EP3676480B1 - Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly - Google Patents

Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly Download PDF

Info

Publication number
EP3676480B1
EP3676480B1 EP18769761.0A EP18769761A EP3676480B1 EP 3676480 B1 EP3676480 B1 EP 3676480B1 EP 18769761 A EP18769761 A EP 18769761A EP 3676480 B1 EP3676480 B1 EP 3676480B1
Authority
EP
European Patent Office
Prior art keywords
vane
fan
blade
turbomachine
nacelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18769761.0A
Other languages
German (de)
French (fr)
Other versions
EP3676480A1 (en
Inventor
Kevin Morgane LEMARCHAND
Norman Bruno André JODET
Guillaume Martin
Laurent SOULAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60302260&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3676480(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3676480A1 publication Critical patent/EP3676480A1/en
Application granted granted Critical
Publication of EP3676480B1 publication Critical patent/EP3676480B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/125Fluid guiding means, e.g. vanes related to the tip of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/38Arrangement of components angled, e.g. sweep angle

Definitions

  • the present invention relates to the field of turbomachines. It relates to a turbine engine blade and in particular a fan stator blade.
  • the invention also relates to an assembly comprising a nacelle and a fan casing secured to the nacelle and which is equipped with at least one stator vane and a turbomachine equipped with such a vane or such an assembly with a rectifier.
  • the natural evolution of multi-flow turbojets having a fan, in particular upstream, is to increase the propulsive efficiency via a reduction in the specific thrust, obtained by decreasing the compression ratio of the fan, which results in an increase in the rate dilution or BPR (for the English designation "Bypass Ratio"), which is the ratio between the mass flow of air through one or several veins surrounding the gas generator by the mass flow of air through the generator of gas, calculated at maximum thrust when the engine is stationary in an international standard atmosphere at sea level.
  • BPR for the English designation "Bypass Ratio”
  • the increase in the bypass ratio influences the diameter of the turbomachine which is constrained by a minimum ground clearance to be respected due to the integration of the turbomachine most often under the wing of an aircraft.
  • the increase in the bypass ratio takes place primarily on the diameter of the fan.
  • the fan is enveloped by a fan casing which surrounds the fan blades and which is connected to the gas generator by stator vanes known as rectifiers or outlet guide vanes for the English designation of "Outlet Guide”. Vanes” (signed OGV). These stator vanes are arranged radially from the casing of the gas generator, downstream of the fan vanes and make it possible to straighten the flow generated by the latter.
  • These blades must be arranged at a predetermined minimum axial distance from the fan blades so as to limit the acoustic interactions responsible for significant noise.
  • the predetermined axial distance between the blades determines the length of the fan casing. Added to this is the fact that the weight of the fan casing and in particular its length impact the drag of the turbomachine.
  • stator vane arranged downstream of the vanes of a fan.
  • This stator vane has a leading edge with an angle of deflection oriented upstream (along the longitudinal axis of the turbomachine) or a trailing edge with an angle of deflection oriented downstream (along the axis longitudinal of the turbomachine) so that the chord of these stator vanes varies from the root end to the head end. This influences the axial length of the blade and the mass thereof.
  • These stator vanes can also comprise a portion of their body with the leading edge and trailing edge having an angle of deflection oriented in the same direction, either upstream or downstream.
  • stator vanes the sag angle, formed between two segments of the leading edge or two segments of the trailing edge, forms an obtuse angle or an acute angle. That is, the sag angles of the leading and trailing edges form an abrupt change in direction. there is therefore no curvature between two segments of the leading edge or of the trailing edge.
  • An example of a stator vane illustrated in FIG. 8c of this document has a lower vane portion with an angle of inclination A which is completely opposite to that of the upper vane portion.
  • the object of the present invention is in particular to limit the drag of the turbomachine nacelle and to limit the mass of the assembly of propulsion while acting on the acoustic phenomena occurring in the vicinity of a stator vane.
  • a turbomachine stator blade having a longitudinal axis, the blade comprising a plurality of blade sections stacked radially with respect to the longitudinal axis along of a stacking line between a root end and a tip end, each blade section comprising a lower surface and an upper surface extending axially between an upstream leading edge and a downstream trailing edge and being tangentially opposed, between the leading and trailing edges of each blade section, a chord of profile of substantially constant length being formed between the tip end and the root end, and the stacking line having a curvature in a plane passing substantially through the longitudinal axis and through the stacking line, located in the vicinity of the leading end and oriented from downstream to upstream.
  • the shape of the stator vane with this curvature makes it possible to shorten the length of the nacelle surrounding the fan casing intended to carry this stator vane, which advantageously reduces the drag. It also makes it possible to reduce the noise generated towards the end of the blade tip when the latter is mounted in the nacelle.
  • the acoustic intensity increases with the proximity between the fan blades and the stator blades. The areas located around 75% of the height of the blade are particularly concerned by these interactions due to the speeds observed and the aerodynamic load involved. The profile of the stator blade thus makes it possible to maintain a minimum axial distance required towards the top of the stator vanes.
  • the curvature of the stacking line is continuous and progressive. Such a configuration reduces the formation of vortices which also generate noise. Indeed, a change abrupt would significantly influence the vortices that may form in the upper part of the dawn and which is a source of noise.
  • the curvature is located between 50% and 95% of the height of the blade between the root end and the tip end. This configuration makes it possible to act where the acoustic and speed interactions are the highest and where the aerodynamic load comes into play.
  • the shape of the blade is determined by the following relationship: 0.1 ⁇ (L2/L1) 50%H ⁇ H ⁇ 95%H ⁇ 0.5, L2 corresponding to the minimum distance between the leading edge of the blade and a line passing through the root end and the leading end of the blade, L1 corresponding to the length between this same line and the trailing edge of the stator vane and H being the height of the vane.
  • L2/L1 50%H ⁇ H ⁇ 95%H ⁇ 0.5
  • L2 corresponding to the minimum distance between the leading edge of the blade and a line passing through the root end and the leading end of the blade
  • L1 corresponding to the length between this same line and the trailing edge of the stator vane
  • H being the height of the vane.
  • the blade has a first root portion whose stacking line extends along a straight line and a second head portion whose stacking line includes the curvature. This configuration thus only modifies the upper part of the stator vane.
  • the stacking line extending along a straight line is inclined with respect to the longitudinal axis.
  • the leading edge has a concave portion and the trailing edge has a convex portion at the curvature.
  • the directions of the leading edge and trailing edge of the blade are substantially parallel to the direction of the stack line.
  • the invention also relates to an assembly comprising a dual-flow turbomachine nacelle extending along a longitudinal axis and a fan casing secured to the nacelle, the fan casing surrounding a fan and delimiting downstream of the fan an annular vein in which circulates an air flow, the fan casing comprising an annular row of stator vanes having any of the aforementioned characteristics arranged downstream of the fan vanes transversely in the annular stream.
  • acoustic gain of approximately 2 EPNdB (“Effective Perceived Noise” or “level of noise actually perceived, in decibels”) is observed.
  • the nacelle has a length substantially along the longitudinal axis of between 3000 and 3800 mm.
  • the nacelle has a length substantially along the longitudinal axis and the fan has a diameter, substantially along the radial axis, the ratio of the length of the nacelle to the diameter of the fan being between 1 and 3
  • the diameter of the fan is measured at the level of a leading edge, at the level of its fan blade tip.
  • the relative axial distance between a fan blade and a stator blade is determined by the following condition: (d/C) with d being the distance between a trailing edge of the fan and the leading edge of the stator blade, and C being the length of the axial chord of the fan blade, the curvature of the stacking line making it possible to verify the following relationship: (d/C) 50%H ⁇ H ⁇ 95% H > (d/C) 100%H , with H the height of the stator vane between the tip end and the root end.
  • (d/C) 50%H ⁇ H ⁇ 95%H is the distance between the trailing edge of the fan and the leading edge of the stator vane divided by the length of the axial chord of the stator vane between 50% and 95% of the stator vane height
  • (d/C) 100%H is the distance between the trailing edge of the fan and the leading edge of the split stator vane by the length of the axial chord of the fan blade at the tip of the fan blade rectifier.
  • (d/C) 100%H corresponds to the blade height at the contact between the stator blade and the fan casing.
  • the invention also relates to an assembly comprising a dual-flow turbomachine nacelle extending along a longitudinal axis and a fan casing secured to the nacelle, the fan casing surrounding a fan and delimiting downstream of the fan an annular vein in which circulates a flow of air, the nacelle comprising an annular row of stator vanes having any of the aforementioned characteristics arranged downstream of the fan vanes transversely in the annular stream and of which an end downstream of the tip end is located downstream of a downstream end of the fan casing.
  • EPNdB Effective Perceived Noise
  • the invention also relates to a turbomachine comprising at least one stator vane having at least any one of the aforementioned characteristics.
  • the figure 1 illustrates a turbomachine 100 for an aircraft to which the invention applies.
  • This turbomachine 100 is here a turbofan engine which extends along a longitudinal axis X.
  • the turbofan engine generally comprises an external nacelle 101 surrounding a gas generator 102 upstream of which a fan 103 is mounted.
  • upstream and downstream are defined with respect to the circulation of gases in the turbomachine 100.
  • the terms “upper” and “lower” are defined with respect to a radial axis Z perpendicular to the axis X and with regard to the distance from the longitudinal axis X.
  • a transverse axis Y is also perpendicular to the longitudinal axis X and to the radial axis Z.
  • the gas generator 102 comprises in this example, from upstream to downstream, a low pressure compressor 104, a high pressure compressor 105, a combustion chamber 106, a high pressure turbine 107 and a low pressure turbine 108.
  • the gas generator 102 is housed in an internal casing 109.
  • the fan 103 is streamlined here and is also housed in the nacelle 101.
  • the turbomachine comprises a fan casing 56 which surrounds the fan.
  • a retention casing 50 which surrounds the plurality of mobile fan blades 51 which extend radially from the fan shaft mounted along the longitudinal axis X.
  • the fan casing 56 and the retention casing 50 are integral with the nacelle 101 which envelops them.
  • the nacelle 101 has a generally cylindrical shape.
  • the fan casing 56 is located downstream of the retention casing 50 ensuring the retention of the fan blades 51.
  • the fan 103 compresses the air entering the turbomachine 100 which is divided into a hot flow circulating in an annular primary vein V1 which passes through the gas generator 102 and a cold flow circulating in an annular secondary vein V2 around the gas generator 102
  • the primary stream V1 and the secondary stream V2 are separated by an annular inter-stream casing 110 arranged between the nacelle 101 and the internal casing 109.
  • the hot flow circulating in the primary stream V1 is conventionally compressed by compressor stages before entering the combustion chamber.
  • the combustion energy is recovered by turbine stages which drive the compressor stages and the fan.
  • the latter is driven in rotation by a power shaft of the turbomachine via, in the present example, a power transmission mechanism 57 to reduce the speed of rotation of the fan.
  • the power transmission mechanism 57 includes a reducer, arranged here axially, between a fan shaft integral with the fan and the power shaft of the gas generator 102.
  • the flow of cold air F circulating in the secondary stream V2 is oriented along the longitudinal axis X and participates for its part in providing the thrust for the turbomachine 100.
  • each fan blade 51 has a leading edge 52, upstream and a trailing edge 53, downstream that are axially opposed (along the longitudinal axis X).
  • the fan blades 51 each have a foot 54 located in a hub 30 through which the fan shaft passes and a head 55 facing the retention casing 50.
  • the fan blades 51 have a diameter DF comprised, for example, between 1700 and 2800 mm.
  • the diameter DF is measured at the level of the leading edge 52 and at the level of the tip 55 of the fan blade 51, along the radial axis Z.
  • the diameter DF is between 1900 and 2700 mm.
  • the nacelle 101 this has an outer diameter DN of between 2000 and 4000 mm for example.
  • the outside diameter DN is between 2400 and 3400 mm.
  • stator 1 or stationary vane known by the term fan straightener vane or fan flow guide vane.
  • the stator vane is also known by the acronym OGV for “Outlet Guide Vane” in English and therefore makes it possible to straighten the cold flow generated by the fan 103.
  • stator vanes 1 are arranged transversely in the fan nacelle 101 substantially in a plane transverse to the longitudinal axis X.
  • the nacelle 101 then surrounds the stator vanes.
  • stator vanes 1 are distributed circumferentially to form a stator stage. These dawns of rectifier 1 are arranged downstream of the fan 103. In the present example, these are secured to the fan casing 56. These are also regularly distributed around the axis X of the turbomachine.
  • each stator vane 1 comprises a plurality of transverse vane sections 2 stacked in a radial direction (parallel to the radial axis Z) along a stacking line L between a root end 3 and an end of head 4.
  • the stacking line L passes through the center of gravity of each blade section 2 transverse.
  • Each blade section comprises an intrados surface 7 and an extrados surface 8 extending substantially in an axial direction, between a leading edge 5, upstream and a trailing edge 6, downstream.
  • the intrados and extrados surfaces 7, 8 are opposite each other in a tangential direction (parallel to the Y axis). Between the trailing edge 6 and the leading edge 5 extends a chord of profile CA.
  • the blade section 2 comprises a curved transverse profile.
  • the profile chord CA has a substantially constant axial length between the foot end 3 and the head end 4. In other words, the length of the profile chord at the foot end is substantially equal to the length of the profile chord at the head end.
  • the stacking line L of the blade sections 2 forming the blade has a curvature in the vicinity of the tip end 4 thereof.
  • the stator vane 1 has here substantially a boomerang shape. As illustrated in the picture 2 , the curvature is oriented from downstream to upstream (radially outwards). In particular, the leading edge 5 and the trailing edge 6 follow the curvature movement of the stacking line L. That is to say that the direction of the leading edge 5 and trailing edge 6 are substantially parallel to the direction of the curvature of the stacking line L in the upper part of the blade 1. As we can note on the picture 2 , the curvature is continuous and progressive. That is, there is no sudden change in direction.
  • the curvature of the stacking line L is oriented in a perpendicular plane passing through the longitudinal axis X.
  • the stacking line L is therefore defined in this plane.
  • the curvature is also located towards the tip end 4. This is located between 50% and 95% of the height H of the blade 1 taken between the root end 3 and the tip end 4 of the blade as described later in the description.
  • Each stator vane 1 is fixed to the internal casing 110 and to the fan casing 56 secured to the nacelle 101.
  • the stator vanes 1 play a structural role, they allow the load to be taken up.
  • the root end 3 is connected, in this example, to the inner casing 110 while the head end 4 is connected to the fan casing 56.
  • the leading edge 5 is concave while the trailing edge 6 is convex.
  • the blade 1 has a first portion whose stacking line L is substantially straight. This so-called straight stacking line is located in the lower part of the blade 1.
  • the latter has an inclination towards the downstream, in a plane containing the longitudinal axis X, with respect to the axis X.
  • the inclination forms an angle ⁇ of between 105° and 145° between the stacking line L and the axis X (the stacking line being oriented downstream).
  • a first portion of the trailing edge 6 extends along a straight line forming an angle ⁇ 1 with the longitudinal axis.
  • This angle ⁇ 1 is between 90° and 120°, the trailing edge 6 being oriented downstream.
  • This angle ⁇ 1 varies from the longitudinal axis from upstream to downstream.
  • the blade 1 also has a second portion where the stacking line L has the curvature or a bend.
  • the trailing edge 6 also has a curvature or bend on the second portion of the blade 1.
  • the curvature of the trailing edge 6, in the upper part of the blade 1 is determined by an angle ⁇ 1 formed between a straight line tangent T to the trailing edge 6 and the longitudinal axis X.
  • the angle ⁇ 1 varies in the upper part of the blade 1.
  • the upper part of the trailing edge presenting the curvature is located between 50% and 95% of the height H of the blade 1 starting from the root end of the blade.
  • the angle ⁇ 1 of curvature of the trailing edge 6 is between 75° and 90°, the trailing edge being oriented upstream and the value of 90° not being included.
  • the angle ⁇ 1 between the longitudinal axis and the trailing edge 6 is substantially constant between 0 and 50% of the height of the blade.
  • the angle ⁇ 1 then varies between 50% and 95% of the height of the blade 1. We therefore understand that there is no right angle and therefore no sudden change in direction of the trailing edge.
  • Such a configuration makes it possible, on the one hand, to reduce the bulk and, on the other hand, to keep a predetermined minimum axial distance d close to the initial predetermined minimum axial distance of a conventional stator vane.
  • the minimum axial distance is measured between the trailing edge 53 of the fan blade 51 and the leading edge 5 of the stator blade.
  • the curved shape avoids accentuating the vortex phenomena in the vicinity of the dawn which are responsible for the noise.
  • angles ⁇ 1 presented by the trailing edge 6 with respect to the longitudinal axis are represented on a graph of the figure 6 and some figure 8 in comparison with trailing edge angles of state-of-the-art stator vanes.
  • the angles of the trailing edge of the blades of the state of the art present an angle whose value is between 90° and 120° and is constant along the height of the blade (OGV10 and OGV12) , or whose value varies between 90° and 120° between 50% and 95% of the blade height (OGV11), or whose value is between 0 and 90° and is constant along the height of the blade dawn (OGV13).
  • the angle value is constant over the first 50% of the blade height from the root tip and also constant but completely opposite over the last 50% of the blade height from the middle part towards the leading end of the blade.
  • the stator vane of the present invention has an angle whose value is constant and between 90° and 120°, between 0 and 50% of the height of the vane, and whose value varies between 75° and 90° between 50% and 95% of the blade height.
  • the line representing the variation of the angle of the blade 1 is continuous. In other terms, there is no break in continuity in the line representing the change in angle.
  • the tip end 4 of the stator vane 1 is connected to the fan casing 56 in an attachment zone more upstream of the attachment zone of a prior art stator vane AR shown in dotted lines .
  • the tip end 4 of the blade, of the present invention is offset upstream due to the curvature.
  • This offset and/or the curvature makes it possible to shorten the length, substantially along the longitudinal axis X, of the nacelle 101.
  • the nacelle here has a length LN of between 3000 and 3800 mm taken between an upstream end 20 forming a lip of air inlet and a downstream end 21 forming a nozzle edge.
  • the length LN is between 3100 and 3500 mm.
  • the gain in reduction of the length of the nacelle is comprised, for example, between 5 and 15% compared to a standard turbomachine nacelle without the invention as the latter is shown in dotted lines on the figure 4 .
  • the arrangement of the blade 1 according to the invention allows the length of the nacelle 101 to be reduced without aggravating the acoustic nuisances for the same given fan diameter.
  • the gain in length makes it possible to reduce the aerodynamic drag of the turbomachine and/or the integration of larger surfaces of acoustic panels for equivalent drag as described later in the invention.
  • the acoustic gain is about 2 EPNdB (“Effective Perceived Noise” in English or “level of noise actually perceived, in decibels”).
  • the ratio of the length of the nacelle to the diameter of the fan can be between -5% and -15% compared to a turbomachine without the invention, which implies a reduction in the length of the nacelle of between -5% and -15% compared to a turbomachine without the invention.
  • the LN/DF ratio is for example between 1 and 3.
  • the ratio is between 2.1 and 2.8.
  • the relative minimum axial distance between the fan blades and the stator vanes is determined by the relationship d/C.
  • d is the predetermined minimum axial distance between the trailing edge 53 of the fan and the leading edge 5 of the stator vane 1.
  • C is the length of the axial chord of the fan. The axial chord C of the fan is measured between the leading edge 52 and the trailing edge 53 of the fan blade.
  • the solution can also result in the following condition to be respected: VS 50 % H ⁇ H ⁇ 95 % H > VS 100 % H .
  • H corresponds to the outer radius of the stator vane 1 taken between the root end and the tip end of the vane 1. In other words, between 50% and 95% of the height H of the vane, the relative minimum axial distance between the fan 103 and the stator vane 1 is greater than the relative minimum axial distance measured at the leading end of the blade, that is to say for 100% of the height H of the stator vane 1.
  • the latter makes it possible to implement the following two conditions: VS 80 % H > ⁇ VS 100 % H . With VS 100 % H ⁇ ⁇ .
  • the parameter ⁇ corresponds to an efficiency factor.
  • the parameter ⁇ considered to be greater than 1.1 is defined as a condition making it possible to guarantee the effectiveness of the invention.
  • the parameter ⁇ is a parameter characterizing the condition ⁇ 3 to constrain the length of the nacelle and maintain the desired performance advantage.
  • d(H) the distance between the fan blade and the stator blade
  • d(r[ 50%-95%]) > d(100%) is greater than the distance d located at the leading end of blade 1 (100% H): d(r[ 50%-95%]) > d(100%).
  • acoustic treatment may include the provision of acoustic panels to further reduce noise.
  • acoustic panels are advantageously, but not limitatively, arranged on an internal face of the nacelle 101 downstream of the stator vanes 1.
  • the shape of the blade 1 is characterized by the following relationship: 0.1 ⁇ L 2 L 1 50 % H ⁇ H ⁇ 95 % H ⁇ 0.5 .
  • L2 corresponds to the minimum distance between the leading edge 5 of the stator blade 1 and the line A passing through the root end and the leading end of the blade taken at the leading edge 5.
  • L1 corresponds to the length between this same line A and the trailing edge 6 of the stator vane.
  • the lower (0.1) and upper (0.5) limits are determined so as to limit the maximum angle of inclination of the stacking line L at the root end 3 of the stator vane 1 while limiting the curvature of the line stacking.
  • We obtain a curvilinear shape making it possible to limit the structural constraints (flexibility of the stator vane). This is a particular advantage for a low structural stator vane (which does not contribute to engine suspension).
  • the blade 1 has the same characteristics as that represented on the figures 4 and 5 .
  • the elements described above are designated in the remainder of the description by the same numerical references.
  • the nacelle envelops the blade 1 and the fan.
  • the downstream end of the tip end of the blade 1 is located downstream of the downstream end of the fan casing to reduce the mass of the turbomachine.
  • the nacelle is made of lighter materials than the fan casing. We are thus seeking to limit the extension of the fan casing to replace it with the nacelle.
  • the equipment of the nacelle such as a thrust reverser can be integrated further upstream, and in particular closer to the fan, which makes it possible to reduce the axial extension of the nacelle and of the turbomachine.
  • the downstream end of the head end 4 is located opposite the nacelle 101.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

1. Domaine de l'invention1. Field of the invention

La présente invention concerne le domaine des turbomachines. Elle vise une aube de turbomachine et notamment une aube de redresseur de soufflante. L'invention concerne également un ensemble comprenant une nacelle et un carter de soufflante solidarisé à la nacelle et qui est équipé d'au moins une aube de redresseur et une turbomachine équipée d'une telle aube ou d'un tel ensemble avec une aube de redresseur.The present invention relates to the field of turbomachines. It relates to a turbine engine blade and in particular a fan stator blade. The invention also relates to an assembly comprising a nacelle and a fan casing secured to the nacelle and which is equipped with at least one stator vane and a turbomachine equipped with such a vane or such an assembly with a rectifier.

2. Etat de la technique2. State of the art

L'évolution naturelle des turboréacteurs multiflux présentant une soufflante, notamment amont, est d'augmenter l'efficacité propulsive via une réduction de la poussée spécifique, obtenue en diminuant le taux de compression de la soufflante, ce qui se traduit par une augmentation du taux de dilution ou BPR (pour la désignation anglaise « Bypass Ratio »), qui est le rapport entre le débit massique de l'air à travers une ou des veines entourant le générateur de gaz par le débit massique de l'air à travers le générateur de gaz, calculé à la poussée maximale lorsque le moteur est immobile dans une atmosphère standard international au niveau de la mer.The natural evolution of multi-flow turbojets having a fan, in particular upstream, is to increase the propulsive efficiency via a reduction in the specific thrust, obtained by decreasing the compression ratio of the fan, which results in an increase in the rate dilution or BPR (for the English designation "Bypass Ratio"), which is the ratio between the mass flow of air through one or several veins surrounding the gas generator by the mass flow of air through the generator of gas, calculated at maximum thrust when the engine is stationary in an international standard atmosphere at sea level.

L'augmentation du taux de dilution influe sur le diamètre de la turbomachine lequel est contraint par une garde au sol minimale à respecter du fait de l'intégration de la turbomachine le plus souvent sous l'aile d'un aéronef. L'augmentation du taux de dilution s'opère en priorité sur le diamètre de la soufflante. La soufflante est enveloppée par un carter de soufflante qui entoure les aubes de soufflante et qui est relié au générateur de gaz par des aubes de stator connues sous le terme de redresseurs ou d'aubes de guidage de sortie pour la désignation anglaise de « Outlet Guide Vanes » (siglée OGV). Ces aubes de redresseur sont disposées radialement depuis le carter du générateur de gaz, en aval des aubes de soufflante et permettent de redresser le flux généré par cette dernière. Ces aubes doivent être agencées à une distance axiale minimale prédéterminée des aubes de soufflante de manière à limiter les interactions acoustiques responsables de bruit significatif. La distance axiale prédéterminée entre les aubes détermine la longueur du carter de soufflante. A cela s'ajoute le fait que le poids du carter de soufflante et notamment sa longueur impactent la traînée de la turbomachine.The increase in the bypass ratio influences the diameter of the turbomachine which is constrained by a minimum ground clearance to be respected due to the integration of the turbomachine most often under the wing of an aircraft. The increase in the bypass ratio takes place primarily on the diameter of the fan. The fan is enveloped by a fan casing which surrounds the fan blades and which is connected to the gas generator by stator vanes known as rectifiers or outlet guide vanes for the English designation of "Outlet Guide". Vanes” (signed OGV). These stator vanes are arranged radially from the casing of the gas generator, downstream of the fan vanes and make it possible to straighten the flow generated by the latter. These blades must be arranged at a predetermined minimum axial distance from the fan blades so as to limit the acoustic interactions responsible for significant noise. The predetermined axial distance between the blades determines the length of the fan casing. Added to this is the fact that the weight of the fan casing and in particular its length impact the drag of the turbomachine.

Il est connu du document US-B1-6554564 une aube de redresseur de turbomachine disposée en aval des aubes d'une soufflante. Cette aube de redresseur présente un bord d'attaque avec un angle de flèche orienté vers l'amont (suivant l'axe longitudinal de la turbomachine) ou un bord de fuite avec un angle de flèche orienté vers l'aval (suivant l'axe longitudinal de la turbomachine) de sorte que la corde de ces aubes de redresseurs varie de l'extrémité de pied à l'extrémité de tête. Ceci influe sur la longueur axiale de l'aube et la masse de celle-ci. Ces aubes de redresseurs peuvent également comprendre une portion de leur corps avec les bord d'attaque et bord de fuite présentant un angle de flèche orienté dans la même direction, soit vers l'amont, soit vers l'aval. Cependant, en ce qui concerne ces derniers exemples d'aubes de redresseur, l'angle de flèche, formé entre deux segments du bord d'attaque ou deux segments du bord de fuite, forme un angle obtus ou un angle aigue. Autrement dit, les angles de flèche des bords d'attaque et de fuite forment un changement brusque de direction. il n'y a donc pas de courbure entre deux segments du bord d'attaque ou du bord de fuite. Un exemple d'aube de redresseur illustré sur la figure 8c de ce document présente une portion d'aube inférieure avec une inclinaison d'angle A qui est complètement opposée à celle de la portion d'aube supérieure. Ces changements brusques de direction ont pour inconvénient d'augmenter les phénomènes des tourbillons qui sont également à l'origine des bruits.It is known from the document US-B1-6554564 a turbomachine stator vane arranged downstream of the vanes of a fan. This stator vane has a leading edge with an angle of deflection oriented upstream (along the longitudinal axis of the turbomachine) or a trailing edge with an angle of deflection oriented downstream (along the axis longitudinal of the turbomachine) so that the chord of these stator vanes varies from the root end to the head end. This influences the axial length of the blade and the mass thereof. These stator vanes can also comprise a portion of their body with the leading edge and trailing edge having an angle of deflection oriented in the same direction, either upstream or downstream. However, with respect to these latter examples of stator vanes, the sag angle, formed between two segments of the leading edge or two segments of the trailing edge, forms an obtuse angle or an acute angle. That is, the sag angles of the leading and trailing edges form an abrupt change in direction. there is therefore no curvature between two segments of the leading edge or of the trailing edge. An example of a stator vane illustrated in FIG. 8c of this document has a lower vane portion with an angle of inclination A which is completely opposite to that of the upper vane portion. These sudden changes of direction have the disadvantage of increasing the phenomena of vortices which are also the source of noise.

3. Objectif de l'invention3. Purpose of the invention

La présente invention a notamment pour objectif de limiter la traînée de la nacelle de turbomachine et de limiter la masse de l'ensemble de propulsion tout en agissant sur les phénomènes acoustiques survenant au voisinage d'une aube de redresseur.The object of the present invention is in particular to limit the drag of the turbomachine nacelle and to limit the mass of the assembly of propulsion while acting on the acoustic phenomena occurring in the vicinity of a stator vane.

4. Exposé de l'invention4. Disclosure of Invention

On parvient à cet objectif conformément à l'invention grâce à une aube de redresseur de turbomachine double flux d'axe longitudinal, l'aube comprenant une pluralité de sections d'aube empilées radialement vis-à-vis de l'axe longitudinal le long d'une ligne d'empilement entre une extrémité de pied et une extrémité de tête, chaque section d'aube comprenant une surface intrados et une surface extrados s'étendant axialement entre un bord d'attaque amont et un bord de fuite aval et étant opposées tangentiellement, entre les bords d'attaque et de fuite de chaque section d'aube étant formée une corde de profil de longueur sensiblement constante entre l'extrémité de tête et l'extrémité de pied, et la ligne d'empilement présentant une courbure dans un plan passant sensiblement par l'axe longitudinal et par la ligne d'empilement, située au voisinage de l'extrémité de tête et orientée de l'aval vers l'amont.This objective is achieved in accordance with the invention by means of a turbomachine stator blade having a longitudinal axis, the blade comprising a plurality of blade sections stacked radially with respect to the longitudinal axis along of a stacking line between a root end and a tip end, each blade section comprising a lower surface and an upper surface extending axially between an upstream leading edge and a downstream trailing edge and being tangentially opposed, between the leading and trailing edges of each blade section, a chord of profile of substantially constant length being formed between the tip end and the root end, and the stacking line having a curvature in a plane passing substantially through the longitudinal axis and through the stacking line, located in the vicinity of the leading end and oriented from downstream to upstream.

Ainsi, cette solution permet d'atteindre l'objectif susmentionné. En particulier, la forme de l'aube de redresseur avec cette courbure permet de raccourcir la longueur de la nacelle entourant le carter de soufflante destiné à porter cette aube de stator, ce qui réduit de manière avantageuse la traînée. Elle permet également de réduire le bruit engendré vers l'extrémité de la tête d'aube lorsque cette dernière est montée dans la nacelle. En particulier, l'intensité acoustique croît avec la proximité entre les aubes de soufflante et les aubes de redresseur. Les zones localisées autour de 75% de la hauteur de l'aube sont particulièrement concernées par ces interactions du fait des vitesses observées et de la charge aérodynamique mise en jeu. Le profil de l'aube de redresseur permet ainsi de maintenir une distance axiale minimale requise vers le sommet des aubes de redresseur.Thus, this solution makes it possible to achieve the aforementioned objective. In particular, the shape of the stator vane with this curvature makes it possible to shorten the length of the nacelle surrounding the fan casing intended to carry this stator vane, which advantageously reduces the drag. It also makes it possible to reduce the noise generated towards the end of the blade tip when the latter is mounted in the nacelle. In particular, the acoustic intensity increases with the proximity between the fan blades and the stator blades. The areas located around 75% of the height of the blade are particularly concerned by these interactions due to the speeds observed and the aerodynamic load involved. The profile of the stator blade thus makes it possible to maintain a minimum axial distance required towards the top of the stator vanes.

Selon une caractéristique, la courbure de la ligne d'empilement est continue et progressive. Une telle configuration réduit la formation des tourbillons qui engendrent également du bruit. En effet, un changement brusque influerait notablement sur les tourbillons pouvant se former en partie supérieure de l'aube et qui est source de bruit.According to one characteristic, the curvature of the stacking line is continuous and progressive. Such a configuration reduces the formation of vortices which also generate noise. Indeed, a change abrupt would significantly influence the vortices that may form in the upper part of the dawn and which is a source of noise.

Selon une caractéristique de l'invention, la courbure est située entre 50% et 95% de la hauteur de l'aube entre l'extrémité de pied et l'extrémité de tête. Cette configuration permet d'agir à l'endroit où les interactions acoustiques et de vitesses sont les plus élevées et où la charge aérodynamique mise en jeu.According to one characteristic of the invention, the curvature is located between 50% and 95% of the height of the blade between the root end and the tip end. This configuration makes it possible to act where the acoustic and speed interactions are the highest and where the aerodynamic load comes into play.

Selon une caractéristique de l'invention, la forme de l'aube, entre 50% et 95% de la hauteur de l'aube, est déterminée par la relation suivante : 0,1 < (L2/L1)50%H<H<95%H < 0.5, L2 correspondant à la distance minimale entre le bord d'attaque de l'aube et une ligne passant par l'extrémité de pied et l'extrémité de tête de l'aube, L1 correspondant à la longueur entre cette même ligne et le bord de fuite de l'aube de redresseur et H étant la hauteur de l'aube. Cette configuration permet d'une part, de limiter l'angle maximal à l'extrémité de pied de l'aube et d'autre part, de limiter les contraintes structurelles. En d'autres termes, la courbure de l'aube de redresseur est définie entre 50% et 95% de sa hauteur.According to one characteristic of the invention, the shape of the blade, between 50% and 95% of the height of the blade, is determined by the following relationship: 0.1 < (L2/L1) 50%H<H <95%H < 0.5, L2 corresponding to the minimum distance between the leading edge of the blade and a line passing through the root end and the leading end of the blade, L1 corresponding to the length between this same line and the trailing edge of the stator vane and H being the height of the vane. This configuration makes it possible, on the one hand, to limit the maximum angle at the root end of the blade and, on the other hand, to limit the structural stresses. In other words, the curvature of the stator vane is defined between 50% and 95% of its height.

Selon une autre caractéristique, l'aube présente une première portion de pied dont la ligne d'empilement s'étend suivant une droite et une deuxième portion de tête dont la ligne d'empilement comprend la courbure. Cette configuration ne modifie ainsi que la partie supérieure de l'aube de redresseur.According to another characteristic, the blade has a first root portion whose stacking line extends along a straight line and a second head portion whose stacking line includes the curvature. This configuration thus only modifies the upper part of the stator vane.

Suivant encore une caractéristique, la ligne d'empilement s'étendant suivant une droite est inclinée par rapport à l'axe longitudinal.According to yet another characteristic, the stacking line extending along a straight line is inclined with respect to the longitudinal axis.

Selon encore une autre caractéristique, le bord d'attaque présente une portion concave et le bord de fuite présente une portion convexe au niveau de la courbure. Ainsi, les directions des bord d'attaque et bord de fuite de l'aube sont sensiblement parallèles à la direction de la ligne d'empilement.According to yet another characteristic, the leading edge has a concave portion and the trailing edge has a convex portion at the curvature. Thus, the directions of the leading edge and trailing edge of the blade are substantially parallel to the direction of the stack line.

L'invention porte également sur un ensemble comprenant une nacelle de turbomachine double flux s'étendant suivant un axe longitudinal et un carter de soufflante solidarisé à la nacelle, le carter de soufflante entourant une soufflante et délimitant en aval de la soufflante une veine annulaire dans laquelle circule un flux d'air, le carter de soufflante comprenant une rangée annulaire d'aubes de redresseur présentant l'une quelconque des caractéristiques susmentionnées agencées en aval des aubes de soufflante transversalement dans la veine annulaire. Une telle caractéristique permet de réduire la longueur de la nacelle et de réduire le critère acoustique en partie supérieure de la nacelle. En particulier, pour un même diamètre de soufflante donné, il est observé un gain acoustique d'environ 2 EPNdB (« Effective Perceived Noise » en anglais ou « niveau de bruit effectivement perçu, en décibels »).The invention also relates to an assembly comprising a dual-flow turbomachine nacelle extending along a longitudinal axis and a fan casing secured to the nacelle, the fan casing surrounding a fan and delimiting downstream of the fan an annular vein in which circulates an air flow, the fan casing comprising an annular row of stator vanes having any of the aforementioned characteristics arranged downstream of the fan vanes transversely in the annular stream. Such a characteristic makes it possible to reduce the length of the nacelle and to reduce the acoustic criterion in the upper part of the nacelle. In particular, for the same given fan diameter, an acoustic gain of approximately 2 EPNdB (“Effective Perceived Noise” or “level of noise actually perceived, in decibels”) is observed.

Selon une caractéristique de l'invention, la nacelle présente une longueur sensiblement suivant l'axe longitudinal comprise entre 3000 et 3800 mm.According to one characteristic of the invention, the nacelle has a length substantially along the longitudinal axis of between 3000 and 3800 mm.

Suivant une autre caractéristique, la nacelle présente une longueur sensiblement suivant l'axe longitudinal et la soufflante présente un diamètre, sensiblement suivant l'axe radial, le rapport de la longueur de la nacelle sur le diamètre de la soufflante étant compris entre 1 et 3. En particulier, le diamètre de la soufflante est mesuré au niveau d'un bord d'attaque, au niveau de sa tête d'aube de soufflante.According to another characteristic, the nacelle has a length substantially along the longitudinal axis and the fan has a diameter, substantially along the radial axis, the ratio of the length of the nacelle to the diameter of the fan being between 1 and 3 In particular, the diameter of the fan is measured at the level of a leading edge, at the level of its fan blade tip.

Selon une caractéristique, la distance axiale relative entre une aube de soufflante et une aube de redresseur est déterminée par la condition suivante : (d/C) avec d étant la distance entre un bord de fuite de la soufflante et le bord d'attaque de l'aube de redresseur, et C étant la longueur de la corde axiale de l'aube de soufflante, la courbure de la ligne d'empilement permettant de vérifier la relation suivante : (d/C) 50%H<H<95%H > (d/C) 100%H, avec H la hauteur de l'aube de redresseur entre l'extrémité de tête et l'extrémité de pied. (d/C) 50%H<H<95%H est la distance entre le bord de fuite de la soufflante et le bord d'attaque de l'aube de redresseur divisée par la longueur de la corde axiale de l'aube de soufflante entre 50% et 95% de la hauteur de l'aube de redresseur, et (d/C) 100%H est la distance entre le bord de fuite de la soufflante et le bord d'attaque de l'aube de redresseur divisée par la longueur de la corde axiale de l'aube de soufflante en tête de l'aube de redresseur. En particulier (d/C) 100%H correspond à la hauteur d'aube au contact entre l'aube de redresseur et le carter de soufflante.According to one characteristic, the relative axial distance between a fan blade and a stator blade is determined by the following condition: (d/C) with d being the distance between a trailing edge of the fan and the leading edge of the stator blade, and C being the length of the axial chord of the fan blade, the curvature of the stacking line making it possible to verify the following relationship: (d/C) 50%H<H<95% H > (d/C) 100%H , with H the height of the stator vane between the tip end and the root end. (d/C) 50%H<H<95%H is the distance between the trailing edge of the fan and the leading edge of the stator vane divided by the length of the axial chord of the stator vane between 50% and 95% of the stator vane height, and (d/C) 100%H is the distance between the trailing edge of the fan and the leading edge of the split stator vane by the length of the axial chord of the fan blade at the tip of the fan blade rectifier. In particular (d/C) 100%H corresponds to the blade height at the contact between the stator blade and the fan casing.

L'invention concerne encore un ensemble comprenant une nacelle de turbomachine double flux s'étendant suivant un axe longitudinal et un carter de soufflante solidarisé à la nacelle, le carter de soufflante entourant une soufflante et délimitant en aval de la soufflante une veine annulaire dans laquelle circule un flux d'air, la nacelle comprenant une rangée annulaire d'aubes de redresseur présentant l'une quelconque des caractéristiques susmentionnées agencées en aval des aubes de soufflante transversalement dans la veine annulaire et dont une extrémité aval de l'extrémité de tête est située en aval d'une extrémité aval du carter de soufflante. Une telle caractéristique permet de réduire la longueur de la nacelle et de réduire le critère acoustique en partie supérieure de la nacelle. En particulier, pour un même diamètre de soufflante donné, il est observé un gain acoustique d'environ 2 EPNdB (« Effective Perceived Noise » en anglais ou « niveau de bruit effectivement perçu, en décibels »).The invention also relates to an assembly comprising a dual-flow turbomachine nacelle extending along a longitudinal axis and a fan casing secured to the nacelle, the fan casing surrounding a fan and delimiting downstream of the fan an annular vein in which circulates a flow of air, the nacelle comprising an annular row of stator vanes having any of the aforementioned characteristics arranged downstream of the fan vanes transversely in the annular stream and of which an end downstream of the tip end is located downstream of a downstream end of the fan casing. Such a characteristic makes it possible to reduce the length of the nacelle and to reduce the acoustic criterion in the upper part of the nacelle. In particular, for the same given fan diameter, an acoustic gain of approximately 2 EPNdB (“Effective Perceived Noise” or “level of noise actually perceived, in decibels”) is observed.

L'invention concerne également une turbomachine comprenant au moins une aube de redresseur présentant au moins l'une quelconque des caractéristiques susmentionnées .The invention also relates to a turbomachine comprising at least one stator vane having at least any one of the aforementioned characteristics.

5. Brève description des figures5. Brief description of figures

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lecture de la description explicative détaillée qui va suivre, de modes de réalisation de l'invention donnés à titre d'exemples purement illustratifs et non limitatifs, en référence aux dessins schématiques annexés dans lesquels :

  • La figure 1 représente schématiquement une turbomachine avec une soufflante en amont d'un générateur de gaz et à laquelle s'applique l'invention ;
  • La figure 2 illustre de manière schématique en vue de face une aube de turbomachine selon l'invention ;
  • La figure 3 représente de manière schématique une section d'aube transversale selon l'invention ;
  • Les figures 4 et 5 sont des vues schématiques en coupes axiales et partielles d'une nacelle logeant une soufflante de turbomachine selon l'invention ;
  • La figure 6 est une représentation schématique d'un graphique sur lequel est illustrée la variation des angles par rapport à l'axe longitudinal de la turbomachine mesurés au niveau du bord de fuite de l'aube de turbomachine ;
  • La figure 7 illustre schématiquement, en coupe axiale et partielle, un autre mode de réalisation de l'invention dans lequel une nacelle enveloppe une soufflante et au moins une aube de redresseur, l'aube de redresseur comprenant une extrémité aval à l'extrémité de tête qui se trouve immédiatement en aval d'une extrémité aval du carter de soufflante ; et
  • La figure 8 est une autre représentation schématique d'un graphique reprenant les angles mesurés au niveau du bord de fuite d'aubes de turbomachine et notamment de l'art antérieur par rapport à l'aube de redresseur selon l'invention.
The invention will be better understood, and other aims, details, characteristics and advantages thereof will appear more clearly on reading the detailed explanatory description which follows, of embodiments of the invention given as purely illustrative and non-limiting examples, with reference to the appended schematic drawings in which:
  • The figure 1 schematically represents a turbomachine with a fan upstream of a gas generator and to which the invention applies;
  • The picture 2 schematically illustrates in front view a turbine engine blade according to the invention;
  • The picture 3 schematically represents a transverse blade section according to the invention;
  • The figures 4 and 5 are schematic views in axial and partial sections of a nacelle housing a turbomachine fan according to the invention;
  • The figure 6 is a schematic representation of a graph on which is illustrated the variation of the angles with respect to the longitudinal axis of the turbomachine measured at the level of the trailing edge of the turbomachine blade;
  • The figure 7 schematically illustrates, in axial and partial section, another embodiment of the invention in which a nacelle envelops a fan and at least one stator vane, the stator vane comprising a downstream end at the head end which located immediately downstream of a downstream end of the fan casing; and
  • The figure 8 is another schematic representation of a graph showing the angles measured at the level of the trailing edge of turbine engine blades and in particular of the prior art with respect to the stator blade according to the invention.

6. Description de modes de réalisation de l'invention6. Description of embodiments of the invention

La figure 1 illustre une turbomachine 100 pour aéronef à laquelle s'applique l'invention. Cette turbomachine 100 est ici une turbomachine double flux qui s'étend suivant un axe longitudinal X. La turbomachine double flux comprend de manière générale une nacelle 101 externe entourant un générateur de gaz 102 en amont duquel est montée une soufflante 103. Dans la présente invention, et de manière générale, les termes « amont » et « aval » sont définis par rapport à la circulation des gaz dans la turbomachine 100. Les termes « supérieur » et « inférieur » sont définis par rapport à un axe radial Z perpendiculaire à l'axe X et au regard de l'éloignement par rapport à l'axe longitudinal X. Un axe transversal Y est également perpendiculaire à l'axe longitudinal X et à l'axe radial Z. Ces axes, X, Y, Z forment un repère orthonormé.The figure 1 illustrates a turbomachine 100 for an aircraft to which the invention applies. This turbomachine 100 is here a turbofan engine which extends along a longitudinal axis X. The turbofan engine generally comprises an external nacelle 101 surrounding a gas generator 102 upstream of which a fan 103 is mounted. , and in general, the terms “upstream” and “downstream” are defined with respect to the circulation of gases in the turbomachine 100. The terms “upper” and “lower” are defined with respect to a radial axis Z perpendicular to the axis X and with regard to the distance from the longitudinal axis X. A transverse axis Y is also perpendicular to the longitudinal axis X and to the radial axis Z. These axes, X, Y, Z form a orthonormal.

Le générateur de gaz 102 comprend dans cet exemple, d'amont en aval, un compresseur basse pression 104, un compresseur haute pression 105, une chambre de combustion 106, une turbine haute pression 107 et une turbine basse pression 108. Le générateur de gaz 102 est logé dans un carter interne 109.The gas generator 102 comprises in this example, from upstream to downstream, a low pressure compressor 104, a high pressure compressor 105, a combustion chamber 106, a high pressure turbine 107 and a low pressure turbine 108. The gas generator 102 is housed in an internal casing 109.

La soufflante 103 est ici carénée et est également logée dans la nacelle 101. En particulier, la turbomachine comprend un carter de soufflante 56 qui entoure la soufflante. Sur ce carter de soufflante 56 est fixé un carter de rétention 50 qui entoure la pluralité d'aubes mobiles de soufflante 51 lesquelles s'étendent radialement depuis l'arbre de soufflante monté suivant l'axe longitudinal X. Le carter de soufflante 56 et le carter de rétention 50 sont solidaires de la nacelle 101 qui les enveloppe. La nacelle 101 présente une forme générale cylindrique. Le carter de soufflante 56 est localisé en aval du carter de rétention 50 assurant la rétention des aubes de soufflante 51.The fan 103 is streamlined here and is also housed in the nacelle 101. In particular, the turbomachine comprises a fan casing 56 which surrounds the fan. On this fan casing 56 is fixed a retention casing 50 which surrounds the plurality of mobile fan blades 51 which extend radially from the fan shaft mounted along the longitudinal axis X. The fan casing 56 and the retention casing 50 are integral with the nacelle 101 which envelops them. The nacelle 101 has a generally cylindrical shape. The fan casing 56 is located downstream of the retention casing 50 ensuring the retention of the fan blades 51.

La soufflante 103 comprime l'air entrant dans la turbomachine 100 qui se divise en un flux chaud circulant dans une veine primaire V1 annulaire laquelle traverse le générateur de gaz 102 et un flux froid circulant dans une veine secondaire V2 annulaire autour du générateur de gaz 102. En particulier, la veine primaire V1 et la veine secondaire V2 sont séparées par un carter inter-veine 110 annulaire disposé entre la nacelle 101 et le carter interne 109. En fonctionnement, le flux chaud circulant dans la veine primaire V1 est classiquement comprimé par des étages de compresseur avant d'entrer dans la chambre de combustion. L'énergie de combustion est récupérée par des étages de turbine qui assurent l'entraînement des étages de compresseur et de la soufflante. Cette dernière est entraînée en rotation par un arbre de puissance de la turbomachine via, dans le présent exemple, un mécanisme de transmission de puissance 57 pour réduire la vitesse de rotation de la soufflante. Un tel mécanisme de transmission de puissance est prévu notamment du fait du diamètre important que présente la soufflante. Le diamètre important de la soufflante permet d'augmenter le taux de dilution. Le mécanisme de transmission de puissance 57 comprend un réducteur, agencé ici axialement, entre un arbre de soufflante solidaire de la soufflante et l'arbre de puissance du générateur de gaz 102. Le flux d'air F froid circulant dans la veine secondaire V2 est orienté suivant l'axe longitudinal X et participe pour sa part à fournir la poussée de la turbomachine 100.The fan 103 compresses the air entering the turbomachine 100 which is divided into a hot flow circulating in an annular primary vein V1 which passes through the gas generator 102 and a cold flow circulating in an annular secondary vein V2 around the gas generator 102 In particular, the primary stream V1 and the secondary stream V2 are separated by an annular inter-stream casing 110 arranged between the nacelle 101 and the internal casing 109. In operation, the hot flow circulating in the primary stream V1 is conventionally compressed by compressor stages before entering the combustion chamber. The combustion energy is recovered by turbine stages which drive the compressor stages and the fan. The latter is driven in rotation by a power shaft of the turbomachine via, in the present example, a power transmission mechanism 57 to reduce the speed of rotation of the fan. Such a power transmission mechanism is provided in particular because of the large diameter presented by the fan. The large diameter of the fan makes it possible to increase the dilution rate. The power transmission mechanism 57 includes a reducer, arranged here axially, between a fan shaft integral with the fan and the power shaft of the gas generator 102. The flow of cold air F circulating in the secondary stream V2 is oriented along the longitudinal axis X and participates for its part in providing the thrust for the turbomachine 100.

En référence aux figures 1 et 4, chaque aube de soufflante 51 présente un bord d'attaque 52, amont et un bord de fuite 53, aval opposées axialement (suivant l'axe longitudinal X). Les aubes de soufflante 51 présentent chacune un pied 54 implanté dans un moyeu 30 lequel est traversé par l'arbre de soufflante et une tête 55 en regard du carter de rétention 50. Les aubes de soufflante 51 présentent un diamètre DF compris, par exemple, entre 1700 et 2800 mm. Le diamètre DF est mesuré au niveau du bord d'attaque 52 et au niveau de la tête 55 d'aube de soufflante 51, suivant l'axe radial Z. De préférence, mais non limitativement, le diamètre DF est compris entre 1900 et 2700 mm. Quant à la nacelle 101, celle-ci présente un diamètre extérieur DN compris entre 2000 et 4000 mm par exemple. Préférentiellement, mais non limitativement, le diamètre extérieur DN est compris entre 2400 et 3400 mm.With reference to figure 1 and 4 , each fan blade 51 has a leading edge 52, upstream and a trailing edge 53, downstream that are axially opposed (along the longitudinal axis X). The fan blades 51 each have a foot 54 located in a hub 30 through which the fan shaft passes and a head 55 facing the retention casing 50. The fan blades 51 have a diameter DF comprised, for example, between 1700 and 2800 mm. The diameter DF is measured at the level of the leading edge 52 and at the level of the tip 55 of the fan blade 51, along the radial axis Z. Preferably, but not limited to, the diameter DF is between 1900 and 2700 mm. As for the nacelle 101, this has an outer diameter DN of between 2000 and 4000 mm for example. Preferably, but not limitatively, the outside diameter DN is between 2400 and 3400 mm.

Dans la veine secondaire V2 est agencée au moins une aube de stator 1 ou fixe radiale connue sous le terme d'aube de redresseur de soufflante ou d'aube de guidage de flux de soufflante. L'aube de redresseur est également connue sous l'acronyme OGV pour « Outlet Guide Vane » en anglais et permet donc de redresser le flux froid généré par la soufflante 103. Dans la présente invention, nous entendons par le terme « aube fixe » ou « aube de stator », une aube qui n'est pas entraînée en rotation autour de l'axe X de la turbomachine 100. En d'autres termes, cette aube de redresseur est distincte et contraire à une aube mobile ou de rotor de la turbomachine 100. Dans le présent exemple, une pluralité d'aubes de redresseur 1 est agencée transversalement dans la nacelle 101 de soufflante sensiblement dans un plan transversal à l'axe longitudinal X. La nacelle 101 entoure alors les aubes de redresseur. Pour redresser le flux de la soufflante 103, entre dix et cinquante aubes 1 de redresseur sont réparties circonférentiellement pour former un étage de redresseur. Ces aubes de redresseur 1 sont disposées en aval de la soufflante 103. Dans le présent exemple, celles-ci sont solidarisées au carter de soufflante 56. Celles-ci sont également régulièrement réparties autour de l'axe X de la turbomachine.In the secondary stream V2 is arranged at least one radial stator 1 or stationary vane known by the term fan straightener vane or fan flow guide vane. The stator vane is also known by the acronym OGV for “Outlet Guide Vane” in English and therefore makes it possible to straighten the cold flow generated by the fan 103. In the present invention, the term “fixed vane” or “stator vane”, a vane which is not driven in rotation around the axis X of the turbomachine 100. In other words, this stator vane is distinct from and contrary to a moving or rotor vane of the turbomachine 100. In the present example, a plurality of stator vanes 1 are arranged transversely in the fan nacelle 101 substantially in a plane transverse to the longitudinal axis X. The nacelle 101 then surrounds the stator vanes. To straighten the flow of the fan 103, between ten and fifty stator vanes 1 are distributed circumferentially to form a stator stage. These dawns of rectifier 1 are arranged downstream of the fan 103. In the present example, these are secured to the fan casing 56. These are also regularly distributed around the axis X of the turbomachine.

En référence aux figures 2 et 3, chaque aube de redresseur 1 comprend une pluralité de sections d'aube 2 transversales empilées suivant une direction radiale (parallèle à l'axe radial Z) le long d'une ligne d'empilement L entre une extrémité de pied 3 et une extrémité de tête 4. La ligne d'empilement L passe par le centre de gravité de chaque section d'aube 2 transversale. Chaque section d'aube comprend une surface intrados 7 et une surface extrados 8 s'étendant sensiblement suivant une direction axiale, entre un bord d'attaque 5, amont et un bord de fuite 6, aval. Les surfaces intrados et extrados 7, 8 sont opposées l'une à l'autre suivant une direction tangentielle (parallèle à l'axe Y). Entre le bord de fuite 6 et le bord d'attaque 5 s'étend une corde de profil CA. La section d'aube 2 comprend un profil transversal incurvé. La corde de profil CA présente une longueur, axiale, sensiblement constante entre l'extrémité de pied 3 et l'extrémité de tête 4. En d'autres termes, la longueur de la corde de profil à l'extrémité de pied est sensiblement égale à la longueur de la corde de profil à l'extrémité de tête.With reference to figures 2 and 3 , each stator vane 1 comprises a plurality of transverse vane sections 2 stacked in a radial direction (parallel to the radial axis Z) along a stacking line L between a root end 3 and an end of head 4. The stacking line L passes through the center of gravity of each blade section 2 transverse. Each blade section comprises an intrados surface 7 and an extrados surface 8 extending substantially in an axial direction, between a leading edge 5, upstream and a trailing edge 6, downstream. The intrados and extrados surfaces 7, 8 are opposite each other in a tangential direction (parallel to the Y axis). Between the trailing edge 6 and the leading edge 5 extends a chord of profile CA. The blade section 2 comprises a curved transverse profile. The profile chord CA has a substantially constant axial length between the foot end 3 and the head end 4. In other words, the length of the profile chord at the foot end is substantially equal to the length of the profile chord at the head end.

La ligne d'empilement L des sections d'aube 2 formant l'aube présente une courbure au voisinage de l'extrémité de tête 4 de celle-ci. L'aube de redresseur 1 présente ici sensiblement une forme de boomerang. Comme cela est illustré sur la figure 2, la courbure est orientée de l'aval vers l'amont (radialement vers l'extérieur). En particulier, le bord d'attaque 5 et le bord de fuite 6 suivent le mouvement de courbure de la ligne d'empilement L. C'est-à-dire que la direction des bord d'attaque 5 et bord de fuite 6 sont sensiblement parallèles à la direction de la courbure de la ligne d'empilement L en partie supérieure de l'aube 1. Comme nous pouvons le noter sur la figure 2, la courbure est continue et progressive. C'est-à-dire qu'il n'y a pas de changement brusque de direction. La courbure de la ligne d'empilement L est orientée dans un plan perpendiculaire passant par l'axe longitudinal X. La ligne d'empilement L est donc définie dans ce plan. La courbure est également située vers l'extrémité de tête 4. Celle-ci est située entre 50% et 95 % de la hauteur H de l'aube 1 pris entre l'extrémité de pied 3 et l'extrémité de tête 4 de l'aube comme décrit plus loin dans la description.The stacking line L of the blade sections 2 forming the blade has a curvature in the vicinity of the tip end 4 thereof. The stator vane 1 has here substantially a boomerang shape. As illustrated in the picture 2 , the curvature is oriented from downstream to upstream (radially outwards). In particular, the leading edge 5 and the trailing edge 6 follow the curvature movement of the stacking line L. That is to say that the direction of the leading edge 5 and trailing edge 6 are substantially parallel to the direction of the curvature of the stacking line L in the upper part of the blade 1. As we can note on the picture 2 , the curvature is continuous and progressive. That is, there is no sudden change in direction. The curvature of the stacking line L is oriented in a perpendicular plane passing through the longitudinal axis X. The stacking line L is therefore defined in this plane. The curvature is also located towards the tip end 4. This is located between 50% and 95% of the height H of the blade 1 taken between the root end 3 and the tip end 4 of the blade as described later in the description.

Chaque aube de redresseur 1 est fixée au carter interne 110 et au carter de soufflante 56 solidarisé à la nacelle 101. Les aubes de redresseur 1 assurent un rôle structural, elles permettent la reprise des efforts. En référence à la figure 4, l'extrémité de pied 3 est reliée, dans cet exemple, au carter interne 110 tandis que l'extrémité de tête 4 est reliée au carter de soufflante 56. Dans la partie courbée de l'aube 1, le bord d'attaque 5 est concave tandis que le bord de fuite 6 est convexe. Nous observons ainsi une déviation (ou déformation) axiale de la ligne d'empilement L. En particulier, l'aube 1 présente une première portion dont la ligne d'empilement L est sensiblement droite. Cette ligne d'empilement dite droite est située en partie inférieure de l'aube 1. Celle-ci présente une inclinaison vers l'aval, dans un plan contenant l'axe longitudinal X, par rapport à l'axe X. L'inclinaison forme un angle α compris entre 105° et 145° entre la ligne d'empilement L et l'axe X (la ligne d'empilement étant orientée vers l'aval).Each stator vane 1 is fixed to the internal casing 110 and to the fan casing 56 secured to the nacelle 101. The stator vanes 1 play a structural role, they allow the load to be taken up. With reference to the figure 4 , the root end 3 is connected, in this example, to the inner casing 110 while the head end 4 is connected to the fan casing 56. In the curved part of the blade 1, the leading edge 5 is concave while the trailing edge 6 is convex. We thus observe an axial deviation (or deformation) of the stacking line L. In particular, the blade 1 has a first portion whose stacking line L is substantially straight. This so-called straight stacking line is located in the lower part of the blade 1. The latter has an inclination towards the downstream, in a plane containing the longitudinal axis X, with respect to the axis X. The inclination forms an angle α of between 105° and 145° between the stacking line L and the axis X (the stacking line being oriented downstream).

De même, suivant la figure 4, une première portion du bord de fuite 6 s'étend suivant une droite formant un angle β1 avec l'axe longitudinal. Cet angle β1 est compris entre 90° et 120°, le bord de fuite 6 étant orienté vers l'aval. Cet angle β1 varie à partir de l'axe longitudinal de l'amont vers l'aval. L'aube 1 présente également une deuxième portion où la ligne d'empilement L présente la courbure ou un coude. Le bord de fuite 6 présente également une courbure ou coude sur la deuxième portion de l'aube 1. En particulier, la courbure du bord de fuite 6, en partie supérieure de l'aube 1, est déterminée par un angle β1 formé entre une droite tangente T au bord de fuite 6 et l'axe longitudinal X. Dans le présent exemple, l'angle β1 varie en partie supérieure de l'aube 1. La partie supérieure du bord de fuite présentant la courbure est située entre 50% et 95% de la hauteur H de l'aube 1 en partant de l'extrémité de pied de l'aube. L'angle β1 de courbure du bord de fuite 6 est compris entre 75° et 90°, le bord de fuite étant orienté vers l'amont et la valeur de 90° n'étant pas incluse. En d'autres termes, l'angle β1 entre le l'axe longitudinal et le bord de fuite 6 est sensiblement constant entre 0 et 50% de la hauteur de l'aube. L'angle β1 varie ensuite entre 50% et 95% de la hauteur de l'aube 1. Nous comprenons donc qu'il n'y pas d'angle droit et donc pas de changement brusque de direction du bord de fuite. Une telle configuration permet d'une part, de réduire l'encombrement et d'autre part, de conserver une distance axiale minimale prédéterminée d proche de la distance axiale minimale prédéterminée initiale d'une aube de redresseur classique. La distance axiale minimale est mesurée entre le bord de fuite 53 de l'aube de soufflante 51 et le bord d'attaque 5 de l'aube de redresseur. Par ailleurs, la forme courbe évite d'accentuer les phénomènes de tourbillon au voisinage de l'aube qui sont responsables du bruit.Likewise, according to figure 4 , a first portion of the trailing edge 6 extends along a straight line forming an angle β1 with the longitudinal axis. This angle β1 is between 90° and 120°, the trailing edge 6 being oriented downstream. This angle β1 varies from the longitudinal axis from upstream to downstream. The blade 1 also has a second portion where the stacking line L has the curvature or a bend. The trailing edge 6 also has a curvature or bend on the second portion of the blade 1. In particular, the curvature of the trailing edge 6, in the upper part of the blade 1, is determined by an angle β1 formed between a straight line tangent T to the trailing edge 6 and the longitudinal axis X. In the present example, the angle β1 varies in the upper part of the blade 1. The upper part of the trailing edge presenting the curvature is located between 50% and 95% of the height H of the blade 1 starting from the root end of the blade. The angle β1 of curvature of the trailing edge 6 is between 75° and 90°, the trailing edge being oriented upstream and the value of 90° not being included. In other words, the angle β1 between the longitudinal axis and the trailing edge 6 is substantially constant between 0 and 50% of the height of the blade. The angle β1 then varies between 50% and 95% of the height of the blade 1. We therefore understand that there is no right angle and therefore no sudden change in direction of the trailing edge. Such a configuration makes it possible, on the one hand, to reduce the bulk and, on the other hand, to keep a predetermined minimum axial distance d close to the initial predetermined minimum axial distance of a conventional stator vane. The minimum axial distance is measured between the trailing edge 53 of the fan blade 51 and the leading edge 5 of the stator blade. Furthermore, the curved shape avoids accentuating the vortex phenomena in the vicinity of the dawn which are responsible for the noise.

Les angles β1 que présentent le bord de fuite 6 par rapport à l'axe longitudinal sont représentés sur un graphique de la figure 6 et de la figure 8 en comparaison avec des angles du bord de fuite des aubes de redresseur de l'état de l'art. Sur cette figure les angles du bord de fuite des aubes de l'état de l'art présentent un angle dont la valeur est comprise entre 90° et 120° et est constante le long de la hauteur de l'aube (OGV10 et OGV12), ou dont la valeur varie entre 90° et 120° entre 50% et 95% de la hauteur de l'aube (OGV11), ou dont la valeur est comprise entre 0 et 90° et est constante le long de la hauteur de l'aube (OGV13). L'aube de redresseur OGV14 représentée sur la figure 8 et qui correspond à l'aube de l'art antérieur US-B1-6554564 qui présente un angle de flèche en partie médiane de la hauteur de l'aube. La valeur de l'angle est constante sur les premiers 50% de la hauteur de l'aube à partir de l'extrémité de pied et également constante mais complètement opposé sur les derniers 50% de la hauteur de l'aube à partir de la partie médiane vers l'extrémité de tête de l'aube. Nous constatons qu'il y a une rupture des deux droites du fait du changement brusque de direction. A l'inverse, l'aube de redresseur de la présente invention présente un angle dont la valeur est constante et comprise entre 90° et 120°, entre 0 et 50% de la hauteur de l'aube, et dont la valeur varie entre 75° et 90° entre 50% et 95% de la hauteur de l'aube. La ligne représentant la variation de l'angle de l'aube 1 est continue. En d'autres termes, il n'y a pas de rupture de la continuité dans la ligne représentant la variation de l'angle.The angles β1 presented by the trailing edge 6 with respect to the longitudinal axis are represented on a graph of the figure 6 and some figure 8 in comparison with trailing edge angles of state-of-the-art stator vanes. In this figure, the angles of the trailing edge of the blades of the state of the art present an angle whose value is between 90° and 120° and is constant along the height of the blade (OGV10 and OGV12) , or whose value varies between 90° and 120° between 50% and 95% of the blade height (OGV11), or whose value is between 0 and 90° and is constant along the height of the blade dawn (OGV13). The OGV14 stator vane shown on the figure 8 and which corresponds to the dawn of the prior art US-B1-6554564 which has an angle of sag in the middle part of the height of the blade. The angle value is constant over the first 50% of the blade height from the root tip and also constant but completely opposite over the last 50% of the blade height from the middle part towards the leading end of the blade. We find that there is a break in the two straight lines due to the sudden change in direction. Conversely, the stator vane of the present invention has an angle whose value is constant and between 90° and 120°, between 0 and 50% of the height of the vane, and whose value varies between 75° and 90° between 50% and 95% of the blade height. The line representing the variation of the angle of the blade 1 is continuous. In other terms, there is no break in continuity in the line representing the change in angle.

En particulier, il faut distinguer au moins deux domaines de variation de l'angle au niveau du bord de fuite de l'aube de redresseur suivant l'invention. Suivant une représentation mathématique avec P un point appartenant à la courbe représentant la hauteur H de l'aube de redresseur 1 et en particulier entre 50% et 95% de la hauteur H :

  • le premier domaine de l'aube 1 est : Hauteur=[5% ; P] où la valeur de β1 est supérieure ou égale à 90°, et
  • le deuxième domaine de l'aube 1 est : Hauteur=[P ; 95%] où la valeur de β1 est inférieure strictement à 90°.
In particular, it is necessary to distinguish at least two ranges of variation of the angle at the level of the trailing edge of the stator vane according to the invention. According to a mathematical representation with P a point belonging to the curve representing the height H of the stator vane 1 and in particular between 50% and 95% of the height H:
  • the first domain of dawn 1 is: Height=[5%; P] where the value of β1 is greater than or equal to 90°, and
  • the second domain of blade 1 is: Height=[P; 95%] where the value of β1 is strictly less than 90°.

Nous pouvons ainsi voir sur la figure 4, que l'extrémité de tête 4 de l'aube de redresseur 1 est raccordée au carter de soufflante 56 dans une zone de fixation plus en amont de la zone de fixation d'une aube de redresseur AR de l'art antérieur représentée en pointillée. En d'autres termes, l'extrémité de tête 4 de l'aube, de la présente invention, est décalée vers l'amont du fait de la courbure. Ce décalage et/ou la courbure permet de raccourcir la longueur, sensiblement suivant l'axe longitudinal X, de la nacelle 101. La nacelle présente ici une longueur LN comprise entre 3000 et 3800 mm prise entre une extrémité amont 20 formant une lèvre d'entrée d'air et une extrémité aval 21 formant un bord de tuyère. De préférence, mais non limitativement, la longueur LN est comprise entre 3100 et 3500 mm. Le gain de réduction de la longueur de la nacelle est compris, par exemple, entre 5 et 15 % par rapport à une nacelle de turbomachine standard sans l'invention comme celle-ci est représentée en pointillé sur la figure 4.We can thus see on the figure 4 , that the tip end 4 of the stator vane 1 is connected to the fan casing 56 in an attachment zone more upstream of the attachment zone of a prior art stator vane AR shown in dotted lines . In other words, the tip end 4 of the blade, of the present invention, is offset upstream due to the curvature. This offset and/or the curvature makes it possible to shorten the length, substantially along the longitudinal axis X, of the nacelle 101. The nacelle here has a length LN of between 3000 and 3800 mm taken between an upstream end 20 forming a lip of air inlet and a downstream end 21 forming a nozzle edge. Preferably, but not limitatively, the length LN is between 3100 and 3500 mm. The gain in reduction of the length of the nacelle is comprised, for example, between 5 and 15% compared to a standard turbomachine nacelle without the invention as the latter is shown in dotted lines on the figure 4 .

Plus précisément, l'agencement de l'aube 1 selon l'invention permet la réduction de la longueur de la nacelle 101 sans aggraver les nuisances acoustiques pour un même diamètre de soufflante donnée. Le gain de longueur permet de réduire la traînée aérodynamique de la turbomachine et/ou l'intégration de plus grandes surfaces de panneaux acoustiques pour une traînée équivalente comme cela est décrit plus loin dans l'invention. Le gain acoustique est d'environ 2 EPNdB (« Effective Perceived Noise » en anglais ou « niveau de bruit effectivement perçu, en décibels »).More precisely, the arrangement of the blade 1 according to the invention allows the length of the nacelle 101 to be reduced without aggravating the acoustic nuisances for the same given fan diameter. The gain in length makes it possible to reduce the aerodynamic drag of the turbomachine and/or the integration of larger surfaces of acoustic panels for equivalent drag as described later in the invention. the acoustic gain is about 2 EPNdB (“Effective Perceived Noise” in English or “level of noise actually perceived, in decibels”).

Pour un même diamètre de soufflante donnée, et à iso marge acoustique, le rapport de la longueur de la nacelle sur le diamètre de la soufflante (LN/DF) peut être compris entre -5% et -15% par rapport à une turbomachine sans l'invention, ce qui implique une réduction de la longueur de la nacelle comprise entre -5% et -15% par rapport à une turbomachine sans l'invention. En particulier, le rapport LN/DF est compris par exemple entre 1 et 3. Préférentiellement, mais non limitativement, le rapport est compris entre 2,1 et 2,8.For the same given fan diameter, and with iso acoustic margin, the ratio of the length of the nacelle to the diameter of the fan (LN/DF) can be between -5% and -15% compared to a turbomachine without the invention, which implies a reduction in the length of the nacelle of between -5% and -15% compared to a turbomachine without the invention. In particular, the LN/DF ratio is for example between 1 and 3. Preferably, but not limitingly, the ratio is between 2.1 and 2.8.

La distance axiale minimale relative entre les aubes de soufflante et les aubes de redresseur est déterminée par la relation d/C. d est la distance axiale minimale prédéterminée entre la bord de fuite 53 de la soufflante et le bord d'attaque 5 de l'aube de redresseur 1. Et C est la longueur de la corde axiale de la soufflante. La corde axiale C de la soufflante est mesurée entre le bord d'attaque 52 et le bord de fuite 53 de l'aube de soufflante.The relative minimum axial distance between the fan blades and the stator vanes is determined by the relationship d/C. d is the predetermined minimum axial distance between the trailing edge 53 of the fan and the leading edge 5 of the stator vane 1. And C is the length of the axial chord of the fan. The axial chord C of the fan is measured between the leading edge 52 and the trailing edge 53 of the fan blade.

La solution peut également se traduire par la condition suivante à respecter : d C 50 % H < H < 95 % H > d C 100 % H .

Figure imgb0001
The solution can also result in the following condition to be respected: VS 50 % H < H < 95 % H > VS 100 % H .
Figure imgb0001

H correspond au rayon extérieur de l'aube de redresseur 1 pris entre l'extrémité de pied et l'extrémité de tête de l'aube 1. Autrement dit, entre 50% et 95% de la hauteur H de l'aube, la distance axiale minimale relative entre la soufflante 103 et l'aube de redresseur 1 est supérieure à la distance axiale minimale relative mesurée à l'extrémité de tête de l'aube c'est-à-dire pour 100% de la hauteur H de l'aube de redresseur 1.H corresponds to the outer radius of the stator vane 1 taken between the root end and the tip end of the vane 1. In other words, between 50% and 95% of the height H of the vane, the relative minimum axial distance between the fan 103 and the stator vane 1 is greater than the relative minimum axial distance measured at the leading end of the blade, that is to say for 100% of the height H of the stator vane 1.

Selon encore une caractéristique de l'invention, celle-ci permet d'implémenter les deux conditions suivantes : d C 80 % H > α d C 100 % H .

Figure imgb0002
Avec d C 100 % H < Ω .
Figure imgb0003
According to yet another characteristic of the invention, the latter makes it possible to implement the following two conditions: VS 80 % H > α VS 100 % H .
Figure imgb0002
With VS 100 % H < Ω .
Figure imgb0003

Le paramètre α correspond à un facteur d'efficacité. Le paramètre α considéré comme étant supérieur à 1.1 est défini comme étant une condition permettant de garantir l'efficacité de l'invention. Le paramètre Ω est un paramètre caractérisant la condition Ω< 3 pour contraindre la longueur de la nacelle et conserver l'avantage recherché en performance. En particulier, nous considérons d la distance entre l'aube de soufflante et l'aube de redresseur en fonction de la hauteur H (d(H)), le pourcentage de hauteur de l'aube 1 avec 0% H (à l'extrémité de pied de l'aube 1) et 100% H (à l'extrémité de tête de l'aube 1). Pour chaque distance d considérée entre 50% et 95% de la hauteur de l'aube, celle-ci est supérieure à la distance d située à l'extrémité de tête de l'aube 1 (100% H) : d(r[50%-95%]) > d(100%). Cela permet de rapprocher l'aube de redresseur de l'aube de soufflante au niveau de l'extrémité de pied et de tête de l'aube 1 sans impacter la distance de l'aube 1 sur la portion de hauteur de l'aube comprise entre 50% et 95% où les phénomènes aéroacoustiques sont les plus intenses. En d'autres termes, la distance de propagation du sillage de la soufflante de même que sa dissipation sont maximisées et optimisées.The parameter α corresponds to an efficiency factor. The parameter α considered to be greater than 1.1 is defined as a condition making it possible to guarantee the effectiveness of the invention. The parameter Ω is a parameter characterizing the condition Ω<3 to constrain the length of the nacelle and maintain the desired performance advantage. In particular, we consider d the distance between the fan blade and the stator blade as a function of height H (d(H)), the percentage height of blade 1 with 0% H (at the root end of blade 1) and 100% H (at the leading end of blade 1). For each distance d considered between 50% and 95% of the height of the blade, this is greater than the distance d located at the leading end of blade 1 (100% H): d(r[ 50%-95%]) > d(100%). This makes it possible to bring the stator blade closer to the fan blade at the level of the root and tip end of the blade 1 without impacting the distance of the blade 1 on the height portion of the blade included between 50% and 95% where the aeroacoustic phenomena are the most intense. In other words, the propagation distance of the fan wake as well as its dissipation are maximized and optimized.

Etant donné que la longueur de la nacelle après les aubes (entre l'extrémité de tête de l'aube 1 et l'extrémité aval 21 de la nacelle) n'est pas raccourcie, il est possible d'envisager un traitement acoustique de la nacelle. Un tel traitement acoustique peut comprendre la disposition de panneaux acoustiques pour réduire davantage le bruit. Ces panneaux acoustiques sont avantageusement, mais non limitativement, disposés sur une face interne de la nacelle 101 en aval des aubes de redresseur 1.Given that the length of the nacelle after the blades (between the tip end of the blade 1 and the downstream end 21 of the nacelle) is not shortened, it is possible to envisage an acoustic treatment of the nacelle. Such acoustic treatment may include the provision of acoustic panels to further reduce noise. These acoustic panels are advantageously, but not limitatively, arranged on an internal face of the nacelle 101 downstream of the stator vanes 1.

Suivant un mode de réalisation illustré sur la figure 5, la forme de l'aube 1 est caractérisée par la relation suivante : 0,1 < L 2 L 1 50 % H < H < 95 % H < 0,5 .

Figure imgb0004
L2 correspond à la distance minimale entre le bord d'attaque 5 de l'aube de redresseur 1 et la ligne A passant par l'extrémité de pied et l'extrémité de tête de l'aube pris au bord d'attaque 5. L1 correspond à la longueur entre cette même ligne A et le bord de fuite 6 de l'aube de redresseur. Les bornes inférieures (0,1) et supérieures (0,5) sont déterminées de façon à limiter l'angle maximal de l'inclinaison de la ligne d'empilement L à l'extrémité de pied 3 de l'aube de redresseur 1 tout en limitant la courbure de la ligne d'empilement. Nous obtenons une forme curviligne permettant de limiter les contraintes structurelles (souplesse de l'aube de redresseur). Cela représente un avantage particulier pour une aube de redresseur peu structurale (qui ne contribue pas à la suspension du moteur).According to an embodiment illustrated in the figure 5 , the shape of the blade 1 is characterized by the following relationship: 0.1 < L 2 L 1 50 % H < H < 95 % H < 0.5 .
Figure imgb0004
L2 corresponds to the minimum distance between the leading edge 5 of the stator blade 1 and the line A passing through the root end and the leading end of the blade taken at the leading edge 5. L1 corresponds to the length between this same line A and the trailing edge 6 of the stator vane. The lower (0.1) and upper (0.5) limits are determined so as to limit the maximum angle of inclination of the stacking line L at the root end 3 of the stator vane 1 while limiting the curvature of the line stacking. We obtain a curvilinear shape making it possible to limit the structural constraints (flexibility of the stator vane). This is a particular advantage for a low structural stator vane (which does not contribute to engine suspension).

Suivant encore un autre mode de réalisation illustré sur la figure 7, l'aube 1 présente les mêmes caractéristiques que celle représentée sur les figures 4 et 5. Les éléments décrits précédemment sont désignés dans la suite de la description par les mêmes références numériques. La nacelle enveloppe l'aube 1 et la soufflante. Comme nous pouvons le voir, l'extrémité aval de l'extrémité de tête de l'aube 1 est située en aval de l'extrémité aval du carter de soufflante pour diminuer la masse de la turbomachine. La nacelle est fabriquée dans des matériaux plus légers que le carter de soufflante. Nous cherchons ainsi à limiter l'extension du carter de soufflante pour le remplacer par la nacelle. Les équipements de la nacelle tels qu'un inverseur de poussée peuvent être intégrer plus en amont, et en particulier plus proche de la soufflante ce qui permet de diminuer l'extension axiale de la nacelle et de la turbomachine. L'extrémité aval de l'extrémité de tête 4 est située en vis-à-vis de la nacelle 101.According to yet another embodiment illustrated in the figure 7 , the blade 1 has the same characteristics as that represented on the figures 4 and 5 . The elements described above are designated in the remainder of the description by the same numerical references. The nacelle envelops the blade 1 and the fan. As we can see, the downstream end of the tip end of the blade 1 is located downstream of the downstream end of the fan casing to reduce the mass of the turbomachine. The nacelle is made of lighter materials than the fan casing. We are thus seeking to limit the extension of the fan casing to replace it with the nacelle. The equipment of the nacelle such as a thrust reverser can be integrated further upstream, and in particular closer to the fan, which makes it possible to reduce the axial extension of the nacelle and of the turbomachine. The downstream end of the head end 4 is located opposite the nacelle 101.

Claims (10)

  1. A flow-straightener vane (1) of a bypass turbomachine (100) with a longitudinal axis (X), the vane (1) comprising a plurality of vane sections (2) stacked radially with respect to the axis (X) along a stacking line (L) between a root end (3) and a tip end (4), each vane section (2) comprising an pressure-face surface (7) and an suction-face surface (8) extending axially between an upstream leading edge (5) and a downstream trailing edge (6) and being tangentially opposed,
    characterized in that between the leading (5) and trailing (6) edges of each vane section (2) there is formed a profile chord (CA) the length of which is substantially constant between the tip end (4) and the root end (3), and in that the stacking line (L) has a curvature, in a plane passing substantially through the axis (X) and through the stacking line (L), located in the vicinity of the tip end (4) and oriented from downstream to upstream.
  2. The vane (1) according to claim 1, characterized in that the curvature of the stacking line (L) is continuous and progressive.
  3. The vane (1) according to one of claims 1 and 2, characterized in that the curvature is located between 50% and 95% of the height of the vane (1) between the root end (2) and the tip end (4).
  4. The vane (1) according to one of the preceding claims, characterized in that the shape of the vane between 50% and 95% of the height of the vane is determined by the following relationship : 0.1 < (L2/L1) 50%H<H<95%H < 0.5, with L2 corresponding to the minimum distance between the leading edge of the vane and a line (A) passing through the root end and the tip end of the vane, L1 corresponding to the length between this same line (A) and the trailing edge (6) of the vane, and H being the height of the vane.
  5. The vane (1) according to one of the preceding claims, characterized in that it has a first root portion whose stacking line (L) extends along a straight line and a second tip portion whose stacking line (L) comprises the curvature.
  6. The vane (1) according to any one of the preceding claims, characterized in that the leading edge (5) has a concave portion and the trailing edge (6) has a convex portion at the curvature.
  7. An assembly comprising a nacelle (101) of a bypass turbomachine extending along a longitudinal axis (X) and a fan casing (56) secured to the nacelle, the fan casing (56) surrounding a fan (103) and defining downstream of the fan (103) an annular vein (55) in which an air flows circulates, characterised in that the fan casing (56) comprises an annular row of flow-straightener vanes (1) according to any one of claims 1 to 6 arranged downstream of the fan vanes (51) transversely in the annular vein (55).
  8. The assembly according to the preceding claim, characterized in that the nacelle (101) has a length (LN) substantially along the longitudinal axis (X) and the fan (103) has a diameter (DF) substantially along the radial axis, the ratio (LN/DF) of the length of the nacelle to the diameter of the fan being between 1 and 3.
  9. The assembly according to one of claims 7 and 8, characterized in that the relative axial distance between a fan vane (51) and a flow-straightener vane (1) is determined by the following condition:
    (d/C), where d is the predetermined minimum axial distance between a trailing edge (53) of the fan and the leading edge (5) of the flow-straightener vane (1), and C is the length of the axial chord of the fan vane (103), and in that the curvature of the stacking line (L) is determined by the following relationship: (d/C) 50% H<H<95% H > (d/C)100% H, where H is the height of the flow-straightener vane between the tip end (4) and the root end (3).
  10. A bypass turbomachine (100), characterized in that it comprises at least one flow-straightener vane according to any one of claims 1 to 6 or an assembly according to any one of claims 7 to 9.
EP18769761.0A 2017-08-28 2018-08-28 Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly Active EP3676480B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757896A FR3070448B1 (en) 2017-08-28 2017-08-28 TURBOMACHINE BLOWER RECTIFIER DRAWER, TURBOMACHINE ASSEMBLY COMPRISING SUCH A BLADE AND TURBOMACHINE EQUIPPED WITH SAID DAUTH OR DUDIT TOGETHER
PCT/FR2018/052114 WO2019043330A1 (en) 2017-08-28 2018-08-28 Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly

Publications (2)

Publication Number Publication Date
EP3676480A1 EP3676480A1 (en) 2020-07-08
EP3676480B1 true EP3676480B1 (en) 2022-10-05

Family

ID=60302260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18769761.0A Active EP3676480B1 (en) 2017-08-28 2018-08-28 Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly

Country Status (5)

Country Link
US (1) US11377958B2 (en)
EP (1) EP3676480B1 (en)
CN (1) CN111108262B (en)
FR (1) FR3070448B1 (en)
WO (1) WO2019043330A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255343B2 (en) * 2018-02-02 2022-02-22 General Electric Company Engine systems and methods
JP7061497B2 (en) * 2018-03-30 2022-04-28 三菱重工航空エンジン株式会社 Aircraft gas turbine
US11091258B2 (en) 2019-06-14 2021-08-17 Bell Textron Inc. VTOL aircraft with tilting rotors and tilting ducted fans
US11097838B2 (en) * 2019-06-14 2021-08-24 Bell Textron Inc. Duct with optimized horizontal stator shape
FR3103215B1 (en) * 2019-11-20 2021-10-15 Safran Aircraft Engines Turbomachine rotary fan blade, fan and turbomachine fitted therewith
CN111651833B (en) * 2020-05-11 2021-01-05 上海机电工程研究所 Method and system for analyzing flow field of rotary aircraft
FR3122452A1 (en) * 2021-04-30 2022-11-04 Safran Helicopter Engines Turbomachine subassembly produced by additive manufacturing
CN114542216A (en) * 2022-02-25 2022-05-27 中国航发沈阳发动机研究所 Design method of turbine support plate blade with supporting and flow guiding functions and blade
CN117365663A (en) * 2022-06-30 2024-01-09 中国航发商用航空发动机有限责任公司 Anti-fly-rotation blade, manufacturing method thereof, aeroengine and aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195983B1 (en) 1999-02-12 2001-03-06 General Electric Company Leaned and swept fan outlet guide vanes
US6554564B1 (en) 2001-11-14 2003-04-29 United Technologies Corporation Reduced noise fan exit guide vane configuration for turbofan engines
EP2628919A2 (en) 2012-02-20 2013-08-21 Rolls-Royce plc An aircraft propulsion system nacelle
US20130224040A1 (en) * 2012-02-29 2013-08-29 Joseph C. Straccia High order shaped curve region for an airfoil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741667A (en) * 1986-05-28 1988-05-03 United Technologies Corporation Stator vane
JPH10103002A (en) * 1996-09-30 1998-04-21 Toshiba Corp Blade for axial flow fluid machine
JP3621216B2 (en) * 1996-12-05 2005-02-16 株式会社東芝 Turbine nozzle
JP2002349498A (en) * 2001-05-24 2002-12-04 Ishikawajima Harima Heavy Ind Co Ltd Low noise fan stationary blade
GB0622405D0 (en) * 2006-11-10 2006-12-20 Rolls Royce Plc A turbine engine mounting arrangement
US8333559B2 (en) * 2007-04-03 2012-12-18 Carrier Corporation Outlet guide vanes for axial flow fans
DE102008055824B4 (en) * 2007-11-09 2016-08-11 Alstom Technology Ltd. steam turbine
EP2441918A1 (en) * 2010-10-18 2012-04-18 Siemens Aktiengesellschaft Gas turbine annular diffuser
US10107191B2 (en) * 2012-02-29 2018-10-23 United Technologies Corporation Geared gas turbine engine with reduced fan noise
US10060263B2 (en) * 2014-09-15 2018-08-28 United Technologies Corporation Incidence-tolerant, high-turning fan exit stator
EP3081751B1 (en) * 2015-04-14 2020-10-21 Ansaldo Energia Switzerland AG Cooled airfoil and method for manufacturing said airfoil
US10526894B1 (en) * 2016-09-02 2020-01-07 United Technologies Corporation Short inlet with low solidity fan exit guide vane arrangements
US10677264B2 (en) * 2016-10-14 2020-06-09 General Electric Company Supersonic single-stage turbofan engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195983B1 (en) 1999-02-12 2001-03-06 General Electric Company Leaned and swept fan outlet guide vanes
US6554564B1 (en) 2001-11-14 2003-04-29 United Technologies Corporation Reduced noise fan exit guide vane configuration for turbofan engines
EP2628919A2 (en) 2012-02-20 2013-08-21 Rolls-Royce plc An aircraft propulsion system nacelle
US20130224040A1 (en) * 2012-02-29 2013-08-29 Joseph C. Straccia High order shaped curve region for an airfoil

Also Published As

Publication number Publication date
CN111108262B (en) 2022-09-23
US11377958B2 (en) 2022-07-05
FR3070448B1 (en) 2019-09-06
FR3070448A1 (en) 2019-03-01
CN111108262A (en) 2020-05-05
US20200355085A1 (en) 2020-11-12
WO2019043330A1 (en) 2019-03-07
EP3676480A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
EP3676480B1 (en) Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly
EP2809883B1 (en) Jet engine fan blade
CA2975570C (en) Guide assembly with optimised aerodynamic performance
EP2895703B1 (en) Turbomachine comprising a plurality of variable geometry vanes mounted upstream of the fan
EP3204620B1 (en) Stator of an aircraft turbine engine
EP1693572A2 (en) Bleeding air from the tip of the rotating blades in a high pressure compressor of a turbine engine
FR2999151A1 (en) PROPELLER BLADE FOR TURBOMACHINE
EP3473813B1 (en) Turbine engine with a rectifier unit
EP2582986B1 (en) Aerodynamic coupling between two annular rows of stationary vanes in a turbine engine
EP2976507B1 (en) Blade and blade dihedral angle
FR3090033A1 (en) DAWN DIRECTION AND BIFURCATION DIRECTOR SET FOR TURBOMACHINE
FR3118792A1 (en) MODULE FOR AN AIRCRAFT TURBOMACHINE
BE1030039B1 (en) FLOW SEPARATOR IN A TURBOMACHINE
BE1028097B1 (en) Turbomachine compressor blade, compressor and turbomachine fitted therewith
BE1030472B1 (en) FLOW SEPARATOR IN A TRIPLE-FLOW TURBOMACHINE
FR3082229A1 (en) TURBOMACHINE WITH A PARTIAL COMPRESSION VANE
WO2017109430A1 (en) Turbomachine with reverse clipping propeller
WO2024033065A1 (en) Variable vane of an aircraft turbine engine stator, and aircraft turbine engine
FR3050759A1 (en) AIR FLOW AND TURBOMACHINE RECOVERY ASSEMBLY COMPRISING SUCH AN ASSEMBLY
FR3070440A1 (en) DRAWING BOW AND STRUCTURAL TREE CONNECTED IN A PRIMARY VEIN
WO2023021258A1 (en) Stator part of a turbomachine comprising an airfoil and a fin defining between them a decreasing surface from upstream to downstream in the gas flow direction
FR3136448A1 (en) Non-ducted thrust production assembly including a rectifier loaded at the blade root
WO2022090643A1 (en) Fairing element for surrounding an obstacle in a fluid flow
FR3138835A1 (en) TURBOMACHINE INCLUDING VARIABLE PITCH VANES
WO2023198981A1 (en) Stator part having a fin, in a turbine engine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522871

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018041445

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221005

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1522871

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602018041445

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26 Opposition filed

Opponent name: RAYTHEON TECHNOLOGIES CORPORATION

Effective date: 20230705

R26 Opposition filed (corrected)

Opponent name: RAYTHEON TECHNOLOGIES CORPORATION

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 6

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 6

Ref country code: DE

Payment date: 20230720

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230828

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A