) via an orifice (491) made in the operating rod, and distributes the heat transfer fluid in all sectors (481, .. ., 486) to ensure their cooling. To this end, said sectors comprise on their underside, an orifice (493) bringing the interior of the sector into contact with the water box (490). A second orifice (494) at the inner radial end of the sector, communicates the interior of each sector with an orifice (492) made in the operating rod, itself in hydraulic communication with the circulation means, which allows the circulation of a heat transfer fluid in the sectors of the piston.

Figures 4 et 5, lorsqu'un tel secteur (486) du piston est placé dans le champ magnétique alternatif généré par la bobine de fusion du dispositif de fusion, des courants induits (500) circulent à sa surface sur tout son périmètre. Ces courants induits génèrent une force de Laplace orientée dans le sens des y positifs sur la figure 5, qui maintient la charge en fusion éloignée de la surface du piston. Figures 4 and 5 , when such a sector (486) of the piston is placed in the alternating magnetic field generated by the melting coil of the melting device, induced currents (500) circulate on its surface over its entire perimeter. These induced currents generate a Laplace force oriented in the direction of positive ys on the figure 5 , which keeps the molten charge away from the piston surface.

Figure 6, selon un exemple de mise en oeuvre du procédé objet de l'invention, quelque soit le mode de réalisation du dispositif, celui-ci comprend une première étape (610) de chargement du creuset de fusion. Cette étape est réalisée moule fermé ou moule ouvert dans le cas où le dispositif de fusion est placé au dessus du moule et moule ouvert lorsque le creuset est placé en dessous du moule Selon une étape de fermeture (620) le moule est fermé et la cavité moulante, ainsi que le creuset de fusion sont tirés au vide. Selon une variante, après le tirage au vide et éventuellement un balayage, consistant en une succession de tirages au vide et d'injection d'un gaz neutre, un gaz neutre tel que de l'argon est injecté dans la cavité moulante et l'enceinte du dispositif de fusion, ledit gaz étant en légère surpression par rapport à la pression atmosphérique. Selon une étape de fusion (630) le la charge est mise en fusion en alimentant la bobine de fusion du dispositif de fusion. De manière parallèle ou concomitante, le moule est préchauffé par les inducteurs au cours d'une étape de chauffage (640) afin de protée les surfaces de la cavité moulante à une température égale ou légèrement inférieure à la température de transition vitreuse du BMG. Le chauffage par induction permet d'atteindre un telle température en 1 minute ou moins selon la dimension de l'empreinte. Selon une étape de coulée (650) le piston est déplacé de haut en bas ou de bas en haut, selon le mode de réalisation du moule, et la bobine d'injection est alimentée, ainsi qu a bobine entourant le creuset d'injection, si le dispositif en est pourvus afin de remplir la cavité moulante préchauffée avec la matière en fusion. Selon les caractéristiques de l'opération, le chauffage de la cavité moulante est maintenu ou non durant l'étape de coulée. Selon une étape de refroidissement (660), l'alimentation des inducteurs du moule est arrêtée et le fluide caloporteur de refroidissement est mis en circulation dans les canaux de refroidissement du moule, procurant un refroidissement rapide de la pièce, jusqu'à ce que celle ci atteigne sa température de démoulage. Selon une étape de démoulage (670) le moule refroidi est ouvert, la pièce est démoulée, et le cycle reprend. Figure 6 , according to an exemplary implementation of the method which is the subject of the invention, whatever the embodiment of the device, the latter comprises a first step (610) of loading the melting crucible. This step is carried out with a closed mold or an open mold in the case where the melting device is placed above the mold and the mold open when the crucible is placed below the mold According to a closing step (620) the mold is closed and the cavity tight, as well as the melting crucible are evacuated. According to a variant, after the evacuation and possibly a sweep, consisting of a succession of evacuations and injection of a neutral gas, a neutral gas such as argon is injected into the molding cavity and the enclosure of the melting device, said gas being at a slight overpressure with respect to atmospheric pressure. According to a melting step (630) the feed is melted by supplying the melting coil of the melting device. In a parallel or concomitant manner, the mold is preheated by the inductors during a heating step (640) in order to protect the surfaces of the molding cavity at a temperature equal to or slightly lower than the glass transition temperature of the BMG. Induction heating achieves such a temperature in 1 minute or less depending on the size of the indentation. According to a casting step (650), the piston is moved from top to bottom or from bottom to top, depending on the embodiment of the mold, and the injection coil is supplied, as well as the coil surrounding the injection crucible, if the device is so provided in order to fill the preheated molding cavity with the molten material. Depending on the characteristics of the operation, the heating of the molding cavity is maintained or not during the casting step. According to a cooling step (660), the supply of the inductors of the mold is stopped and the coolant heat transfer fluid is circulated. in the cooling channels of the mold, providing rapid cooling of the part, until it reaches its demolding temperature. According to a demolding step (670), the cooled mold is opened, the part is demolded, and the cycle resumes.

En résumé, le procédé et le dispositif objets de l'invention permettent de réaliser des pièces en métal amorphe à haute cadence, plus particulièrement des pièces minces, tout en assurant un taux d'amorphisation élevé de celles-ci.In summary, the method and the device which are the subject of the invention make it possible to produce parts in amorphous metal at high speed, more particularly thin parts, while ensuring a high rate of amorphization thereof.

Claims (12)

  1. Device for producing a part by molding a bulk metal glass (BMG) alloy, comprising:
    a. a mold comprising two dies shells (101, 102, 301, 302) delimiting a sealed molding cavity (110, 310);
    b. a device for melting the bulk metal glass (BMG) alloy comprising:
    bi. a cold sectorized crucible (160, 360), called melting crucible, arranged vertically comprising hollow sectors (161) formed from an electrically conductive and
    non-magnetic material electrically insulated from one another;
    bii. an inductor (165, 365) in the form of a coil surrounding said melting crucible for heating the content thereof;
    biii. means for generating very high-frequency current for powering the inductor;
    c. means for connecting the content of the melting crucible (160, 360) with the molding cavity (110, 310) and casting the BMG;
    and comprising a sectorized piston (180, 380) forming the melting crucible (160, 360) at one of its ends, said piston comprises hollow sectors (481...486) made of an electrically conductive and non-magnetic material electrically insulated from one another, said piston (180, 360) being configured in such a way that when it is subjected to the alternating magnetic field of the inductor (165, 365) powered by the means for generating a high-frequency current, induced currents (500) circulate in the sectors of said piston (180, 380) and create a force that repels from the surface of the piston (180, 380) the bulk metal glass (BMG) alloy being located in the melting crucible, characterized in that it comprises induction heating means (120, 320) of the molding cavity (110, 310) and channels (125, 325) for circulating a coolant and cooling said molding cavity.
  2. Device according to claim 1, wherein the means for connecting the content of the melting crucible with the molding cavity (110, 310) comprise a device (186, 386) for vertical movement of the piston (180, 380).
  3. Device according to claim 2, wherein the melting crucible (160) is positioned above the molding cavity (110) and the piston (180) moves downwards.
  4. Device according to claim 2, wherein the melting crucible (360) is positioned below the molding cavity (310) and the piston (380) moves upwards.
  5. Device according to claim 2 or claim 3 comprising a channel, called injection crucible (260), between the melting crucible (160) and the molding cavity (110).
  6. Device according to claim 5, comprising a coil (265) surrounding the injection crucible and powered with high-frequency current.
  7. Device according to claim 5, comprising a coil, called injection coil (166, 266) and means for the electrical power supply thereof, suitable for producing an electromagnetic force for the injection of the molten material (190) contained in the melting crucible (160), into the molding cavity, through the injection crucible.
  8. Device according to claim 7, wherein the injection coil is a flat coil (166) powered by a capacitor discharge.
  9. Device according to claim 7, wherein the injection coil comprises a coil (266) imbricated in the coil forming the melting coil, said injection coil being powered by a high-frequency alternating current out of phase with respect to the alternating current powering the melting coil so as to create a sliding field.
  10. Device according to claim 1, wherein the sectors (481...486) of the melting crucible and the piston (180) are made of stainless steel.
  11. Method for molding a part from a bulk metal glass (BMG) alloy implementing a device according to claims 1 and comprising steps of:
    i. charging (610) the melting crucible (160, 360) closed by the sectorized piston (180, 380);
    ii. closing the mold (620) and evacuating the molding cavity and the melting crucible (160, 369);
    iii. melting the charge contained in the melting crucible (630) by means of the inductor, the sectorized piston (180, 380) being subjected to the magnetic field of said inductor;
    iv. preheating (640) the mold by means of the mold induction circuit (120, 320), so as to bring the surfaces of the molding cavity to a temperature equal to or slightly less than the glass transition temperature of the bulk metal glass (BMG) alloy;
    v. carrying out the casting (650) by moving the sectorized piston;
    vi. cooling the mold (660) by circulating a coolant in the cooling channels (125, 325) of the mold;
    vii. opening the mold and releasing the part (670).
  12. Method according to claim 11 wherein steps iii) and iv) are carried out in parallel.
EP18789433.2A 2017-10-25 2018-10-25 Process and apparatus for bulk metallic glass casting Active EP3700695B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1771119A FR3072768B1 (en) 2017-10-25 2017-10-25 METHOD AND DEVICE FOR MOLDING IN PARTICULAR A METAL GLASS
PCT/EP2018/079357 WO2019081687A1 (en) 2017-10-25 2018-10-25 Method and device for moulding, in particular a metallic glass

Publications (2)

Publication Number Publication Date
EP3700695A1 EP3700695A1 (en) 2020-09-02
EP3700695B1 true EP3700695B1 (en) 2021-10-13

Family

ID=61187578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18789433.2A Active EP3700695B1 (en) 2017-10-25 2018-10-25 Process and apparatus for bulk metallic glass casting

Country Status (6)

Country Link
US (1) US20210187602A1 (en)
EP (1) EP3700695B1 (en)
CN (1) CN111372705B (en)
FR (1) FR3072768B1 (en)
TW (1) TWI787369B (en)
WO (1) WO2019081687A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586818A (en) * 2019-09-04 2021-03-10 Castings Tech International Limited Casting apparatus
CN117483501B (en) * 2024-01-03 2024-04-19 燕山大学 Rod piece on-orbit forming mechanism and method based on induction auxiliary heating and magnetic fluid cooling

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112328A (en) * 1974-07-22 1976-01-30 Ono Atsumi HANJUTAIC HUZOYODAIKASUTOKI
JPH0683888B2 (en) * 1984-11-14 1994-10-26 マツダ株式会社 Pressure casting equipment
JPS61119368U (en) * 1985-01-11 1986-07-28
DE3923550C2 (en) * 1989-07-15 1997-10-23 Ald Vacuum Techn Gmbh Process and permanent mold for molding electrically conductive materials
JPH04100669A (en) * 1990-08-20 1992-04-02 Daido Steel Co Ltd Method and apparatus for squeezing molten metal
DE4320766C2 (en) * 1993-06-23 2002-06-27 Ald Vacuum Techn Ag Device for melting a solid layer of electrically conductive material
JP3049648B2 (en) * 1993-12-13 2000-06-05 日立金属株式会社 Pressure molding method and pressure molding machine
JPH09174219A (en) * 1995-12-25 1997-07-08 Hitachi Metals Ltd Sleeve for die casting and press-forming method
JPH10253260A (en) * 1997-03-10 1998-09-25 Shinko Electric Co Ltd Soft contact type cold crucible melting pot
JP2000088467A (en) * 1998-09-18 2000-03-31 Fuji Electric Co Ltd Floating melting apparatus
JP2001041661A (en) * 1999-07-27 2001-02-16 Kobe Steel Ltd Cold crucible induction melting device
EP1350415B1 (en) * 2001-01-08 2017-03-15 Inductotherm Corp. Induction furnace with improved efficiency coil system
WO2013158069A1 (en) * 2012-04-16 2013-10-24 Apple Inc. Injection molding and casting of materials using a vertical injection molding system
US20150298207A1 (en) * 2012-05-04 2015-10-22 Apple Inc. Inductive coil designs for the melting and movement of amorphous metals
FR2991902A1 (en) * 2012-06-18 2013-12-20 Roctool METHOD AND DEVICE FOR PREHEATING A MOLD IN PARTICULAR INJECTION MOLDING
JP6318150B2 (en) * 2012-06-19 2018-04-25 ロックツール Quick heating / cooling mold
US8833432B2 (en) * 2012-09-27 2014-09-16 Apple Inc. Injection compression molding of amorphous alloys
FR3005154B1 (en) * 2013-04-26 2015-05-15 Commissariat Energie Atomique ELECTROMAGNETICALLY INDUCED HEATING FURNACE, USE OF THE OVEN FOR FUSION OF A MIXTURE OF METAL (UX) AND OXIDE (S) REPRESENTATIVE OF A CORIUM
FR3015918A1 (en) * 2013-12-31 2015-07-03 Roctool DEVICE FOR HEATING A MOLD
US20150298296A1 (en) 2014-04-17 2015-10-22 Cynthia Cook Knife block with sharpening stones
CN204438766U (en) * 2015-02-04 2015-07-01 涿州凯莱金属材料有限公司 A kind of directional solidification magnetic suspension induction melting water jacketed copper crucible
FR3044748B1 (en) * 2015-12-03 2019-07-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives COLD HOLLOW OVEN HEATED BY TWO ELECTROMAGNETIC INDUCERS, USE OF THE OVEN FOR THE FUSION OF A MIXTURE OF METAL (UX) AND OXIDE (S) REPRESENTATIVE OF A CORIUM
US9821359B2 (en) * 2015-12-14 2017-11-21 Rasoul Jelokhani Niaraki High-speed hydraulic forming of metal and non-metal sheets using electromagnetic fields
JP6745642B2 (en) * 2016-05-10 2020-08-26 芝浦機械株式会社 Die casting machine and method for forming solid-liquid coexisting metal

Also Published As

Publication number Publication date
TWI787369B (en) 2022-12-21
CN111372705A (en) 2020-07-03
TW201923110A (en) 2019-06-16
FR3072768B1 (en) 2020-01-24
FR3072768A1 (en) 2019-04-26
EP3700695A1 (en) 2020-09-02
US20210187602A1 (en) 2021-06-24
WO2019081687A1 (en) 2019-05-02
CN111372705B (en) 2022-06-10

Similar Documents

Publication Publication Date Title
EP2861399B1 (en) Method and device for preheating a mold particularly intended for injection molding
EP3700695B1 (en) Process and apparatus for bulk metallic glass casting
EP0351327B1 (en) Method for fabrication of thixotrope metallic products by continuous casting
WO2010046582A1 (en) Device for converting materials using induction heating that enables preheating of the device
FR2688516A1 (en) Device for the manufacture of metals and metal alloys of high purity
EP1742870B1 (en) Method and installation for the production of blocks of a semiconductor material
FR3005154A1 (en) ELECTROMAGNETICALLY INDUCED HEATING FURNACE, USE OF THE OVEN FOR FUSION OF A MIXTURE OF METAL (UX) AND OXIDE (S) REPRESENTATIVE OF A CORIUM
EP0808680B1 (en) Apparatus for injecting or casting under pressure
EP3455045B1 (en) Method and device for heating a mould
FR2711034A1 (en) Levitation and melting apparatus and method of operation
FR2485414A1 (en) INSTALLATION FOR MANUFACTURING METAL POWDERS, IN PARTICULAR BY ATOMIZING A METAL JET, WITH THE USE OF A CASTING BASKET
EP3475012B1 (en) Directional solidification cooling furnace and cooling process using such a furnace
EP0242347A2 (en) Apparatus for metal slurry casting
CH616610A5 (en)
EP0100272B1 (en) Process and apparatus for the production of castings, and castings produced by this process
CA2033232A1 (en) Process and device for the continuous casting of composites having a metal matrix reinforced with refractory ceramic particles
BE1018999A5 (en) METHOD AND DEVICE FOR MANUFACTURING MAGNETRON CATHODIC SPUTTER TARGET.
EP0938450A1 (en) Method for manufacturing synthetic diamond and device for implementing this method
BE885996A (en) FUSION OVEN FOR RADIOACTIVE WASTE
BE450546A (en)
BE485806A (en)
BE559889A (en)
CA2192068A1 (en) Method and furnace for making a molten product
BE906039A (en) Device and method for casting metals in plastic phase - improving grain structure and reducing segregation
BE367801A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018025074

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22D0018020000

Ipc: F27D0011120000

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 17/20 20060101ALI20210304BHEP

Ipc: B22D 17/04 20060101ALI20210304BHEP

Ipc: F27B 14/06 20060101ALI20210304BHEP

Ipc: F27D 11/12 20060101AFI20210304BHEP

17Q First examination report despatched

Effective date: 20210330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROCTOOL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018025074

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1438471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018025074

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211025

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1438471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231027

Year of fee payment: 6

Ref country code: FR

Payment date: 20231027

Year of fee payment: 6

Ref country code: DE

Payment date: 20231027

Year of fee payment: 6

Ref country code: CH

Payment date: 20231102

Year of fee payment: 6

Ref country code: AT

Payment date: 20231027

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013