EP3608586A1 - Projection device, light module and motor vehicle headlamp made from micro optics - Google Patents

Projection device, light module and motor vehicle headlamp made from micro optics Download PDF

Info

Publication number
EP3608586A1
EP3608586A1 EP18187731.7A EP18187731A EP3608586A1 EP 3608586 A1 EP3608586 A1 EP 3608586A1 EP 18187731 A EP18187731 A EP 18187731A EP 3608586 A1 EP3608586 A1 EP 3608586A1
Authority
EP
European Patent Office
Prior art keywords
micro
light
optics
optical system
projection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18187731.7A
Other languages
German (de)
French (fr)
Inventor
Bernhard Mandl
Andreas Moser
Friedrich Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Priority to EP18187731.7A priority Critical patent/EP3608586A1/en
Priority to JP2021506452A priority patent/JP7072120B2/en
Priority to PCT/EP2019/070984 priority patent/WO2020030573A1/en
Priority to EP19752994.4A priority patent/EP3833904B1/en
Priority to KR1020217001727A priority patent/KR102460103B1/en
Priority to US17/265,582 priority patent/US11280463B2/en
Priority to CN201980052535.4A priority patent/CN112543850B/en
Publication of EP3608586A1 publication Critical patent/EP3608586A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/08Refractors for light sources producing an asymmetric light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/16Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having blurred cut-off lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles

Definitions

  • the invention relates to a projection device for a light module of a motor vehicle headlight, which is formed from a plurality of micro-optic systems arranged in a matrix, each micro-optic system having a micro-entry optic, a micro-exit optic assigned to the micro-entry optic and one between the micro-entry optic and
  • the micro-aperture optic arranged preferably has these elements, all micro-entrance optics forming an entrance optic, all micro-exit optics forming an exit optic and all micro-apertures forming an aperture device, the aperture device being orthogonal to the main emission direction of the projection device standing plane - is arranged in an intermediate image plane (ie all the micro-diaphragms lie in the intermediate image plane) and the entry optics, the exit optics and the diaphragm device are arranged in planes which are essentially parallel to one another.
  • the invention relates to a light module with at least one projection device mentioned above and a motor vehicle headlight with at least one such light module.
  • Micro-projection light module is due to the characteristic size of the individual optics - micro-optics or micro-lenses. This size, for example the diameter of the light entry surface or the light exit surface of these optics, is preferably in the micrometer range, in particular in the submillimeter range.
  • micro entry optics and micro exit optics can also have a characteristic size, for example the diameter of their light entry surfaces in the micrometer range, preferably in the submillimeter range.
  • the micro-diaphragms have a corresponding size.
  • the micro-optics - micro-entry optics and / or micro-exit optics - can be designed differently.
  • the applicant's international registration WO 2015/058227 A1 shows a microprojection light module for a motor vehicle headlight, comprising at least one light source and at least one projection device which images the light emerging from the at least one light source in an area in front of the motor vehicle in the form of at least one light distribution, the projection device comprising: an entrance optic which consists of an array of micro entrance optics; an exit optic, which consists of an array of micro exit optics, each micro entry optic being assigned exactly one micro exit optic, the micro entry optics being designed in this way and / or the micro entry optics and the micro exit optics being arranged with respect to one another, that the light exiting from a micro entry optics only enters the assigned micro exit optics, and the light preformed by the micro entry optics is imaged by the micro exit optics into an area in front of the motor vehicle as at least one light distribution.
  • a micro-projection light module for a vehicle headlight which comprises at least one light source and at least one projection device which images the light emerging from the at least one light source in an area in front of the motor vehicle in the form of at least one light distribution
  • the projection device having an entrance optics , which has one, two or more micro entry optics, which are preferably arranged in an array, and an exit optic, which has one, two or more micro exit optics, which are preferably arranged in an array, each micro entry optics exactly one Micro exit optics is assigned, the micro entry optics being designed in such a way and / or the micro entry optics and the micro exit optics being arranged with respect to one another such that essentially all of the light emerging from a micro entry optics is precisely in the assigned micrometer o exit optics, and wherein the light preformed by the micro entry optics is imaged by the micro exit optics into an area in front of the motor vehicle as at least one light distribution.
  • the international registration also shows WO 2017/066818 A1 to the applicant a micro-projection light module for a motor vehicle headlight, comprising at least one light source and at least one projection device which transmits the light emerging from the at least one light source into an area in front of the motor vehicle Depicts the form of at least one light distribution, the projection device comprising an entry optic which has one, two or more micro entry optics, which are preferably arranged in an array, an exit optic which has one, two or more micro exit optics, which preferably in are arranged in an array, with each micro entry optic being assigned exactly one micro exit optic, the micro entry optics being configured and / or the micro entry optics and the micro exit optics being arranged relative to one another such that essentially all of a micro Light entering optics only enters the assigned micro exit optics, and the light preformed by the micro entry optics is imaged by the micro exit optics into an area in front of the motor vehicle as at least one light distribution, one between the entry optics and the exit optics first aperture direction is
  • the entrance optics, exit optics and diaphragm device of a projection device of the type mentioned above can be applied, for example pressed or glued, to a common substrate made of glass or plastic.
  • a common substrate made of glass or plastic.
  • the entrance optics, the exit optics and the diaphragm device in the aforementioned micro-projection light modules can therefore each form a monolithic structure, these structures being aligned with one another in order to be able to project a predetermined light distribution.
  • the structures (entrance optics, exit optics, diaphragm device) are preferably immovably connected to one another in the aligned state, for example glued, in order to avoid detuning while driving and subsequent readjustment.
  • the light distributions generated with microprojection light modules are formed as an overlay of a multitude of micro light distributions - light distributions that are formed by individual micro-optic systems. If micro-optical systems are combined into specific micro-optical system groups, each micro-optical system group is set up to form a partial light distribution.
  • the partial light distributions are also superimpositions of several micro light distributions. The light distribution or the total light distribution is a superposition of partial light distributions.
  • a disadvantage of the above-mentioned projection devices or the light modules is, for example, that setting a sharpness of a light-dark transition, for example the sharpness factor of the light-dark boundary of the low-beam light distribution, is very difficult and cannot be changed dynamically.
  • the in WO 2015031924 A1 disclosed optical structure for softening the gradient can be applied to a surface of a lens by milling. Milling can take up to a day for a lens.
  • the sharpness of a light-dark transition or the sharpness factor of a light-dark boundary is often also referred to as the gradient of the light-dark transition or the light-dark boundary.
  • the object of the present invention is to eliminate the disadvantages of the conventional projection devices from micro-optical systems.
  • the above-mentioned object is achieved according to the invention with a projection device of the above-mentioned type in that the micro-diaphragm of each micro-optical system has an optically effective edge, which is preferably also located in the intermediate image plane and is preferably set up to provide a light-dark boundary To form / shape micro-light distribution, the totality of the micro-optical systems being subdivided into at least two micro-optical system groups, with the micro-optical systems from different micro-optical system groups having the optically active edges relative to the respective one Micro exit optics are positioned differently within the intermediate image plane.
  • an optically effective edge of a diaphragm is understood to mean an edge that is depicted in the light image as a visible light-dark transition or a visible light-dark boundary that is relevant for the lighting technology.
  • Light-dark transitions or light-dark boundaries that are relevant in terms of lighting technology are usually understood to mean those light-dark transitions that are generated in a targeted manner, such as boundaries of a light segment or light-dark boundary of a low-beam light distribution or the like.
  • An example of a light-dark transition that is less relevant in terms of lighting technology is a soft lateral outlet of a high beam distribution.
  • Micro-diaphragms which are produced for example by means of a lithography process, are produced more quickly and can be positioned more precisely than is the case when milling an optical structure onto a lens surface mentioned above.
  • the optically effective edge of the micro-diaphragm is displaced vertically and / or horizontally by a distance relative to the micro-exit optics and this distance is the same for all micro-optical systems within the same micro-optical system group, the distance preferably being about 0 mm to about 0.1 mm, for example about 0.01 mm to about 0.1 mm, preferably about 0.03 mm to about 0 .06 mm. That Within the same micro-optical system group, all optically effective edges are positioned at the same height relative to the respective micro exit optics.
  • each such optically effective edge is preferably designed to produce a continuous horizontal or vertical micro-light-dark boundary or a micro-light-dark boundary with an asymmetry increase.
  • the vertically running light-dark borders or light-dark transitions can occur, for example, when generating a segmented partial high beam distribution. It may be desirable to soften vertically extending light-dark transitions.
  • a generated light distribution formed using the projection device according to the invention is formed as a superimposition of a plurality of partial or micro light distributions.
  • the following nomenclature applies here: with the help of a single micro-optical system, a micro-light distribution is formed; With the aid of a micro-optical system group, a partial light distribution is formed, which is formed as a superimposition of individual micro-light distributions formed using the micro-optical systems of this micro-optical system group, and a light distribution or an overall light distribution, for example a low-beam light distribution, is created with the aid of the entire projection device and is a superimposition of individual partial light distributions.
  • micro-optical system groups can be congruent to one another, in particular of the same design (have the same shape), but can be shifted relative to one another.
  • the terms micro-light-dark boundary, partial light-dark boundary and light-dark boundary should be interpreted analogously.
  • a micro-light-dark boundary is created using a single micro-aperture.
  • a partial light-dark boundary is created as a superposition of micro-light-dark boundaries, which are created using the micro-diaphragms of one and the same micro-optical system group.
  • a light-dark boundary of the light distribution or the total light distribution is generated as a superimposition of partial light-dark boundaries, which is generated with the aid of the micro-optical system groups forming the projection device.
  • micro-diaphragms of each micro-optical system group are combined to form a micro-diaphragm group and the micro-diaphragm groups are of identical design, preferably each micro-diaphragm as a plate made of one opaque material is formed with an opening.
  • the micro entry optics are positioned at the same height relative to the respective micro exit optics and preferably have a common optical axis.
  • the different micro-optical system groups have different intermediate images that result from the displacement of the respective micro-diaphragms.
  • a light distribution or an overall light distribution is formed as a superimposition of a plurality of micro-light distributions with differently positioned (for example vertically and / or horizontally shifted to one another) micro-light-dark limits.
  • the horizontal and vertical displacement can be different. It can be achieved that, for example, the sharpness of the horizontal and vertical light-dark transitions are set differently, for example softened. For example, it may sometimes be useful to soften vertical boundaries of a segment of a partial high beam distribution differently from the horizontal boundaries of the segment.
  • the optically effective edges are positioned at the same height relative to the respective micro-entry optics, the micro-entry optics preferably running differently relative to the respective micro-exit optics (for example vertically and / or have optical axes that are horizontally displaced relative to one another.
  • the different micro-optical system groups can have identical intermediate images.
  • the micro-exit optics of the different micro-optical system groups are positioned differently (for example vertically and / or horizontally displaced relative to one another) in this embodiment. Therefore, the intermediate images (identical or different) of the different micro-optical system groups are projected at different angles with respect to the optical axis of the projection device.
  • a light distribution or a total light distribution is thus formed in this case as a superimposition of a plurality of micro-light distributions with micro-light-dark borders positioned at the same height, the micro-light distributions being shifted in height from one another (differently, for example vertically and / or horizontally shifted relative to one another , positioned).
  • the micro-optical systems have an imaging scale of approximately 3 ° per 0.1 mm. Other values of the image scale are possible.
  • the different micro-optical system groups are formed separately from one another and are preferably spaced apart from one another. This can result in further manufacturing advantages.
  • crosstalk can be reduced by adapting a distance between the different micro-optical system groups.
  • micro-optical system groups can also be in one piece.
  • the micro entrance optics, micro exit optics and micro diaphragms of each micro optical system group can each form a monolithic structure. For example, they can be applied to one or more glass or plastic substrates and / or glued together.
  • a light module for a motor vehicle headlight with a projection device comprising a light source, preferably a semiconductor-based light source, in particular an LED light source, and the projection device being arranged downstream of the light source in the light emission direction, and preferably essentially projected all of the light generated by the light source in an area in front of the light module in the form of a light distribution, for example an apron light distribution or a low beam distribution with or without a Signlight light distribution) with a light-dark boundary, the light distribution from a large number of each other overlapping partial light distributions are each formed with a partial light-dark boundary, each partial light distribution being formed by exactly one micro-optical system group and the partial light-dark boundaries together form the light-dark boundary form.
  • a light source preferably a semiconductor-based light source, in particular an LED light source
  • the projection device being arranged downstream of the light source in the light emission direction, and preferably essentially projected all of the light generated by the light source in an area in front of the light module in
  • the partial light-dark limits of different partial light distributions are therefore arranged differently (for example vertically and / or horizontally displaced relative to one another).
  • the partial light-dark boundaries are displaced by an angle to one another along a vertical (with respect to an HH line) and / or a horizontal (with respect to a VV line), the angle being a value from about 0 ° to about 6 °, for example from about 1 ° to about 3 °, preferably from about 2 °.
  • the term HH line should be clear to the person skilled in the art.
  • the HH line is typically a horizontal line (an abscissa axis) of a coordinate system on a measuring screen for measuring the light distributions generated by motor vehicle headlights or motor vehicle headlight light modules in a lighting technology laboratory.
  • HH line is often referred to as the horizon or the horizontal.
  • An ordinate axis orthogonal to the HH line is called the VV line or vertical.
  • the partial light-dark borders (and ergo the light-dark border) run essentially straight or have an asymmetry increase.
  • the light source is preferably set up to generate collimated light.
  • the light source can comprise a light-collimating optical element and a preferably semiconductor-based lighting element upstream of the light-collimating optical element, for example an LED light source (composed of several, preferably individually controllable LEDs), the light-collimating optical element, for example, a collimator or a light-collimating attachment lens (for example made of silicone ) or a TIR lens.
  • TIR stands for "total inner reflection”.
  • the light source has at least two light-emitting regions, each individual light-emitting region being controllable, for example, switchable on and off, independently of the other light-emitting regions, and each light-emitting region at least one, preferably exactly one micro-optical system group is assigned in such a way that light generated by the respective light-emitting region is directly (ie without being refracted, mirrored, deflected, or in any other way its intensity and / or on other optically active surfaces, elements or the like. or change the direction of propagation) and only meets the micro-optical system group assigned to this light-emitting region.
  • FIG. 1 shows a lighting device 1 for a motor vehicle headlight, which can correspond to the light module according to the invention.
  • the lighting device 1 comprises a projection device 2, which is formed from a multiplicity of micro-optic systems 3 arranged in a matrix, each micro-optic system 3 having a micro-entry optic 30, a micro-exit optic 31 assigned to the micro-entry optic 30 and one between the micro- Entry optics 30 and the micro-exit optics 31 arranged micro-aperture 32 .
  • Each micro-optics system 3 preferably consists of exactly one micro-entry optics 30, exactly one micro-exit optics 31 and exactly one micro-aperture 32 (see an exploded view of such a micro-optics system in FIG Figure 1a ).
  • all micro-entry optics 30 form, for example, one-piece entry optics 4.
  • all micro-exit optics 31 form, for example, one-piece exit optics 5 and the micro-apertures 32 form an example one-piece aperture device 6.
  • the entry optics 4, the exit optics 5 and the aperture device form one for example, one-piece projection device 2.
  • An example of a projection device 2 that is not designed in one piece is, for example, the Figure 3 refer to.
  • the diaphragm device 6 is arranged in a plane which is essentially orthogonal to the main emission direction Z of the projection device 2 - in the intermediate image plane 322 .
  • all of the micro-diaphragms 32 are also located in the intermediate image plane 322.
  • the entry optics 4, the exit optics 5 and the diaphragm device 6 are arranged in planes which are essentially parallel to one another.
  • each micro-optical system has an optically effective edge 320, 320a, 320b, 320c, 320d, 320e .
  • the optically active edge preferably also lies in the micro-intermediate image plane 322.
  • the optically active edge 320, 320a, 320b, 320c, 320d, 320e can be set up or designed, light-dark boundary of a micro-light distribution - a so-called micro-light -Dark limit 3200, 3201 - to generate (see Figure 5b ).
  • a micro light distribution is by the respective micro-optics system 3 passing light formed.
  • each micro-optical system 3 therefore preferably forms exactly one micro-light distribution and vice versa: each micro-light distribution is preferably formed by exactly one micro-optical system 3.
  • the optically effective edge 320, 320a, 320b, 320c, 320d, 320e can have different courses. If the micro-aperture 32, as in Figure 1b shown as a breakthrough in an otherwise opaque plate, the optically effective edge 320, 320a, 320b, 320c, 320d, 320e, which in this case is designed as a breakthrough boundary, has a closed shape.
  • At least part of the optically active edge 320, 320a, 320b, 320c, 320d, 320e is set up / formed for shaping / forming the micro-light-dark boundary 3200, 3201.
  • Micro-shutters shown is the lower part of the optically active edge 320, 320a, 320b, 320c, 320d, 320e.
  • the entirety of the micro-optical system 3 is divided into at least two micro-optical system groups G1, G2, G3 .
  • the individual micro-optical system groups G1, G2, G3 differ in that they include micro-optical systems 3 whose optically active edges 320, 320a, 320b, 320c, 320d, 320e relative to the respective micro-exit optics 31 within the intermediate image plane 322 are positioned differently, for example vertically and / or horizontally shifted. It is expedient if the position of the optically active edges 320, 320a, 320b, 320c, 320d, 320e relative to the respective micro-exit optics 32 is the same within the same micro-optical system group G1, G2, G3.
  • the micro-diaphragms 32 can be positioned in their entirety within a micro-optical system group, for example G1, in such a way that they have no vertical and / or horizontal displacement relative to the respective micro-exit optics 31 - this leads to centered micro, for example -Optical systems 3 (see below). If the optically active edges 320b, 320d of these micro-diaphragms 32 are set up, for example, to set micro-light-dark limits 3200, 3201 for a low beam distribution, such as in FIG Figure 6 shown, a partial light-dark boundary (i.e.
  • the micro-diaphragms 32 can be positioned in their entirety within another micro-optical system group, for example G2, in such a way that they are at a distance (deviating from zero) relative to the respective micro-exit optics 31 are vertically (shown) and / or horizontally (not shown), which is why there is a difference between the relative positions of the optically active edges and the respective micro-exit optics of different micro-optic system groups G1, G2, G3.
  • the micro-optical systems 3 of the micro-optical system group G2 are thus the Figure 1 can be used to generate micro-light-dark limits for a low-beam light distribution that are, for example, vertically shifted with respect to the HH line HH.
  • the shifted micro-light-dark boundaries which are provided by means of different micro-optical system groups G1, G2, G3, overlap in the light image, which results in a soft light-dark boundary that is pleasantly perceptible to a human eye a low beam distribution can result.
  • Figure 1a shows a single micro-optical system 3 in perspective.
  • Figure 1b shows a section AA of the Figure 1a ,
  • the micro-optics system 3 shown in these figures is centered: the micro-entry optics 30 and the micro-exit optics 31 have a common optical axis MOA and the micro-aperture 32 is positioned in the micro-intermediate image plane 322 so that its optically effective edge 320, which here, well, is shaped to form a micro-light-dark boundary with an asymmetry increase, adjoins the optical axis MOA of the micro-optical system 3.
  • micro-optical system group G1 in Figure 1 can, for example, form a micro-optical system group, such as the micro-optical system group G1 in Figure 1 be summarized.
  • the Figures 1a, 1b vertically (along the X direction).
  • One not shown here horizontal displacement (along the Y direction) is also conceivable.
  • the micro exit optics 31 are moved, either the entire micro optic system 3 is decentered - the optical axes of the micro entry optics 30 and the micro exit optics 31 no longer coincide. In both cases, the micro-light-dark boundary of the micro-light distribution also shifts.
  • Such "not ideally centered" micro-optical systems can, for example, form a further micro-optical system group, such as the micro-optical system group G2 in Figure 1 be summarized.
  • Vertical and / or horizontal displacement also means that the optically effective edges and the micro-exit optics remain in their original planes.
  • micro-optical system groups G1, G2, G3 arranged next to one another, one of the micro-optical system groups - namely the micro-optical system group G2 - consisting of decentered micro-optical systems (the micro-exit optics 31 are at a distance h2 shifted downward) is formed (see also Figure 2a ).
  • the different micro-optical system groups G1, G2, G3 can also be arranged above or below one another, as shown in FIG Figure 2b can be seen.
  • the projection device 2 can also comprise several micro-optical system groups.
  • the optically effective edge 320, 320a, 320b , 320c, 320d, 320e of the micro diaphragm 32 is displaced vertically relative to the micro exit optics 31 by the distance h1, h2 and this distance h1, h2 for all micro-optic systems 3 within the same micro-optic system group G1, G2, G3 is the same, the distance h1, h2 preferably being approximately 0 (see the micro-optical system group G1 of Figure 1 . 2a ) mm to about 0.1 mm, for example about 0.01 mm to about 0.1 mm, preferably about 0.03 mm to about 0.06 mm.
  • a distance that is zero corresponds to a zero position of the optically active edge 320, 320a, 320b, 320c, 320d, 320e and results when the micro-optical systems 3 are centered (see above) with one arranged in the zero position optically active edge 320, 320a, 320b, 320c, 320d, 320e, a micro-light-dark boundary lying at 0 ° on the VV line VV (orthogonal to the HH line HH) can be generated.
  • the optically active edges of at least part of the micro-optical systems 3 of each micro-optical system group G1, G2, G3 can be used to generate a continuously horizontal light-dark boundary 3200 - for example the edges 320a, 320c or 320e in Figure 4 or in Figure 5a - or a light-dark boundary with an asymmetry increase 3201 - for example the edges 320b and 320d in Figure 4 or in Figure 5a - be trained.
  • the Figure 4 it can be seen that the micro-diaphragms 32 of each micro-optical system group G1, G2, G3 can be combined to (exactly) one micro-diaphragm group MG1 , MG2 , the micro-diaphragm groups MG1, MG2 being of identical design are. It is conceivable that all micro-diaphragms 32 of the projection device 2 are of identical design.
  • each micro-diaphragm 32 can be formed as a plate made of an opaque material with an opening 321, 321a, 321b, 321c, 321d, 321e .
  • the inner edges of the openings can form optically effective edges.
  • the lower part of the optically active edge can be set up / formed to form / form a micro-light-dark boundary for a low beam distribution.
  • the micro entry optics 30 of different micro optic system groups G1, G2, G3 can be positioned at the same height relative to the respective micro exit optics 31 and preferably have a common optical axis OA.
  • the micro-diaphragms, which belong to different micro-optic system groups G1, G2, G3 and can be combined in different micro-diaphragm groups MG1, MG2, are positioned differently (for example, shifted vertically and / or horizontally to one another).
  • Figure 4 reveals that a micro-aperture group - here the first micro-aperture group MG1 - is shifted by a distance h3 (downwards) with respect to the (common) optical axis OA.
  • Another micro-aperture group - here the second micro-aperture group MG2 - can be shifted by a different distance h4 with respect to the (common) optical axis OA.
  • Figure 4 shows an example in which the micro-aperture groups MG1, MG2 are shifted in the same direction. It goes without saying that the micro-aperture groups can be shifted in different vertical directions (up or down). There is a relative distance h34 between the distances h3, h4 . The micro-aperture groups can also be shifted in (different) horizontal directions (not shown).
  • micro-entry optics 30 As already mentioned show Figures 1 . 2a, 2b Exemplary embodiments in which in different micro-optical system groups G1, G2, G3 the optically active edges 320, 320a, 320b, 320c, 320d, 320e are positioned at the same height relative to the respective micro-entry optics, preferably the micro-entry optics 30 relative have optical axes which run differently (for example vertically and / or horizontally from one another) with respect to the respective micro exit optics 31 - that is to say are decentered.
  • the micro-optical systems 3 can, for example, have an imaging scale of approximately 3 ° per 0.1 mm. Other imaging scales are conceivable and depend on the respective design of the micro-optical systems 3. This means that a relative displacement of the optically active edge 320, 320a, 320b, 320c, 320d, 320e to the micro-exit optics 31 in such a micro-optics system 3 by approximately 0.1 mm to a displacement of an optically active edge 320, 320a, 320b, 320c, 320d, 320e produces a light-dark transition, for example a micro-light-dark boundary, of approximately 3 ° along the VV line VV (ie in the angular space).
  • the different micro-optical system groups G1, G2, G3 can be formed separately from one another and can preferably be spaced apart from one another. This is for example in Figure 3 to recognize.
  • the lighting device 1 also has a light source 7, preferably a semiconductor-based light source, in particular an LED light source, the projection device 2 being arranged downstream of the light source 7 in the light emission direction Z and preferably essentially all of the light generated by the light source 7 in an area in front of the Illumination device 1 projected in the form of a light distribution, for example an apron light distribution or a low-beam light distribution 8 with or without a Signlight light distribution 81 with a light-dark boundary 80 (see Figure 6 ).
  • a light source 7 preferably a semiconductor-based light source, in particular an LED light source
  • the projection device 2 being arranged downstream of the light source 7 in the light emission direction Z and preferably essentially all of the light generated by the light source 7 in an area in front of the Illumination device 1 projected in the form of a light distribution, for example an apron light distribution or a low-beam light distribution 8 with or without a Signlight light distribution 81 with a light-dark boundary 80 (see Figure 6
  • the Light distribution is usually formed from a multiplicity of overlapping partial light distributions, each with a partial light-dark boundary, each partial light distribution being formed by exactly one micro-optical system group G1, G2, G3 and the partial light-dark - Boundaries together form the light-dark boundary.
  • the partial light-dark borders are in turn formed from a large number of micro-light-dark borders. Furthermore, it follows from what has been said above that the partial light-dark limits of different partial light distributions are arranged differently (for example vertically and / or horizontally displaced from one another).
  • the partial light-dark limits along the vertical (VV line VV) or along the horizontal / horizon (HH line HH) can be shifted by an angle, the angle being a value of approximately 0 ° to approximately 3 °, for example from about 1 ° to about 3 °, preferably from about 2 °.
  • the partial light-dark limits (and ergo the light-dark limit of the entire light distribution) can, for example, run essentially straight or have an asymmetry increase 80.
  • the light source 7 can be configured to generate collimated light.
  • the light source 7 can comprise a light-collimating optical element 9 and a preferably semiconductor-based lighting element 10 located in front of the light-collimating optical element 9 , for example an LED light source, which for example consists of several, preferably individually controllable LEDs.
  • the light-collimating optical element 9 is, for example, a collimator or a light-collimating front lens (eg made of silicone) or a TIR lens.
  • the light source 7 can have two or more light-emitting regions 70, 71, 72 , wherein each individual light-emitting region can be controlled, for example switched on and off, independently of the other light-emitting regions of the light source 7.
  • At least one, preferably exactly one, micro-optical system group G1, G2, G3 can be assigned to each light-emitting region 70, 71, 72, that light generated by the respective light-emitting region 70, 71, 72 directly, ie without other optically active surfaces, elements or the like. broken, mirrored, deflected or in another way to change its intensity and / or direction of propagation, and only hits the micro-optical system group G1, G2, G3 assigned to this light-emitting region 70, 71, 72.
  • Figure 2a shows two one-piece micro-optical system groups G1 and G2.
  • the corresponding micro entry optics, micro diaphragms and micro exit optics can be applied to one and the same glass substrate.
  • the light source 7 can have three light-emitting regions 70, 71, 72, to which three micro-optical system groups G1, G2, G3, which are formed separately and are preferably spaced apart, are assigned.
  • Each individual light-emitting area 70, 71, 72 is assigned exactly one micro-optical system group G1, G2, G3.
  • Each individual light-emitting region can be controllable, for example switched on and off, independently of the other light-emitting regions of the light source 7.
  • the micro-optical system group G1, G2, G3 assigned to each light-emitting area 70, 71, 72 is preferably arranged in such a way that light generated by the respective light-emitting area 70, 71, 72 is directed onto it directly, ie without on further optically active surfaces, Elements or similar broken, mirrored, redirected or otherwise changing its intensity and / or direction of propagation.
  • the light-emitting regions 70, 71, 72 can be designed, for example, as semiconductor-based light sources and in particular comprise one or more LED light sources.
  • a projection device it is possible, for example, to preferably reduce the sharpness factor (also called "gradient") of a light-dark boundary of a low-beam light distribution or, in general, to adjust the sharpness of a light-dark transition of a light distribution.
  • This has an advantage in particular if a characteristic size of the micro entry optics and the micro exit optics, for example the diameter of their light entry surfaces in the micrometer, is preferably in the submillimeter range.
  • a softening of the gradient is, for example Common methods, such as applying an optical structure to light exit surfaces of the optics, extremely difficult.
  • the sharpness factor can be reduced by a projection device according to the invention described above.
  • the light modules according to the invention not only enable the gradient to soften statically (see above) but also allow dynamic adjustment, preferably reducing the sharpness factor.
  • Dynamic adjustment means adjustment during operation of the light module.
  • Examples of light modules that enable dynamic adjustment are the light modules with a light source that has a plurality of light-emitting regions, the light-emitting regions being individually controllable, as described above.
  • the lighting devices of the Figures 2a and 3 Examples of the light modules that enable a dynamic adjustment of the sharpness factor are shown.
  • one or more micro-optical system group (s) can be assigned to a light-emitting area, which can be designed as a semiconductor-based light source, for example.
  • Such a system: light-emitting area and at least one micro-optical system group assigned to the light-emitting area can be set to a predetermined sharpness factor, that is to say be set up to generate a partial light distribution with a light-dark boundary with a predetermined sharpness factor.
  • a light module is conceivable which has three such systems with a sharpness factor of approximately 0.35 and a system with a sharpness factor of approximately 0.19. It has been found that in a state in which all four systems of the light module are switched on, there is a light distribution with a cut-off line with a sharpness factor of approximately 0.28.
  • a light module with three systems with a sharpness factor of approximately 0.19 and a system with a sharpness factor of approximately 0.35 has a light distribution with a cut-off line with a sharpness factor of approximately 0. 21 generated when all four systems are turned on.
  • These examples show that a light module with several such systems, which have different sharpness factors, can dynamically adjust - reduce and increase - the light-dark boundary of a light distribution and in general the sharpness of a light-dark transition of a light distribution.
  • a variable preferably implement a sharpness factor dependent on the driving situation. This can be an advantage in a wide variety of driving situations.
  • a softer (smaller) sharpness factor is advantageous in order to make the cut-off, preferably the cut-off of a low beam, more pleasant.
  • a soft focus factor poses a risk that oncoming traffic and / or pedestrians will be more blinded. In the city with ambient lighting, it can therefore be advantageous to switch to a harder (higher) sharpness factor.
  • the relative position according to the invention of the optically active edges 320, 320a, 320b, 320c, 320d, 320e to the respective micro exit optics 31 within the intermediate image plane can be calculated as a function of a predetermined gradient.
  • the gradient shharpness factor
  • the gradient can be softened, for example, by applying an optical structure to a lens surface (see, for example WO 2015031924 A1 the applicant).
  • An original (unmodified) light distribution is assumed, which has a light-dark boundary or a light-dark transition with a gradient that needs to be softened.
  • the goal - the softened gradient - is specified.
  • a spreading function is calculated / determined on the basis of this specification. Folding the unmodified light distribution with this scattering function produces modified light distribution that has the gradient softened according to the specification.
  • the spreading function plays the role of a weight function.
  • the scattering function is also used to determine the optical structure - in the case of WO 2015031924 A1 -
  • the shape of individual elevations on the lens surface is calculated. According to this calculation, the optical structure (the individual elevations) is applied to the lens surface.
  • the sharpness factor in the present invention can be influenced by different relative positions of the optically active edges 320, 320a, 320b, 320c, 320d, 320e relative to the respective micro exit optics 31.
  • the time-consuming application of the optical structure to lens surfaces is no longer necessary.
  • a gradient is specified as the target, which is usually less than the gradient of the unmodified light distribution. Based on this A spreading function is calculated / determined by default.
  • This scattering function can now be converted to the relative position of the optically active edges 320, 320a, 320b, 320c, 320d, 320e to the respective micro exit optics 31 within the intermediate image plane for all micro optic system groups G1, G2, G3, so that at the folding of an original (unmodified) light distribution with this scattering function, the light distribution is generated that has the predetermined gradient.
  • the basic idea here is that shifting an optically effective edge relative to the respective micro-exit optics from its zero position (zero position) causes a corresponding shift in the light distribution or the light image, for example depending on an imaging scale.
  • the zero position is understood to mean a position in which the optically effective edge is not shifted to the corresponding micro exit optics and is depicted, for example in the case of a micro low beam distribution, as a non-shifted light-dark boundary. Because there is normally a discrete (finite) number of optically active edges, the folding can be understood as a sum (superimposition) of correspondingly shifted micro-light distributions (micro-high-beam distributions or low-beam distributions).
  • a shift of the micro-aperture relative to the respective micro exit optic represents a shift of the light image depending on the imaging scale.
  • the scattering function which represents a predetermined change in the gradient, can be determined from angular coordinates in the spherical coordinate system ([°]). are converted into Cartesian coordinates [mm].
  • the relative position of the optically active edges 320, 320a, 320b, 320c, 320d, 320e to the respective micro exit optics 31 within the intermediate image plane in each micro-optical system group G1, G2, G3 and the number of micro-optical systems in each micro-optical system group G1, G2, G3 can be determined.
  • a shift of a light distribution by 2 ° can correspond to a shift of the micro-aperture by 0.06 mm.
  • the intensity values can correspond to the number of micro-optical systems in the respective micro-optical system group G1, G2, G3. This means that the candela weighting factors are converted to a number of different positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Projektionseinrichtung (2) für ein Lichtmodul (1) eines Kraftfahrzeugscheinwerfers, die aus einer Vielzahl matrixartig angeordneter Mikro-Optiksysteme (3) gebildet ist, wobei jedes Mikro-Optiksystem (3) eine Mikro-Eintrittsoptik (30), eine der Mikro-Eintrittsoptik (30) zugeordnete Mikro-Austrittsoptik (31) und eine Mikro-Blende (32) aufweist, wobei alle Mikro-Eintrittsoptiken (30) eine Eintrittsoptik (4), alle Mikro-Austrittsoptiken (31) eine Austrittsoptik (5) und alle Mikro-Blenden (32) eine Blendenvorrichtung (6) bilden, wobei die Blendenvorrichtung (6) in einer im Wesentlichen zur Hauptabstrahlrichtung (Z) der Projektionseinrichtung (2) orthogonal stehenden Ebene angeordnet ist und die Eintrittsoptik (4), die Austrittsoptik (5) und die Blendenvorrichtung (6) in im Wesentlichen zueinander parallelen Ebenen angeordnet sind, wobei die Mikro-Blende (32) eines jeden Mikro-Optiksystems (3) eine optisch wirksame Kante (320, 320a, 320b, 320c, 320d, 320e) aufweist, wobei die Gesamtheit der Mikro-Optiksysteme (3) in zumindest zwei Mikro-Optiksystem-Gruppen (G1, G2, G3) unterteilt ist, wobei bei den Mikro-Optiksystemen (3) aus unterschiedlichen Mikro-Optiksystem-Gruppen (G1, G2, G3) die optisch wirksamen Kanten (320, 320a, 320b, 320c, 320d, 320e) relativ zu den jeweiligen Mikro-Austrittsoptiken (31) innerhalb der Zwischenbildebene unterschiedlich positioniert sind.Projection device (2) for a light module (1) of a motor vehicle headlight, which is formed from a plurality of micro-optic systems (3) arranged in a matrix, each micro-optic system (3) having a micro-entry optic (30), one of the micro-entry optics ( 30) assigned micro exit optics (31) and a micro diaphragm (32), all micro entry optics (30) one entry optics (4), all micro exit optics (31) one exit optics (5) and all micro diaphragms (32) form a diaphragm device (6), the diaphragm device (6) being arranged in a plane which is essentially orthogonal to the main emission direction (Z) of the projection device (2) and the entrance optics (4), the exit optics (5) and the diaphragm device (6) are arranged in substantially mutually parallel planes, the micro-diaphragm (32) of each micro-optical system (3) having an optically active edge (320, 320a, 320b, 320c, 320d, 320e), the entirety the Micro-optic systems (3) is subdivided into at least two micro-optic system groups (G1, G2, G3), with the micro-optic systems (3) consisting of different micro-optic system groups (G1, G2, G3) being the optically effective ones Edges (320, 320a, 320b, 320c, 320d, 320e) are positioned differently relative to the respective micro exit optics (31) within the intermediate image plane.

Description

Die Erfindung betrifft eine Projektionseinrichtung für ein Lichtmodul eines Kraftfahrzeugscheinwerfers, die aus einer Vielzahl matrixartig angeordneter Mikro-Optiksysteme gebildet ist, wobei jedes Mikro-Optiksystem eine Mikro-Eintrittsoptik, eine der Mikro-Eintrittsoptik zugeordnete Mikro-Austrittsoptik und eine zwischen der Mikro-Eintrittsoptik und der Mikro-Austrittsoptik angeordnete Mikro-Blende aufweist vorzugsweise aus diesen Elementen besteht, wobei alle Mikro-Eintrittsoptiken eine Eintrittsoptik, alle Mikro-Austrittsoptiken eine Austrittsoptik und alle Mikro-Blenden eine Blendenvorrichtung bilden, wobei die Blendenvorrichtung in einer im Wesentlichen zur Hauptabstrahlrichtung der Projektionseinrichtung orthogonal stehenden Ebene - in einer Zwischenbildebene -angeordnet ist (d.h. alle Mikro-Blenden liegen in der Zwischenbildebene) und die Eintrittsoptik, die Austrittsoptik und die Blendenvorrichtung in im Wesentlichen zueinander parallelen Ebenen angeordnet sind.The invention relates to a projection device for a light module of a motor vehicle headlight, which is formed from a plurality of micro-optic systems arranged in a matrix, each micro-optic system having a micro-entry optic, a micro-exit optic assigned to the micro-entry optic and one between the micro-entry optic and The micro-aperture optic arranged preferably has these elements, all micro-entrance optics forming an entrance optic, all micro-exit optics forming an exit optic and all micro-apertures forming an aperture device, the aperture device being orthogonal to the main emission direction of the projection device standing plane - is arranged in an intermediate image plane (ie all the micro-diaphragms lie in the intermediate image plane) and the entry optics, the exit optics and the diaphragm device are arranged in planes which are essentially parallel to one another.

Weiters betrifft die Erfindung ein Lichtmodul mit zumindest einer oben genannten Projektionseinrichtung und ein Kraftfahrzeugscheinwerfer mit mindestens einem solchen Lichtmodul.Furthermore, the invention relates to a light module with at least one projection device mentioned above and a motor vehicle headlight with at least one such light module.

Projektionseinrichtungen der oben genannten Art sind aus dem Stand der Technik bekannt (siehe WO 2015/058227 A1 , WO 2017/066817 A1 , WO 2017/066818 A1 ). Solche Projektionseinrichtungen werden oft in so genannten Mikroprojektions-Lichtmodulen für Kraftfahrzeugscheinwerfer eingesetzt. Der Name "Mikroprojektions-Lichtmodul" ist der charakteristischen Größe der einzelnen Optiken - Mikro-Optiken oder der Mikro-Linsen - zu verdanken. Diese Größe, beispielsweise der Durchmesser der Lichteintrittsfläche oder der Lichtaustrittsfläche dieser Optiken, liegt vorzugsweise im Mikrometer-, insbesondere im Submillimeterbereich. Die oben genannten Mikro-Eintrittsoptiken und Mikro-Austrittsoptiken können ebenfalls eine charakteristische Größe, beispielsweise Durchmesser ihrer Lichteintrittsflächen im Mikrometer- vorzugsweise im Submillimeterbereich aufweisen. Die Mikro-Blenden weisen in diesem Fall eine entsprechende Größe auf. Dabei sei angemerkt, dass die Mikrooptiken - Mikro-Eintrittsoptik und/oder Mikro-Austrittsoptiken - unterschiedlich ausgebildet sein können.Projection devices of the type mentioned above are known from the prior art (see WO 2015/058227 A1 . WO 2017/066817 A1 . WO 2017/066818 A1 ). Such projection devices are often used in so-called micro-projection light modules for motor vehicle headlights. The name "micro-projection light module" is due to the characteristic size of the individual optics - micro-optics or micro-lenses. This size, for example the diameter of the light entry surface or the light exit surface of these optics, is preferably in the micrometer range, in particular in the submillimeter range. The above-mentioned micro entry optics and micro exit optics can also have a characteristic size, for example the diameter of their light entry surfaces in the micrometer range, preferably in the submillimeter range. In this case, the micro-diaphragms have a corresponding size. It should be noted that the micro-optics - micro-entry optics and / or micro-exit optics - can be designed differently.

Die internationale Anmeldung der Anmelderin WO 2015/058227 A1 zeigt ein Mikroprojektions-Lichtmodul für einen Kraftfahrzeugscheinwerfer, umfassend zumindest eine Lichtquelle sowie zumindest eine Projektionseinrichtung, welche das von der zumindest einen Lichtquelle austretende Licht in einen Bereich vor dem Kraftfahrzeug in Form von zumindest einer Lichtverteilung abbildet, wobei die Projektionseinrichtung umfasst: eine Eintrittsoptik, welche aus einem Array an Mikro-Eintrittsoptiken besteht; eine Austrittsoptik, welche aus einem Array an Mikro-Austrittsoptiken besteht, wobei jeder Mikro-Eintrittsoptik genau eine Mikro-Austrittsoptik zugeordnet ist, wobei die Mikro-Eintrittsoptiken derart ausgebildet und/oder die Mikro-Eintrittsoptiken und die Mikro-Austrittsoptiken derart zueinander angeordnet sind, dass das aus einer Mikro-Eintrittsoptik austretende Licht genau nur in die zugeordnete Mikro-Austrittsoptik eintritt, und wobei das von den Mikro-Eintrittsoptiken vorgeformte Licht von den Mikro- Austrittsoptiken in einen Bereich vor dem Kraftfahrzeug als zumindest eine Lichtverteilung abgebildet wird.The applicant's international registration WO 2015/058227 A1 shows a microprojection light module for a motor vehicle headlight, comprising at least one light source and at least one projection device which images the light emerging from the at least one light source in an area in front of the motor vehicle in the form of at least one light distribution, the projection device comprising: an entrance optic which consists of an array of micro entrance optics; an exit optic, which consists of an array of micro exit optics, each micro entry optic being assigned exactly one micro exit optic, the micro entry optics being designed in this way and / or the micro entry optics and the micro exit optics being arranged with respect to one another, that the light exiting from a micro entry optics only enters the assigned micro exit optics, and the light preformed by the micro entry optics is imaged by the micro exit optics into an area in front of the motor vehicle as at least one light distribution.

In der internationalen Anmeldung WO 2017/066817 A1 der Anmelderin wird ein Mikroprojektions-Lichtmodul für einen Fahrzeugscheinwerfer thematisiert, welches zumindest eine Lichtquelle sowie zumindest eine Projektionseinrichtung umfasst, welche das von der zumindest einen Lichtquelle austretende Licht in einen Bereich vor dem Kraftfahrzeug in Form von zumindest einer Lichtverteilung abbildet, wobei die Projektionseinrichtung eine Eintrittsoptik, welche eine, zwei oder mehr Mikro-Eintrittsoptiken aufweist, welche vorzugsweise in einem Array angeordnet sind, und eine Austrittsoptik, welche eine, zwei oder mehr Mikro-Austrittsoptiken aufweist, welche vorzugsweise in einem Array angeordnet sind, wobei jeder Mikro-Eintrittsoptik genau eine Mikro-Austrittsoptik zugeordnet ist, wobei die Mikro-Eintrittsoptiken derart ausgebildet und/ oder die Mikro-Eintrittsoptiken und die Mikro-Austrittsoptiken derart zueinander angeordnet sind, dass im Wesentlichen das gesamte aus einer Mikro-Eintrittsoptik austretende Licht genau nur in die zugeordnete Mikro-Austrittsoptik eintritt, und wobei das von den Mikro-Eintrittsoptiken vorgeformte Licht von den Mikro-Austrittsoptiken in einen Bereich vor dem Kraftfahrzeug als zumindest eine Lichtverteilung abgebildet wird.In the international registration WO 2017/066817 A1 The applicant addresses a micro-projection light module for a vehicle headlight, which comprises at least one light source and at least one projection device which images the light emerging from the at least one light source in an area in front of the motor vehicle in the form of at least one light distribution, the projection device having an entrance optics , which has one, two or more micro entry optics, which are preferably arranged in an array, and an exit optic, which has one, two or more micro exit optics, which are preferably arranged in an array, each micro entry optics exactly one Micro exit optics is assigned, the micro entry optics being designed in such a way and / or the micro entry optics and the micro exit optics being arranged with respect to one another such that essentially all of the light emerging from a micro entry optics is precisely in the assigned micrometer o exit optics, and wherein the light preformed by the micro entry optics is imaged by the micro exit optics into an area in front of the motor vehicle as at least one light distribution.

Weiters zeigt die internationale Anmeldung WO 2017/066818 A1 der Anmelderin ein Mikroprojektions-Lichtmodul für einen Kraftfahrzeugscheinwerfer, umfassend zumindest eine Lichtquelle sowie zumindest eine Projektionseinrichtung, welche das von der zumindest einen Lichtquelle austretende Licht in einen Bereich vor dem Kraftfahrzeug in Form von zumindest einer Lichtverteilung abbildet, wobei die Projektionseinrichtung umfasst eine Eintrittsoptik, welche eine, zwei oder mehr Mikro-Eintrittsoptiken aufweist, welche vorzugsweise in einem Array angeordnet sind, eine Austrittsoptik, welche eine, zwei oder mehr Mikro-Austrittsoptiken aufweist, welche vorzugsweise in einem Array angeordnet sind, wobei jeder Mikro-Eintrittsoptik genau eine Mikro-Austrittsoptik zugeordnet ist, wobei die Mikro-Eintrittsoptiken derart ausgebildet und/oder die Mikro-Eintrittsoptiken und die Mikro-Austrittsoptiken derart zueinander angeordnet sind, dass im Wesentlichen das gesamte aus einer Mikro-Eintrittsoptik austretende Licht genau nur in die zugeordnete Mikro-Austrittsoptik eintritt, und wobei das von den Mikro-Eintrittsoptiken vorgeformte Licht von den Mikro-Austrittsoptiken in einen Bereich vor dem Kraftfahrzeug als zumindest eine Lichtverteilung abgebildet wird, wobei zwischen der Eintrittsoptik und der Austrittsoptik eine erste Blendenvorrichtung angeordnet ist.The international registration also shows WO 2017/066818 A1 to the applicant a micro-projection light module for a motor vehicle headlight, comprising at least one light source and at least one projection device which transmits the light emerging from the at least one light source into an area in front of the motor vehicle Depicts the form of at least one light distribution, the projection device comprising an entry optic which has one, two or more micro entry optics, which are preferably arranged in an array, an exit optic which has one, two or more micro exit optics, which preferably in are arranged in an array, with each micro entry optic being assigned exactly one micro exit optic, the micro entry optics being configured and / or the micro entry optics and the micro exit optics being arranged relative to one another such that essentially all of a micro Light entering optics only enters the assigned micro exit optics, and the light preformed by the micro entry optics is imaged by the micro exit optics into an area in front of the motor vehicle as at least one light distribution, one between the entry optics and the exit optics first aperture direction is arranged.

Die Eintrittsoptik, Austrittsoptik und Blendenvorrichtung einer Projektionseinrichtung der oben genannten Art können auf ein gemeinsames Substrat aus Glas oder Kunststoff aufgebracht, beispielsweise gepresst oder geklebt, werden. Für weitere Details betreffend Mikro-Optiksysteme sei an dieser Stelle an WO 2015/058227 A1 , WO 2017/066817 A1 , WO 2017/066818 A1 und weitere Mikroprojektions-Lichtmodule und -Systeme betreffende Anmeldungen der Anmelderin verwiesen. Die Eintrittsoptik, die Austrittsoptik und die Blendenvorrichtung bei den vorgenannten Mikroprojektions-Lichtmodulen können also jeweils eine monolithische Struktur bilden, wobei diese Strukturen aufeinander ausgerichtet sind, um eine vorgegebene Lichtverteilung projizieren zu können. Vorzugsweise sind die Strukturen (Eintrittsoptik, Austrittsoptik, Blendenvorrichtung) in dem aufeinander ausgerichteten Zustand miteinander unbewegbar verbunden, beispielsweise verklebt, um Verstimmungen während der Fahrt und anschließende Nachjustage zu vermeiden.The entrance optics, exit optics and diaphragm device of a projection device of the type mentioned above can be applied, for example pressed or glued, to a common substrate made of glass or plastic. For further details regarding micro-optic systems, please visit WO 2015/058227 A1 . WO 2017/066817 A1 . WO 2017/066818 A1 and other applications relating to microprojection light modules and systems by the applicant. The entrance optics, the exit optics and the diaphragm device in the aforementioned micro-projection light modules can therefore each form a monolithic structure, these structures being aligned with one another in order to be able to project a predetermined light distribution. The structures (entrance optics, exit optics, diaphragm device) are preferably immovably connected to one another in the aligned state, for example glued, in order to avoid detuning while driving and subsequent readjustment.

Die mit Mikroprojektions-Lichtmodulen erzeugten Lichtverteilungen werden als eine Überlagerung einer Vielzahl von Mikro-Lichtverteilungen - Lichtverteilungen, die durch einzelne Mikro-Optiksysteme geformt werden - gebildet. Wenn Mikro-Optiksysteme zu bestimmten Mikro-Optiksystem-Gruppen zusammengefasst werden, so ist jede Mikro-Optiksystem-Gruppe zum Formen einer Teil-Lichtverteilung eingerichtet. Die Teil-Lichtverteilungen sind ebenfalls Überlagerungen von mehreren Mikro-Lichtverteilungen. Die Lichtverteilung beziehungsweise die Gesamtlichtverteilung ist eine Überlagerung von Teil-Lichtverteilungen.The light distributions generated with microprojection light modules are formed as an overlay of a multitude of micro light distributions - light distributions that are formed by individual micro-optic systems. If micro-optical systems are combined into specific micro-optical system groups, each micro-optical system group is set up to form a partial light distribution. The partial light distributions are also superimpositions of several micro light distributions. The light distribution or the total light distribution is a superposition of partial light distributions.

Ein Nachteil der oben genannten Projektionseinrichtungen beziehungsweise der Lichtmodule liegt beispielsweise darin, dass Einstellen einer Schärfe eines Hell-Dunkel-Übergangs, beispielsweise des Schärfefaktors der Hell-Dunkel-Grenze der Abblendlichtverteilung, sehr schwierig ist und sich auch dynamisch nicht ändern lässt. Beispielsweise kann die in WO 2015031924 A1 geoffenbarte optische Struktur zum Aufweichen des Gradienten mittels Fräsens auf eine Oberfläche einer Linse aufgebracht werden. Das Fräsen kann für eine Linse bis zu einem Tag Zeit in Anspruch nehmen.A disadvantage of the above-mentioned projection devices or the light modules is, for example, that setting a sharpness of a light-dark transition, for example the sharpness factor of the light-dark boundary of the low-beam light distribution, is very difficult and cannot be changed dynamically. For example, the in WO 2015031924 A1 disclosed optical structure for softening the gradient can be applied to a surface of a lens by milling. Milling can take up to a day for a lens.

Die Schärfe eines Hell-Dunkel-Übergangs beziehungsweise der Schärfefaktor einer Hell-Dunkel-Grenze wird oft auch als Gradient des Hell-Dunkel-Übergangs beziehungsweise der Hell-Dunkel-Grenze bezeichnet.The sharpness of a light-dark transition or the sharpness factor of a light-dark boundary is often also referred to as the gradient of the light-dark transition or the light-dark boundary.

Die Aufgabe der vorliegenden Erfindung liegt darin, die Nachteile der herkömmlichen Projektionseinrichtungen aus Mikro-Optiksystemen zu beseitigen.The object of the present invention is to eliminate the disadvantages of the conventional projection devices from micro-optical systems.

Die oben genannte Aufgabe wird mit einer Projektionseinrichtung der oben genannten Art erfindungsgemäß dadurch gelöst, dass die Mikro-Blende eines jeden Mikro-Optiksystems eine optisch wirksame, vorzugsweise ebenfalls in der Zwischenbildebene liegende Kante, die vorzugsweise dazu eingerichtet ist, Hell-Dunkel-Grenze einer Mikro-Lichtverteilung zu bilden/zu formen, aufweist, wobei die Gesamtheit der Mikro-Optiksysteme in zumindest zwei Mikro-Optiksystem-Gruppen unterteilt ist, wobei bei den Mikro-Optiksystemen aus unterschiedlichen Mikro-Optiksystem-Gruppen die optisch wirksamen Kanten relativ zu der jeweiligen Mikro-Austrittsoptiken innerhalb der Zwischenbildebene unterschiedlich positioniert sind.The above-mentioned object is achieved according to the invention with a projection device of the above-mentioned type in that the micro-diaphragm of each micro-optical system has an optically effective edge, which is preferably also located in the intermediate image plane and is preferably set up to provide a light-dark boundary To form / shape micro-light distribution, the totality of the micro-optical systems being subdivided into at least two micro-optical system groups, with the micro-optical systems from different micro-optical system groups having the optically active edges relative to the respective one Micro exit optics are positioned differently within the intermediate image plane.

Unter einer optisch wirksamen Kante einer Blende (einer Mikro-Blende) wird, wie gewohnt, eine Kante verstanden, die im Lichtbild als ein sichtbarer für lichttechnisch relevanter Hell-Dunkel-Übergang beziehungsweise eine sichtbare Hell-Dunkel-Grenze abgebildet wird. Unter lichttechnisch relevanten Hell-Dunkel-Übergangen beziehungsweise Hell-Dunkel-Grenzen werden für gewöhnlich jene Hell-Dunkel-Übergänge verstanden, die gezielt erzeugt werden, wie Grenzen eines Lichtsegments oder Hell-Dunkel-Grenze einer Abblendlichtverteilung oder Ähnliches. Ein Beispiel eines lichttechnisch weniger relevanten Hell-Dunkel-Übergangs ist ein weicher seitlicher Auslauf einer Fernlichtverteilung.As usual, an optically effective edge of a diaphragm (a micro diaphragm) is understood to mean an edge that is depicted in the light image as a visible light-dark transition or a visible light-dark boundary that is relevant for the lighting technology. Light-dark transitions or light-dark boundaries that are relevant in terms of lighting technology are usually understood to mean those light-dark transitions that are generated in a targeted manner, such as boundaries of a light segment or light-dark boundary of a low-beam light distribution or the like. An example of a light-dark transition that is less relevant in terms of lighting technology is a soft lateral outlet of a high beam distribution.

Mikro-Blenden, die beispielsweise mittels eines Lithographieverfahrens erzeugt werden, werden schneller hergestellt und können genauer positioniert werden als es beim oben genannten Fräsen einer optischen Struktur auf eine Linsenoberfläche der Fall ist.Micro-diaphragms, which are produced for example by means of a lithography process, are produced more quickly and can be positioned more precisely than is the case when milling an optical structure onto a lens surface mentioned above.

Es kann mit Vorteil vorgesehen sein, dass für jedes Mikro-Optiksystem innerhalb derselben Mikro-Optiksystem-Gruppe gilt, dass die optisch wirksame Kante der Mikro-Blende relativ zu der Mikro-Austrittsoptik um einen Abstand vertikal und/oder horizontal verschoben ist und dieser Abstand für alle Mikro-Optiksysteme innerhalb derselben Mikro-Optiksystem-Gruppe gleich ist, wobei der Abstand vorzugsweise etwa 0 mm bis etwa 0,1 mm, beispielsweise etwa 0,01 mm bis etwa 0,1 mm vorzugsweise etwa 0,03 mm bis etwa 0,06 mm beträgt. D.h. innerhalb der gleichen Mikro-Optiksystem-Gruppe sind alle optisch wirksamen Kanten relativ zu den jeweiligen Mikro-Austrittsoptiken gleich hoch positioniert.It can advantageously be provided that for each micro-optical system within the same micro-optical system group it applies that the optically effective edge of the micro-diaphragm is displaced vertically and / or horizontally by a distance relative to the micro-exit optics and this distance is the same for all micro-optical systems within the same micro-optical system group, the distance preferably being about 0 mm to about 0.1 mm, for example about 0.01 mm to about 0.1 mm, preferably about 0.03 mm to about 0 .06 mm. That Within the same micro-optical system group, all optically effective edges are positioned at the same height relative to the respective micro exit optics.

Sollte der Abstand gleich 0 mm sein, so entspricht das einer Nulllage, bei welcher eine horizontal geradlinig verlaufende optisch wirksamen Kante einer Mikro-Blende durch das entsprechende Mikro-Optiksystem als eine horizontal an der H-H-Linie verlaufende Mikro-Hell-Dunkel-Grenze abgebildet wird.If the distance is equal to 0 mm, this corresponds to a zero position, in which a horizontally rectilinear optically effective edge of a micro-aperture is represented by the corresponding micro-optic system as a horizontally running micro-light-dark boundary on the HH line becomes.

Weiters kann vorgesehen sein, dass die optisch wirksamen Kanten zumindest eines Teils der Mikro-Optiksysteme jeder Mikro-Optiksystem-Gruppe zum Erzeugen einer durchgehend horizontalen oder vertikalen Teil-Hell-Dunkel-Grenze oder einer Teil-Hell-Dunkel-Grenze mit einem Asymmetrieanstieg ausgebildet sind, wobei jede solche optisch wirksame Kante vorzugsweise zum Erzeugen einer durchgehend horizontalen oder vertikalen Mikro-Hell-Dunkel-Grenze oder einer Mikro-Hell-Dunkel-Grenze mit einem Asymmetrieanstieg ausgebildet ist.Furthermore, it can be provided that the optically effective edges of at least some of the micro-optical systems of each micro-optical system group are designed to produce a continuously horizontal or vertical partial light-dark boundary or a partial light-dark boundary with an asymmetry increase are, each such optically effective edge is preferably designed to produce a continuous horizontal or vertical micro-light-dark boundary or a micro-light-dark boundary with an asymmetry increase.

Die vertikal verlaufende Hell-Dunkel-Grenzen beziehungsweise Hell-Dunkel-Übergänge können beispielsweise beim Erzeugen einer segmentierten Teil-Fernlichtverteilung auftreten. Es kann erwünscht sein, vertikal verlaufende Hell-Dunkel-Übergänge aufzuweichen.The vertically running light-dark borders or light-dark transitions can occur, for example, when generating a segmented partial high beam distribution. It may be desirable to soften vertically extending light-dark transitions.

Wie oben erwähnt, wird eine mithilfe der erfindungsgemäßen Projektionseinrichtung gebildete erzeugte Lichtverteilung als Überlagerung einer Vielzahl von Teilbeziehungsweise Mikro-Lichtverteilungen gebildet. Dabei gilt hier folgende Nomenklatur: mithilfe eines einzelnen Mikro-Optiksystems wird eine Mikro-Lichtverteilung gebildet; mithilfe einer Mikro-Optiksystem-Gruppe wird eine Teil-Lichtverteilung gebildet, die als Überlagerung einzelner, mithilfe der Mikro-Optiksysteme dieser Mikro-Optiksystem-Gruppe gebildeter Mikro-Lichtverteilungen gebildet ist, und eine Lichtverteilung beziehungsweise eine Gesamtlichtverteilung, beispielsweise einer Abblendlichtverteilung, wird mithilfe der ganzen Projektionseinrichtung gebildet und ist eine Überlagerung einzelner Teil-Lichtverteilungen. Beispielsweise können die durch Mikro-Optiksystem-Gruppen gebildete Lichtverteilungen kongruent zueinander, insbesondere gleich ausgebildet (gleiche Form aufweisen) aber zueinander verschoben sein. Analog sollen die Begriffe Mikro-Hell-Dunkel-Grenze, Teil-Hell-Dunkel-Grenze und Hell-Dunkel-Grenze ausgelegt werden. Eine Mikro-Hell-Dunkel-Grenze wird mithilfe einer einzigen Mikro-Blende erzeugt. Eine Teil-Hell-Dunkel-Grenze wird als eine Überlagerung von Mikro-Hell-Dunkel-Grenzen erzeugt, die mithilfe der Mikro-Blenden einer und derselben Mikro-Optiksystem-Gruppe erzeugt werden. Eine Hell-Dunkel-Grenze der Lichtverteilung beziehungsweise der Gesamtlichtverteilung wird als eine Überlagerung von Teil-Hell-Dunkel-Grenzen erzeugt, die mithilfe der die Projektionseinrichtung bildenden Mikro-Optiksystem-Gruppen erzeugt wird.As mentioned above, a generated light distribution formed using the projection device according to the invention is formed as a superimposition of a plurality of partial or micro light distributions. The following nomenclature applies here: with the help of a single micro-optical system, a micro-light distribution is formed; With the aid of a micro-optical system group, a partial light distribution is formed, which is formed as a superimposition of individual micro-light distributions formed using the micro-optical systems of this micro-optical system group, and a light distribution or an overall light distribution, for example a low-beam light distribution, is created with the aid of the entire projection device and is a superimposition of individual partial light distributions. For example, the light distributions formed by micro-optical system groups can be congruent to one another, in particular of the same design (have the same shape), but can be shifted relative to one another. The terms micro-light-dark boundary, partial light-dark boundary and light-dark boundary should be interpreted analogously. A micro-light-dark boundary is created using a single micro-aperture. A partial light-dark boundary is created as a superposition of micro-light-dark boundaries, which are created using the micro-diaphragms of one and the same micro-optical system group. A light-dark boundary of the light distribution or the total light distribution is generated as a superimposition of partial light-dark boundaries, which is generated with the aid of the micro-optical system groups forming the projection device.

Darüber hinaus kann es zweckdienlich sein, wenn die Mikro-Blenden einer jeden Mikro-Optiksystem-Gruppe zu einer Mikro-Blenden-Gruppe zusammengefasst sind und die Mikro-Blenden-Gruppen identisch ausgebildet sind, wobei vorzugsweise jede Mikro-Blende als ein Plättchen aus einem lichtundurchlässigen Material mit einem Durchbruch ausgebildet ist.In addition, it may be expedient if the micro-diaphragms of each micro-optical system group are combined to form a micro-diaphragm group and the micro-diaphragm groups are of identical design, preferably each micro-diaphragm as a plate made of one opaque material is formed with an opening.

Bei einer Ausführungsform kann vorgesehen sein, dass in unterschiedlichen Mikro-Optiksystem-Gruppen die Mikro-Eintrittsoptiken relativ zu den jeweiligen Mikro-Austrittsoptiken gleich hoch positioniert sind und vorzugsweise eine gemeinsame optische Achse aufweisen. Bei dieser Ausführungsform weisen die unterschiedlichen Mikro-Optiksystem-Gruppen unterschiedliche Zwischenbilder auf, die durch die Verschiebung der jeweiligen Mikroblenden entstehen. Dabei wird eine Lichtverteilung beziehungsweise eine Gesamtlichtverteilung in diesem Fall als eine Überlagerung einer Vielzahl von Mikro-Lichtverteilungen mit unterschiedlich positionierten (beispielsweise vertikal und/oder horizontal zueinander verschobenen) Mikro-Hell-Dunkel-Grenzen gebildet.In one embodiment it can be provided that in different micro-optical system groups the micro entry optics are positioned at the same height relative to the respective micro exit optics and preferably have a common optical axis. In this embodiment, the different micro-optical system groups have different intermediate images that result from the displacement of the respective micro-diaphragms. In this case, a light distribution or an overall light distribution is formed as a superimposition of a plurality of micro-light distributions with differently positioned (for example vertically and / or horizontally shifted to one another) micro-light-dark limits.

Es sei an dieser Stelle angemerkt, dass die horizontale und vertikale Verschiebung unterschiedlich sein kann. Dabei kann erreicht werden, dass beispielsweise die Schärfe der horizontal und vertikal verlaufenden Hell-Dunkel-Übergänge unterschiedlich eingestellt, beispielsweise aufgeweicht wird. Beispielsweise kann es manchmal zweckdienlich sein, vertikale Grenzen eines Segments einer Teil-Fernlichtverteilung unterschiedlich zu den horizontalen Grenzen des Segments aufzuweichen.It should be noted at this point that the horizontal and vertical displacement can be different. It can be achieved that, for example, the sharpness of the horizontal and vertical light-dark transitions are set differently, for example softened. For example, it may sometimes be useful to soften vertical boundaries of a segment of a partial high beam distribution differently from the horizontal boundaries of the segment.

Bei einer weiteren Ausführungsform kann vorgesehen sein, dass in unterschiedlichen Mikro-Optiksystem-Gruppen die optisch wirksamen Kanten relativ zu den jeweiligen Mikro-Eintrittsoptiken gleich hoch positioniert sind wobei vorzugsweise die Mikro-Eintrittsoptiken relativ zu den jeweiligen Mikro-Austrittsoptiken unterschiedlich verlaufende (beispielsweise vertikal und/oder horizontal zueinander verschobene) optische Achsen aufweisen. Daraus folgt, dass bei dieser Ausführungsform die unterschiedlichen Mikro-Optiksystem-Gruppen identische Zwischenbilder aufweisen können. Weiters sind die Mikro-Austrittsoptiken der unterschiedlichen Mikro-Optiksystem-Gruppen bei dieser Ausführungsform unterschiedlich (beispielsweise vertikal und/oder horizontal zueinander verschoben) positioniert. Daher werden die Zwischenbilder (identische oder verschiedene) der unterschiedlichen Mikro-Optiksystem-Gruppen in unterschiedliche Winkel bezüglich der optischen Achse der Projektionseinrichtung projiziert. Somit wird eine Lichtverteilung beziehungsweise eine Gesamtlichtverteilung in diesem Fall als eine Überlagerung einer Vielzahl von Mikro-Lichtverteilungen mit gleich hoch positionierten Mikro-Hell-Dunkel-Grenzen gebildet, wobei die Mikro-Lichtverteilungen zueinander höhenverschoben (unterschiedlich, beispielsweise vertikal und/oder horizontal zueinander verschobenen, positioniert) sind.In a further embodiment it can be provided that in different micro-optical system groups the optically effective edges are positioned at the same height relative to the respective micro-entry optics, the micro-entry optics preferably running differently relative to the respective micro-exit optics (for example vertically and / or have optical axes that are horizontally displaced relative to one another. It follows from this that in this embodiment the different micro-optical system groups can have identical intermediate images. Furthermore, the micro-exit optics of the different micro-optical system groups are positioned differently (for example vertically and / or horizontally displaced relative to one another) in this embodiment. Therefore, the intermediate images (identical or different) of the different micro-optical system groups are projected at different angles with respect to the optical axis of the projection device. A light distribution or a total light distribution is thus formed in this case as a superimposition of a plurality of micro-light distributions with micro-light-dark borders positioned at the same height, the micro-light distributions being shifted in height from one another (differently, for example vertically and / or horizontally shifted relative to one another , positioned).

Darüber hinaus kann es vorgesehen sein, dass die Mikro-Optiksysteme einen Abbildungsmaßstab von etwa 3° pro 0,1 mm aufweisen. Andere Werte des Abbildungsmaßstabs sind möglich.In addition, it can be provided that the micro-optical systems have an imaging scale of approximately 3 ° per 0.1 mm. Other values of the image scale are possible.

Außerdem kann es zweckmäßig sein, wenn die unterschiedlichen Mikro-Optiksystem-Gruppen getrennt voneinander ausgebildet und vorzugsweise voneinander beabstandet sind. Dabei können sich weitere Fertigungsvorteile ergeben. Darüber hinaus kann bei einem Anpassen eines Abstands zwischen den unterschiedlichen Mikro-Optiksystem-Gruppen das Übersprechen reduziert werden.In addition, it can be expedient if the different micro-optical system groups are formed separately from one another and are preferably spaced apart from one another. This can result in further manufacturing advantages. In addition, crosstalk can be reduced by adapting a distance between the different micro-optical system groups.

Es versteht sich, dass die unterschiedlichen Mikro-Optiksystem-Gruppen auch einstückig sein können. Dabei können die Mikro-Eintrittsoptiken, Mikro-Austrittsoptiken und Mikro-Blenden jeder Mikro-Optiksystem-Gruppe jeweils eine monolithische Struktur bilden. Sie können beispielsweise auf einem oder mehreren Glas- oder Kunststoffsubstrat(en) aufgebracht und/oder miteinander verklebt sein.It goes without saying that the different micro-optical system groups can also be in one piece. The micro entrance optics, micro exit optics and micro diaphragms of each micro optical system group can each form a monolithic structure. For example, they can be applied to one or more glass or plastic substrates and / or glued together.

Die oben genannte Aufgabe wird auch mit einem Lichtmodul für einen Kraftfahrzeugscheinwerfer mit einer erfindungsgemäßen Projektionseinrichtung gelöst, wobei das Lichtmodul weiters eine Lichtquelle, vorzugsweise eine halbleiterbasierte Lichtquelle, insbesondere eine LED-Lichtquelle umfasst und die Projektionseinrichtung der Lichtquelle in Lichtabstrahlrichtung nachgelagert ist und das vorzugsweise im Wesentlichen gesamte, von der Lichtquelle erzeugte Licht in einen Bereich vor dem Lichtmodul in Form einer Lichtverteilung, beispielsweise einer Vorfeld-Lichtverteilung oder einer Abblendlichtverteilung mit oder ohne einer Signlight-Lichtverteilung) mit einer Hell-Dunkel-Grenze projiziert, wobei die Lichtverteilung aus einer Vielzahl einander überlappender Teil-Lichtverteilungen mit jeweils einer Teil-Hell-Dunkel-Grenze gebildet ist, wobei jede Teil-Lichtverteilung durch genau eine Mikro-Optiksystem-Gruppe gebildet ist und die Teil-Hell-Dunkel-Grenzen gemeinsam die Hell-Dunkel-Grenze bilden.The above-mentioned object is also achieved with a light module for a motor vehicle headlight with a projection device according to the invention, the light module further comprising a light source, preferably a semiconductor-based light source, in particular an LED light source, and the projection device being arranged downstream of the light source in the light emission direction, and preferably essentially projected all of the light generated by the light source in an area in front of the light module in the form of a light distribution, for example an apron light distribution or a low beam distribution with or without a Signlight light distribution) with a light-dark boundary, the light distribution from a large number of each other overlapping partial light distributions are each formed with a partial light-dark boundary, each partial light distribution being formed by exactly one micro-optical system group and the partial light-dark boundaries together form the light-dark boundary form.

Daher sind die Teil-Hell-Dunkel-Grenzen unterschiedlicher Teil-Lichtverteilungen unterschiedlich (beispielsweise vertikal und/oder horizontal zueinander verschobenen) angeordnet.The partial light-dark limits of different partial light distributions are therefore arranged differently (for example vertically and / or horizontally displaced relative to one another).

Weiters kann es als zweckdienlich erweisen, wenn die Teil-Hell-Dunkel-Grenzen entlang einer Vertikale (hinsichtlich einer H-H-Linie) und/oder einer Horizontale (hinsichtlich einer V-V-Linie) um einen Winkel zueinander verschoben sind, wobei der Winkel einen Wert von etwa 0° bis etwa 6°, beispielsweise von etwa 1° bis etwa 3°, vorzugsweise von etwa 2°.Furthermore, it may prove expedient if the partial light-dark boundaries are displaced by an angle to one another along a vertical (with respect to an HH line) and / or a horizontal (with respect to a VV line), the angle being a value from about 0 ° to about 6 °, for example from about 1 ° to about 3 °, preferably from about 2 °.

Der Begriff H-H-Linie soll dem Fachmann klar sein. Als H-H-Linie wird typischerweise eine horizontale Linie (eine Abszissenachse) eines Koordinatensystems auf einem Messschirm zum Vermessen der von Kraftfahrzeugscheinwerfern beziehungsweise Kraftfahrzeugscheinwerferlichtmodulen erzeugten Lichtverteilungen in einem Lichttechniklabor bezeichnet. H-H-Linie wird oft auch als der Horizont oder die Horizontale bezeichnet. Eine orthogonal zu der H-H-Linie stehende Ordinatenachse bezeichnet man als V-V-Linie beziehungsweise Vertikale.The term HH line should be clear to the person skilled in the art. The HH line is typically a horizontal line (an abscissa axis) of a coordinate system on a measuring screen for measuring the light distributions generated by motor vehicle headlights or motor vehicle headlight light modules in a lighting technology laboratory. HH line is often referred to as the horizon or the horizontal. An ordinate axis orthogonal to the HH line is called the VV line or vertical.

Bei einer praxisbewährten Ausführungsform kann vorgesehen sein, dass die Teil-Hell-Dunkel-Grenzen (und ergo die Hell-Dunkel-Grenze) im Wesentlichen gerade verlaufen oder einen Asymmetrieanstieg aufweist.In a practice-proven embodiment, it can be provided that the partial light-dark borders (and ergo the light-dark border) run essentially straight or have an asymmetry increase.

Vorzugsweise ist die Lichtquelle eingerichtet, kollimiertes Licht zu erzeugen.The light source is preferably set up to generate collimated light.

Konkret kann die Lichtquelle ein lichtkollimierendes Optikelement und ein dem lichtkollimierenden Optikelement vorgelagertes, vorzugsweise halbleiterbasiertes Leuchtelement, beispielsweise eine LED-Lichtquelle (aus mehreren, vorzugsweise einzeln steuerbaren LEDs), umfassen, wobei das lichtkollimierende Optikelement beispielsweise ein Kollimator oder eine lichtkollimierende Vorsatzoptik (z.B. aus Silikon) oder eine TIR-Linse ist. "TIR" steht für "totale innere Reflexion".Specifically, the light source can comprise a light-collimating optical element and a preferably semiconductor-based lighting element upstream of the light-collimating optical element, for example an LED light source (composed of several, preferably individually controllable LEDs), the light-collimating optical element, for example, a collimator or a light-collimating attachment lens (for example made of silicone ) or a TIR lens. "TIR" stands for "total inner reflection".

Bei einer besonders vorteilhafte Ausführung des Lichtmoduls kann vorgesehen sein, dass die Lichtquelle zumindest zwei lichtemittierende Bereiche aufweist, wobei jeder einzelne lichtemittierende Bereich unabhängig von den anderen lichtemittierenden Bereichen der Lichtquelle steuerbar, beispielsweise ein- und ausschaltbar ist, und jedem lichtemittierenden Bereich mindestens eine, vorzugsweise genau eine Mikro-Optiksystem-Gruppe derart zugeordnet ist, dass von dem jeweiligen lichtemittierenden Bereich erzeugtes Licht direkt (d.h. ohne an weiteren optisch aktiven Flächen, Elementen o.Ä. gebrochen, gespiegelt, umgelenkt oder auf eine andere Art und Weise seine Intensität und/oder Ausbreitungsrichtung zu ändern) und nur auf die diesem lichtemittierenden Bereich zugeordnete Mikro-Optiksystem-Gruppe trifft.In a particularly advantageous embodiment of the light module, it can be provided that the light source has at least two light-emitting regions, each individual light-emitting region being controllable, for example, switchable on and off, independently of the other light-emitting regions, and each light-emitting region at least one, preferably exactly one micro-optical system group is assigned in such a way that light generated by the respective light-emitting region is directly (ie without being refracted, mirrored, deflected, or in any other way its intensity and / or on other optically active surfaces, elements or the like. or change the direction of propagation) and only meets the micro-optical system group assigned to this light-emitting region.

In den folgenden Figuren bezeichnen - sofern nicht anders angegeben - gleiche Bezugszeichen gleiche Merkmale.Unless stated otherwise, the same reference symbols in the following figures denote the same features.

Die Erfindung samt weiteren Vorteilen ist im Folgenden an Hand beispielhafter Ausführungsformen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigt

  • Fig. 1 eine Beleuchtungsvorrichtung mit einer Projektionseinrichtung aus mehreren Mikro-Optiksystemen in perspektivischer Ansicht;
  • Fig. 1a Explosionsdarstellung eines der Mikro-Optiksysteme der Figur 1;
  • Fig. 1b ein Schnitt A-A des Mikro-Optiksystems der Figur 1a;
  • Fig. 2a eine Beleuchtungsvorrichtung mit einer Lichtquelle mit mehreren lichtemittierenden Bereichen und mit einer Projektionseinrichtung mit nebeneinander angeordneten Mikro-Optiksystem-Gruppen in perspektivischer Ansicht;
  • Fig. 2b ein vergrößerter Ausschnitt einer Projektionseinrichtung mit übereinander angeordneten Mikro-Optiksystem-Gruppen;
  • Fig. 3 eine Beleuchtungsvorrichtung mit einer Lichtquelle mit mehreren lichtemittierenden Bereichen und mit mehreren Projektionseinrichtungen in perspektivischer Ansicht;
  • Fig. 4 zwei nebeneinander angeordneter Mikro-Blenden-Gruppen;
  • Fig. 5a eine Mikro-Blenden-Gruppe;
  • Fig. 5b ein Ausschnitt der Mikro-Blenden-Gruppe der Figur 5a und Mikro-Lichtverteilungen, und
  • Fig. 6 eine Abblendlichtverteilung mit Signlight-Lichtverteilung.
The invention and further advantages are explained in more detail below with reference to exemplary embodiments which are illustrated in the drawing. In this shows
  • Fig. 1 an illumination device with a projection device from several micro-optical systems in a perspective view;
  • Fig. 1a Exploded view of one of the micro-optical systems of the Figure 1 ;
  • Fig. 1b a section AA of the micro-optical system Figure 1a ;
  • Fig. 2a an illumination device with a light source with a plurality of light-emitting areas and with a projection device with micro-optical system groups arranged side by side in a perspective view;
  • Fig. 2b an enlarged section of a projection device with superposed micro-optical system groups;
  • Fig. 3 an illumination device with a light source with a plurality of light-emitting areas and with a plurality of projection devices in a perspective view;
  • Fig. 4 two micro-aperture groups arranged side by side;
  • Fig. 5a a micro-aperture group;
  • Fig. 5b a section of the micro-aperture group of the Figure 5a and micro light distributions, and
  • Fig. 6 a low beam distribution with Signlight light distribution.

Die Figuren sind schematische Darstellungen, die lediglich jene Bestandteile zeigen, die für eine Erklärung der Erfindung hilfreich sein können. Der Fachmann erkennt sofort, dass eine Projektionseinrichtung und ein Lichtmodul für einen Kraftfahrzeugscheinwerfer eine Vielzahl weiterer, hier nicht gezeigter Bestandteile aufweisen kann, wie Ein- und Verstelleinrichtungen, elektrische Versorgungsmittel und vieles mehr.The figures are schematic representations which only show those components which can be helpful for an explanation of the invention. The person skilled in the art immediately recognizes that a projection device and a light module for a motor vehicle headlight can have a large number of further components, not shown here, such as setting and adjustment devices, electrical supply means and much more.

Zur Vereinfachung der Lesbarkeit und da, wo es zweckdienlich ist, sind die Figuren mit Bezugsachsen versehen. Diese Bezugsachsen beziehen sich auf eine fachgerechte Einbaulage des Erfindungsgegenstands in einem Kraftfahrzeug und stellen ein kraftfahrzeugbezogenes Koordinatensystem dar.The figures are provided with reference axes to simplify legibility and where appropriate. These reference axes relate to a professional installation position of the subject matter of the invention in a motor vehicle and represent a motor vehicle-related coordinate system.

Darüber hinaus soll es klar sein, dass richtungsbezogene Begriffe, wie "horizontal", "vertikal", "oben", "unten" etc. im Zusammenhang mit der vorliegenden Erfindung in einer relativen Bedeutung zu verstehen sind und sich entweder auf die oben erwähnte fachgerechte Einbaulage des Erfindungsgegenstands in einem Kraftfahrzeug oder auf eine fachübliche Ausrichtung einer abgestrahlten Lichtverteilung im Lichtbild beziehungsweise im Verkehrsraum beziehen.In addition, it should be understood that directional terms such as "horizontal", "vertical", "top", "bottom" etc. are to be understood in the context of the present invention in a relative meaning and either refer to the above professional installation position of the subject matter of the invention in a motor vehicle or to a customary alignment of a radiated light distribution in the photograph or in the traffic area.

Somit sind weder die Bezugsachsen noch die richtungsbezogenen Begriffe nicht einschränkend auszulegen.Thus, neither the reference axes nor the direction-related terms are to be interpreted restrictively.

Figur 1 zeigt eine Beleuchtungsvorrichtung 1 für einen Kraftfahrzeugscheinwerfer, die dem erfindungsgemäßen Lichtmodul entsprechen kann. Die Beleuchtungsvorrichtung 1 umfasst eine Projektionseinrichtung 2, die aus einer Vielzahl matrixartig angeordneter Mikro-Optiksysteme 3 gebildet ist, wobei jedes Mikro-Optiksystem 3 eine Mikro-Eintrittsoptik 30, eine der Mikro-Eintrittsoptik 30 zugeordnete Mikro-Austrittsoptik 31 und eine zwischen der Mikro-Eintrittsoptik 30 und der Mikro-Austrittsoptik 31 angeordnete Mikro-Blende 32 aufweist. Vorzugsweise besteht jedes Mikro-Optiksystem 3 aus genau einer Mikro-Eintrittsoptik 30, genau einer Mikro-Austrittsoptik 31 und genau einer Mikro-Blende 32 (siehe eine Explosionsdarstellung eines solchen Mikro-Optiksystems in Figur 1a). Dabei bilden alle Mikro-Eintrittsoptiken 30 eine beispielsweise einstückige Eintrittsoptik 4. Analog bilden alle Mikro-Austrittsoptiken 31 eine beispielsweise einstückige Austrittsoptik 5 und die Mikro-Blenden 32 eine beispielsweise einstückige Blendenvorrichtung 6. Somit bilden die Eintrittsoptik 4, die Austrittsoptik 5 und die Blendenvorrichtung eine beispielsweise einstückige Projektionseinrichtung 2. Ein Beispiel einer nicht einstückig ausgebildeten Projektionseinrichtung 2 ist z.B. der Figur 3 zu entnehmen. Die Blendenvorrichtung 6 ist in einer im Wesentlichen zur Hauptabstrahlrichtung Z der Projektionseinrichtung 2 orthogonal stehenden Ebene - in der Zwischenbildebene 322 - angeordnet. Somit liegen alle Mikro-Blenden 32 ebenfalls in der Zwischenbildebene 322. Die Eintrittsoptik 4, die Austrittsoptik 5 und die Blendenvorrichtung 6 sind in im Wesentlichen zueinander parallelen Ebenen angeordnet. Figure 1 shows a lighting device 1 for a motor vehicle headlight, which can correspond to the light module according to the invention. The lighting device 1 comprises a projection device 2, which is formed from a multiplicity of micro-optic systems 3 arranged in a matrix, each micro-optic system 3 having a micro-entry optic 30, a micro-exit optic 31 assigned to the micro-entry optic 30 and one between the micro- Entry optics 30 and the micro-exit optics 31 arranged micro-aperture 32 . Each micro-optics system 3 preferably consists of exactly one micro-entry optics 30, exactly one micro-exit optics 31 and exactly one micro-aperture 32 (see an exploded view of such a micro-optics system in FIG Figure 1a ). In this case, all micro-entry optics 30 form, for example, one-piece entry optics 4. Analogously, all micro-exit optics 31 form, for example, one-piece exit optics 5 and the micro-apertures 32 form an example one-piece aperture device 6. Thus, the entry optics 4, the exit optics 5 and the aperture device form one for example, one-piece projection device 2. An example of a projection device 2 that is not designed in one piece is, for example, the Figure 3 refer to. The diaphragm device 6 is arranged in a plane which is essentially orthogonal to the main emission direction Z of the projection device 2 - in the intermediate image plane 322 . Thus, all of the micro-diaphragms 32 are also located in the intermediate image plane 322. The entry optics 4, the exit optics 5 and the diaphragm device 6 are arranged in planes which are essentially parallel to one another.

Weiters weist die Mikro-Blende 32 eines jeden Mikro-Optiksystems eine optisch wirksame Kante 320, 320a, 320b, 320c, 320d, 320e auf. Vorzugsweise liegt die optisch wirksame Kante ebenfalls in der Mikro-Zwischenbildebene 322. Die optisch wirksame Kante 320, 320a, 320b, 320c, 320d, 320e kann eingerichtet beziehungsweise ausgebildet sein, Hell-Dunkel-Grenze einer Mikro-Lichtverteilung - eine sogenannte Mikro-Hell-Dunkel-Grenze 3200, 3201 - zu erzeugen (siehe Figur 5b). Eine Mikro-Lichtverteilung wird von durch das jeweilige Mikro-Optiksystem 3 durchtretendem Licht gebildet. Vorzugsweise also formt jedes Mikro-Optiksystem 3 genau eine Mikro-Lichtverteilung und umgekehrt: jede Mikro-Lichtverteilung wird vorzugsweise durch genau ein Mikro-Optiksystem 3 geformt. Die optisch wirksame Kante 320, 320a, 320b, 320c, 320d, 320e kann unterschiedliche Verläufe aufweisen. Wenn die Mikro-Blende 32, wie in Figur 1b gezeigt, als ein Durchbruch in einem sonst lichtundurchlässigen Plättchen ausgebildet ist, weist die optisch wirksame Kante 320, 320a, 320b, 320c, 320d, 320e, die in diesem Fall als Durchbruchgrenze ausgebildet ist, eine geschlossene Form auf. Dabei ist zumindest ein Teil der optisch wirksamen Kante 320, 320a, 320b, 320c, 320d, 320e zum Formen / Bilden der Mikro-Hell-Dunkel-Grenze 3200, 3201 eingerichtet/ausgebildet. Bei den in den Figuren 1a, 4, 5a und 5b gezeigten Mikro-Blenden ist das der untere Teil der optisch wirksamen Kante 320, 320a, 320b, 320c, 320d, 320e.Furthermore, the micro-aperture 32 of each micro-optical system has an optically effective edge 320, 320a, 320b, 320c, 320d, 320e . The optically active edge preferably also lies in the micro-intermediate image plane 322. The optically active edge 320, 320a, 320b, 320c, 320d, 320e can be set up or designed, light-dark boundary of a micro-light distribution - a so-called micro-light -Dark limit 3200, 3201 - to generate (see Figure 5b ). A micro light distribution is by the respective micro-optics system 3 passing light formed. Each micro-optical system 3 therefore preferably forms exactly one micro-light distribution and vice versa: each micro-light distribution is preferably formed by exactly one micro-optical system 3. The optically effective edge 320, 320a, 320b, 320c, 320d, 320e can have different courses. If the micro-aperture 32, as in Figure 1b shown as a breakthrough in an otherwise opaque plate, the optically effective edge 320, 320a, 320b, 320c, 320d, 320e, which in this case is designed as a breakthrough boundary, has a closed shape. At least part of the optically active edge 320, 320a, 320b, 320c, 320d, 320e is set up / formed for shaping / forming the micro-light-dark boundary 3200, 3201. In the in the Figures 1a . 4 . 5a and 5b Micro-shutters shown is the lower part of the optically active edge 320, 320a, 320b, 320c, 320d, 320e.

Erfindungsgemäß ist die Gesamtheit der Mikro-Optiksysteme 3 in zumindest zwei Mikro-Optiksystem-Gruppen G1, G2, G3 unterteilt. Die einzelnen Mikro-Optiksystem-Gruppen G1, G2, G3 unterscheiden sich dadurch, dass sie Mikro-Optiksysteme 3 umfassen, deren optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e relativ zu den jeweiligen Mikro-Austrittsoptiken 31 innerhalb der Zwischenbildebene 322 unterschiedlich positioniert sind, beispielsweise vertikal und/oder horizontal verschoben. Dabei ist es zweckdienlich, wenn die Position der optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e relativ zu den jeweiligen Mikro-Austrittsoptiken 32 innerhalb derselben Mikro-Optiksystem-Gruppe G1, G2, G3 gleich ist.According to the invention, the entirety of the micro-optical system 3 is divided into at least two micro-optical system groups G1, G2, G3 . The individual micro-optical system groups G1, G2, G3 differ in that they include micro-optical systems 3 whose optically active edges 320, 320a, 320b, 320c, 320d, 320e relative to the respective micro-exit optics 31 within the intermediate image plane 322 are positioned differently, for example vertically and / or horizontally shifted. It is expedient if the position of the optically active edges 320, 320a, 320b, 320c, 320d, 320e relative to the respective micro-exit optics 32 is the same within the same micro-optical system group G1, G2, G3.

Beispielsweise können die Mikro-Blenden 32 innerhalb einer Mikro-Optiksystem-Gruppe, z.B. G1, in ihrer Gesamtheit so positioniert sein, dass sie relativ zu den jeweiligen Mikro-Austrittsoptiken 31 keine vertikale und/oder horizontale Verschiebung aufweisen - dies führt beispielsweise zu zentrierten Mikro-Optiksystemen 3 (siehe unten). Sind die optisch wirksamen Kanten 320b, 320d dieser Mikro-Blenden 32 beispielsweise dazu eingerichtet, Mikro-Hell-Dunkel-Grenzen 3200, 3201 für eine Abblendlichtverteilung, wie beispielsweise in der Figur 6 gezeigt, zu bilden, würde eine Teil-Hell-Dunkel-Grenze (also die Hell-Dunkel-Grenze, die durch eine Mikro-Optiksystem-Gruppe gebildet wird) entstehen, die keine vertikale (bezüglich der H-H-Linie HH) und/oder horizontale (bezüglich einer V-V-Linie VV) Verschiebung aufweist. Gleichzeitig können die Mikro-Blenden 32 innerhalb einer anderen Mikro-Optiksystem-Gruppe, z.B. G2, in ihrer Gesamtheit so positioniert sein, dass sie um einen (von Null abweichenden) Abstand relativ zu den jeweiligen Mikro-Austrittsoptiken 31 vertikal (gezeigt) und/oder horizontal (nicht gezeigt) verschoben sind, weshalb es sich ein Unterschied zwischen den relativen Positionen der optisch wirksamen Kanten und den jeweiligen Mikro-Austrittsoptiken unterschiedlicher Mikro-Optiksystem-Gruppen G1, G2, G3 ergibt. Somit sind die Mikro-Optiksysteme 3 der Mikro-Optiksystem-Gruppe G2 der Figur 1 zum Erzeugen von Mikro-Hell-Dunkel-Grenzen für eine Abblendlichtverteilung verwendbar, die bezüglich der H-H-Linie HH beispielsweise vertikal verschoben sind. Wie bereits erwähnt überlappen die zueinander verschobenen Mikro-Hell-Dunkel-Grenzen, die mittels verschiedener Mikro-Optiksystem-Gruppen G1, G2, G3 bereitgestellt werden, im Lichtbild, wodurch sich eine weiche, für ein menschliches Auge angenehm wahrnehmbare Hell-Dunkel-Grenze einer Abblendlichtverteilung ergeben kann.For example, the micro-diaphragms 32 can be positioned in their entirety within a micro-optical system group, for example G1, in such a way that they have no vertical and / or horizontal displacement relative to the respective micro-exit optics 31 - this leads to centered micro, for example -Optical systems 3 (see below). If the optically active edges 320b, 320d of these micro-diaphragms 32 are set up, for example, to set micro-light-dark limits 3200, 3201 for a low beam distribution, such as in FIG Figure 6 shown, a partial light-dark boundary (i.e. the light-dark boundary formed by a micro-optical system group) would arise, which are not vertical (with respect to the HH line HH ) and / or horizontal (with respect to a VV line VV ) shift. At the same time, the micro-diaphragms 32 can be positioned in their entirety within another micro-optical system group, for example G2, in such a way that they are at a distance (deviating from zero) relative to the respective micro-exit optics 31 are vertically (shown) and / or horizontally (not shown), which is why there is a difference between the relative positions of the optically active edges and the respective micro-exit optics of different micro-optic system groups G1, G2, G3. The micro-optical systems 3 of the micro-optical system group G2 are thus the Figure 1 can be used to generate micro-light-dark limits for a low-beam light distribution that are, for example, vertically shifted with respect to the HH line HH. As already mentioned, the shifted micro-light-dark boundaries, which are provided by means of different micro-optical system groups G1, G2, G3, overlap in the light image, which results in a soft light-dark boundary that is pleasantly perceptible to a human eye a low beam distribution can result.

Es soll klar sein, dass das oben beschriebene Beispiel nicht auf Hell-Dunkel-Grenzen von Abblendlichtverteilungen beschränkt ist, sondern sich auf allgemeine Hell-Dunkel-Übergänge verallgemeinern lässt.It should be clear that the example described above is not limited to light-dark boundaries of low beam distributions, but can be generalized to general light-dark transitions.

Wie die unterschiedlich hohen Positionierungen der optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e relativ zu den jeweiligen Mikro-Austrittsoptiken 31 erreicht werden können, kann beispielsweise unter Bezugnahme auf Figuren 1a und 1b plausibel dargelegt werden. Figur 1a zeigt ein einziges Mikro-Optiksystem 3 in perspektivischer Sicht. Figur 1b zeigt einen Schnitt A-A der Figur 1a. Das in diesen Figuren gezeigte Mikro-Optiksystem 3 ist zentriert: die Mikro-Eintrittsoptik 30 und die Mikro-Austrittsoptik 31 weisen eine gemeinsame optische Achse MOA und die Mikro-Blende 32 ist in der Mikro-Zwischenbildebene 322 so positioniert, dass ihre optisch wirksame Kante 320, die hier, wohl bemerkt, zum Ausbilden einer Mikro-Hell-Dunkel-Grenze mit einem Asymmetrieanstieg geformt ist, die optische Achse MOA des Mikro-Optiksystems 3 angrenzt. Dies bedeutet, dass ein kollimierter Lichtstrahl, der auf das in Figur 1a gezeigte zentrierte Mikro-Optiksystem 3 (von Seite der Mikro-Eintrittsoptik 30) einfällt, in Form einer Mikro-Lichtverteilung mit einer zumindest teilweise an der H-H-Linie liegenden Mikro-Hell-Dunkel-Grenze abgebildet wird. Solche zentrierte Mikro-Optiksysteme können beispielsweise zu einer Mikro-Optiksystem-Gruppe, wie die Mikro-Optiksystem-Gruppe G1 in Figur 1 zusammengefasst werden.How the different positions of the optically effective edges 320, 320a, 320b, 320c, 320d, 320e can be achieved relative to the respective micro exit optics 31 can be achieved, for example, with reference to FIG Figures 1a and 1b are plausibly presented. Figure 1a shows a single micro-optical system 3 in perspective. Figure 1b shows a section AA of the Figure 1a , The micro-optics system 3 shown in these figures is centered: the micro-entry optics 30 and the micro-exit optics 31 have a common optical axis MOA and the micro-aperture 32 is positioned in the micro-intermediate image plane 322 so that its optically effective edge 320, which here, well, is shaped to form a micro-light-dark boundary with an asymmetry increase, adjoins the optical axis MOA of the micro-optical system 3. This means that a collimated beam of light that is directed at the in Figure 1a shown centered micro-optics system 3 (from the side of the micro-entry optics 30) occurs in the form of a micro-light distribution with an at least partially on the HH line micro-light-dark boundary is imaged. Such centered micro-optical systems can, for example, form a micro-optical system group, such as the micro-optical system group G1 in Figure 1 be summarized.

Wenn man beispielsweise entweder die Mikro-Blende 32 oder die Mikro-Austrittsoptik 31, der Figuren 1a, 1b vertikal (entlang X - Richtung) verschiebt. Eine hier nicht gezeigte horizontale Verschiebung (entlang Y - Richtung) ist ebenfalls denkbar. Im Fall des Verschiebens der Mikro-Austrittsoptik 31 wird entweder das ganze Mikro-Optiksystem 3 dezentriert - die optischen Achsen der Mikro-Eintrittsoptik 30 und der Mikro-Austrittsoptik 31 fallen nicht mehr zusammen. In beiden Fällen verschiebt sich auch die Mikro-Hell-Dunkel-Grenze der Mikro-Lichtverteilung. Solche "nicht ideal zentrierte" Mikro-Optiksysteme können beispielsweise zu einer weiteren Mikro-Optiksystem-Gruppe, wie die Mikro-Optiksystem-Gruppe G2 in Figur 1 zusammengefasst werden. Vertikale und/oder horizontale Verschiebung bedeutet auch, dass die optisch wirksamen Kanten und die Mikro-Austrittsoptiken in ihren ursprünglichen Ebenen verbleiben.For example, if you either the micro-aperture 32 or the micro-exit optics 31, the Figures 1a, 1b vertically (along the X direction). One not shown here horizontal displacement (along the Y direction) is also conceivable. If the micro exit optics 31 are moved, either the entire micro optic system 3 is decentered - the optical axes of the micro entry optics 30 and the micro exit optics 31 no longer coincide. In both cases, the micro-light-dark boundary of the micro-light distribution also shifts. Such "not ideally centered" micro-optical systems can, for example, form a further micro-optical system group, such as the micro-optical system group G2 in Figure 1 be summarized. Vertical and / or horizontal displacement also means that the optically effective edges and the micro-exit optics remain in their original planes.

Zurückkehrend zu Figur 1 zeigt diese zwei nebeneinander angeordnete Mikro-Optiksystem-Gruppen G1, G2, G3, wobei eine der Mikro-Optiksystem-Gruppen - nämlich die Mikro-Optiksystem-Gruppe G2 - aus dezentrierten Mikro-Optiksystemen (die Mikro-Austrittsoptiken 31 sind um einen Abstand h2 nach unten verschoben) gebildet ist (siehe auch Figur 2a).Returning to Figure 1 shows these two micro-optical system groups G1, G2, G3 arranged next to one another, one of the micro-optical system groups - namely the micro-optical system group G2 - consisting of decentered micro-optical systems (the micro-exit optics 31 are at a distance h2 shifted downward) is formed (see also Figure 2a ).

Die unterschiedlichen Mikro-Optiksystem-Gruppen G1, G2, G3 können auch über- oder untereinander angeordnet sein, wie dies in Figur 2b zu erkennen ist.The different micro-optical system groups G1, G2, G3 can also be arranged above or below one another, as shown in FIG Figure 2b can be seen.

Die Projektionseinrichtung 2 kann auch mehrere Mikro-Optiksystem-Gruppen umfassen.The projection device 2 can also comprise several micro-optical system groups.

Für jede einzelne Mikro-Optiksystem-Gruppe G1, G2, G3 kann es zweckmäßig sein, wenn für jedes Mikro-Optiksystem 3 innerhalb dieser einen Mikro-Optiksystem-Gruppe G1, G2, G3 gilt, dass die optisch wirksame Kante 320, 320a, 320b, 320c, 320d, 320e der Mikro-Blende 32 relativ zu der Mikro-Austrittsoptik 31 um den Abstand h1, h2 vertikal verschoben ist und dieser Abstand h1, h2 für alle Mikro-Optiksysteme 3 innerhalb derselben Mikro-Optiksystem-Gruppe G1, G2, G3 gleich ist, wobei der Abstand h1, h2 vorzugsweise etwa 0 (siehe die Mikro-Optiksystem-Gruppe G1 der Figur 1, 2a) mm bis etwa 0,1 mm, beispielsweise etwa 0,01 mm bis etwa 0,1 mm vorzugsweise etwa 0,03 mm bis etwa 0,06 mm beträgt.For each individual micro-optical system group G1, G2, G3 it can be expedient if for each micro-optical system 3 within this one micro-optical system group G1, G2, G3 it applies that the optically effective edge 320, 320a, 320b , 320c, 320d, 320e of the micro diaphragm 32 is displaced vertically relative to the micro exit optics 31 by the distance h1, h2 and this distance h1, h2 for all micro-optic systems 3 within the same micro-optic system group G1, G2, G3 is the same, the distance h1, h2 preferably being approximately 0 (see the micro-optical system group G1 of Figure 1 . 2a ) mm to about 0.1 mm, for example about 0.01 mm to about 0.1 mm, preferably about 0.03 mm to about 0.06 mm.

Ein Abstand, der gleich null ist, wie beispielsweise h1 in der Figur 1 oder 2a entspricht einer Nulllage der optisch wirksamen Kante 320, 320a, 320b, 320c, 320d, 320e und ergibt sich, wenn die Mikro-Optiksysteme 3 zentriert sind (s.o.) Mit einer in der Nulllage angeordneten optisch wirksamen Kante 320, 320a, 320b, 320c, 320d, 320e kann eine bei 0° auf der V-V-Linie VV (orthogonal zu der H-H-Linie HH stehende Ordinatenachse) liegende Mikro-Hell-Dunkel-Grenze erzeugt werden.A distance that is zero, such as h1 in the Figure 1 or 2a corresponds to a zero position of the optically active edge 320, 320a, 320b, 320c, 320d, 320e and results when the micro-optical systems 3 are centered (see above) with one arranged in the zero position optically active edge 320, 320a, 320b, 320c, 320d, 320e, a micro-light-dark boundary lying at 0 ° on the VV line VV (orthogonal to the HH line HH) can be generated.

Wie bereits erwähnt, können die optisch wirksamen Kanten zumindest eines Teils der Mikro-Optiksysteme 3 jeder Mikro-Optiksystem-Gruppe G1, G2, G3 zum Erzeugen einer durchgehend horizontalen Hell-Dunkel-Grenze 3200 - z.B. die Kanten 320a, 320c oder 320e in Figur 4 oder in Figur 5a - oder einer Hell-Dunkel-Grenze mit einem Asymmetrieanstieg 3201 - z.B. die Kanten 320b und 320d in Figur 4 oder in Figur 5a - ausgebildet sein.As already mentioned, the optically active edges of at least part of the micro-optical systems 3 of each micro-optical system group G1, G2, G3 can be used to generate a continuously horizontal light-dark boundary 3200 - for example the edges 320a, 320c or 320e in Figure 4 or in Figure 5a - or a light-dark boundary with an asymmetry increase 3201 - for example the edges 320b and 320d in Figure 4 or in Figure 5a - be trained.

Weiters ist der Figur 4 zu entnehmen, dass die Mikro-Blenden 32 einer jeden Mikro-Optiksystem-Gruppe G1, G2, G3 zu (genau) einer Mikro-Blenden-Gruppe MG1, MG2 zusammengefasst sein können, wobei die Mikro-Blenden-Gruppen MG1, MG2 identisch ausgebildet sind. Es ist denkbar, dass alle Mikro-Blenden 32 der Projektionseinrichtung 2 identisch ausgebildet sind.Furthermore, the Figure 4 it can be seen that the micro-diaphragms 32 of each micro-optical system group G1, G2, G3 can be combined to (exactly) one micro-diaphragm group MG1 , MG2 , the micro-diaphragm groups MG1, MG2 being of identical design are. It is conceivable that all micro-diaphragms 32 of the projection device 2 are of identical design.

Insbesondere in den Figuren 1a, 4, 5a und 5b ist zu erkennen, dass jede Mikro-Blende 32 als ein Plättchen aus einem lichtundurchlässigen Material mit einem Durchbruch 321, 321a, 321b, 321c, 321d, 321e ausgebildet sein kann. Wie bereits erwähnt können die inneren Ränder der Durchbrüche optisch wirksame Kanten bilden. In diesem Fall kann der untere Teil der optisch wirksamen Kante zum Formen/Bilden einer Mikro-Hell-Dunkel-Grenze für eine Abblendlichtverteilung eingerichtet/ausgebildet sein.Especially in the Figures 1a . 4 . 5a and 5b it can be seen that each micro-diaphragm 32 can be formed as a plate made of an opaque material with an opening 321, 321a, 321b, 321c, 321d, 321e . As already mentioned, the inner edges of the openings can form optically effective edges. In this case, the lower part of the optically active edge can be set up / formed to form / form a micro-light-dark boundary for a low beam distribution.

Wie bereits erwähnt, können die Mikro-Eintrittsoptiken 30 unterschiedlicher Mikro-Optiksystem-Gruppen G1, G2, G3 relativ zu den jeweiligen Mikro-Austrittsoptiken 31 gleich hoch positioniert sind und vorzugsweise eine gemeinsame optische Achse OA aufweisen. Dabei sind die Mikro-Blenden, die unterschiedlichen Mikro-Optiksystem-Gruppen G1, G2, G3 angehören und in unterschiedliche Mikro-Blenden-Gruppen MG1, MG2 zusammengefasst sein können, unterschiedlich (beispielsweise vertikal und/oder horizontal zueinander verschoben) positioniert. Figur 4 lässt erkennen, dass eine Mikro-Blenden-Gruppe - hier die erste Mikro-Blenden-Gruppe MG1 - hinsichtlich der (gemeinsamen) optischen Achse OA um einen Abstand h3 (nach unten) verschoben ist. Dabei kann eine andere Mikro-Blenden-Gruppe - hier die zweite Mikro-Blenden-Gruppe MG2 - hinsichtlich der (gemeinsamen) optischen Achse OA um einen anderen Abstand h4 verschoben sein.As already mentioned, the micro entry optics 30 of different micro optic system groups G1, G2, G3 can be positioned at the same height relative to the respective micro exit optics 31 and preferably have a common optical axis OA. The micro-diaphragms, which belong to different micro-optic system groups G1, G2, G3 and can be combined in different micro-diaphragm groups MG1, MG2, are positioned differently (for example, shifted vertically and / or horizontally to one another). Figure 4 reveals that a micro-aperture group - here the first micro-aperture group MG1 - is shifted by a distance h3 (downwards) with respect to the (common) optical axis OA. Another micro-aperture group - here the second micro-aperture group MG2 - can be shifted by a different distance h4 with respect to the (common) optical axis OA.

Figur 4 zeigt ein Beispiel, bei dem die Mikro-Blenden-Gruppen MG1, MG2 in dieselbe Richtung verschoben sind. Es versteht sich, dass die Mikro-Blenden-Gruppen in unterschiedliche vertikale Richtungen (nach oben oder nach unten) verschoben sein können. Zwischen den Abständen h3, h4 ergibt sich einen relativen Abstand h34. Die Mikro-Blenden-Gruppen können auch in (unterschiedliche) horizontale Richtungen verschoben sein (nicht gezeigt). Figure 4 shows an example in which the micro-aperture groups MG1, MG2 are shifted in the same direction. It goes without saying that the micro-aperture groups can be shifted in different vertical directions (up or down). There is a relative distance h34 between the distances h3, h4 . The micro-aperture groups can also be shifted in (different) horizontal directions (not shown).

Wie bereits erwähnt zeigen Figuren 1, 2a, 2b Ausführungsbeispiele, bei welchen in unterschiedlichen Mikro-Optiksystem-Gruppen G1, G2, G3 die optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e relativ zu den jeweiligen Mikro-Eintrittsoptiken gleich hoch positioniert sind wobei vorzugsweise die Mikro-Eintrittsoptiken 30 relativ zu den jeweiligen Mikro-Austrittsoptiken 31 unterschiedlich (beispielsweise vertikal und/oder horizontal zueinander verschoben) verlaufende optische Achsen aufweisen - also dezentriert sind.As already mentioned show Figures 1 . 2a, 2b Exemplary embodiments in which in different micro-optical system groups G1, G2, G3 the optically active edges 320, 320a, 320b, 320c, 320d, 320e are positioned at the same height relative to the respective micro-entry optics, preferably the micro-entry optics 30 relative have optical axes which run differently (for example vertically and / or horizontally from one another) with respect to the respective micro exit optics 31 - that is to say are decentered.

Die Mikro-Optiksysteme 3 können beispielsweise einen Abbildungsmaßstab von etwa 3° pro 0,1 mm aufweisen. Andere Abbildungsmaßstäbe sind denkbar uns hängen von jeweiligen Ausführung der Mikro-Optiksysteme 3 ab. Das heißt, dass eine relative Verschiebung der optisch wirksamen Kante 320, 320a, 320b, 320c, 320d, 320e zu der Mikro-Austrittsoptik 31 in einem solchen Mikro-Optiksystem 3 um etwa 0,1 mm zu einer Verschiebung eines durch diese optisch wirksame Kante 320, 320a, 320b, 320c, 320d, 320e erzeugten Hell-Dunkel-Übergangs, beispielsweise einer Mikro-Hell-Dunkel-Grenze, von etwa 3° entlang der V-V-Linie VV (also im Winkelraum) führt.The micro-optical systems 3 can, for example, have an imaging scale of approximately 3 ° per 0.1 mm. Other imaging scales are conceivable and depend on the respective design of the micro-optical systems 3. This means that a relative displacement of the optically active edge 320, 320a, 320b, 320c, 320d, 320e to the micro-exit optics 31 in such a micro-optics system 3 by approximately 0.1 mm to a displacement of an optically active edge 320, 320a, 320b, 320c, 320d, 320e produces a light-dark transition, for example a micro-light-dark boundary, of approximately 3 ° along the VV line VV (ie in the angular space).

An dieser Stelle sei angemerkt, dass die unterschiedlichen Mikro-Optiksystem-Gruppen G1, G2, G3 getrennt voneinander ausgebildet und vorzugsweise voneinander beabstandet sein können. Dies ist beispielsweise in Figur 3 zu erkennen.At this point it should be noted that the different micro-optical system groups G1, G2, G3 can be formed separately from one another and can preferably be spaced apart from one another. This is for example in Figure 3 to recognize.

Die Beleuchtungsvorrichtung 1 weist außerdem eine Lichtquelle 7, vorzugsweise eine halbleiterbasierte Lichtquelle, insbesondere eine LED-Lichtquelle, wobei die Projektionseinrichtung 2 der Lichtquelle 7 in Lichtabstrahlrichtung Z nachgelagert ist und das vorzugsweise im Wesentlichen gesamte, von der Lichtquelle 7 erzeugte Licht in einen Bereich vor der Beleuchtungsvorrichtung 1 in Form einer Lichtverteilung, beispielsweise einer Vorfeld-Lichtverteilung oder einer Abblendlichtverteilung 8 mit oder ohne einer Signlight-Lichtverteilung 81 mit einer Hell-Dunkel-Grenze 80 projiziert (siehe Figur 6). Die Lichtverteilung ist üblicherweise aus einer Vielzahl einander überlappender Teil-Lichtverteilungen mit jeweils einer Teil-Hell-Dunkel-Grenze gebildet, wobei jede Teil-Lichtverteilung durch genau eine Mikro-Optiksystem-Gruppe G1, G2, G3 gebildet ist und die Teil-Hell-Dunkel-Grenzen gemeinsam die Hell-Dunkel-Grenze bilden. Die Teil-Hell-Dunkel-Grenzen sind ihrerseits aus einer Vielzahl von Mikro-Hell-Dunkel-Grenzen gebildet. Darüber hinaus folgt aus dem oben Gesagten, dass die Teil-Hell-Dunkel-Grenzen unterschiedlicher Teil-Lichtverteilungen unterschiedlich (beispielsweise vertikal und/oder horizontal zueinander verschoben) angeordnet sind.The lighting device 1 also has a light source 7, preferably a semiconductor-based light source, in particular an LED light source, the projection device 2 being arranged downstream of the light source 7 in the light emission direction Z and preferably essentially all of the light generated by the light source 7 in an area in front of the Illumination device 1 projected in the form of a light distribution, for example an apron light distribution or a low-beam light distribution 8 with or without a Signlight light distribution 81 with a light-dark boundary 80 (see Figure 6 ). The Light distribution is usually formed from a multiplicity of overlapping partial light distributions, each with a partial light-dark boundary, each partial light distribution being formed by exactly one micro-optical system group G1, G2, G3 and the partial light-dark - Boundaries together form the light-dark boundary. The partial light-dark borders are in turn formed from a large number of micro-light-dark borders. Furthermore, it follows from what has been said above that the partial light-dark limits of different partial light distributions are arranged differently (for example vertically and / or horizontally displaced from one another).

Dabei können die Teil-Hell-Dunkel-Grenzen entlang der Vertikale (V-V-Linie VV) beziehungsweise entlang der Horizontale/ des Horizonts (H-H-Linie HH) um einen Winkel zueinander verschoben sind, wobei der Winkel einen Wert von etwa 0° bis etwa 3°, beispielsweise von etwa 1° bis etwa 3°, vorzugsweise von etwa 2°. Dadurch ergibt sich im Lichtbild eine Überlagerung von Teil-Lichtverteilungen mit unterschiedlich (beispielsweise vertikal und/oder horizontal zueinander verschobenen) positionierten Teil-Hell-Dunkel-Grenzen. Die Teil-Hell-Dunkel-Grenzen (und ergo die Hell-Dunkel-Grenze der gesamten Lichtverteilung) können beispielsweise im Wesentlichen gerade verlaufen oder einen Asymmetrieanstieg 80 aufweist.The partial light-dark limits along the vertical (VV line VV) or along the horizontal / horizon (HH line HH) can be shifted by an angle, the angle being a value of approximately 0 ° to approximately 3 °, for example from about 1 ° to about 3 °, preferably from about 2 °. This results in a superimposition of partial light distributions with different (for example vertically and / or horizontally shifted to each other) positioned partial light-dark boundaries in the light image. The partial light-dark limits (and ergo the light-dark limit of the entire light distribution) can, for example, run essentially straight or have an asymmetry increase 80.

Die Lichtquelle 7 kann eingerichtet sein, kollimiertes Licht zu erzeugen.The light source 7 can be configured to generate collimated light.

Dafür kann die Lichtquelle 7 ein lichtkollimierendes Optikelement 9 und ein dem lichtkollimierenden Optikelement 9 vorgelagertes, vorzugsweise halbleiterbasiertes Leuchtelement 10, beispielsweise eine LED-Lichtquelle, die beispielsweise aus mehreren, vorzugsweise einzeln steuerbaren LEDs besteht, umfassen. Dabei ist das lichtkollimierende Optikelement 9 beispielsweise ein Kollimator oder eine lichtkollimierende Vorsatzoptik (z.B. aus Silikon) oder eine TIR-Linse.For this purpose, the light source 7 can comprise a light-collimating optical element 9 and a preferably semiconductor-based lighting element 10 located in front of the light-collimating optical element 9 , for example an LED light source, which for example consists of several, preferably individually controllable LEDs. The light-collimating optical element 9 is, for example, a collimator or a light-collimating front lens (eg made of silicone) or a TIR lens.

Wie es in den Figuren 2a und 3 zu erkennen ist, kann die Lichtquelle 7 zwei oder mehr lichtemittierende Bereiche 70, 71, 72 aufweisen, wobei jeder einzelne lichtemittierende Bereich unabhängig von den anderen lichtemittierenden Bereichen der Lichtquelle 7 steuerbar, beispielsweise ein- und ausschaltbar ist.Like it in the Figures 2a and 3 It can be seen that the light source 7 can have two or more light-emitting regions 70, 71, 72 , wherein each individual light-emitting region can be controlled, for example switched on and off, independently of the other light-emitting regions of the light source 7.

Darüber hinaus kann jedem lichtemittierenden Bereich 70, 71, 72 mindestens eine, vorzugsweise genau eine Mikro-Optiksystem-Gruppe G1, G2, G3 derart zugeordnet sein, dass von dem jeweiligen lichtemittierenden Bereich 70, 71, 72 erzeugtes Licht direkt, d.h. ohne an weiteren optisch aktiven Flächen, Elementen o.Ä. gebrochen, gespiegelt, umgelenkt oder auf eine andere Art und Weise seine Intensität und/oder Ausbreitungsrichtung zu ändern, und nur auf die diesem lichtemittierenden Bereich 70, 71, 72 zugeordnete Mikro-Optiksystem-Gruppe G1, G2, G3 trifft.In addition, at least one, preferably exactly one, micro-optical system group G1, G2, G3 can be assigned to each light-emitting region 70, 71, 72, that light generated by the respective light-emitting region 70, 71, 72 directly, ie without other optically active surfaces, elements or the like. broken, mirrored, deflected or in another way to change its intensity and / or direction of propagation, and only hits the micro-optical system group G1, G2, G3 assigned to this light-emitting region 70, 71, 72.

Figur 2a zeigt dabei zwei einstückig ausgebildeter Mikro-Optiksystem-Gruppen G1 und G2. Dabei können die entsprechenden Mikro-Eintrittsoptiken, Mikro-Blenden und Mikro-Austrittsoptiken auf einem und denselben Glassubstrat aufgetragen sein. Figure 2a shows two one-piece micro-optical system groups G1 and G2. The corresponding micro entry optics, micro diaphragms and micro exit optics can be applied to one and the same glass substrate.

In der Figur 3 ist zu erkennen, dass die Lichtquelle 7 drei lichtemittierende Bereiche 70, 71, 72 aufweisen kann, denen drei getrennt voneinander ausgebildete und vorzugsweise voneinander beabstandete Mikro-Optiksystem-Gruppen G1, G2, G3 zugeordnet sind. Dabei ist jedem einzelnen lichtemittierenden Bereich 70, 71, 72 jeweils genau eine Mikro-Optiksystem-Gruppe G1, G2, G3 zugeordnet. Jeder einzelne lichtemittierende Bereich kann unabhängig von den anderen lichtemittierenden Bereichen der Lichtquelle 7 steuerbar, beispielsweise ein- und ausschaltbar sein. Die jedem lichtemittierenden Bereich 70, 71, 72 zugeordnete Mikro-Optiksystem-Gruppe G1, G2, G3 ist vorzugsweise derart angeordnet, dass von dem jeweiligen lichtemittierenden Bereich 70, 71, 72 erzeugtes Licht auf sie direkt, d.h. ohne an weiteren optisch aktiven Flächen, Elementen o.Ä. gebrochen, gespiegelt, umgelenkt oder auf eine andere Art und Weise seine Intensität und/oder Ausbreitungsrichtung zu ändern, trifft.In the Figure 3 It can be seen that the light source 7 can have three light-emitting regions 70, 71, 72, to which three micro-optical system groups G1, G2, G3, which are formed separately and are preferably spaced apart, are assigned. Each individual light-emitting area 70, 71, 72 is assigned exactly one micro-optical system group G1, G2, G3. Each individual light-emitting region can be controllable, for example switched on and off, independently of the other light-emitting regions of the light source 7. The micro-optical system group G1, G2, G3 assigned to each light-emitting area 70, 71, 72 is preferably arranged in such a way that light generated by the respective light-emitting area 70, 71, 72 is directed onto it directly, ie without on further optically active surfaces, Elements or similar broken, mirrored, redirected or otherwise changing its intensity and / or direction of propagation.

Die lichtemittierenden Bereiche 70, 71, 72 können beispielsweise als halbleiterbasierende Lichtquellen ausgebildet sein und insbesondere eine oder mehrere LED-Lichtquellen umfassen.The light-emitting regions 70, 71, 72 can be designed, for example, as semiconductor-based light sources and in particular comprise one or more LED light sources.

Mit einer erfindungsgemäßen Projektionseinrichtung ist es beispielsweise möglich, den Schärfefaktor (auch als "Gradient" genannt) einer Hell-Dunkel-Grenze einer Abblendlichtverteilung oder, im Allgemeinen, Schärfe eines Hell-Dunkel-Übergangs einer Lichtverteilung einzustellen vorzugsweise zu reduzieren. Dies hat insbesondere dann einen Vorteil, wenn eine charakteristische Größe der Mikro-Eintrittsoptiken und der Mikro-Austrittsoptiken, beispielsweise der Durchmesser ihrer Lichteintrittsflächen im Mikrometervorzugsweise im Submillimeterbereich liegt. Bei den Optiken/Linsen dieser Größe ist beispielsweise eine Aufweichung des Gradienten (Reduktion des Schärfefaktors) mittels üblicher Methoden, wie beispielsweise Aufbringen einer optischen Struktur auf Lichtaustrittsflächen der Optiken, extrem schwierig. Durch eine oben beschriebene erfindungsgemäße Projektionseinrichtung kann der Schärfefaktor reduziert werden.With a projection device according to the invention, it is possible, for example, to preferably reduce the sharpness factor (also called "gradient") of a light-dark boundary of a low-beam light distribution or, in general, to adjust the sharpness of a light-dark transition of a light distribution. This has an advantage in particular if a characteristic size of the micro entry optics and the micro exit optics, for example the diameter of their light entry surfaces in the micrometer, is preferably in the submillimeter range. In the case of the optics / lenses of this size, a softening of the gradient (reduction in the sharpness factor) is, for example Common methods, such as applying an optical structure to light exit surfaces of the optics, extremely difficult. The sharpness factor can be reduced by a projection device according to the invention described above.

Es sei an dieser Stelle angemerkt, dass laut ECE Regelung Nr. 112 der Schärfefaktor derzeit zwischen 0,13 (Mindestschärfe) und 0,40 (maximale Schärfe) liegt.It should be noted at this point that according to ECE Regulation No. 112 the sharpness factor is currently between 0.13 (minimum sharpness) and 0.40 (maximum sharpness).

Darüber hinaus ermöglichen die erfindungsgemäßen Lichtmodule nicht nur ein statisches Aufweichen des Gradienten (siehe oben) sondern auch ein dynamisches Einstellen, vorzugsweise Reduzieren des Schärfefaktors. Unter einem dynamischen Einstellen wird Einstellen während des Betriebs des Lichtmoduls verstanden. Beispiele für Lichtmodule, die ein dynamisches Einstellen ermöglichen, sind die Lichtmodule mit einer mehrere lichtemittierende Bereiche aufweisenden Lichtquelle, wobei die lichtemittierenden Bereiche, wie oben beschrieben, einzeln steuerbar sind. Beispielsweise stellen die Beleuchtungsvorrichtungen der Figuren 2a und 3 Beispiele der Lichtmodule, die ein dynamisches Einstellen des Schärfefaktors ermöglichen, dar. Dabei kann, wie bereits erwähnt, einem lichtemittierenden Bereich, der beispielsweise als eine halbleiterbasierte Lichtquelle ausgebildet sein kann, eine oder mehrere Mikro-Optiksystem-Gruppe(n) zugeordnet sein. Solch ein System: lichtemittierender Bereich und zumindest eine dem lichtemittierenden Bereich zugeordnete Mikro-Optiksystem-Gruppe können auf einen vorgegebenen Schärfefaktor eingestellt sein, d.h. dazu eingerichtet sein, eine Teil-Lichtverteilung mit einer Hell-Dunkel-Grenze mit einem vorgegebenen Schärfefaktor zu erzeugen. Beispielsweise ist ein Lichtmodul denkbar, welches drei solche Systeme einen Schärfefaktor von etwa 0,35 aufweisen und ein System mit einem Schärfefaktor von etwa 0,19 umfasst. Es hat sich erwiesen, dass sich in einem Zustand, in dem alle vier Systeme des Lichtmoduls eingeschaltet sind, eine Lichtverteilung mit einer Hell-Dunkel-Grenze mit einem Schärfefaktor von etwa 0,28 ergibt. Weiters hat es sich ergeben, dass ein Lichtmodul mit drei Systemen mit einem Schärfefaktor von ca. 0,19 und einem System mit einem Schärfefaktor von ca. 0,35 eine Lichtverteilung mit einer Hell-Dunkel-Grenze mit einem Schärfefaktor von ca. 0,21 erzeugt, wenn alle vier Systeme eingeschaltet sind. Diese Beispiele lassen erkennen, dass ein Lichtmodul mit mehreren solchen Systemen, die unterschiedliche Schärfefaktoren aufweisen, ein dynamisches Einstellen - Reduzieren und Erhöhen - der Hell-Dunkel-Grenze einer Lichtverteilung und im Allgemeinen der Schärfe eines Hell-Dunkel-Übergangs einer Lichtverteilung möglich ist. Somit lässt sich ein variabler, vorzugsweise Fahrsituation abhängiger Schärfefaktor realisieren. Dies kann in den unterschiedlichsten Fahrsituationen von Vorteil sein. Bei dunkler Umgebung (beispielsweise auf Landstraßen) ist ein weicherer (kleinerer) Schärfefaktor von Vorteil um den Hell-Dunkel-Übergang, vorzugsweise die Hell-Dunkel-Grenze einer Abblendlichtverteilung angenehmer zu gestalten. Andererseits birgt ein weicher Schärfefaktor eine Gefahr, dass Gegenverkehr und/oder Fußgänger mehr geblendet werden. In der Stadt mit Umgebungsbeleuchtung kann es daher von Vorteil sein auf einen härteren (höheren) Schärfefaktor umzustellen.In addition, the light modules according to the invention not only enable the gradient to soften statically (see above) but also allow dynamic adjustment, preferably reducing the sharpness factor. Dynamic adjustment means adjustment during operation of the light module. Examples of light modules that enable dynamic adjustment are the light modules with a light source that has a plurality of light-emitting regions, the light-emitting regions being individually controllable, as described above. For example, the lighting devices of the Figures 2a and 3 Examples of the light modules that enable a dynamic adjustment of the sharpness factor are shown. As already mentioned, one or more micro-optical system group (s) can be assigned to a light-emitting area, which can be designed as a semiconductor-based light source, for example. Such a system: light-emitting area and at least one micro-optical system group assigned to the light-emitting area can be set to a predetermined sharpness factor, that is to say be set up to generate a partial light distribution with a light-dark boundary with a predetermined sharpness factor. For example, a light module is conceivable which has three such systems with a sharpness factor of approximately 0.35 and a system with a sharpness factor of approximately 0.19. It has been found that in a state in which all four systems of the light module are switched on, there is a light distribution with a cut-off line with a sharpness factor of approximately 0.28. Furthermore, it has been found that a light module with three systems with a sharpness factor of approximately 0.19 and a system with a sharpness factor of approximately 0.35 has a light distribution with a cut-off line with a sharpness factor of approximately 0. 21 generated when all four systems are turned on. These examples show that a light module with several such systems, which have different sharpness factors, can dynamically adjust - reduce and increase - the light-dark boundary of a light distribution and in general the sharpness of a light-dark transition of a light distribution. Thus, a variable, preferably implement a sharpness factor dependent on the driving situation. This can be an advantage in a wide variety of driving situations. In a dark environment (for example on country roads), a softer (smaller) sharpness factor is advantageous in order to make the cut-off, preferably the cut-off of a low beam, more pleasant. On the other hand, a soft focus factor poses a risk that oncoming traffic and / or pedestrians will be more blinded. In the city with ambient lighting, it can therefore be advantageous to switch to a harder (higher) sharpness factor.

Die erfindungsgemäße relative Position der optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e zu den jeweiligen Mikro-Austrittsoptiken 31 innerhalb der Zwischenbildebene kann in Abhängigkeit von einem vorgegebenen Gradienten berechnet werden. Dadurch kann bei Lichtmodulen beispielsweise eine Aufweichung des Gradienten (des Schärfefaktors) erreicht werden.The relative position according to the invention of the optically active edges 320, 320a, 320b, 320c, 320d, 320e to the respective micro exit optics 31 within the intermediate image plane can be calculated as a function of a predetermined gradient. In this way, for example, the gradient (sharpness factor) can be softened in the case of light modules.

Bei den herkömmlichen Beleuchtungsvorrichtungen kann der Gradient beispielsweise durch Aufbringen einer optischen Struktur auf eine Linsenoberfläche aufgeweicht werden (siehe z.B. WO 2015031924 A1 der Anmelderin). Dabei wird von einer ursprünglichen (unmodifizierten) Lichtverteilung ausgegangen, die eine Hell-Dunkel-Grenze beziehungsweise einen Hell-Dunkel-Übergang mit einem Gradienten aufweist, den es aufzuweichen gilt. Das Ziel - der aufgeweichte Gradient - wird vorgegeben. Anhand dieser Vorgabe wird eine Streufunktion berechnet/ermittelt. Durch Faltung der unmodifizierten Lichtverteilung mit dieser Streufunktion wird modifizierte Lichtverteilung erzeugt, die den gemäß der Vorgabe aufgeweichten Gradienten aufweist. Dabei spielt die Streufunktion die Rolle einer Gewichtsfunktion. Anhand der Streufunktion wird auch die optische Struktur - im Fall von WO 2015031924 A1 - die Form einzelner Erhebungen auf der Linsenoberfläche berechnet. Entsprechend dieser Berechnung wird die optische Struktur (die einzelnen Erhebungen) auf die Linsenoberfläche aufgetragen.In the conventional lighting devices, the gradient can be softened, for example, by applying an optical structure to a lens surface (see, for example WO 2015031924 A1 the applicant). An original (unmodified) light distribution is assumed, which has a light-dark boundary or a light-dark transition with a gradient that needs to be softened. The goal - the softened gradient - is specified. A spreading function is calculated / determined on the basis of this specification. Folding the unmodified light distribution with this scattering function produces modified light distribution that has the gradient softened according to the specification. The spreading function plays the role of a weight function. The scattering function is also used to determine the optical structure - in the case of WO 2015031924 A1 - The shape of individual elevations on the lens surface is calculated. According to this calculation, the optical structure (the individual elevations) is applied to the lens surface.

Wie bereits beschrieben kann der Schärfefaktor bei der vorliegenden Erfindung durch unterschiedliche relative Positionen der optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e zu den jeweiligen Mikro-Austrittsoptiken 31 beeinflusst werden. Das aufwendige Auftragen der optischen Struktur auf Linsenoberflächen (Fräsen einer solchen Struktur kann für eine Linse bis zu einem Tag Zeit in Anspruch nehmen) ist somit nicht mehr notwendig. Wie auch bei dem oben beschriebenen Verfahren wird als Ziel ein Gradient vorgegeben, der meist geringer als der Gradient der unmodifizierten Lichtverteilung ist. Anhand dieser Vorgabe wird eine Streufunktion berechnet/ermittelt. Diese Streufunktion kann nun auf die relative Position der optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e zu den jeweiligen Mikro-Austrittsoptiken 31 innerhalb der Zwischenbildebene für alle Mikro-Optiksystem-Gruppen G1, G2, G3 umgerechnet werden, sodass bei der Faltung einer ursprünglichen (unmodifizierten) Lichtverteilung mit dieser Streufunktion die Lichtverteilung erzeugt wird, die den vorgegebenen Gradienten aufweist. Dabei liegt der Grundgedanke darin, dass ein Verschieben einer optisch wirksamen Kante relativ zu der jeweiligen Mikro-Austrittsoptik aus ihre Nulllage (Nullposition) ein entsprechendes, beispielsweise von einem Abbildungsmaßstab abhängiges, Verschieben der Lichtverteilung beziehungsweise des Lichtbildes verursacht. Unter der Nulllage wird eine Lage verstanden, in der die optisch wirksame Kante zu der entsprechenden Mikro-Austrittsoptik nicht verschoben ist und beispielsweise bei einer Mikro-Abblendlichtverteilung als eine nicht verschobene Hell-Dunkel-Grenze abgebildet wird. Dadurch dass es normalerweise eine diskrete (endliche) Anzahl von optisch wirksamen Kanten vorhanden ist, kann die Faltung als eine Summe (Überlagerung) von entsprechend zueinander verschobenen Mikro-Lichtverteilungen (Mikro-Fernlichtverteilungen oder -Abblendlichtverteilungen) verstanden werden.As already described, the sharpness factor in the present invention can be influenced by different relative positions of the optically active edges 320, 320a, 320b, 320c, 320d, 320e relative to the respective micro exit optics 31. The time-consuming application of the optical structure to lens surfaces (milling such a structure can take up to a day for a lens) is no longer necessary. As with the method described above, a gradient is specified as the target, which is usually less than the gradient of the unmodified light distribution. Based on this A spreading function is calculated / determined by default. This scattering function can now be converted to the relative position of the optically active edges 320, 320a, 320b, 320c, 320d, 320e to the respective micro exit optics 31 within the intermediate image plane for all micro optic system groups G1, G2, G3, so that at the folding of an original (unmodified) light distribution with this scattering function, the light distribution is generated that has the predetermined gradient. The basic idea here is that shifting an optically effective edge relative to the respective micro-exit optics from its zero position (zero position) causes a corresponding shift in the light distribution or the light image, for example depending on an imaging scale. The zero position is understood to mean a position in which the optically effective edge is not shifted to the corresponding micro exit optics and is depicted, for example in the case of a micro low beam distribution, as a non-shifted light-dark boundary. Because there is normally a discrete (finite) number of optically active edges, the folding can be understood as a sum (superimposition) of correspondingly shifted micro-light distributions (micro-high-beam distributions or low-beam distributions).

Wie bereits erklärt stellt eine Verschiebung der Mikro-Blende relativ zu der jeweiligen Mikro-Austrittsoptik eine vom Abbildungsmaßstab abhängige Verschiebung des Lichtbildes dar. Aufgrund dieses Zusammenhangs kann die Streufunktion, die eine vorgegebene Änderung des Gradienten darstellt, aus Winkelkoordinaten im Kugelkoordinatensystem ([°]) in kartesische Koordinaten [mm] umgerechnet werden. Anhand der Darstellung der Streufunktion in kartesischen Koordinaten kann die relative Position der optisch wirksamen Kanten 320, 320a, 320b, 320c, 320d, 320e zu den jeweiligen Mikro-Austrittsoptiken 31 innerhalb der Zwischenbildebene in jeder Mikro-Optiksystem-Gruppe G1, G2, G3 sowie die Anzahl der Mikro-Optiksysteme in jeder Mikro-Optiksystem-Gruppe G1, G2, G3 ermittelt werden.As already explained, a shift of the micro-aperture relative to the respective micro exit optic represents a shift of the light image depending on the imaging scale. Because of this relationship, the scattering function, which represents a predetermined change in the gradient, can be determined from angular coordinates in the spherical coordinate system ([°]). are converted into Cartesian coordinates [mm]. Based on the representation of the scattering function in Cartesian coordinates, the relative position of the optically active edges 320, 320a, 320b, 320c, 320d, 320e to the respective micro exit optics 31 within the intermediate image plane in each micro-optical system group G1, G2, G3 and the number of micro-optical systems in each micro-optical system group G1, G2, G3 can be determined.

Beispielsweise kann eine Verschiebung einer Lichtverteilung um 2° eine Verschiebung der Mikro-Blende um 0,06 mm entsprechen. Die Intensitätswerte können dabei der Anzahl der Mikro-Optiksysteme in der jeweiligen Mikro-Optiksystem-Gruppe G1, G2, G3 entsprechen. Das heißt die Candela-Gewichtungsfaktoren werden auf eine Anzahl an unterschiedlichen Positionen umgerechnet.For example, a shift of a light distribution by 2 ° can correspond to a shift of the micro-aperture by 0.06 mm. The intensity values can correspond to the number of micro-optical systems in the respective micro-optical system group G1, G2, G3. This means that the candela weighting factors are converted to a number of different positions.

Die Bezugsziffern in den Ansprüchen dienen lediglich zum besseren Verständnis der vorliegenden Erfindungen und bedeuten auf keinen Fall eine Beschränkung der vorliegenden Erfindungen.The reference numbers in the claims serve only for a better understanding of the present inventions and in no way mean a limitation of the present inventions.

Solange es sich nicht aus der Beschreibung einer der oben genannten Ausführungsformen zwangsläufig ergibt, wird davon ausgegangen, dass die beschriebenen Ausführungsformen beliebig miteinander kombiniert werden können. Unter anderem bedeutet dies, dass auch die technischen Merkmale einer Ausführungsform mit den technischen Merkmalen einer anderen Ausführungsform einzeln und unabhängig voneinander nach Belieben kombiniert werden können, um auf diese Weise zu einer weiteren Ausführungsform derselben Erfindung zu gelangen.As long as it does not necessarily result from the description of one of the above-mentioned embodiments, it is assumed that the described embodiments can be combined with one another as desired. Among other things, this means that the technical features of one embodiment can also be combined individually and independently of one another as desired with the technical features of another embodiment, in order in this way to arrive at a further embodiment of the same invention.

Claims (15)

Projektionseinrichtung (2) für ein Lichtmodul (1) eines Kraftfahrzeugscheinwerfers, die aus einer Vielzahl matrixartig angeordneter Mikro-Optiksysteme (3) gebildet ist, wobei jedes Mikro-Optiksystem (3) eine Mikro-Eintrittsoptik (30), eine der Mikro-Eintrittsoptik (30) zugeordnete Mikro-Austrittsoptik (31) und eine Mikro-Blende (32) aufweist, wobei alle Mikro-Eintrittsoptiken (30) eine Eintrittsoptik (4), alle Mikro-Austrittsoptiken (31) eine Austrittsoptik (5) und alle Mikro-Blenden (32) eine Blendenvorrichtung (6) bilden, wobei die Blendenvorrichtung (6) in einer im Wesentlichen zur Hauptabstrahlrichtung (Z) der Projektionseinrichtung (2) orthogonal stehenden Ebene angeordnet ist und die Eintrittsoptik (4), die Austrittsoptik (5) und die Blendenvorrichtung (6) in im Wesentlichen zueinander parallelen Ebenen angeordnet sind,
dadurch gekennzeichnet, dass
die Mikro-Blende (32) eines jeden Mikro-Optiksystems (3) eine optisch wirksame Kante (320, 320a, 320b, 320c, 320d, 320e) aufweist, wobei die Gesamtheit der Mikro-Optiksysteme (3) in zumindest zwei Mikro-Optiksystem-Gruppen (G1, G2, G3) unterteilt ist, wobei bei den Mikro-Optiksystemen (3) aus unterschiedlichen Mikro-Optiksystem-Gruppen (G1, G2, G3) die optisch wirksamen Kanten (320, 320a, 320b, 320c, 320d, 320e) relativ zu den jeweiligen Mikro-Austrittsoptiken (31) innerhalb der Zwischenbildebene unterschiedlich positioniert sind.
Projection device (2) for a light module (1) of a motor vehicle headlight, which is formed from a plurality of micro-optic systems (3) arranged in a matrix, each micro-optic system (3) having a micro-entry optic (30), one of the micro-entry optics ( 30) assigned micro exit optics (31) and a micro diaphragm (32), all micro entry optics (30) one entry optics (4), all micro exit optics (31) one exit optics (5) and all micro diaphragms (32) form a diaphragm device (6), the diaphragm device (6) being arranged in a plane that is essentially orthogonal to the main emission direction (Z) of the projection device (2) and the entry optics (4), the exit optics (5) and the diaphragm device (6) are arranged in substantially parallel planes,
characterized in that
the micro-diaphragm (32) of each micro-optical system (3) has an optically effective edge (320, 320a, 320b, 320c, 320d, 320e), the entirety of the micro-optical systems (3) being divided into at least two micro-optical systems Groups (G1, G2, G3) is subdivided, with the micro-optical systems (3) comprising different micro-optical system groups (G1, G2, G3) the optically active edges (320, 320a, 320b, 320c, 320d, 320e) are positioned differently relative to the respective micro exit optics (31) within the intermediate image plane.
Projektionseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass für jedes Mikro-Optiksystem (3) innerhalb derselben Mikro-Optiksystem-Gruppe (G1, G2, G3) gilt, dass die optisch wirksame Kante (320, 320a, 320b, 320c, 320d, 320e) der Mikro-Blende (32) relativ zu der Mikro-Austrittsoptik (31) um einen Abstand (h1, h2, h3, h4) vertikal und/oder horizontal verschoben ist und dieser Abstand (h1, h2, h3, h4) für alle Mikro-Optiksysteme (3) innerhalb derselben Mikro-Optiksystem-Gruppe (G1, G2, G3) gleich ist, wobei der Abstand (h1, h2, h3, h4) vorzugsweise etwa 0 mm bis etwa 0,1 mm, beispielsweise etwa 0,01 mm bis etwa 0,1 mm vorzugsweise etwa 0,03 mm bis etwa 0,06 mm beträgt.Projection device according to claim 1, characterized in that for each micro-optical system (3) within the same micro-optical system group (G1, G2, G3) it applies that the optically effective edge (320, 320a, 320b, 320c, 320d, 320e ) the micro-diaphragm (32) is displaced vertically and / or horizontally relative to the micro-exit optics (31) by a distance (h1, h2, h3, h4) and this distance (h1, h2, h3, h4) for everyone Micro-optical systems (3) are the same within the same micro-optical system group (G1, G2, G3), the distance (h1, h2, h3, h4) preferably being about 0 mm to about 0.1 mm, for example about 0, 01 mm to about 0.1 mm, preferably about 0.03 mm to about 0.06 mm. Projektionseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die optisch wirksamen Kanten (320, 320a, 320b, 320c, 320d, 320e) zumindest eines Teils der Mikro-Optiksysteme (3) jeder Mikro-Optiksystem-Gruppe (G1, G2, G3) zum Erzeugen einer durchgehend horizontalen oder vertikalen Teil-Hell-Dunkel-Grenze oder einer Teil-Hell-Dunkel-Grenze mit einem Asymmetrieanstieg ausgebildet sind, wobei jede solche optisch wirksame Kante (320, 320a, 320b, 320c, 320d, 320e) vorzugsweise zum Erzeugen einer durchgehend horizontalen oder vertikalen Mikro-Hell-Dunkel-Grenze (3200) oder einer Mikro-Hell-Dunkel-Grenze mit einem Asymmetrieanstieg (3201) ausgebildet ist.Projection device according to claim 1 or 2, characterized in that the optically active edges (320, 320a, 320b, 320c, 320d, 320e) of at least part of the Micro-optical systems (3) of each micro-optical system group (G1, G2, G3) are designed to generate a continuous horizontal or vertical partial light-dark boundary or a partial light-dark boundary with an asymmetry increase, each such optically effective edge (320, 320a, 320b, 320c, 320d, 320e) preferably for generating a continuously horizontal or vertical micro-light-dark boundary (3200) or a micro-light-dark boundary with an asymmetry increase (3201) is trained. Projektionseinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Mikro-Blenden (32) einer jeden Mikro-Optiksystem-Gruppe (G1, G2, G3) zu einer Mikro-Blenden-Gruppe (MG1, MG2) zusammengefasst sind und die Mikro-Blenden-Gruppen (MG1, MG2) identisch ausgebildet sind, wobei vorzugsweise jede Mikro-Blende (32) als ein Plättchen aus einem lichtundurchlässigen Material mit einem Durchbruch (321, 321a, 321b, 321c, 321d, 321e) ausgebildet ist.Projection device according to one of claims 1 to 3, characterized in that the micro-diaphragms (32) of each micro-optical system group (G1, G2, G3) are combined to form a micro-diaphragm group (MG1, MG2) and the Micro-aperture groups (MG1, MG2) are of identical design, each micro-aperture (32) preferably being designed as a plate made of an opaque material with an opening (321, 321a, 321b, 321c, 321d, 321e). Projektionseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in unterschiedlichen Mikro-Optiksystem-Gruppen (G1, G2, G3) die Mikro-Eintrittsoptiken (30) relativ zu den jeweiligen Mikro-Austrittsoptiken (31) gleich hoch positioniert sind und vorzugsweise eine gemeinsame optische Achse aufweisen.Projection device according to one of claims 1 to 4, characterized in that in different micro-optical system groups (G1, G2, G3) the micro-entry optics (30) are positioned at the same height relative to the respective micro-exit optics (31) and preferably have a common optical axis. Projektionseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in unterschiedlichen Mikro-Optiksystem-Gruppen (G1, G2, G3) die optisch wirksamen Kanten (320, 320a, 320b, 320c, 320d, 320e) relativ zu den jeweiligen Mikro-Eintrittsoptiken (30) gleich hoch positioniert sind, wobei vorzugsweise die Mikro-Eintrittsoptiken (30) relativ zu den jeweiligen Mikro-Austrittsoptiken (31) unterschiedlich, beispielsweise vertikal und/oder horizontal zueinander verschoben, verlaufende optische Achsen aufweisen.Projection device according to one of claims 1 to 4, characterized in that in different micro-optical system groups (G1, G2, G3) the optically active edges (320, 320a, 320b, 320c, 320d, 320e) relative to the respective micro- Entry optics (30) are positioned at the same height, the micro-entry optics (30) preferably having different optical axes relative to the respective micro-exit optics (31), for example vertically and / or horizontally displaced relative to one another. Projektionseinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Mikro-Optiksysteme (3) einen Abbildungsmaßstab von etwa 3° pro 0,1 mm aufweisen.Projection device according to one of claims 1 to 6, characterized in that the micro-optical systems (3) have an imaging scale of approximately 3 ° per 0.1 mm. Projektionseinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die unterschiedlichen Mikro-Optiksystem-Gruppen (G1, G2, G3) getrennt voneinander ausgebildet sind und vorzugsweise voneinander beabstandet sind.Projection device according to one of claims 1 to 7, characterized in that the different micro-optical system groups (G1, G2, G3) are formed separately from one another and are preferably spaced apart from one another. Lichtmodul (1) für einen Kraftfahrzeugscheinwerfer mit einer Projektionseinrichtung (2) nach einem der Ansprüche 1 bis 7, sowie einer Lichtquelle (7), wobei die Projektionseinrichtung (2) der Lichtquelle (7) in Lichtabstrahlrichtung nachgelagert ist und das von der Lichtquelle (7) erzeugtes Licht in einen Bereich vor dem Lichtmodul in Form einer Lichtverteilung (8) mit einer Hell-Dunkel-Grenze (80) projiziert, wobei die Lichtverteilung aus einer Vielzahl einander überlappender Teil-Lichtverteilungen mit jeweils einer Teil-Hell-Dunkel-Grenze gebildet ist, wobei jede Teil-Lichtverteilung durch genau eine Mikro-Optiksystem-Gruppe gebildet ist und die Teil-Hell-Dunkel-Grenzen gemeinsam die Hell-Dunkel-Grenze (80) bilden.Light module (1) for a motor vehicle headlight with a projection device (2) according to one of Claims 1 to 7, and a light source (7), the projection device (2) being arranged downstream of the light source (7) in the direction of light emission and that of the light source (7 ) projected light into an area in front of the light module in the form of a light distribution (8) with a cut-off line (80), the light distribution being formed from a multiplicity of overlapping partial light distributions, each with a cut-off line is, each partial light distribution is formed by exactly one micro-optical system group and the partial light-dark boundaries together form the light-dark boundary (80). Lichtmodul für einen Kraftfahrzeugscheinwerfer nach Anspruch 9, dadurch gekennzeichnet, dass die Teil-Hell-Dunkel-Grenzen entlang einer Vertikale und/oder Horizontale um einen Winkel zueinander verschoben sind, wobei der Winkel einen Wert von etwa 0° bis etwa 3°, beispielsweise von etwa 1° bis etwa 3°, vorzugsweise von etwa 2°.Light module for a motor vehicle headlight according to claim 9, characterized in that the partial light-dark boundaries are displaced by an angle to one another along a vertical and / or horizontal, the angle having a value of approximately 0 ° to approximately 3 °, for example of about 1 ° to about 3 °, preferably about 2 °. Lichtmodul nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Teil-Hell-Dunkel-Grenzen im Wesentlichen gerade, beispielsweise vertikal oder horizontal, verlaufen oder einen Asymmetrieanstieg aufweisen.Light module according to claim 9 or 10, characterized in that the partial light-dark borders are substantially straight, for example vertical or horizontal, or have an asymmetry increase. Lichtmodul nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Lichtquelle (7) eingerichtet ist, kollimiertes Licht zu erzeugen.Light module according to one of claims 9 to 11, characterized in that the light source (7) is set up to generate collimated light. Lichtmodul nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Lichtquelle (7) ein lichtkollimierendes Optikelement (9) und ein dem lichtkollimierenden Optikelement (9) vorgelagertes, vorzugsweise halbleiterbasiertes Leuchtelement (10), beispielsweise eine LED-Lichtquelle, umfasst, wobei das lichtkollimierende Optikelement (9) beispielsweise ein Kollimator oder eine lichtkollimierende Vorsatzoptik oder eine TIR-Linse ist.Light module according to one of Claims 9 to 11, characterized in that the light source (7) comprises a light-collimating optical element (9) and a preferably semiconductor-based lighting element (10), for example an LED light source, upstream of the light-collimating optical element (9), wherein the light-collimating optical element (9) is, for example, a collimator or a light-collimating front lens or a TIR lens. Lichtmodul nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Lichtquelle (7) zumindest zwei lichtemittierende Bereiche (70, 71, 72) aufweist, wobei jeder einzelne lichtemittierende Bereich unabhängig von den anderen lichtemittierenden Bereichen der Lichtquelle (7) steuerbar, beispielsweise ein- und ausschaltbar ist, und jedem lichtemittierenden Bereich (70, 71, 72) mindestens eine, vorzugsweise genau eine Mikro-Optiksystem-Gruppe (G1, G2, G3) derart zugeordnet ist, dass von dem jeweiligen lichtemittierenden Bereich (70, 71, 72) erzeugtes Licht direkt und nur auf die diesem lichtemittierenden Bereich (70, 71, 72) zugeordnete Mikro-Optiksystem-Gruppe (G1, G2, G3) trifft.Light module according to one of Claims 9 to 13, characterized in that the light source (7) has at least two light-emitting regions (70, 71, 72), each individual light-emitting region being controllable, for example independently of the other light-emitting regions of the light source (7) can be switched on and off, and each light-emitting area (70, 71, 72) is assigned at least one, preferably exactly one, micro-optical system group (G1, G2, G3) in such a way that the respective light-emitting area (70, 71, 72) generated light directly and only the micro-optical system group (G1, G2, G3) assigned to this light-emitting area (70, 71, 72). Kraftfahrzeugscheinwerfer mit zumindest einem Lichtmodul nach einem der Ansprüche 9 bis 14.Motor vehicle headlight with at least one light module according to one of claims 9 to 14.
EP18187731.7A 2018-08-07 2018-08-07 Projection device, light module and motor vehicle headlamp made from micro optics Withdrawn EP3608586A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18187731.7A EP3608586A1 (en) 2018-08-07 2018-08-07 Projection device, light module and motor vehicle headlamp made from micro optics
JP2021506452A JP7072120B2 (en) 2018-08-07 2019-08-05 Projection device, lighting module and automobile floodlight
PCT/EP2019/070984 WO2020030573A1 (en) 2018-08-07 2019-08-05 Projection apparatus, lighting module and motor vehicle headlamp consisting of micro-optical systems
EP19752994.4A EP3833904B1 (en) 2018-08-07 2019-08-05 Projection device, light module and motor vehicle headlamp made from micro optics
KR1020217001727A KR102460103B1 (en) 2018-08-07 2019-08-05 Projection device composed of micro-optics, light module and automobile headlamp
US17/265,582 US11280463B2 (en) 2018-08-07 2019-08-05 Projection apparatus, lighting module and motor vehicle headlamp consisting of micro-optical systems
CN201980052535.4A CN112543850B (en) 2018-08-07 2019-08-05 Projection device comprising micro-optical device, optical module and motor vehicle headlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18187731.7A EP3608586A1 (en) 2018-08-07 2018-08-07 Projection device, light module and motor vehicle headlamp made from micro optics

Publications (1)

Publication Number Publication Date
EP3608586A1 true EP3608586A1 (en) 2020-02-12

Family

ID=63173961

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18187731.7A Withdrawn EP3608586A1 (en) 2018-08-07 2018-08-07 Projection device, light module and motor vehicle headlamp made from micro optics
EP19752994.4A Active EP3833904B1 (en) 2018-08-07 2019-08-05 Projection device, light module and motor vehicle headlamp made from micro optics

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19752994.4A Active EP3833904B1 (en) 2018-08-07 2019-08-05 Projection device, light module and motor vehicle headlamp made from micro optics

Country Status (6)

Country Link
US (1) US11280463B2 (en)
EP (2) EP3608586A1 (en)
JP (1) JP7072120B2 (en)
KR (1) KR102460103B1 (en)
CN (1) CN112543850B (en)
WO (1) WO2020030573A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015896A1 (en) * 2020-12-18 2022-06-22 ZKW Group GmbH Projection device for a motor vehicle headlight
US11415287B2 (en) * 2020-08-13 2022-08-16 Hyundai Mobis Co., Ltd. Lamp for automobile and automobile including the same
EP4086506A1 (en) * 2021-05-04 2022-11-09 Marelli Automotive Lighting Reutlingen (Germany) GmbH Lighting device for a motor vehicle and manufacturing method
WO2022269094A1 (en) * 2021-06-25 2022-12-29 Valeo Vision Optical module for a light-emitting system for a motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230126484A (en) * 2022-02-23 2023-08-30 에스엘 주식회사 Lamp for vehicle
DE102022210092A1 (en) * 2022-09-23 2024-03-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Low beam headlights and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1526328A2 (en) * 2003-10-24 2005-04-27 Stanley Electric Co., Ltd. Vehicle lamp
WO2012156280A1 (en) * 2011-05-18 2012-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projection display and method for displaying a total image for projection freeform surfaces or tilted projection surfaces
WO2014164792A1 (en) * 2013-03-12 2014-10-09 Lpi-Europe, S.L. Thin luminaire
DE102013208625A1 (en) * 2013-05-10 2014-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. MULTIAPERTUR PROJECTION DISPLAY AND INDIVIDUAL PRODUCER FOR SUCH A
WO2015031924A1 (en) 2013-09-03 2015-03-12 Zizala Lichtsysteme Gmbh Optical structure for a lighting device for a motor vehicle headlight
WO2015058227A1 (en) 2013-10-25 2015-04-30 Zizala Lichtsysteme Gmbh Microprojection lighting module for a motor vehicle headlight
US20160018081A1 (en) * 2013-10-31 2016-01-21 Panasonic Intellectual Property Management Co., Ltd. Illumination device
WO2017066817A1 (en) 2015-10-23 2017-04-27 Zkw Group Gmbh Micro-projection light module for a vehicle headlight
WO2017066818A1 (en) 2015-10-23 2017-04-27 Zkw Group Gmbh Micro-projection light module for a motor vehicle headlight, for achieving aplanatic light distrubtion
DE102016112617B3 (en) * 2016-07-08 2017-10-26 Automotive Lighting Reutlingen Gmbh Motor vehicle headlight with a small overall depth

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546896Y2 (en) * 1992-02-20 1997-09-03 株式会社小糸製作所 Variable light distribution type headlamp
JP2973750B2 (en) * 1992-03-31 1999-11-08 松下電器産業株式会社 Illumination optical device and projection display device using the same
JP2017161612A (en) * 2016-03-08 2017-09-14 株式会社沖データ Lens unit, optical print head, and image formation device
AT518905B1 (en) * 2016-07-29 2018-04-15 Zkw Group Gmbh Projection device for a motor vehicle headlight and method for its production
DE102017110886A1 (en) 2017-05-18 2018-11-22 Automotive Lighting Reutlingen Gmbh Motor vehicle headlight with a light projector having microprojectors
US10378714B2 (en) * 2017-07-28 2019-08-13 Sl Corporation Lamp for vehicle
US11060680B2 (en) * 2018-07-25 2021-07-13 Hasco Vision Technology Co., Ltd. Lighting display device
DE102018217213A1 (en) * 2018-10-09 2020-04-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High beam headlights

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1526328A2 (en) * 2003-10-24 2005-04-27 Stanley Electric Co., Ltd. Vehicle lamp
WO2012156280A1 (en) * 2011-05-18 2012-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projection display and method for displaying a total image for projection freeform surfaces or tilted projection surfaces
WO2014164792A1 (en) * 2013-03-12 2014-10-09 Lpi-Europe, S.L. Thin luminaire
DE102013208625A1 (en) * 2013-05-10 2014-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. MULTIAPERTUR PROJECTION DISPLAY AND INDIVIDUAL PRODUCER FOR SUCH A
WO2015031924A1 (en) 2013-09-03 2015-03-12 Zizala Lichtsysteme Gmbh Optical structure for a lighting device for a motor vehicle headlight
WO2015058227A1 (en) 2013-10-25 2015-04-30 Zizala Lichtsysteme Gmbh Microprojection lighting module for a motor vehicle headlight
US20160018081A1 (en) * 2013-10-31 2016-01-21 Panasonic Intellectual Property Management Co., Ltd. Illumination device
WO2017066817A1 (en) 2015-10-23 2017-04-27 Zkw Group Gmbh Micro-projection light module for a vehicle headlight
WO2017066818A1 (en) 2015-10-23 2017-04-27 Zkw Group Gmbh Micro-projection light module for a motor vehicle headlight, for achieving aplanatic light distrubtion
DE102016112617B3 (en) * 2016-07-08 2017-10-26 Automotive Lighting Reutlingen Gmbh Motor vehicle headlight with a small overall depth

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415287B2 (en) * 2020-08-13 2022-08-16 Hyundai Mobis Co., Ltd. Lamp for automobile and automobile including the same
EP4015896A1 (en) * 2020-12-18 2022-06-22 ZKW Group GmbH Projection device for a motor vehicle headlight
EP4086506A1 (en) * 2021-05-04 2022-11-09 Marelli Automotive Lighting Reutlingen (Germany) GmbH Lighting device for a motor vehicle and manufacturing method
US11959605B2 (en) 2021-05-04 2024-04-16 Marelli Automotive Lighting Reutlingen (Germany) GmbH Lighting device for a motor vehicle and production method
WO2022269094A1 (en) * 2021-06-25 2022-12-29 Valeo Vision Optical module for a light-emitting system for a motor vehicle
FR3124572A1 (en) * 2021-06-25 2022-12-30 Valeo Vision Optical module of a lighting system of a motor vehicle

Also Published As

Publication number Publication date
JP2021534538A (en) 2021-12-09
CN112543850A (en) 2021-03-23
KR102460103B1 (en) 2022-10-31
EP3833904B1 (en) 2022-02-23
KR20210022081A (en) 2021-03-02
EP3833904A1 (en) 2021-06-16
WO2020030573A1 (en) 2020-02-13
US20210341122A1 (en) 2021-11-04
US11280463B2 (en) 2022-03-22
JP7072120B2 (en) 2022-05-19
CN112543850B (en) 2022-12-16

Similar Documents

Publication Publication Date Title
EP3833904B1 (en) Projection device, light module and motor vehicle headlamp made from micro optics
AT517887B1 (en) Microprojection light module for vehicle headlights
EP3365594B1 (en) Micro-projection light module for a motor vehicle headlight, for achieving aplanatic light distrubtion
EP3714205B1 (en) Light module for a motor vehicle headlamp
EP3429891A1 (en) Floodlight for a motor vehicle
EP3282181B1 (en) Microoptic lenses on glass with printed diaphragm - concept and production method
AT511760B1 (en) LED LIGHT SOURCE MODULE FOR A LED MOTOR VEHICLE HEADLIGHT AND LED MOTOR VEHICLE HEADLAMP AND HEADLAMP SYSTEM
EP3864341B1 (en) Low-beam headlight
DE102011078653B4 (en) Attachment optics for the bundling of emitted light of at least one semiconductor light source
WO2017157623A1 (en) Headlight for a motor vehicle
EP3833903B1 (en) A light module for a motor vehicle headlamp with a plurality of micro-optics systems
AT512468A1 (en) LIGHTING MODULE FOR A MOTOR VEHICLE
DE102015104514A1 (en) Lighting device for vehicles
EP3350505A1 (en) Light-source arrangement in a pixel-light light module
EP3301350B1 (en) Light module for a motor vehicle headlamp
AT519863B1 (en) Automotive vehicle lighting device with subdivided micro-optics systems having micro-entry optics
DE102013215359B3 (en) Mechanically-free bend lighting module
EP3671304B1 (en) Method for constructing an optical element for a motor vehicle headlight
EP3721134B1 (en) Projection device for a motor vehicle headlight
DE102015219211A1 (en) Light module for a vehicle lighting device
EP3230650B1 (en) Headlight for vehicles
DE102018217651A1 (en) Light module for a lighting device of a motor vehicle
EP3875846A1 (en) Motor vehicle headlamp
WO2024062108A1 (en) Low-beam headlight and method for manufacturing same
DE102019125971A1 (en) Motor vehicle headlight with a light module and a broadly illuminated light exit lens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200813