EP3671797B1 - Safety switch device - Google Patents

Safety switch device Download PDF

Info

Publication number
EP3671797B1
EP3671797B1 EP18213553.3A EP18213553A EP3671797B1 EP 3671797 B1 EP3671797 B1 EP 3671797B1 EP 18213553 A EP18213553 A EP 18213553A EP 3671797 B1 EP3671797 B1 EP 3671797B1
Authority
EP
European Patent Office
Prior art keywords
antenna
switching
safety
switching element
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18213553.3A
Other languages
German (de)
French (fr)
Other versions
EP3671797A1 (en
Inventor
Guillaume Geoffroy
Frank Kloeser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Priority to EP18213553.3A priority Critical patent/EP3671797B1/en
Publication of EP3671797A1 publication Critical patent/EP3671797A1/en
Application granted granted Critical
Publication of EP3671797B1 publication Critical patent/EP3671797B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/168Indicators for switching condition, e.g. "on" or "off" making use of an electromagnetic wave communication

Definitions

  • the present invention relates to a safety switching device for switching an electrical consumer that can be connected to the switching device, in particular an electrical machine.
  • Safety switching devices are used, for example, in industrial systems in order to switch off electrical machines reliably, at least in certain areas.
  • safety switching devices protect machines that can potentially pose a risk to operating personnel or devices, such as, for example, production robots, presses, cutting machines and the like.
  • the shutdown process must take place particularly reliably; in particular, it must also be possible to check whether the shutdown process has actually taken place.
  • relays with forcibly guided contacts are used, for example, so that the forced guidance of the contacts when the machine is switched off ensures that the electrical consumer has actually been de-energized.
  • a disadvantage of such positively driven relays is that they are more expensive and larger than conventional relays. In the case of conventional relays, in turn, it cannot be ruled out that the switching contacts of the relay will weld together due to the formation of sparks when the switching element is opened Switching element can no longer interrupt a power supply to the electrical machine. In the case of semiconductor switching elements too, alloying of the semiconductor can mean that a current flow by means of the semiconductor can no longer be interrupted.
  • the invention is therefore based on the knowledge that the actual switching state of the switching element can be determined by radio transmission of the test signal if the actual switching state has an influence on the test signal. In this way, the actual switching state can be reliably determined by means of an arrangement of two antennas that is easy to produce.
  • the safety switching device according to the invention can therefore be produced inexpensively and thus economically, while a reliable detection of the actual switching state is still possible. In this way, for example, welding of contacts of the switching element can be reliably detected.
  • the test signal can be a radio signal which is transmitted by the first antenna and received by the second antenna.
  • the radio signal can comprise or consist of an HF signal or an LF signal (high-frequency signal, for example in the short-wave range or low-frequency signal, for example in the long-wave range).
  • the test signal can be influenced in particular in that in a switching state, for example when the power supply path is closed, no adaptation to the test signal is carried out on the side of the second antenna (“detuning”). On the other hand, when the switching state in which the power supply path has been interrupted is present, the second antenna can be adapted to the test signal (“tuning”).
  • the "tuning" or “detuning” can, as will be explained in detail later, for example by changing the electrical Interconnection takes place on the side of the second antenna.
  • mechanical changes are also conceivable, for example by mechanically introducing a barrier that interferes with the radio contact between the first and second antenna, it being possible for the barrier, for example, to be mechanically coupled to a movable contact of the switching element.
  • a movement of the contact of the switching element can also deform or move the second antenna, for example.
  • the influence on the test signal is measured or detected in order to determine the actual switching state. If the actual switching state deviates from the expected or desired switching state, an error signal can be output.
  • the electrical switching element can be, for example, a mechanical switch, in particular an electromechanically operated relay.
  • the electrical switching element can also comprise a semiconductor switch, in particular a transistor or an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the safety switching device can comprise a control unit for controlling the switching element.
  • the control unit can, for example, evaluate an external safety sensor, e.g. an emergency stop switch, in particular multi-channel, and in the event of the safety sensor being triggered (e.g. actuation of the emergency stop switch), the switching element can be transferred from the closed switching state to the open switching state.
  • the safety sensor can, for example, also be a door contact, a light grid or a laser scanner.
  • the safety switching devices can, for example, meet the safety requirements according to SIL3 (Safety Integrity Level) or another standard.
  • the control unit can also receive information about the actual switching state of the switching element from the monitoring unit. In the event of a discrepancy between the switching state set by the control unit and the actual switching state, the above-mentioned error signal can be output by the control unit.
  • Control unit and monitoring unit can also be designed as a common unit.
  • the first antenna and / or the second antenna are designed as microstrip and / or patch antennas.
  • the antennas can be manufactured in a very space-saving manner and also very economically using modern methods for manufacturing printed circuit boards, in particular in the same process as the rest of the electronics of the safety switching device.
  • the antennas preferably extend at least essentially only parallel to the surface of the circuit board (or within the circuit board) and thus do not form a significant elevation. In this way, the safety switching device can be made particularly small and compact.
  • the first and the second antenna and in particular all further antennas mentioned later can be arranged on the same printed circuit board.
  • the first antenna and the second antenna are arranged on different layers of the same printed circuit board.
  • the first and the second antenna are isolated from one another and / or galvanically separated.
  • the first antenna on a front side of the circuit board and the second antenna can be arranged on a rear side of the same printed circuit board.
  • the use of different layers or layers of the printed circuit board ie a PCB - Printed Circuit Board) enables the two antennas to be reliably isolated from one another, and in particular a galvanic separation between the first and second antenna can be made possible with low manufacturing costs.
  • the first and second antennas are arranged in a stationary manner with respect to one another.
  • the first and second antennas are preferably spaced apart from one another and have no direct electrical connection.
  • Galvanic isolation is preferably achieved through the use of the two antennas, in particular between the monitoring unit and the switching element.
  • Attaching the first and second antenna to the same circuit board also has the advantage that a transmission path for the test signal can be made very short and thus insensitive to external influences.
  • a transmission path for the test signal can be made very short and thus insensitive to external influences.
  • an influence on the test signal by the switching state of the electrical switching element can be detected more easily, since external influences on the test signal are very small and can therefore essentially be neglected.
  • an initial measurement of the test signal can first take place for various known switching states, with the actual switching states then being able to be determined in productive use based on the initial measurement.
  • the space required by an individual printed circuit board is very small, so that both antennas also only have a small space requirement, as a result of which the safety switching device can in turn be made very compact.
  • the second antenna is part of an oscillating circuit, the resonance frequency of which depends on the actual switching state of the switching element.
  • the resonant circuit can for example comprise a capacitor and a coil, wherein the coil can be formed by the second antenna.
  • the resonant circuit preferably also comprises one or more capacitive or inductive additional components which are (only) electrically coupled into the resonant circuit when the switching element is closed in order to change the resonance frequency of the resonant circuit.
  • the additional components can therefore be electrically connected to the switching element in such a way that when the switching element is in the closed switching state, the additional components become part of the resonant circuit.
  • the resonance frequency of the resonant circuit can be reduced.
  • the resonant circuit can thus have two different resonance frequencies. The first resonance frequency is when the switching element is actually open and the second resonance frequency is when the switching element is actually closed.
  • the resonant circuit can have a first resonance frequency when the switching element is closed and a second, different, resonance frequency when the switching element is open.
  • the switching element can preferably be electrically coupled to the resonant circuit or, as mentioned above, be part of the resonant circuit.
  • the resonant circuit can comprise the second antenna, which can have two electrical contacts, and a first capacitor, the first capacitor being connected between the two electrical contacts of the second antenna. This results in a parallel connection of the first capacitor with the second antenna.
  • the switching element can also have two electrical contacts, each of the electrical contacts of the switching element preferably being electrically connected to an electrical contact of the second antenna via an additional capacitor (i.e. for example a second and third capacitor).
  • the second and third capacitors can accordingly be the additional components mentioned above.
  • the test signal comprises at least two different transmission frequencies, which preferably correspond to the first and / or second resonance frequency.
  • the transmission frequencies can also be referred to as carrier frequencies.
  • the first and the second transmission frequency are transmitted by the first antenna in particular one after the other in time.
  • the resonant circuit of the second antenna can be particularly strongly excited with the appropriate switching state, which can be detected in a simple manner, which in turn makes the actual switching state of the switching element can be determined.
  • the test signal and thus also the transmission frequencies are preferably generated by means of a signal generator and coupled into the first antenna by the signal generator.
  • a frequency ramp, a continuous frequency change or a wobbling of the transmission frequency can also be implemented by the signal generator.
  • the signal generator can be an LF generator or an HF generator.
  • the transmission frequency and thus the test signal can also be modulated, for example by means of amplitude or phase modulation. Modulation using on-off keying is also possible.
  • the test signal can for example comprise a modulation according to the pattern on-off-on-on-off-on.
  • the monitoring unit is designed to measure the power transmitted from the first to the second antenna by means of the test signal, the actual switching state being determined on the basis of the transmitted power.
  • the first and the second antenna are tuned to one another.
  • the energy transfer from the first to the second antenna can be maximized by coordinating them with one another.
  • “detuning” would occur if the transmission frequency does not correspond to the currently prevailing resonance frequency.
  • the energy transfer from the first to the second antenna is then lower, which can be measured by the monitoring unit.
  • the energy transfer can be measured, for example, by measuring a voltage across a resistor in a feed line to the first antenna or in a feed line to the signal generator. It is also possible to measure a change in the amplitude of the transmission frequency, for example by means of an operational amplifier.
  • NFC tag Near Field Communication Tag
  • the safety switching device comprises one or more additional electrical switching elements.
  • the actual switching state of the additional switching element or elements also influences the test signal.
  • At least one of the additional electrical switching elements is preferably coupled to an additional resonant circuit, the resonance frequency of which depends on the actual switching state of the additional electrical switching element, the resonance frequency or the resonance frequencies of the additional resonance circuit preferably differing from the resonance frequency or the resonance frequencies of the resonance circuit.
  • the additional resonant circuit or circuits preferably each include a separate second antenna. However, several resonant circuits can also be connected to a second antenna.
  • the additional electrical switching elements can be connected in series with the (first) electrical switching element in order to enable redundant disconnection of the electrical consumer. It is also possible to use the additional electrical switching elements to implement a multi-channel safety switching device which can switch various electrical loads independently of one another.
  • the safety switching device can have, for example, two or three channels, in each of which two electrical switching elements are connected in series. This results in a total of four or six electrical switching elements.
  • Each of the switching elements can be part of a separate resonant circuit.
  • the additional resonant circuits can also be switched back and forth between two resonance frequencies in that the respective switching element changes its switching state between closed and open (or vice versa). All resonance frequencies used within the same safety switching device are preferably different, so that the actual switching state of each switching element can be clearly detected using just one first antenna, and it is also clear from which switching element the respective resonance frequency "originates".
  • the test signal can also include the resonance frequencies of the additional oscillating circuits, so that each switching element can be tested separately for its actual switching state.
  • the additional resonance frequencies in the test signal can be contained in the test signal one after the other.
  • test signal it is also possible to use the test signal to detect only one switching state of the switching element or switching elements, in particular the "open" switching state.
  • the test signal can be used as transmission frequencies, in particular only that include resonance frequencies that occur when the switching elements contained in the safety switching device are in the "open” switching state. If, for example, only one switching element is to be monitored, the test signal comprises or contains only exactly one transmission frequency.
  • first antenna for detecting the switching states of several different switching elements.
  • first antennas can also be provided, which interact with only one or also several second antennas.
  • second antennas or the resonant circuits, which interact with a respective first antenna only different resonance frequencies are preferably used.
  • the first antenna spans a surface area within which the second antenna or the second antennas is / are arranged.
  • the arrangement of the second antenna within the first antenna ensures reliable and good transmission of the test signal.
  • the first antenna shields the second antenna from external interference.
  • the second antenna lies in the same plane or in parallel planes, e.g. in a layer below or above the first antenna, within the first antenna. Accordingly, inside also refers to a vertical projection of the first antenna downwards or upwards.
  • the first and / or the second antenna are preferably designed in a planar manner.
  • the first and second antenna as well as the monitoring unit and the switching element are in the same unit, preferably arranged within the same housing.
  • the first and second antenna and the switching element are preferably arranged on the same printed circuit board. This in turn can promote a compact design of the safety switching device.
  • the first antenna is designed to receive data by means of near field communication (NFC) and / or radio frequency identification (RFID).
  • the monitoring unit preferably has an interface connected to the first antenna for communication by means of NFC and / or RFID.
  • the first antenna can thus be used twice, on the one hand to determine the actual switching state of the electrical switching element or of several electrical switching elements and on the other hand for data communication by means of NFC and / or RFID.
  • the data received or sent by the first antenna can be transmitted to / from the monitoring unit by means of the interface. In this way, the monitoring unit can output diagnostic / status data or receive configuration data, for example.
  • the safety switching device can be configured, for example, by means of a smartphone. Data can then also be read out using the smartphone, whereby the switching states or any errors can be determined.
  • the first antenna can be designed to transmit test signals with a transmission frequency in the range from 100 to 500 kHz, preferably from 100 to 200 kHz.
  • the first antenna can be designed for RFID communication in the long wave range at 125 kHz, 134 kHz, 250 kHz, 375 kHz, 500 kHz, 625 kHz, 750 kHz and / or 875 kHz.
  • the first antenna can also be designed for RFID communication and / or for NFC communication at a frequency of 13.56 MHz. Also the actual switching states can be determined in the range of 13.56 MHz, ie the resonance frequencies can be in this range.
  • the resonance frequencies can also be in the range between 100 and 500 kHz, preferably in the range between 100 and 200 kHz.
  • the two resonance frequencies of the same resonant circuit (for closed and open switching state) differ by at least 20%, preferably by at least 10%. In this way, a reliable differentiation between the two switching states is guaranteed.
  • the switching state can preferably be determined, in particular only, in the open switching state.
  • the switched frequencies are irrelevant, so that the frequencies switched by means of the safety switching device can be in the same range as the frequencies of the test signal or the resonance frequencies.
  • the monitoring unit then checks whether the switching element has really changed to the open switching state. If the actual switching status deviates from the desired or expected switching state, an error signal can be output. The error signal can then alert operating personnel or cause a higher-level control to switch off the entire system in which the consumer is installed. The safety switching device itself can also use the error signal to switch off.
  • the invention also relates to a method according to claim 13.
  • diagnostic, status and / or configuration data of the safety switching device are received and / or sent by means of the first antenna, in particular via NFC and / or RFID.
  • the received data preferably influence the operation of the safety switching device.
  • the data sent include, in particular, information about the state of the safety switching device.
  • Fig. 1 shows a system 10 which comprises a safety switching device 12 and a consumer in the form of a robot 14 that is electrically coupled to the safety switching device 12.
  • the electrical energy for operating the robot 14 comes from a power driver 16.
  • a switching element in the form of a relay 18 is arranged in the safety switching device 12, the relay 18 closing a power supply path 20 in the closed switching state, as a result of which the robot 14 is supplied with electrical energy.
  • the power driver 16 is part of the power supply path 20. If the relay 18 is in the open switching state, the power supply path 20 is interrupted so that there is no closed circuit, whereby the robot 14 is switched off.
  • a monitoring unit 22 which is electrically connected to a first antenna 24, is provided in the safety switching device 12.
  • the first antenna 24 is designed to transmit a test signal 26 to a second antenna 28.
  • the second antenna 28 is in turn electrically connected to the relay 18, the switching state of the relay 18 influencing the test signal 26, as will be explained in more detail below.
  • the relay 18 is actuated by a control unit 30.
  • the monitoring unit 22 determines the actual switching state of the relay 18 and transmits the actual switching state to the control unit 30 by means of a data line 32.
  • the first antenna 24 is also designed for communication by means of near field communication (NFC) 34.
  • NFC near field communication
  • the monitoring unit 22 and / or the control unit 30 can exchange data, for example, with a smartphone 36 located in the vicinity.
  • Fig. 2 shows a first embodiment in which two relays 18a and 18b are connected in series.
  • Each of the relays 18a, 18b is integrated in an oscillating circuit 38 or connected to an oscillating circuit 38 in the same way, so that the following explanations apply equally to all relays 18.
  • a respective resonant circuit 38 comprises a second antenna 28 which is connected in parallel to a first capacitor 40.
  • the electrical connections of the second antenna 28 are each connected to the electrical connections of the respective relay 18a, 18b via a second and third capacitor 42, 44. If the respective relay 18a is open, the resonant circuit 38 comprises only the second antenna 28 and the first capacitor 40. If the relay 18 is closed, the resonant circuit also includes the second and third Capacitor 42, 44, whereby the resonance frequency of the respective resonant circuit 38 changes.
  • the two second antennas 28 are surrounded by a single first antenna 24.
  • the test signal 26 is generated by means of the first antenna 24 by means of two transistors 46 and a voltage source 48.
  • the transistors 46 and the voltage source 48 can be viewed together as a signal generator.
  • the amplitude of the test signal 26 is measured by means of an operational amplifier 50.
  • the energy transmitted from the first to the second antenna 24, 28 can be measured on the basis of the amplitude, it being possible to determine which of the oscillating circuits 38 is currently at which resonance frequency.
  • a test signal 26 is generated which comprises at least four different transmission frequencies, the four transmission frequencies corresponding to the four possible resonance frequencies of the two oscillating circuits 38. In this way it can be determined separately for each relay 18a, 18b which switching state it is in.
  • Fig. 3 shows a second embodiment in which the safety switching device 12 comprises two parallel channels 52a, 52b. In each channel 52, two relays 18a, 18b and 18c, 18d are connected in series. Each relay 18a, 18b, 18c, 18d is assigned to a separate resonant circuit 38.
  • the embodiment of Fig. 3 differs from the embodiment of Fig. 2 in that two first antennas 24 are provided, each with its own signal generator. The first antennas 24 are arranged in such a way that in each case a second antenna 28 of each channel 52 lies within the first antenna 24 and can thus be evaluated by means of the respective first antenna 24.
  • a test signal is output to determine the actual switching status of all four relays 18a, 18b, 18c, 18d.
  • Fig. 4 shows a circuit board 54 in which the first antenna 24 is arranged on an upper layer 56 and a second antenna 28 is arranged on the upper layer 56 and also on a lower layer 58.
  • the second antenna 28 on the upper layer 56 is surrounded by the first antenna 28.
  • the first and second antennas 24, 28 are thus arranged in a stationary manner with respect to one another, whereby influences due to variable antenna positions are prevented.
  • the use of antennas 24, 28 achieves galvanic isolation between the monitoring unit 22 and the resonant circuits 38.
  • the inventive determination of the actual switching state based on antennas allows a simple, contactless but reliable determination of the actual switching state.
  • additional functions such as communication via NFC, can be implemented with the existing antennas without much additional effort.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmitters (AREA)

Description

Die vorliegende Erfindung betrifft eine Sicherheitsschaltvorrichtung zum Schalten eines an die Schaltvorrichtung anschließbaren elektrischen Verbrauchers, insbesondere einer elektrischen Maschine.The present invention relates to a safety switching device for switching an electrical consumer that can be connected to the switching device, in particular an electrical machine.

Aus der US 2002/0021226 A1 ist eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 bekannt.From the US 2002/0021226 A1 a device according to the preamble of claim 1 is known.

Sicherheitsschaltvorrichtungen werden beispielsweise bei industriellen Anlagen eingesetzt, um elektrische Maschinen zuverlässig zumindest bereichsweise abzuschalten. Insbesondere werden mit solchen Sicherheitsschaltvorrichtungen Maschinen abgesichert, von denen potentiell eine Gefahr für Bedienungspersonal oder Geräte ausgehen kann, wie beispielsweise Fertigungsroboter, Pressen, Schneidmaschinen und dergleichen.Safety switching devices are used, for example, in industrial systems in order to switch off electrical machines reliably, at least in certain areas. In particular, such safety switching devices protect machines that can potentially pose a risk to operating personnel or devices, such as, for example, production robots, presses, cutting machines and the like.

Aufgrund der Gefahr für das Bedienpersonal muss der Abschaltvorgang besonders zuverlässig erfolgen, insbesondere muss auch überprüfbar sein, ob der Abschaltvorgang auch tatsächlich stattgefunden hat.Due to the danger to the operating personnel, the shutdown process must take place particularly reliably; in particular, it must also be possible to check whether the shutdown process has actually taken place.

Hierzu werden beispielsweise Relais mit zwangsgeführten Kontakten eingesetzt, so dass aufgrund der Zwangsführung der Kontakte beim Abschalten der Maschine sichergestellt ist, dass der elektrische Verbraucher auch tatsächlich stromlos geschaltet wurde. Ein Nachteil solcher zwangsgeführter Relais ist, dass diese teurer und größer sind als herkömmliche Relais. Bei herkömmlichen Relais kann wiederum nicht ausgeschlossen werden, dass die Schaltkontakte des Relais aufgrund von Funkenbildung beim Öffnen des Schaltelements verschweißen, wodurch das Schaltelement eine Stromzufuhr zu der elektrischen Maschine nicht mehr unterbrechen kann. Auch bei Halbleiter-Schaltelementen kann ein Durchlegieren des Halbleiters dazu führen, dass ein Stromfluss mittels des Halbleiters nicht mehr unterbrochen werden kann.For this purpose, relays with forcibly guided contacts are used, for example, so that the forced guidance of the contacts when the machine is switched off ensures that the electrical consumer has actually been de-energized. A disadvantage of such positively driven relays is that they are more expensive and larger than conventional relays. In the case of conventional relays, in turn, it cannot be ruled out that the switching contacts of the relay will weld together due to the formation of sparks when the switching element is opened Switching element can no longer interrupt a power supply to the electrical machine. In the case of semiconductor switching elements too, alloying of the semiconductor can mean that a current flow by means of the semiconductor can no longer be interrupted.

Ein solcher Fehlerfall ist bei Sicherheitsschaltvorrichtungen unbedingt zu erkennen und zu vermeiden.In the case of safety switching devices, such a fault must be identified and avoided.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine Sicherheitsschaltvorrichtung anzugeben, welche auf einfache und kostengünstige Weise eine sichere Detektion des tatsächlichen Schaltzustands eines Schaltelements der Sicherheitsschaltvorrichtung ermöglicht.It is therefore the object of the present invention to specify a safety switching device which enables reliable detection of the actual switching state of a switching element of the safety switching device in a simple and inexpensive manner.

Diese Aufgabe wird durch eine Sicherheitsschaltvorrichtung gemäß Anspruch 1 gelöst.This object is achieved by a safety switching device according to claim 1.

Die erfindungsgemäße Sicherheitsschaltvorrichtung dient zum Schalten eines an die Schaltvorrichtung anschließbaren elektrischen Verbrauchers, insbesondere einer elektrischen Maschine. Die erfindungsgemäße Sicherheitsschaltvorrichtung umfasst:

  • ein elektrisches Schaltelement, welches, zu einem jeweiligen Zeitpunkt, nur einen zumindest der Schaltzustände geschlossen und offen aufweisen kann, um wahlweise ein Schließen oder ein Unterbrechen eines Stromversorgungspfades des elektrischen Verbrauchers zu bewirken;
  • eine Überwachungseinheit, welche einen tatsächlichen Schaltzustand des elektrischen Schaltelements ermittelt, wobei die Überwachungseinheit eine erste Antenne umfasst, mittels welcher ein Testsignal abgestrahlt wird;
  • eine zweite Antenne, welche das Testsignal empfängt, wobei die zweite Antenne derart mit dem elektrischen Schaltelement gekoppelt ist, dass der tatsächliche Schaltzustand des elektrischen Schaltelements das Testsignal beeinflusst, wobei die Überwachungseinheit ausgebildet ist, aus dem Testsignal (bzw. dem beeinflussten Testsignal) den tatsächlichen Schaltzustand des elektrischen Schaltelements zu ermitteln. Dabei sind die erste Antenne und die zweite Antenne auf unterschiedlichen Lagen derselben Leiterplatte angeordnet.
The safety switching device according to the invention is used to switch an electrical load that can be connected to the switching device, in particular an electrical machine. The safety switching device according to the invention comprises:
  • an electrical switching element which, at a given point in time, can only have at least one of the switching states closed and open in order to selectively close or interrupt a power supply path of the electrical consumer;
  • a monitoring unit which determines an actual switching state of the electrical switching element, the monitoring unit comprising a first antenna by means of which a test signal is emitted;
  • a second antenna which receives the test signal, the second antenna being coupled to the electrical switching element in such a way that the actual switching state of the electrical switching element contains the test signal influenced, the monitoring unit being designed to determine the actual switching state of the electrical switching element from the test signal (or the influenced test signal). The first antenna and the second antenna are arranged on different layers of the same printed circuit board.

Die Erfindung setzt also auf der Erkenntnis auf, dass mittels einer Funkübertragung des Testsignals der tatsächliche Schaltzustand des Schaltelements ermittelt werden kann, wenn der tatsächliche Schaltzustand einen Einfluss auf das Testsignal besitzt. Auf diese Weise lässt sich mittels einer einfach herzustellenden Anordnung zweier Antennen auf zuverlässige Weise der tatsächliche Schaltzustand ermitteln. Die erfindungsgemäße Sicherheitsschaltvorrichtung kann daher kostengünstig und damit wirtschaftlich hergestellt werden, wobei trotzdem eine zuverlässige Detektion des tatsächlichen Schaltzustands ermöglicht wird. Auf diese Weise kann beispielsweise ein Verschweißen von Kontakten des Schaltelements zuverlässig detektiert werden.The invention is therefore based on the knowledge that the actual switching state of the switching element can be determined by radio transmission of the test signal if the actual switching state has an influence on the test signal. In this way, the actual switching state can be reliably determined by means of an arrangement of two antennas that is easy to produce. The safety switching device according to the invention can therefore be produced inexpensively and thus economically, while a reliable detection of the actual switching state is still possible. In this way, for example, welding of contacts of the switching element can be reliably detected.

Bei dem Testsignal kann es sich um ein Funksignal handeln, welches von der ersten Antenne ausgesandt und von der zweiten Antenne empfangen wird. Das Funksignal kann ein HF-Signal oder ein LF-Signal (hochfrequentes Signal, z.B. im Bereich der Kurzwelle oder niederfrequentes Signal, z.B. im Bereich der Langwelle) umfassen oder hieraus bestehen. Die Beeinflussung des Testsignals kann insbesondere dadurch erfolgen, dass in einem Schaltzustand, beispielsweise bei geschlossenem Stromversorgungspfad, keine Anpassung an das Testsignal auf Seiten der zweiten Antenne vorgenommen wird ("Detuning"). Dagegen kann bei Vorliegen des Schaltzustandes, in welchem der Stromversorgungspfad unterbrochen worden ist, eine Anpassung auf Seiten der zweiten Antenne an das Testsignal vorgenommen werden ("Tuning"). Aufgrund der Übertragungscharakteristik des Testsignals zwischen der ersten und zweiten Antenne kann dann ermittelt werden, ob eine Anpassung oder keine Anpassung vorliegt, woraus wiederum der tatsächliche Schaltzustand ermittelt werden kann. Das "Tuning" oder "Detuning" kann, wie später noch ausführlich dargelegt, beispielsweise durch Änderung der elektrischen Verschaltung auf Seiten der zweiten Antenne erfolgen. Denkbar sind aber auch mechanische Veränderungen, beispielsweise durch mechanisches Einbringen einer den Funkkontakt zwischen erster und zweiter Antenne störenden Barriere, wobei die Barriere z.B. mit einem bewegbaren Kontakt des Schaltelements mechanisch gekoppelt sein kann. Alternativ kann durch eine Bewegung des Kontakts des Schaltelements auch z.B. eine Verformung oder Bewegung der zweiten Antenne vorgenommen werden.The test signal can be a radio signal which is transmitted by the first antenna and received by the second antenna. The radio signal can comprise or consist of an HF signal or an LF signal (high-frequency signal, for example in the short-wave range or low-frequency signal, for example in the long-wave range). The test signal can be influenced in particular in that in a switching state, for example when the power supply path is closed, no adaptation to the test signal is carried out on the side of the second antenna (“detuning”). On the other hand, when the switching state in which the power supply path has been interrupted is present, the second antenna can be adapted to the test signal (“tuning”). On the basis of the transmission characteristic of the test signal between the first and second antenna, it can then be determined whether there is an adjustment or no adjustment, from which in turn the actual switching state can be determined. The "tuning" or "detuning" can, as will be explained in detail later, for example by changing the electrical Interconnection takes place on the side of the second antenna. However, mechanical changes are also conceivable, for example by mechanically introducing a barrier that interferes with the radio contact between the first and second antenna, it being possible for the barrier, for example, to be mechanically coupled to a movable contact of the switching element. Alternatively, a movement of the contact of the switching element can also deform or move the second antenna, for example.

Kurz gesagt, wird also die Beeinflussung des Testsignals gemessen oder detektiert, um den tatsächlichen Schaltzustand zu ermitteln. Sofern der tatsächliche Schaltzustand von dem erwarteten oder gewünschten Schaltzustand abweicht, kann ein Fehlersignal ausgegeben werden.In short, the influence on the test signal is measured or detected in order to determine the actual switching state. If the actual switching state deviates from the expected or desired switching state, an error signal can be output.

Bei dem elektrischen Schaltelement kann es sich beispielsweise um einen mechanischen Schalter, insbesondere um ein elektromechanisch betriebenes Relais handeln. Ebenfalls kann das elektrische Schaltelement einen Halbleiterschalter umfassen, insbesondere einen Transistor oder einen IGBT (Insulated Gate Bipolar Transistor). Im geschlossenen Schaltzustand des Schaltelements ist der Stromversorgungspfad zum elektrischen Verbraucher geschlossen, d.h. der elektrische Verbraucher kann dann aktiviert sein. Im offenen Schaltzustand ist der Stromversorgungspfad unterbrochen, wodurch der elektrische Verbraucher abgeschaltet werden kann.The electrical switching element can be, for example, a mechanical switch, in particular an electromechanically operated relay. The electrical switching element can also comprise a semiconductor switch, in particular a transistor or an IGBT (Insulated Gate Bipolar Transistor). In the closed switching state of the switching element, the power supply path to the electrical consumer is closed, i.e. the electrical consumer can then be activated. In the open switching state, the power supply path is interrupted, which means that the electrical consumer can be switched off.

Zudem kann die Sicherheitsschaltvorrichtung eine Steuereinheit zum Steuern des Schaltelements umfassen. Die Steuereinheit kann beispielsweise einen externen Sicherheitssensor, z.B. einen Notaus-Schalter, insbesondere mehrkanalig, auswerten und im Falle des Auslösens des Sicherheitssensors (z.B. der Betätigung des Notaus-Schalters) das Schaltelement vom geschlossenen Schaltzustand in den offenen Schaltzustand überführen. Der Sicherheitssensor kann z.B. auch ein Türkontakt, ein Lichtgitter oder ein Laserscanner sein. Die Sicherheitsschaltvorrichtungen kann beispielsweise die Sicherheitsanforderungen gemäß SIL3 (Safety Integrity Level) oder eines anderen Standards erfüllen.In addition, the safety switching device can comprise a control unit for controlling the switching element. The control unit can, for example, evaluate an external safety sensor, e.g. an emergency stop switch, in particular multi-channel, and in the event of the safety sensor being triggered (e.g. actuation of the emergency stop switch), the switching element can be transferred from the closed switching state to the open switching state. The safety sensor can, for example, also be a door contact, a light grid or a laser scanner. The safety switching devices can, for example, meet the safety requirements according to SIL3 (Safety Integrity Level) or another standard.

Die Steuereinheit kann zudem von der Überwachungseinheit Informationen über den tatsächlichen Schaltzustand des Schaltelements erhalten. Im Falle einer Diskrepanz zwischen dem von der Steuereinheit eingestellten Schaltzustand und dem tatsächlichen Schaltzustand kann das oben bereits erwähnte Fehlersignal von der Steuereinheit ausgegeben werden. Steuereinheit und Überwachungseinheit können auch als eine gemeinsame Einheit ausgebildet sein.The control unit can also receive information about the actual switching state of the switching element from the monitoring unit. In the event of a discrepancy between the switching state set by the control unit and the actual switching state, the above-mentioned error signal can be output by the control unit. Control unit and monitoring unit can also be designed as a common unit.

Weiterbildungen der Erfindung sind in der Beschreibung, den Zeichnungen sowie in den abhängigen Ansprüchen angegeben.Further developments of the invention are given in the description, the drawings and in the dependent claims.

Gemäß einer ersten vorteilhaften Ausführungsform sind die erste Antenne und/oder die zweite Antenne als Microstrip- und/oder Patch-Antennen ausgebildet. Durch die Anordnung auf einer Leiterplatte können die Antennen sehr platzsparend und durch moderne Verfahren zur Leiterplattenherstellung auch sehr wirtschaftlich hergestellt werden, insbesondere im selben Prozess wie die übrige Elektronik der Sicherheitsschaltvorrichtung. Bevorzugt erstrecken sich die Antennen zumindest im Wesentlichen nur parallel zur Oberfläche der Leiterplatte (oder innerhalb der Leiterplatte) und bilden so keine signifikante Erhöhung. Auf diese Weise kann die Sicherheitsschaltvorrichtung besonders klein und kompakt ausgebildet werden. Die erste und die zweite Antenne und insbesondere alle später erwähnten weiteren Antennen können auf derselben Leiterplatte angeordnet sein.According to a first advantageous embodiment, the first antenna and / or the second antenna are designed as microstrip and / or patch antennas. As a result of the arrangement on a printed circuit board, the antennas can be manufactured in a very space-saving manner and also very economically using modern methods for manufacturing printed circuit boards, in particular in the same process as the rest of the electronics of the safety switching device. The antennas preferably extend at least essentially only parallel to the surface of the circuit board (or within the circuit board) and thus do not form a significant elevation. In this way, the safety switching device can be made particularly small and compact. The first and the second antenna and in particular all further antennas mentioned later can be arranged on the same printed circuit board.

Erfindungsgemäß sind die erste Antenne und die zweite Antenne auf unterschiedlichen Lagen derselben Leiterplatte angeordnet. Insbesondere sind die erste und die zweite Antenne gegeneinander isoliert und/oder galvanisch getrennt. Beispielsweise können die erste Antenne auf einer Vorderseite der Leiterplatte und die zweite Antenne auf einer Rückseite derselben Leiterplatte angeordnet sein. Die Verwendung von unterschiedlichen Lagen bzw. Layern der Leiterplatte (d.h. eines PCBs - Printed Circuit Boards) ermöglicht eine sichere Isolierung der beiden Antennen gegeneinander, wobei insbesondere auch eine galvanische Trennung zwischen erster und zweiter Antenne mit geringen Herstellungskosten ermöglicht werden kann.According to the invention, the first antenna and the second antenna are arranged on different layers of the same printed circuit board. In particular, the first and the second antenna are isolated from one another and / or galvanically separated. For example, the first antenna on a front side of the circuit board and the second antenna can be arranged on a rear side of the same printed circuit board. The use of different layers or layers of the printed circuit board (ie a PCB - Printed Circuit Board) enables the two antennas to be reliably isolated from one another, and in particular a galvanic separation between the first and second antenna can be made possible with low manufacturing costs.

Insbesondere sind die erste und zweite Antenne ortsfest zueinander angeordnet.In particular, the first and second antennas are arranged in a stationary manner with respect to one another.

Die erste und zweite Antenne sind bevorzugt voneinander beabstandet und weisen keine direkte elektrische Verbindung auf.The first and second antennas are preferably spaced apart from one another and have no direct electrical connection.

Bevorzugt wird durch die Verwendung der beiden Antennen eine galvanische Trennung erzielt, insbesondere zwischen Überwachungseinheit und Schaltelement.Galvanic isolation is preferably achieved through the use of the two antennas, in particular between the monitoring unit and the switching element.

Die Anbringung der ersten und zweiten Antenne auf derselben Leiterplatte besitzt zudem den Vorteil, dass eine Übertragungsstrecke für das Testsignal sehr kurz und damit unempfindlich gegen externe Einflüsse ausgebildet werden kann. Somit kann eine Beeinflussung des Testsignals durch den Schaltzustand des elektrischen Schaltelements leichter detektiert werden, da externe Einflüsse auf das Testsignal sehr gering ausfallen und daher im Wesentlichen vernachlässigt werden können. Außerdem entfallen Störungen durch eine sich verändernde Relativposition der Antennen.Attaching the first and second antenna to the same circuit board also has the advantage that a transmission path for the test signal can be made very short and thus insensitive to external influences. Thus, an influence on the test signal by the switching state of the electrical switching element can be detected more easily, since external influences on the test signal are very small and can therefore essentially be neglected. In addition, there are no disruptions caused by a changing relative position of the antennas.

Aus diesem Grund kann zunächst eine Initialmessung des Testsignals für verschiedene bekannte Schaltzustände erfolgen, wobei basierend auf der Initialmessung dann im Produktiveinsatz die tatsächlichen Schaltzustände ermittelt werden können.For this reason, an initial measurement of the test signal can first take place for various known switching states, with the actual switching states then being able to be determined in productive use based on the initial measurement.

Überdies ist der Platzbedarf einer einzelnen Leiterplatte sehr gering, so dass beide Antennen ebenfalls nur einen geringen Platzbedarf haben, wodurch die Sicherheitsschaltvorrichtung wiederum sehr kompakt ausgebildet werden kann.In addition, the space required by an individual printed circuit board is very small, so that both antennas also only have a small space requirement, as a result of which the safety switching device can in turn be made very compact.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die zweite Antenne Teil eines Schwingkreises, dessen Resonanzfrequenz vom tatsächlichen Schaltzustand des Schaltelements abhängt. Der Schwingkreis kann beispielsweise einen Kondensator und eine Spule umfassen, wobei die Spule durch die zweite Antenne gebildet sein kann. Bevorzugt umfasst der Schwingkreis außerdem ein oder mehrere kapazitive oder induktive Zusatzbauelemente, welche (nur) bei geschlossenem Schaltelement elektrisch in den Schwingkreis eingekoppelt werden, um die Resonanzfrequenz des Schwingkreises zu verändern.According to a further advantageous embodiment, the second antenna is part of an oscillating circuit, the resonance frequency of which depends on the actual switching state of the switching element. The resonant circuit can for example comprise a capacitor and a coil, wherein the coil can be formed by the second antenna. The resonant circuit preferably also comprises one or more capacitive or inductive additional components which are (only) electrically coupled into the resonant circuit when the switching element is closed in order to change the resonance frequency of the resonant circuit.

Die Zusatzbauelemente können also derart mit dem Schaltelement elektrisch verschaltet sein, dass im geschlossenen Schaltzustand des Schaltelements die Zusatzbauelemente Teil des Schwingkreises werden. Beispielsweise kann durch das zusätzliche Einkoppeln einer Kapazität in den Schwingkreis die Resonanzfrequenz des Schwingkreises verringert werden. Der Schwingkreis kann somit zwei verschiedene Resonanzfrequenzen aufweisen. Die erste Resonanzfrequenz liegt bei tatsächlich geöffnetem Schaltelement und die zweite Resonanzfrequenz liegt bei tatsächlich geschlossenem Schaltelement vor.The additional components can therefore be electrically connected to the switching element in such a way that when the switching element is in the closed switching state, the additional components become part of the resonant circuit. For example, by additionally coupling a capacitance into the resonant circuit, the resonance frequency of the resonant circuit can be reduced. The resonant circuit can thus have two different resonance frequencies. The first resonance frequency is when the switching element is actually open and the second resonance frequency is when the switching element is actually closed.

Insbesondere kann der Schwingkreis bei geschlossenem Schaltelement eine erste Resonanzfrequenz und bei offenem Schaltelement eine zweite, andere, Resonanzfrequenz aufweisen. Zu diesem Zweck kann das Schaltelement bevorzugt elektrisch mit dem Schwingkreis gekoppelt sein bzw., wie oben erwähnt, Teil des Schwingkreises sein. Durch Erkennen der Resonanzfrequenz kann dann auf den tatsächlichen Schaltzustand des Schaltelements rückgeschlossen werden.In particular, the resonant circuit can have a first resonance frequency when the switching element is closed and a second, different, resonance frequency when the switching element is open. For this purpose, the switching element can preferably be electrically coupled to the resonant circuit or, as mentioned above, be part of the resonant circuit. By recognizing the resonance frequency, conclusions can then be drawn about the actual switching state of the switching element.

Gemäß einer Ausführungsform kann der Schwingkreis die zweite Antenne, welche zwei elektrische Kontakte aufweisen kann, und einen ersten Kondensator umfassen, wobei der erste Kondensator zwischen die beiden elektrischen Kontakte der zweiten Antenne geschaltet ist. Damit ergibt sich eine Parallelschaltung des ersten Kondensators mit der zweiten Antenne. Das Schaltelement kann ebenfalls zwei elektrische Kontakte aufweisen, wobei bevorzugt jeder der elektrischen Kontakte des Schaltelements über einen Zusatzkondensator (d.h. beispielsweise einem zweiten und dritten Kondensator) mit jeweils einem elektrischen Kontakt der zweiten Antenne elektrisch verbunden ist. Der zweite und dritte Kondensator können demnach die oben erwähnten Zusatzbauelemente sein. Bei offenem Schaltelement kann der Schwingkreis somit lediglich aus der zweiten Antenne und dem ersten Kondensator bestehen. Bei geschlossenem Schaltelement koppelt das Schaltelement auch noch den zweiten und dritten Kondensator in den Schwingkreis ein, so dass sich dessen Resonanzfrequenz ändert.According to one embodiment, the resonant circuit can comprise the second antenna, which can have two electrical contacts, and a first capacitor, the first capacitor being connected between the two electrical contacts of the second antenna. This results in a parallel connection of the first capacitor with the second antenna. The switching element can also have two electrical contacts, each of the electrical contacts of the switching element preferably being electrically connected to an electrical contact of the second antenna via an additional capacitor (i.e. for example a second and third capacitor). The second and third capacitors can accordingly be the additional components mentioned above. When the switching element is open, the resonant circuit can thus only consist of the second antenna and the first capacitor. When the switching element is closed, the switching element also couples the second and third capacitor into the resonant circuit, so that its resonance frequency changes.

Gemäß einer weiteren vorteilhaften Ausführungsform umfasst das Testsignal zumindest zwei verschiedene Sendefrequenzen, welche bevorzugt der ersten und/oder zweiten Resonanzfrequenz entsprechen. Die Sendefrequenzen können auch als Trägerfrequenzen bezeichnet werden. Hierbei werden die erste und die zweite Sendefrequenz insbesondere zeitlich nacheinander von der ersten Antenne ausgesandt. Durch die Wahl der zwei verschiedenen Sendefrequenzen entsprechend der ersten und/oder zweiten Resonanzfrequenz kann bei Übereinstimmung von Sende- und Resonanzfrequenz der Schwingkreis der zweiten Antenne bei passendem Schaltzustand besonders stark angeregt werden, was auf einfache Weise detektiert werden kann, wodurch wiederum auf einfache Weise der tatsächliche Schaltzustand des Schaltelements ermittelt werden kann. Das Testsignal und damit auch die Sendefrequenzen werden bevorzugt mittels eines Signalgenerators erzeugt und von dem Signalgenerator in die erste Antenne eingekoppelt. Neben der Verwendung zweier verschiedener Sendefrequenzen ist es auch möglich, mehr als zwei verschiedene Sendefrequenzen, insbesondere nacheinander, in das Testsignal zu integrieren. Auch kann eine Frequenzrampe, eine kontinuierliche Frequenzänderung oder ein Wobbeln der Sendefrequenz vom Signalgenerator realisiert werden.According to a further advantageous embodiment, the test signal comprises at least two different transmission frequencies, which preferably correspond to the first and / or second resonance frequency. The transmission frequencies can also be referred to as carrier frequencies. In this case, the first and the second transmission frequency are transmitted by the first antenna in particular one after the other in time. By choosing the two different transmission frequencies corresponding to the first and / or second resonance frequency, if the transmission and resonance frequency match, the resonant circuit of the second antenna can be particularly strongly excited with the appropriate switching state, which can be detected in a simple manner, which in turn makes the actual switching state of the switching element can be determined. The test signal and thus also the transmission frequencies are preferably generated by means of a signal generator and coupled into the first antenna by the signal generator. In addition to using two different transmission frequencies, it is also possible to use more than two different transmission frequencies, in particular one after the other, in integrate the test signal. A frequency ramp, a continuous frequency change or a wobbling of the transmission frequency can also be implemented by the signal generator.

Bei dem Signalgenerator kann es sich um einen LF-Generator oder einen HF-Generator handeln.The signal generator can be an LF generator or an HF generator.

Die Sendefrequenz und damit das Testsignal können auch moduliert sein, beispielsweise mittels Amplituden oder Phasenmodulation. Ebenfalls ist eine Modulation mittels On-Off-Keying möglich. Das Testsignal kann beispielsweise eine Modulation nach dem Muster On-Off-On-On-Off-On umfassen.The transmission frequency and thus the test signal can also be modulated, for example by means of amplitude or phase modulation. Modulation using on-off keying is also possible. The test signal can for example comprise a modulation according to the pattern on-off-on-on-off-on.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die Überwachungseinheit ausgebildet, die mittels des Testsignals von der ersten auf die zweite Antenne übertragene Leistung zu messen, wobei aufgrund der übertragenen Leistung der tatsächliche Schaltzustand ermittelt wird.According to a further advantageous embodiment, the monitoring unit is designed to measure the power transmitted from the first to the second antenna by means of the test signal, the actual switching state being determined on the basis of the transmitted power.

Wenn die Sendefrequenz der gerade herrschenden Resonanzfrequenz entspricht, dann sind die erste und die zweite Antenne aufeinander abgestimmt ("tuned"). Durch die Abstimmung aufeinander kann der Energieübertrag von der ersten an die zweite Antenne maximiert werden. Im Gegensatz hierzu würde eine Verstimmung "Detuning" auftreten, falls die Sendefrequenz nicht der gerade herrschenden Resonanzfrequenz entspricht. Die Energieübertragung von der ersten auf die zweite Antenne ist dann niedriger, was von der Überwachungseinheit gemessen werden kann. Die Messung des Energieübertrags kann beispielsweise durch die Messung einer Spannung an einem Widerstand in einer Zuleitung zur ersten Antenne oder in einer Zuleitung zum Signalgenerator erfolgen. Ebenfalls ist es möglich, eine Amplitudenänderung der Sendefrequenz zu messen, z.B. mittels eines Operationsverstärkers.If the transmission frequency corresponds to the currently prevailing resonance frequency, then the first and the second antenna are tuned to one another. The energy transfer from the first to the second antenna can be maximized by coordinating them with one another. In contrast to this, “detuning” would occur if the transmission frequency does not correspond to the currently prevailing resonance frequency. The energy transfer from the first to the second antenna is then lower, which can be measured by the monitoring unit. The energy transfer can be measured, for example, by measuring a voltage across a resistor in a feed line to the first antenna or in a feed line to the signal generator. It is also possible to measure a change in the amplitude of the transmission frequency, for example by means of an operational amplifier.

Wird beispielsweise davon ausgegangen, dass bei offenem Schaltelement eine höhere Resonanzfrequenz und bei geschlossenem Schaltelement eine niedrigere Resonanzfrequenz vorherrscht, so kann durch aufeinanderfolgendes Aussenden des Testsignals zunächst mit einer Sendefrequenz im Bereich der höheren Resonanzfrequenz und danach im Bereich der niedrigeren Resonanzfrequenz festgestellt werden, bei welcher Sendefrequenz ein höherer Energieübertrag erzielt wird. Dadurch kann auf die gerade herrschende Resonanzfrequenz auf Seiten der zweiten Antenne rückgeschlossen werden, wodurch dann der tatsächliche Schaltzustand des elektrischen Schaltelements ermittelt werden kann.If, for example, it is assumed that a higher resonance frequency prevails when the switching element is open and a lower resonance frequency prevails when the switching element is closed, then by successive transmission of the test signal, first with a transmission frequency in the range of the higher resonance frequency and then in the range of the lower resonance frequency, it can be determined at which transmission frequency a higher energy transfer is achieved. This allows conclusions to be drawn about the currently prevailing resonance frequency on the part of the second antenna, whereby the actual switching state of the electrical switching element can then be determined.

Durch das Tuning und Detuning der zweiten Antenne gegenüber der ersten Antenne kann somit eine Datenübertragung nach Art eines NFC-Tags (Near Field Communication-Tag) simuliert werden.By tuning and detuning the second antenna with respect to the first antenna, data transmission in the manner of an NFC tag (Near Field Communication Tag) can be simulated.

Neben der Beeinflussung der Energieübertragung ist beispielsweise auch eine Beeinflussung der Frequenz oder der Phase des Testsignals möglich, was ebenfalls durch die Überwachungseinheit detektiert werden kann.In addition to influencing the energy transmission, it is also possible, for example, to influence the frequency or the phase of the test signal, which can also be detected by the monitoring unit.

Gemäß einer weiteren vorteilhaften Ausführungsform umfasst die Sicherheitsschaltvorrichtung ein oder mehrere zusätzliche elektrische Schaltelemente. Der tatsächliche Schaltzustand des oder der zusätzlichen Schaltelemente beeinflusst dabei ebenfalls das Testsignal. Bevorzugt ist zumindest eines der zusätzlichen elektrischen Schaltelemente mit einem zusätzlichen Schwingkreis gekoppelt, dessen Resonanzfrequenz vom tatsächlichen Schaltzustand des zusätzlichen elektrischen Schaltelements abhängt, wobei die Resonanzfrequenz oder die Resonanzfrequenzen des zusätzlichen Schwingkreises sich bevorzugt von der Resonanzfrequenz oder den Resonanzfrequenzen des Schwingkreises unterscheiden. Der oder die zusätzlichen Schwingkreise umfassen bevorzugt jeweils eine separate zweite Antenne. Es können aber auch mehrere Schwingkreise mit einer zweiten Antenne verbunden sein.According to a further advantageous embodiment, the safety switching device comprises one or more additional electrical switching elements. The actual switching state of the additional switching element or elements also influences the test signal. At least one of the additional electrical switching elements is preferably coupled to an additional resonant circuit, the resonance frequency of which depends on the actual switching state of the additional electrical switching element, the resonance frequency or the resonance frequencies of the additional resonance circuit preferably differing from the resonance frequency or the resonance frequencies of the resonance circuit. The additional resonant circuit or circuits preferably each include a separate second antenna. However, several resonant circuits can also be connected to a second antenna.

Die zusätzlichen elektrischen Schaltelemente können in Reihe zu dem (ersten) elektrischen Schaltelement geschaltet sein, um eine redundante Abschaltung des elektrischen Verbrauchers zu ermöglichen. Ebenfalls ist es möglich, dass mit den zusätzlichen elektrischen Schaltelementen eine mehrkanalige Sicherheitsschaltvorrichtung realisiert wird, welche verschiedene elektrische Verbraucher unabhängig voneinander schalten kann.The additional electrical switching elements can be connected in series with the (first) electrical switching element in order to enable redundant disconnection of the electrical consumer. It is also possible to use the additional electrical switching elements to implement a multi-channel safety switching device which can switch various electrical loads independently of one another.

Insbesondere kann die Sicherheitsschaltvorrichtung beispielsweise zwei oder drei Kanäle aufweisen, bei welchen jeweils zwei elektrische Schaltelemente in Reihe geschaltet sind. Somit ergeben sich insgesamt vier oder sechs elektrische Schaltelemente.In particular, the safety switching device can have, for example, two or three channels, in each of which two electrical switching elements are connected in series. This results in a total of four or six electrical switching elements.

Jedes der Schaltelemente kann Teil eines separaten Schwingkreises sein. Auch die zusätzlichen Schwingkreise können zwischen zwei Resonanzfrequenzen hin und her geschaltet werden, indem das jeweilige Schaltelement seinen Schaltzustand zwischen geschlossen und offen (oder anders herum) ändert. Bevorzugt unterscheiden sich sämtliche innerhalb derselben Sicherheitsschaltvorrichtung verwendeten Resonanzfrequenzen, so dass der tatsächliche Schaltzustand eines jeden Schaltelements eindeutig mittels nur genau einer ersten Antenne detektiert werden kann, wobei zudem eindeutig ist, von welchem Schaltelement die jeweilige Resonanzfrequenz "stammt". Hierzu kann das Testsignal auch die Resonanzfrequenzen der zusätzlichen Schwingkreise umfassen, so dass jedes Schaltelement separat auf seinen tatsächlichen Schaltzustand prüfbar ist. Die zusätzlichen Resonanzfrequenzen im Testsignal können zeitlich nacheinander in dem Testsignal enthalten sein.Each of the switching elements can be part of a separate resonant circuit. The additional resonant circuits can also be switched back and forth between two resonance frequencies in that the respective switching element changes its switching state between closed and open (or vice versa). All resonance frequencies used within the same safety switching device are preferably different, so that the actual switching state of each switching element can be clearly detected using just one first antenna, and it is also clear from which switching element the respective resonance frequency "originates". For this purpose, the test signal can also include the resonance frequencies of the additional oscillating circuits, so that each switching element can be tested separately for its actual switching state. The additional resonance frequencies in the test signal can be contained in the test signal one after the other.

Es ist auch möglich, mittels des Testsignals nur jeweils einen Schaltzustand des Schaltelements oder der Schaltelemente zu detektieren, insbesondere den Schaltzustand "offen". Hierzu kann das Testsignal als Sendefrequenzen, insbesondere nur, die Resonanzfrequenzen umfassen, die auftreten, wenn die in der Sicherheitsschaltvorrichtung enthaltenen Schaltelemente sich im Schaltzustand "offen" befinden. Soll beispielsweise nur ein Schaltelement überwacht werden, so umfasst oder enthält das Testsignal nur genau eine Sendefrequenz.It is also possible to use the test signal to detect only one switching state of the switching element or switching elements, in particular the "open" switching state. For this purpose, the test signal can be used as transmission frequencies, in particular only that include resonance frequencies that occur when the switching elements contained in the safety switching device are in the "open" switching state. If, for example, only one switching element is to be monitored, the test signal comprises or contains only exactly one transmission frequency.

Wie oben bereits angedeutet, ist es möglich, nur genau eine erste Antenne zur Detektion der Schaltzustände mehrerer verschiedener Schaltelemente einzusetzen. Alternativ können auch mehrere erste Antennen vorgesehen sein, die mit nur einer oder auch mehreren zweiten Antennen zusammenwirken. Bei den zweiten Antennen bzw. den Schwingkreisen, welche mit einer jeweiligen ersten Antenne zusammenwirken, werden bevorzugt nur unterschiedliche Resonanzfrequenzen verwendet.As already indicated above, it is possible to use just one first antenna for detecting the switching states of several different switching elements. Alternatively, several first antennas can also be provided, which interact with only one or also several second antennas. In the case of the second antennas or the resonant circuits, which interact with a respective first antenna, only different resonance frequencies are preferably used.

Gemäß einer weiteren vorteilhaften Ausführungsform spannt die erste Antenne einen Flächenbereich auf, innerhalb dessen die zweite Antenne oder die zweiten Antennen angeordnet ist/sind. Durch die Anordnung der zweiten Antenne innerhalb der ersten Antenne wird eine sichere und gute Übertragung des Testsignals gewährleistet. Zudem schirmt die erste Antenne die zweite Antenne gegen externe Störungen ab.According to a further advantageous embodiment, the first antenna spans a surface area within which the second antenna or the second antennas is / are arranged. The arrangement of the second antenna within the first antenna ensures reliable and good transmission of the test signal. In addition, the first antenna shields the second antenna from external interference.

Innerhalb des Flächenbereichs der ersten Antenne bedeutet dabei insbesondere, dass die zweite Antenne in derselben Ebene oder in parallelen Ebenen, z.B. in einem Layer unter- oder oberhalb der ersten Antenne, innerhalb der ersten Antenne liegt. Innerhalb bezieht sich demnach auch auf eine senkrechte Projektion der ersten Antenne nach unten oder oben.Within the surface area of the first antenna means in particular that the second antenna lies in the same plane or in parallel planes, e.g. in a layer below or above the first antenna, within the first antenna. Accordingly, inside also refers to a vertical projection of the first antenna downwards or upwards.

Bevorzugt sind die erste und/oder die zweite Antenne planar ausgebildet.The first and / or the second antenna are preferably designed in a planar manner.

Gemäß einer weiteren vorteilhaften Ausführungsform sind die erste und zweite Antenne sowie die Überwachungseinheit und das Schaltelement in derselben Einheit, bevorzugt innerhalb desselben Gehäuses, angeordnet. Insbesondere sind die erste und zweite Antenne und das Schaltelement bevorzugt auf derselben Leiterplatte angeordnet. Hierdurch kann wiederum eine kompakte Ausbildung der Sicherheitsschaltvorrichtung gefördert werden.According to a further advantageous embodiment, the first and second antenna as well as the monitoring unit and the switching element are in the same unit, preferably arranged within the same housing. In particular, the first and second antenna and the switching element are preferably arranged on the same printed circuit board. This in turn can promote a compact design of the safety switching device.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die erste Antenne ausgebildet, Daten mittels Near Field Communication (NFC) und/oder Radio-Frequency Identification (RFID) zu empfangen. Bevorzugt weist die Überwachungseinheit eine mit der ersten Antenne verbundene Schnittstelle zur Kommunikation mittels NFC und/oder RFID auf. Die erste Antenne kann somit doppelt genutzt werden, zum einen zur Ermittlung des tatsächlichen Schaltzustandes des elektrischen Schaltelements bzw. von mehreren elektrischen Schaltelementen und zum anderen zur Datenkommunikation mittels NFC und/oder RFID. Die von der ersten Antenne empfangenen oder gesendeten Daten können mittels der Schnittstelle an die/von der Überwachungseinheit übertragen werden. Auf diese Weise kann die Überwachungseinheit beispielsweise Diagnose-/Statusdaten ausgeben oder Konfigurationsdaten empfangen. Somit wird auf einfache Weise eine Datenkommunikation mit der Sicherheitsschaltvorrichtung ermöglicht, wodurch die Sicherheitsschaltvorrichtung beispielsweise mittels eines Smartphones konfiguriert werden kann. Auch können dann mittels des Smartphones Daten ausgelesen werden, wodurch die Schaltzustände oder etwaige Fehler ermittelt werden können.According to a further advantageous embodiment, the first antenna is designed to receive data by means of near field communication (NFC) and / or radio frequency identification (RFID). The monitoring unit preferably has an interface connected to the first antenna for communication by means of NFC and / or RFID. The first antenna can thus be used twice, on the one hand to determine the actual switching state of the electrical switching element or of several electrical switching elements and on the other hand for data communication by means of NFC and / or RFID. The data received or sent by the first antenna can be transmitted to / from the monitoring unit by means of the interface. In this way, the monitoring unit can output diagnostic / status data or receive configuration data, for example. Data communication with the safety switching device is thus made possible in a simple manner, as a result of which the safety switching device can be configured, for example, by means of a smartphone. Data can then also be read out using the smartphone, whereby the switching states or any errors can be determined.

Gemäß einer weiteren vorteilhaften Ausführungsform kann die erste Antenne ausgebildet sein, Testsignale mit einer Sendefrequenz im Bereich von 100 bis 500 kHz, bevorzugt von 100 bis 200 kHz auszusenden. Zudem kann die erste Antenne zur RFID-Kommunikation im Bereich der Langwelle bei 125 kHz, 134 kHz, 250 kHz, 375 kHz, 500 kHz, 625 kHz, 750 kHz und/oder 875 kHz ausgelegt sein. Die erste Antenne kann zudem weiterhin zur RFID-Kommunikation und/oder zur NFC-Kommunikation bei einer Frequenz von 13,56 MHz ausgebildet sein. Auch die Ermittlung der tatsächlichen Schaltzustände kann im Bereich von 13,56 MHz erfolgen, d.h. die Resonanzfrequenzen können in diesem Bereich liegen.According to a further advantageous embodiment, the first antenna can be designed to transmit test signals with a transmission frequency in the range from 100 to 500 kHz, preferably from 100 to 200 kHz. In addition, the first antenna can be designed for RFID communication in the long wave range at 125 kHz, 134 kHz, 250 kHz, 375 kHz, 500 kHz, 625 kHz, 750 kHz and / or 875 kHz. The first antenna can also be designed for RFID communication and / or for NFC communication at a frequency of 13.56 MHz. Also the actual switching states can be determined in the range of 13.56 MHz, ie the resonance frequencies can be in this range.

Die Resonanzfrequenzen können ebenfalls im Bereich zwischen 100 und 500 kHz, bevorzugt im Bereich zwischen 100 und 200 kHz, liegen. Insbesondere unterscheiden sich die beiden Resonanzfrequenzen desselben Schwingkreises (für geschlossenen und offenen Schaltzustand) um zumindest 20%, bevorzugt um zumindest 10%. Auf diese Weise ist eine sichere Unterscheidung der beiden Schaltzustände gewährleistet.The resonance frequencies can also be in the range between 100 and 500 kHz, preferably in the range between 100 and 200 kHz. In particular, the two resonance frequencies of the same resonant circuit (for closed and open switching state) differ by at least 20%, preferably by at least 10%. In this way, a reliable differentiation between the two switching states is guaranteed.

Weiterhin bevorzugt kann der Schaltzustand, insbesondere nur, im offenen Schaltzustand ermittelt werden. In diesem Schaltzustand spielen die geschalteten Frequenzen keine Rolle, so dass die mittels der Sicherheitsschaltvorrichtung geschalteten Frequenzen im selben Bereich liegen können wie die Frequenzen des Testsignals bzw. der Resonanzfrequenzen.Furthermore, the switching state can preferably be determined, in particular only, in the open switching state. In this switching state, the switched frequencies are irrelevant, so that the frequencies switched by means of the safety switching device can be in the same range as the frequencies of the test signal or the resonance frequencies.

Die Erfindung betrifft weiterhin ein System, umfassend

  • zumindest eine Sicherheitsschaltvorrichtung der vorstehend erläuterten Art,
  • einen mit der Sicherheitsschaltvorrichtung elektrisch verbundenen Verbraucher, welcher nur dann mit elektrischer Energie versorgt wird, wenn das Schaltelement der Sicherheitsschaltvorrichtung den Schaltzustand geschlossen aufweist, und
  • einen mit der Sicherheitsschaltvorrichtung elektrisch verbundenen Notaus-Schalter, welcher von der Sicherheitsschaltvorrichtung ausgewertet wird, wobei die Sicherheitsschaltvorrichtung bei Betätigung des Notaus-Schalters das Schaltelement in den Schaltzustand offen bringt, um den Verbraucher abzuschalten.
The invention further relates to a system comprising
  • at least one safety switching device of the type explained above,
  • a consumer that is electrically connected to the safety switching device and is only supplied with electrical energy when the switching element of the safety switching device is in the closed switching state, and
  • an emergency stop switch which is electrically connected to the safety switching device and which is evaluated by the safety switching device, the safety switching device bringing the switching element into the switching state open in order to switch off the consumer when the emergency stop switch is actuated.

Ob das Schaltelement wirklich in den offenen Schaltzustand übergegangen ist, wird dann von der Überwachungseinheit überprüft. Falls der tatsächliche Schaltzustand von dem gewünschten bzw. erwarteten Schaltzustand abweicht, kann ein Fehlersignal ausgegeben werden. Das Fehlersignal kann dann Bedienpersonal alarmieren oder eine übergeordnete Steuerung zur Abschaltung der gesamten Anlage, in welche der Verbraucher eingebaut ist, veranlassen. Auch die Sicherheitsschaltvorrichtung selbst kann das Fehlersignal zur Abschaltung nutzen.The monitoring unit then checks whether the switching element has really changed to the open switching state. If the actual switching status deviates from the desired or expected switching state, an error signal can be output. The error signal can then alert operating personnel or cause a higher-level control to switch off the entire system in which the consumer is installed. The safety switching device itself can also use the error signal to switch off.

Weiterhin betrifft die Erfindung ein Verfahren gemäß Anspruch 13.The invention also relates to a method according to claim 13.

Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens werden mittels der ersten Antenne Diagnose-, Status- und/oder Konfigurationsdaten der Sicherheitsschaltvorrichtung empfangen und/oder gesendet, insbesondere per NFC und/oder RFID. Dabei beeinflussen die empfangenen Daten bevorzugt den Betrieb der Sicherheitsschaltvorrichtung. Die gesendeten Daten umfassen insbesondere Informationen über den Zustand der Sicherheitsschaltvorrichtung.According to a development of the method according to the invention, diagnostic, status and / or configuration data of the safety switching device are received and / or sent by means of the first antenna, in particular via NFC and / or RFID. The received data preferably influence the operation of the safety switching device. The data sent include, in particular, information about the state of the safety switching device.

Die Ausführungen zur erfindungsgemäßen Sicherheitsschaltvorrichtung gelten für das erfindungsgemäße System und das erfindungsgemäße Verfahren entsprechend. Dies gilt insbesondere hinsichtlich Vorteilen und bevorzugten Ausführungsformen.The statements relating to the safety switching device according to the invention apply accordingly to the system according to the invention and the method according to the invention. This is particularly true with regard to advantages and preferred embodiments.

Nachfolgend wird die Erfindung rein beispielhaft unter Bezugnahme auf die Zeichnungen beschrieben. Es zeigen:

Fig. 1
ein System mit einer Sicherheitsschaltvorrichtung und einem elektrischen Verbraucher in schematischer Ansicht;
Fig. 2
eine erste Ausführungsform einer Sicherheitsschaltvorrichtung in schematischer Ansicht;
Fig. 3
eine zweite Ausführungsform einer Sicherheitsschaltvorrichtung in schematischer Ansicht; und
Fig. 4
eine Ausschnittsansicht einer Leiterplatte mit in zwei unterschiedlichen Layern angeordneten ersten und zweiten Antennen.
The invention is described below purely by way of example with reference to the drawings. Show it:
Fig. 1
a system with a safety switching device and an electrical consumer in a schematic view;
Fig. 2
a first embodiment of a safety switching device in a schematic view;
Fig. 3
a second embodiment of a safety switching device in a schematic view; and
Fig. 4
a detail view of a circuit board with arranged in two different layers first and second antennas.

Fig. 1 zeigt ein System 10, welches eine Sicherheitsschaltvorrichtung 12 und einen elektrisch mit der Sicherheitsschaltvorrichtung 12 gekoppelten Verbraucher in Form eines Roboters 14 umfasst. Die elektrische Energie für den Betrieb des Roboters 14 stammt von einem Leistungstreiber 16. Fig. 1 shows a system 10 which comprises a safety switching device 12 and a consumer in the form of a robot 14 that is electrically coupled to the safety switching device 12. The electrical energy for operating the robot 14 comes from a power driver 16.

In der Sicherheitsschaltvorrichtung 12 ist ein Schaltelement in Form eines Relais 18 angeordnet, wobei das Relais 18 im geschlossenen Schaltzustand einen Stromversorgungspfad 20 schließt, wodurch der Roboter 14 mit elektrischer Energie versorgt wird. Der Leistungstreiber 16 ist Teil des Stromversorgungspfads 20. Befindet sich das Relais 18 im offenen Schaltzustand, ist der Stromversorgungspfad 20 unterbrochen, so dass kein geschlossener Stromkreis vorliegt, wodurch der Roboter 14 abgeschaltet wird.A switching element in the form of a relay 18 is arranged in the safety switching device 12, the relay 18 closing a power supply path 20 in the closed switching state, as a result of which the robot 14 is supplied with electrical energy. The power driver 16 is part of the power supply path 20. If the relay 18 is in the open switching state, the power supply path 20 is interrupted so that there is no closed circuit, whereby the robot 14 is switched off.

In der Sicherheitsschaltvorrichtung 12 ist eine Überwachungseinheit 22 vorgesehen, welche mit einer ersten Antenne 24 elektrisch verbunden ist. Die erste Antenne 24 ist ausgebildet, ein Testsignal 26 an eine zweite Antenne 28 zu übertragen. Die zweite Antenne 28 ist wiederum mit dem Relais 18 elektrisch verbunden, wobei der Schaltzustand des Relais 18 das Testsignal 26 beeinflusst, wie nachfolgend noch genauer erläutert wird.A monitoring unit 22, which is electrically connected to a first antenna 24, is provided in the safety switching device 12. The first antenna 24 is designed to transmit a test signal 26 to a second antenna 28. The second antenna 28 is in turn electrically connected to the relay 18, the switching state of the relay 18 influencing the test signal 26, as will be explained in more detail below.

Das Relais 18 wird von einer Steuereinheit 30 betätigt.The relay 18 is actuated by a control unit 30.

Die Überwachungseinheit 22 ermittelt den tatsächlichen Schaltzustand des Relais 18 und übermittelt den tatsächlichen Schaltzustand mittels einer Datenleitung 32 an die Steuereinheit 30.The monitoring unit 22 determines the actual switching state of the relay 18 and transmits the actual switching state to the control unit 30 by means of a data line 32.

Die erste Antenne 24 ist zudem für eine Kommunikation mittels Near Field Communication (NFC) 34 ausgebildet. Mittels der NFC-Kommunikation 34 kann die Überwachungseinheit 22 und/oder die Steuereinheit 30 beispielsweise mit einem in der Nähe befindlichen Smartphone 36 Daten austauschen.The first antenna 24 is also designed for communication by means of near field communication (NFC) 34. By means of the NFC communication 34, the monitoring unit 22 and / or the control unit 30 can exchange data, for example, with a smartphone 36 located in the vicinity.

Die Verschaltung innerhalb der Sicherheitsschaltvorrichtung 12 ist nun in den Fig. 2 und 3 an zwei Ausführungsbeispielen näher erläutert.The interconnection within the safety switching device 12 is now in the Fig. 2 and 3rd explained in more detail using two exemplary embodiments.

Fig. 2 zeigt ein erstes Ausführungsbeispiel, in welchem zwei Relais 18a und 18b in Serie geschaltet sind. Jedes der Relais 18a, 18b ist auf gleiche Weise in einen Schwingkreis 38 integriert bzw. an einen Schwingkreis 38 angeschlossen, so dass die nachfolgenden Ausführungen jeweils für alle Relais 18 gleichermaßen gelten. Fig. 2 shows a first embodiment in which two relays 18a and 18b are connected in series. Each of the relays 18a, 18b is integrated in an oscillating circuit 38 or connected to an oscillating circuit 38 in the same way, so that the following explanations apply equally to all relays 18.

Ein jeweiliger Schwingkreis 38 umfasst eine zweite Antenne 28, welche parallel zu einem ersten Kondensator 40 geschaltet ist. Die elektrischen Anschlüsse der zweiten Antenne 28 sind über einen zweiten und dritten Kondensator 42, 44 jeweils mit den elektrischen Anschlüssen des jeweiligen Relais 18a, 18b verbunden. Ist das jeweilige Relais 18a geöffnet, so umfasst der Schwingkreis 38 jeweils nur die zweite Antenne 28 und den ersten Kondensator 40. Ist das Relais 18 geschlossen, so umfasst der Schwingkreis zusätzlich noch den zweiten und dritten Kondensator 42, 44, wodurch sich die Resonanzfrequenz des jeweiligen Schwingkreises 38 ändert.A respective resonant circuit 38 comprises a second antenna 28 which is connected in parallel to a first capacitor 40. The electrical connections of the second antenna 28 are each connected to the electrical connections of the respective relay 18a, 18b via a second and third capacitor 42, 44. If the respective relay 18a is open, the resonant circuit 38 comprises only the second antenna 28 and the first capacitor 40. If the relay 18 is closed, the resonant circuit also includes the second and third Capacitor 42, 44, whereby the resonance frequency of the respective resonant circuit 38 changes.

Die beiden zweiten Antennen 28 sind von einer einzigen ersten Antenne 24 umgeben. Mittels zweier Transistoren 46 und einer Spannungsquelle 48 wird mittels der ersten Antenne 24 das Testsignal 26 erzeugt. Die Transistoren 46 und die Spannungsquelle 48 können gemeinsam als Signalgenerator angesehen werden.The two second antennas 28 are surrounded by a single first antenna 24. The test signal 26 is generated by means of the first antenna 24 by means of two transistors 46 and a voltage source 48. The transistors 46 and the voltage source 48 can be viewed together as a signal generator.

Die Amplitude des Testsignals 26 wird mittels eines Operationsverstärkers 50 gemessen. Anhand der Amplitude kann die von der ersten auf die zweite Antenne 24, 28 übertragene Energie gemessen werden, wobei festgestellt werden kann, welcher der Schwingkreise 38 sich momentan in welcher Resonanzfrequenz befindet. Hierzu wird ein Testsignal 26 erzeugt, welches zumindest vier verschiedene Sendefrequenzen umfasst, wobei die vier Sendefrequenzen den vier möglichen Resonanzfrequenzen der beiden Schwingkreise 38 entsprechen. Auf diese Weise kann für jedes Relais 18a, 18b separat festgestellt werden, in welchem Schaltzustand es sich befindet.The amplitude of the test signal 26 is measured by means of an operational amplifier 50. The energy transmitted from the first to the second antenna 24, 28 can be measured on the basis of the amplitude, it being possible to determine which of the oscillating circuits 38 is currently at which resonance frequency. For this purpose, a test signal 26 is generated which comprises at least four different transmission frequencies, the four transmission frequencies corresponding to the four possible resonance frequencies of the two oscillating circuits 38. In this way it can be determined separately for each relay 18a, 18b which switching state it is in.

Fig. 3 zeigt eine zweite Ausführungsform, bei welcher die Sicherheitsschaltvorrichtung 12 zwei parallele Kanäle 52a, 52b umfasst. In jedem Kanal 52 sind zwei Relais 18a, 18b bzw. 18c, 18d in Reihe geschaltet. Jedes Relais 18a, 18b, 18c, 18d ist einem separaten Schwingkreis 38 zugeordnet. Die Ausführungsform von Fig. 3 unterscheidet sich von der Ausführungsform von Fig. 2 dadurch, dass zwei erste Antennen 24 mit jeweils eigenem Signalgenerator vorgesehen sind. Die ersten Antennen 24 sind derart angeordnet, dass jeweils eine zweite Antenne 28 jedes Kanals 52 innerhalb der ersten Antenne 24 liegt und somit mittels der jeweiligen ersten Antenne 24 ausgewertet werden kann. Fig. 3 shows a second embodiment in which the safety switching device 12 comprises two parallel channels 52a, 52b. In each channel 52, two relays 18a, 18b and 18c, 18d are connected in series. Each relay 18a, 18b, 18c, 18d is assigned to a separate resonant circuit 38. The embodiment of Fig. 3 differs from the embodiment of Fig. 2 in that two first antennas 24 are provided, each with its own signal generator. The first antennas 24 are arranged in such a way that in each case a second antenna 28 of each channel 52 lies within the first antenna 24 and can thus be evaluated by means of the respective first antenna 24.

Zur Auswertung der Schaltzustände der Relais 18 werden mittels der jeweiligen ersten Antenne 24 wiederum zumindest vier verschiedene Sendefrequenzen innerhalb eines Testsignals ausgegeben, um den tatsächlichen Schaltzustand aller vier Relais 18a, 18b, 18c, 18d zu ermitteln.In order to evaluate the switching states of the relays 18, at least four different transmission frequencies are again set by means of the respective first antenna 24 a test signal is output to determine the actual switching status of all four relays 18a, 18b, 18c, 18d.

Fig. 4 zeigt eine Leiterplatte 54, bei welcher die erste Antenne 24 auf einem oberen Layer 56 und jeweils eine zweite Antenne 28 auf dem oberen Layer 56 und auch auf einem unteren Layer 58 angeordnet sind. Die zweite Antenne 28 auf dem oberen Layer 56 ist von der ersten Antenne 28 umgeben. Die erste und zweite Antenne 24, 28 sind somit ortsfest zueinander angeordnet, wodurch Einflüsse aufgrund von variablen Antennenpositionen verhindert werden. Zudem erzielt die Verwendung von Antennen 24, 28 eine galvanische Trennung zwischen der Überwachungseinheit 22 und den Schwingkreisen 38. Fig. 4 shows a circuit board 54 in which the first antenna 24 is arranged on an upper layer 56 and a second antenna 28 is arranged on the upper layer 56 and also on a lower layer 58. The second antenna 28 on the upper layer 56 is surrounded by the first antenna 28. The first and second antennas 24, 28 are thus arranged in a stationary manner with respect to one another, whereby influences due to variable antenna positions are prevented. In addition, the use of antennas 24, 28 achieves galvanic isolation between the monitoring unit 22 and the resonant circuits 38.

Durch die erfindungsgemäße Ermittlung des tatsächlichen Schaltzustandes basierend auf Antennen wird eine einfache, berührungslose aber zuverlässige Ermittlung des tatsächlichen Schaltzustands gestattet. Überdies bietet sich der Vorteil, dass zusätzliche Funktionen, wie die Kommunikation mittels NFC, ohne großen Mehraufwand mit den bereits existierenden Antennen realisiert werden können.The inventive determination of the actual switching state based on antennas allows a simple, contactless but reliable determination of the actual switching state. In addition, there is the advantage that additional functions, such as communication via NFC, can be implemented with the existing antennas without much additional effort.

BezuqszeichenlisteReference list

1010
Systemsystem
1212th
SicherheitsschaltvorrichtungSafety switching device
1414th
Roboterrobot
1616
LeistungstreiberPerformance drivers
1818th
Relaisrelay
2020th
StromversorgungspfadPower supply path
2222nd
ÜberwachungseinheitMonitoring unit
2424
erste Antennefirst antenna
2626th
TestsignalTest signal
2828
zweite Antennesecond antenna
3030th
SteuereinheitControl unit
3232
DatenleitungData line
3434
NFC-KommunikationNFC communication
3636
SmartphoneSmartphone
3838
SchwingkreisResonant circuit
4040
erster Kondensatorfirst capacitor
4242
zweiter Kondensatorsecond capacitor
4444
dritter Kondensatorthird capacitor
4646
Transistortransistor
4848
SpannungsquelleVoltage source
5050
OperationsverstärkerOperational amplifier
5252
Kanalchannel
5454
LeiterplatteCircuit board
5656
oberes Layerupper layer
5858
unteres Layerlower layer

Claims (14)

  1. A safety switching apparatus (12) for switching an electrical consumer (14) connectable to the switching apparatus (12), in particular an electrical machine, said safety switching apparatus (12) comprising
    - an electrical switching element (18) which can have the switching states closed and open to selectively bring about a closing or an interruption of a power supply path (20) of the electrical consumer (14);
    - a monitoring unit (22) which determines an actual switching state of the electrical switching element (18), wherein the monitoring unit (22) comprises a first antenna (24) by means of which a test signal (26) is emitted; and
    - a second antenna which receives the test signal (26), wherein the second antenna (28) is coupled to the electrical switching element (18) such that the actual switching state of the electrical switching element (18) influences the test signal (26), and wherein the monitoring unit (22) is configured to determine the actual switching state from the influenced test signal (26),
    characterized in that
    the first antenna (24) and the second antenna (28) are arranged on different layers (56, 58) of the same circuit board (54).
  2. A safety switching apparatus (12) in accordance with claim 1,
    characterized in that
    the first antenna (24) and/or the second antenna (28) is/are configured as microstrip or patch antennas.
  3. A safety switching apparatus (12) in accordance with claim 1 or claim 2,
    characterized in that
    the first antenna and the second antenna (28) are insulated with respect to one another and/or are galvanically separated from one another.
  4. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized in that
    the second antenna (28) is part of a resonant circuit (38) whose resonant frequency depends on the actual switching state of the switching element (18),
    wherein the resonant circuit (38) preferably comprises one or more capacitive or inductive additional components (42, 44) which, when the switching element (18) is closed, are electrically coupled into the resonant circuit (38) to change the resonant frequency of the resonant circuit (38).
  5. A safety switching apparatus (12) in accordance with claim 4,
    characterized in that
    the resonant circuit (38) has a first resonant frequency when the switching element (18) is closed and a second, different, resonant frequency when the switching element (18) is open.
  6. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized in that
    the test signal (26) comprises at least two different transmission frequencies which preferably correspond to the first and/or second resonant frequency.
  7. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized in that
    the monitoring unit (22) is configured to measure the power transmitted from the first antenna to the second antenna (24, 28) by means of the test signal (26), with the actual switching state being determined on the basis of the transmitted power.
  8. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized by
    one or more additional electrical switching elements (18), wherein the actual switching state of the additional switching element or elements (18) influences the test signal (26), wherein at least one of the additional electrical switching elements (18) is preferably coupled to a respective additional resonant circuit (38) whose resonant frequency depends on the actual switching state of the additional electrical switching element (18), and wherein the resonant frequency or resonant frequencies of the additional oscillating circuit (38) preferably differs/differ from the resonant frequency or the resonant frequencies of the oscillating circuit (38).
  9. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized in that
    the first antenna (24) spans an areal region within which the second antenna (28) is arranged.
  10. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized in that
    the first antenna and the second antenna (28), the monitoring unit (22) and the switching element (18) are arranged in the same unit, preferably within the same housing, with the first antenna and the second antenna (28) and the switching element (18) preferably being arranged on the same circuit board.
  11. A safety switching apparatus (12) in accordance with at least one of the preceding claims,
    characterized in that
    the first antenna (24) is configured to receive data by means of near field communication, NFC, and/or radio frequency identification, RFID, with the monitoring unit (22) having an interface for communication by means of NFC and/or RFID.
  12. A system (10) comprising
    - at least one safety switching apparatus (12) in accordance with at least one of the preceding claims;
    - a consumer (14) which is electrically connected to the safety switching apparatus (12) and which is only supplied with electrical energy when the switching element (18) of the safety switching apparatus (12) has the switching state closed; and
    - a safety sensor, in particular an emergency stop switch, which is electrically connected to the safety switching apparatus (12) and which is evaluated by the safety switching apparatus (12), wherein, on the triggering of the safety sensor, the safety switching apparatus (12) brings the switching element (18) into the switching state open in order to switch off the consumer (14).
  13. A method of recognizing a faulty switching state of a safety switching apparatus (12) in accordance with at least one of the preceding claims 1 to 11, wherein
    - a test signal (26) is emitted by means of the first antenna (24) and is received by the second antenna (28), with the second antenna (28) being coupled to the electrical switching element (18) of the safety switching apparatus (12) such that the actual switching state of the electrical switching element (18) influences the test signal (26); and
    - a faulty switching state of the switching element (18) is recognized by means of the test signal (26).
  14. A method in accordance with claim 13,
    characterized in that
    diagnostic data, status data and/or configuration data of the safety switching apparatus (12) are received and/or transmitted by means of the first antenna, in particular by NFC and/or RFID, with the received data preferably influencing the operation of the safety switching apparatus (12) and the transmitted data in particular comprising information on the state of the safety switching apparatus (12).
EP18213553.3A 2018-12-18 2018-12-18 Safety switch device Active EP3671797B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18213553.3A EP3671797B1 (en) 2018-12-18 2018-12-18 Safety switch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18213553.3A EP3671797B1 (en) 2018-12-18 2018-12-18 Safety switch device

Publications (2)

Publication Number Publication Date
EP3671797A1 EP3671797A1 (en) 2020-06-24
EP3671797B1 true EP3671797B1 (en) 2021-05-26

Family

ID=64744695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18213553.3A Active EP3671797B1 (en) 2018-12-18 2018-12-18 Safety switch device

Country Status (1)

Country Link
EP (1) EP3671797B1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806294A1 (en) 1977-02-18 1978-08-24 Crouzet Sa DEVICE FOR CHECKING THE ELECTRICAL CONDITION OF AN ELECTROMECHANICAL SWITCHING CONTACT
US20020021226A1 (en) 2000-08-08 2002-02-21 Philippe Clement Electrical apparatus comprising a monitoring device, support and monitoring device for such an apparatus, and electrical installation incorporating them
WO2007135011A2 (en) 2006-05-19 2007-11-29 Schneider Electric Industries Sas Method of monitoring the position of a movable part of an electrical switch apparatus
EP2159809A2 (en) 2008-08-28 2010-03-03 Hirschmann Automotive GmbH Manipulation-proof RFID switch for use in vehicles
EP2190016A1 (en) 2008-11-19 2010-05-26 SEMIKRON Elektronik GmbH & Co. KG Semiconductor module with control functionality and integrated transformer
DE102010002430A1 (en) 2009-02-26 2010-09-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Minimization of electromagnetic interference in coil transducers
DE102010029470A1 (en) 2009-06-02 2010-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Galvanic isolator for high voltage isolation communication device, has receiver circuit connected to receiving coil that generates signal similar to input signal based on pulses corresponding to rising and falling edges of input signal
US20110075449A1 (en) 2008-03-31 2011-03-31 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Compact Power Transformer Components, Devices, Systems and Methods
DE102012003365A1 (en) 2012-02-22 2013-08-22 Phoenix Contact Gmbh & Co. Kg Planar intrinsically safe transducer, has layer structure whose two circuits are galvanically separated from each other by insulation layers and magnetic layers that are separated from each other and assigned with different potentials
EP1788598B1 (en) 2005-11-22 2013-12-11 Schneider Electric Industries SAS Device and process of monitoring a position of at least a moving part of a plurality of electrical appliances and display panel incorporating such a device
WO2014031261A1 (en) 2012-08-24 2014-02-27 Schneider Electric USA, Inc. Circuit breaker signaling system for control of an arc fault detection system
DE102013208989A1 (en) 2012-08-29 2014-03-06 Siemens Aktiengesellschaft Electromechanical switching device for use as e.g. series installed equipment in electricity installation system, has transmitter coupled with converter such that state alteration of device causes transmitter to transmit signal to receiver
WO2014099154A1 (en) 2012-12-19 2014-06-26 Eaton Corporation System and method for providing information to and/or obtaining information from a component of an electrical distribution system
WO2017200539A1 (en) 2016-05-18 2017-11-23 Siemens Aktiengesellschaft System and method for providing functional safety monitoring of relay contacts
EP3264121A1 (en) 2016-06-30 2018-01-03 General Electric Company Passive wireless monitoring of individual capacitor cans

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146753C1 (en) * 2001-09-22 2003-04-24 Pilz Gmbh & Co Safety switching device for safely switching off an electrical consumer

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806294A1 (en) 1977-02-18 1978-08-24 Crouzet Sa DEVICE FOR CHECKING THE ELECTRICAL CONDITION OF AN ELECTROMECHANICAL SWITCHING CONTACT
US20020021226A1 (en) 2000-08-08 2002-02-21 Philippe Clement Electrical apparatus comprising a monitoring device, support and monitoring device for such an apparatus, and electrical installation incorporating them
EP1788598B1 (en) 2005-11-22 2013-12-11 Schneider Electric Industries SAS Device and process of monitoring a position of at least a moving part of a plurality of electrical appliances and display panel incorporating such a device
WO2007135011A2 (en) 2006-05-19 2007-11-29 Schneider Electric Industries Sas Method of monitoring the position of a movable part of an electrical switch apparatus
US20110075449A1 (en) 2008-03-31 2011-03-31 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Compact Power Transformer Components, Devices, Systems and Methods
EP2159809A2 (en) 2008-08-28 2010-03-03 Hirschmann Automotive GmbH Manipulation-proof RFID switch for use in vehicles
EP2190016A1 (en) 2008-11-19 2010-05-26 SEMIKRON Elektronik GmbH & Co. KG Semiconductor module with control functionality and integrated transformer
DE102010002430A1 (en) 2009-02-26 2010-09-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Minimization of electromagnetic interference in coil transducers
DE102010029470A1 (en) 2009-06-02 2010-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Galvanic isolator for high voltage isolation communication device, has receiver circuit connected to receiving coil that generates signal similar to input signal based on pulses corresponding to rising and falling edges of input signal
DE102012003365A1 (en) 2012-02-22 2013-08-22 Phoenix Contact Gmbh & Co. Kg Planar intrinsically safe transducer, has layer structure whose two circuits are galvanically separated from each other by insulation layers and magnetic layers that are separated from each other and assigned with different potentials
WO2014031261A1 (en) 2012-08-24 2014-02-27 Schneider Electric USA, Inc. Circuit breaker signaling system for control of an arc fault detection system
DE102013208989A1 (en) 2012-08-29 2014-03-06 Siemens Aktiengesellschaft Electromechanical switching device for use as e.g. series installed equipment in electricity installation system, has transmitter coupled with converter such that state alteration of device causes transmitter to transmit signal to receiver
WO2014099154A1 (en) 2012-12-19 2014-06-26 Eaton Corporation System and method for providing information to and/or obtaining information from a component of an electrical distribution system
WO2017200539A1 (en) 2016-05-18 2017-11-23 Siemens Aktiengesellschaft System and method for providing functional safety monitoring of relay contacts
EP3264121A1 (en) 2016-06-30 2018-01-03 General Electric Company Passive wireless monitoring of individual capacitor cans

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINDNER HELMUT, ET AL: "Taschenbuch der Elektrotechnik und Elektronik", 1 January 1985, pages: 298 - 298, XP055900311
TIETZE ULRICH; SCHENK CHRISTOPH: "Halbleiter-Schaltungstechnik", 1 January 1999, BERLIN [U.A.] : SPRINGER , DE , ISBN: 978-3-540-64192-6, article TIETZE U, SCHENK, CH.: "Halbleiterschaltungstechnik. Passagen", pages: 1 - 19, XP055900309
WIKIPEDIA: "Streifenleitung", WIKIPEDIA, 16 November 2017 (2017-11-16), pages 1 - 6, XP055900306, [retrieved on 20220311]

Also Published As

Publication number Publication date
EP3671797A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
EP2604563B1 (en) Safety device, drive device and lift device
EP1673866B1 (en) Safety switch, particularly an emergency stop switch for reliably switching off a dangerous device
EP3053176B1 (en) Method and apparatus for monitoring at least one electronic switching contact for a vehicle
EP3069202A1 (en) Safety control system having configurable inputs
DE10146753C1 (en) Safety switching device for safely switching off an electrical consumer
EP3131779B1 (en) Apparatus and method for detecting an interfering body in a system for inductive energy transmission and system for inductive energy transmission
EP2956366B1 (en) Safety circuit monitoring with alternating current
WO2008055701A1 (en) Safety switch device
EP1647094B1 (en) Method and device for reliably controlling the closing position of two parts that can move relative to one another
WO2008003469A1 (en) Method and device for secure separation monitoring
DE10248640A1 (en) Line protection switch for electrical installation with passive radio transponder for transmission of switch information to external signal processing unit
DE3915188C1 (en) Wireless interrogation and current supply method for switches - using capacitative and inductive elements corresp. to sec. winding of transformer
EP2868548B1 (en) Method for monitoring the state of a switch in a train security system, and train securing system
EP3671797B1 (en) Safety switch device
EP3367569B1 (en) Safety switch
EP3015755B1 (en) RFID element, RFID transmitter/reception system and safety switch
WO2017072246A1 (en) Control system for the safe control of machines
DE10334061B4 (en) Circuit arrangement and method for the diagnosis of an antenna circuit
EP2015964B1 (en) Step with a step contact mat for a rail vehicle
EP1726972A1 (en) Motor vehicle radar system and method for operating such a system
BE1029400B1 (en) Contact monitoring device for a three-pole changeover contact
EP1170849B1 (en) Control method and corresponding circuit
DE19638956A1 (en) Interface for multi-sectioned train-axle count arrangement
DE102004059694B3 (en) Method for testing of antenna assembly of motor vehicle, involves test antenna assembly for sending test signals with signal generator along with switching mechanism provided to connect signal generator and test antennae
EP4125215A1 (en) Electrical circuit, in particular for an inductively operated proximity switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200729

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1397056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005418

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502018005418

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PHOENIX CONTACT GMBH & CO. KG

Effective date: 20220225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181218

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221218

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 6

Ref country code: FR

Payment date: 20231222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 6