EP3474243A1 - A transaction device and a method of currency item replenishment in a transaction device - Google Patents

A transaction device and a method of currency item replenishment in a transaction device Download PDF

Info

Publication number
EP3474243A1
EP3474243A1 EP17197216.9A EP17197216A EP3474243A1 EP 3474243 A1 EP3474243 A1 EP 3474243A1 EP 17197216 A EP17197216 A EP 17197216A EP 3474243 A1 EP3474243 A1 EP 3474243A1
Authority
EP
European Patent Office
Prior art keywords
transaction
currency item
currency
transaction device
denominations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17197216.9A
Other languages
German (de)
French (fr)
Other versions
EP3474243B1 (en
Inventor
Dylan Sumner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Technology Ltd
Original Assignee
Innovative Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Technology Ltd filed Critical Innovative Technology Ltd
Priority to ES17197216T priority Critical patent/ES2919791T3/en
Priority to EP17197216.9A priority patent/EP3474243B1/en
Publication of EP3474243A1 publication Critical patent/EP3474243A1/en
Application granted granted Critical
Publication of EP3474243B1 publication Critical patent/EP3474243B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/20Controlling or monitoring the operation of devices; Data handling
    • G07D11/24Managing the stock of valuable papers
    • G07D11/245Replenishment
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/20Controlling or monitoring the operation of devices; Data handling
    • G07D11/32Record keeping
    • G07D11/34Monitoring the contents of devices, e.g. the number of stored valuable papers

Definitions

  • the present invention generally relates to the management of cash levels in machines configured to accept currency items in exchange for goods and/or services.
  • the present invention relates to a method of managing currency item replenishment in a transaction device adapted to receive coins or banknotes or a combination of the two.
  • vending machines and gaming machines include a currency item acceptor/dispenser and a cashbox.
  • the cashbox will be periodically emptied and replenished with a predetermined quantity of currency items in the form of a cash 'float'.
  • a cash float will comprise a given number of each of the currency denominations that is accepted by the transaction machine, and the levels for each denomination are usually calculated to ensure an adequate supply of currency items (banknotes and coins) for dispensing as change to a user of the machine when required.
  • the present invention seeks to address the aforementioned problems that are associated with the prior art.
  • a method of managing currency item replenishment in a transaction device configured to accept a plurality m of currency item denominations, wherein the method comprises analysing transaction history data to produce at least one statistical distribution from which an optimum currency item replenishment period and currency item replenishment levels are determined.
  • the method comprises: monitoring a plurality of monetary transactions executed by said transaction apparatus; determine for each of the plurality of currency item denominations a net payout per transaction distribution over the plurality of monetary transactions; determine a probability density function for currency exhaustion after n transactions for each of the m currency item denominations; determine a global probability density function for currency exhaustion of at least one of the plurality of currency item denominations after n transactions based on the m probability density functions; iteratively adjust the probability density function for each of the m currency item denominations by exchanging currency item quantity allocation q between the m currency item denominations until the number of transactions N at which the global probability density function equals a predetermined probability T converges to a stationary value; and use the stationary value of N to calculate the optimum currency item replenishment period and set q for which N is stationary to be the optimum currency item replenishment level.
  • the optimum currency item replenishment period can be calculated using the average time elapsed between each of the n transactions.
  • transaction history data is monitored and collected locally by the transaction apparatus.
  • transaction history data is monitored and collected by a remote processing means via a wired or a wireless network connection.
  • the transaction control means is configured to record transaction history data and includes a statistics module.
  • the remote processing means includes a statistics module.
  • the transaction device is configured to accept and process coins and/or banknotes.
  • a transaction device configured to accept a plurality m of currency item denominations, wherein said transaction device comprises: a currency item validator unit including a currency item input/output; a currency item storage means; a currency item transport mechanism interconnecting the currency item validator unit and the currency item storage means; and transaction control means connected to the currency item validator unit and the currency item storage means; wherein the transaction control means is configured to record transaction history data.
  • the transaction control means includes a statistics module configured to execute statistical analysis of transaction history data.
  • the transaction device includes a wired or wireless network interface configured to communicate with a remote processing means.
  • the transaction device is configured to accept and process coins and/or banknotes.
  • the transaction control means is configured to execute the method as claimed in any of claims 1 to 6.
  • the remote processing means is configured to execute the method as claimed in any of claims 1 to 6.
  • a transaction device 1 of the present invention comprises a currency item validator unit 2 and a currency item storage means 4.
  • the currency item validator unit 2 may be a conventional coin validator/acceptor, a conventional banknote validator/acceptor, or a combination unit configured to validate both coins and banknotes.
  • the currency item validator unit 2 includes a currency input/output 3 enabling the transaction device 1 to receive and dispense currency items.
  • the currency item validator unit 2 is interconnected with the currency item storage means 4 via a currency transport mechanism 5 which is adapted to transport currency items to and from the currency item storage means 4 in any of the known conventional ways.
  • the transaction device 1 includes a transaction control means 6 which is configured to monitor the input of currency items and record the number of each denomination of currency items that is dispensed during any given period of transaction operations.
  • the transaction control means 6 may be a microprocessor or other such suitable processing unit connected to both the currency item validator unit 2 and the currency item storage means 4.
  • the transaction control means 6 incorporates a statistics module (not shown) for implementing statistical analysis of transaction data and executing associated statistical algorithms.
  • a display unit 7 is provided to enable an operative attending the transaction device 1 to obtain transaction data from the transaction control means 6.
  • the transaction device 1 incorporates a network connection 8 to enable transaction data to a be accessed from a remote location.
  • the network connection may be an interface for a wired or wireless network.
  • the network connection 8 enables remote interrogation of the transaction device 1 via the Internet.
  • other networks can be utilised such as mobile telephone networks or an ultra-narrowband low power wide area network, for example.
  • the currency item storage means 4 may take the form of a multi-denomination coin hopper as are well known in the art.
  • the storage means 6 may be one or more banknote storage drums or stacker units. Such banknote storage devices are also well known in the art.
  • the transaction device 1 is configured to accept and process m denominations of currency items (banknotes or coins).
  • m 8.
  • the transaction device was configured to accept coins only and the denominations acceptable were: €0.01, €0.02, €0.05, €0.1, €0.2, €0.5, €1, and €2.
  • the denominations acceptable were: €0.01, €0.02, €0.05, €0.1, €0.2, €0.5, €1, and €2.
  • any number of denominations may be used in the method according to the present invention.
  • the task is therefore to determine an optimal level for Q in order that over a given transaction period, which may be a number of days, weeks or months, the probability of coin starvation for any denomination is minimised or kept within a predetermined risk level T [see below].
  • FIG. 2 An example histogram is shown in Figure 2 , and the distribution illustrates the net change in coin levels per 10 transactions.
  • a transaction is defined as any coin input or output event at a given transaction device.
  • PDF probability density function
  • Line 18 represents a predetermined threshold probability. In the example shown this has been selected to be a probability of 0.05, and this represents a chosen acceptable risk for a coin starvation event. It should be understood that this level can be set at any risk value and this is determined by the operator of the transaction device.
  • line 10 represents the PDF for €0.1 coins
  • line 11 is the PDF for €0.05 coins
  • line 12 is the PDF for €1.0 coins
  • line 13 is the PDF for €0.50 coins
  • line 14 is the PDF for €2 coins
  • line 15 is the PDF for €0.02 coins
  • line 16 is the PDF for €0.01 coins
  • line 17 is the PDF for €0.20 coins.
  • f i n ⁇ ⁇ ⁇ ⁇ q i 1 ⁇ i 2 ⁇ n e ⁇ ( x ⁇ n ⁇ i ) 2 2 n 2 ⁇ i 2 d x
  • Equation (6) provides a means of predicting the probability of each denomination running out after a certain number of transactions given an initial quantity of coins q m for each of the m denominations.
  • An example of a global probability function is shown as line 20 in Figure 4 .
  • T is the predetermined threshold probability, i.e. the maximum acceptable probability of a coin starvation event irrespective of denomination
  • t 1 ⁇ T m
  • N is the number of transactions that have occurred before the likelihood of a coin starvation event for any one of the m denominations of coins has reached the probability T .
  • transaction device operators prefer to maximise the time period between transaction device replenishment operations whilst maintaining a more-or-less constant monetary balance in each of the transaction devices for which they are responsible.
  • ⁇ i is the monetary value of the ith denomination ( €2 for example)
  • c i is the number of units of capacity occupied by a coin of the ith denomination.
  • a unit of capacity can be the volume that a single coin (or banknote) occupies or it might be the width of the coin (or banknote).
  • the unit of capacity might be the proportion of the total capacity of the transaction device a single coin occupies or some other suitable metric of capacity.
  • n i at probability t The number q i of coins of the denomination having the largest value of n i at probability t is reduced and the number of coins for the denomination with the lowest value of n i at probability t is increased by a weighted amount that satisfies the combined requirements of equations (9) and (10).
  • a new value of n i at probability t is then determined for each denomination and these new values are compared with the median value for n i from the family of denomination distributions [see Figure 3 ].
  • the process is repeated until one of either of the recalculated values for n i changes from being more than the value of the median n i to being less than the value of the median n i , or one of either of the recalculated n i changes from being less than the value of the median n i to being more than the value of the median n i .
  • a new value for N is determined and the current value for each q i is recorded.
  • Step 1 is repeated until the numerical range n 1 - n 8 has become fixed and no substantial change is seen and/or the value of N has reached a static limit and further iterations of Step 2 yield no overall change.
  • Step 2 When Step 2 has reached a static conclusion the current values for each q 1 to q 8 are rounded to the nearest whole number and these values are determined to be the optimum coin replenishment levels for each of the respective eight coin denominations.
  • a time period can be calculated from which an optimum coin replenishment frequency can be determined. Typically, this will be calculated by determining the average time span between transactions and multiplying this period by N to yield a future time point by when a replenishment operation should take place.
  • Figure 3 shows a family of distributions for Euro coins. After executing the steps discussed above the following values for q were determined:
  • the average time between transactions was determined to be approximately 25 minutes. From this it is calculated that the optimum frequency for replenishment operations would be 560 hours, which equates to 10 days when rounded to the nearest whole number of days.
  • the cash float for this particular device is €502.65 made up of the above numbers of coins for each denomination, and the transaction device needs to be replenished with this amount every 10 days until and unless a repeat of the above described calculation steps yields a different float level and/or replenishment frequency.
  • this example is specific to a certain transaction device for a particular transaction observance period, and that for any given transaction device 1, the process of float optimisation is dynamic and is executed repeatedly. The frequency of execution of the optimisation process, and the number of historical transactions that are observed before conducting an optimisation, is determined an implemented by the operator of the transaction device(s).
  • the float level and replenishment frequency will be determined by operation of the transaction control means 6 statistics module, and this information will be displayed on the display unit 7 from where the details can be noted by a transaction operative during a routine visit to the transaction device 1.
  • Step 1 or Step 2 it may be desirable to ensure that the quantity of certain denominations of coins never falls below a predetermined minimum or goes above a predetermined maximum. In this instance if the q i allocation for a particular denomination in Step 1 or Step 2 becomes too low or too high, then the process switches to the denomination with the next lowest or next highest n i as appropriate.
  • Figure 5 shows the change in the replenishment frequency for a given transaction device subsequent to the execution and implementation of the above described optimisation process.
  • Graph 21 shows the occurrences 21' of refill operations before optimisation
  • graph 22 shows the frequency of refill operations after optimisation. It can be seen from a comparison of the two graphs that the occurrences 22' of refill operations after optimisation has clearly reduced and the period between replenishment operations has become more regular.
  • Figure 6 illustrates an alternative embodiment of the present invention in which optimisation of float levels for a network of transaction devices is controlled from a central, remote location.
  • a plurality of transaction devices is connected to a transaction server 24 and/or a central transaction terminal 25 via a network 23.
  • the network 23 may be wired or wireless, but preferably the transaction server 24 and/or the central transaction terminal 25 communicate with the transaction devices 1 over the Internet.
  • transaction data is collected by the transaction control means 6 from each of the transaction devices 1, and this data is transferred to the transaction server 24.
  • the transaction server 24 includes a statistics module [not shown] which collates and stores the transaction data for each transaction device and performs the statistical analysis and optimisation steps as described above.
  • the operator of the network of transaction devices can access the results of the statistical and optimisation procedure via a central transaction terminal 25.
  • the central transaction terminal 25 will display to the operator a suitable user interface which details the location and identity of each transaction device 1 in the network, along with the forecast float level (comprising the quantity q i for each currency item denomination) and the date at which the next replenishment operation should occur. Alternatively, this information is automatically forwarded to the central transaction terminal 25 from the transaction server 24 at suitable periodic intervals.
  • this enables the operator to plan and schedule a replenishment routine that takes into account the location, replenishment forecast date and requisite float level for each of the transaction devices within the network of devices for which the operator has responsibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

A method and device for managing currency item replenishment in a transaction device (1) configured to accept a plurality m of currency item denominations, wherein the method comprises analysing transaction history data to produce statistics from which an optimum currency item replenishment period and currency item replenishment levels are determined.

Description

  • The present invention generally relates to the management of cash levels in machines configured to accept currency items in exchange for goods and/or services. In particular, the present invention relates to a method of managing currency item replenishment in a transaction device adapted to receive coins or banknotes or a combination of the two.
  • Although the invention will be described in the context of coin handling, this is only for convenience, and it should be understood that the present invention is equally applicable to the handling of other items of currency, such as banknotes for example.
  • Conventionally, vending machines and gaming machines, or other similar transaction machines or coin-freed apparatus, include a currency item acceptor/dispenser and a cashbox. Typically, the cashbox will be periodically emptied and replenished with a predetermined quantity of currency items in the form of a cash 'float'. A cash float will comprise a given number of each of the currency denominations that is accepted by the transaction machine, and the levels for each denomination are usually calculated to ensure an adequate supply of currency items (banknotes and coins) for dispensing as change to a user of the machine when required.
  • A problem exists in that the periodic emptying of transaction machine cashboxes and the refilling of them with a predetermined float level of currency items is time consuming and inefficient. Furthermore, it is difficult to strike a balance between maintaining float levels that are adequate for continuous transaction machine functioning whilst avoiding a situation in which large volumes of cash are being unnecessarily stored within the transaction machine. Also, different transaction machines often require differing float levels. For instance, a gaming machine will typically have a much larger cash float than, say, a vending machine, since gaming machines need to retain sufficient amounts of currency items in order to meet the demands of jackpot and prize win payouts.
  • A further problem arises in relation to the geographic location of transaction machines. Transaction machines in some locations may experience much greater use than machines in other areas leading to the need for a higher frequency of collection and replenishment operations.
  • The present invention seeks to address the aforementioned problems that are associated with the prior art.
  • According to an aspect of the present invention there is provided a method of managing currency item replenishment in a transaction device configured to accept a plurality m of currency item denominations, wherein the method comprises analysing transaction history data to produce at least one statistical distribution from which an optimum currency item replenishment period and currency item replenishment levels are determined.
  • Preferably, the method comprises: monitoring a plurality of monetary transactions executed by said transaction apparatus; determine for each of the plurality of currency item denominations a net payout per transaction distribution over the plurality of monetary transactions; determine a probability density function for currency exhaustion after n transactions for each of the m currency item denominations; determine a global probability density function for currency exhaustion of at least one of the plurality of currency item denominations after n transactions based on the m probability density functions; iteratively adjust the probability density function for each of the m currency item denominations by exchanging currency item quantity allocation q between the m currency item denominations until the number of transactions N at which the global probability density function equals a predetermined probability T converges to a stationary value; and use the stationary value of N to calculate the optimum currency item replenishment period and set q for which N is stationary to be the optimum currency item replenishment level.
  • The optimum currency item replenishment level q comprises a set of currency item quantity allocations, and for i = 1 to m, q = q1 + q2 + ... + qm. That is to say, q is the total number of currency items, coins for example, that are required for a given replenishment operation.
  • The optimum currency item replenishment period can be calculated using the average time elapsed between each of the n transactions.
  • Preferably, transaction history data is monitored and collected locally by the transaction apparatus. Alternatively, transaction history data is monitored and collected by a remote processing means via a wired or a wireless network connection.
  • Preferably, the transaction control means is configured to record transaction history data and includes a statistics module. Alternatively, or in addition, the remote processing means includes a statistics module.
  • The transaction device is configured to accept and process coins and/or banknotes.
  • According to another aspect of the present invention there is provided a transaction device configured to accept a plurality m of currency item denominations, wherein said transaction device comprises: a currency item validator unit including a currency item input/output; a currency item storage means; a currency item transport mechanism interconnecting the currency item validator unit and the currency item storage means; and transaction control means connected to the currency item validator unit and the currency item storage means; wherein the transaction control means is configured to record transaction history data.
  • Preferably, the transaction control means includes a statistics module configured to execute statistical analysis of transaction history data.
  • Preferably, the transaction device includes a wired or wireless network interface configured to communicate with a remote processing means.
  • The transaction device is configured to accept and process coins and/or banknotes.
  • Advantageously, the transaction control means is configured to execute the method as claimed in any of claims 1 to 6.
  • Advantageously, the remote processing means is configured to execute the method as claimed in any of claims 1 to 6.
  • An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
    • Figure 1 shows an embodiment of a transaction device according to the present invention;
    • Figure 2 shows a transaction histogram;
    • Figure 3 shows a family of transaction probability distributions;
    • Figure 4 shows a global transaction probability distribution;
    • Figure 5 illustrates the change in the frequency of transaction device refill operations; and
    • Figure 6 shows a network of transaction devices.
  • As shown in Figure 1, a transaction device 1 of the present invention comprises a currency item validator unit 2 and a currency item storage means 4.
  • The currency item validator unit 2 may be a conventional coin validator/acceptor, a conventional banknote validator/acceptor, or a combination unit configured to validate both coins and banknotes. The currency item validator unit 2 includes a currency input/output 3 enabling the transaction device 1 to receive and dispense currency items.
  • The currency item validator unit 2 is interconnected with the currency item storage means 4 via a currency transport mechanism 5 which is adapted to transport currency items to and from the currency item storage means 4 in any of the known conventional ways.
  • The transaction device 1 includes a transaction control means 6 which is configured to monitor the input of currency items and record the number of each denomination of currency items that is dispensed during any given period of transaction operations. The transaction control means 6 may be a microprocessor or other such suitable processing unit connected to both the currency item validator unit 2 and the currency item storage means 4.
  • Advantageously, the transaction control means 6 incorporates a statistics module (not shown) for implementing statistical analysis of transaction data and executing associated statistical algorithms.
  • A display unit 7 is provided to enable an operative attending the transaction device 1 to obtain transaction data from the transaction control means 6.
  • The transaction device 1 incorporates a network connection 8 to enable transaction data to a be accessed from a remote location. The network connection may be an interface for a wired or wireless network. Preferably, the network connection 8 enables remote interrogation of the transaction device 1 via the Internet. However, it should be understood that other networks can be utilised such as mobile telephone networks or an ultra-narrowband low power wide area network, for example.
  • The currency item storage means 4 may take the form of a multi-denomination coin hopper as are well known in the art. Alternatively, or in combination, the storage means 6 may be one or more banknote storage drums or stacker units. Such banknote storage devices are also well known in the art.
  • In operation, the transaction device 1 is configured to accept and process m denominations of currency items (banknotes or coins). In the example discussed below m = 8. Here, the transaction device was configured to accept coins only and the denominations acceptable were: €0.01, €0.02, €0.05, €0.1, €0.2, €0.5, €1, and €2. However, it should be noted that any number of denominations may be used in the method according to the present invention.
  • In a given transaction device 1 the initial quantity of coins stored in the currency item storage means 6 is defined as Q, where Q = [q1, q2, ..., qm] and qm is the number of coins stored for the mth denomination. The task is therefore to determine an optimal level for Q in order that over a given transaction period, which may be a number of days, weeks or months, the probability of coin starvation for any denomination is minimised or kept within a predetermined risk level T [see below].
  • Firstly, it is necessary to make predictions as to when each denomination will run out, and this is done by recording and analysing the transaction history of a particular transaction device and using this information to extrapolate probabilities of coin starvation events. In a preferred embodiment the transaction history data is recorded and compiled by the transaction control means 6. This data is then analysed to produce histograms of the net payout per transaction for each of the m denominations.
  • An example histogram is shown in Figure 2, and the distribution illustrates the net change in coin levels per 10 transactions. A transaction is defined as any coin input or output event at a given transaction device.
  • From normalised histogram data a probability density function (PDF) for each of the m denominations can be determined from the mean (µ) and standard deviation (σ) of the collated transaction data.
  • If data is obtained for the net coin change per n transactions, then the central limit theorem predicts that as n approaches infinity the PDF tends to an approximation of a normal distribution. Consequently, for any given n transactions probability density function parameters can be defined as: μ n =
    Figure imgb0001
    σ n 2 = 2
    Figure imgb0002
  • From equations (1) and (2) a probability density function can be defined by: f x = 1 σ 2 πn e ( x ) 2 2 n 2 σ 2
    Figure imgb0003
    where x is the net change in coin numbers per transactions. From equation (3) it is possible to construct a family of probability distributions as shown in Figure 3.
  • In the example illustrated by Figure 3 we have a separate distribution (labelled 10 to 17) for each coin denomination. Line 18 represents a predetermined threshold probability. In the example shown this has been selected to be a probability of 0.05, and this represents a chosen acceptable risk for a coin starvation event. It should be understood that this level can be set at any risk value and this is determined by the operator of the transaction device.
  • From Figure 3 it can be seen that as the number of transactions increases the probability of a coin starvation event increases for each denomination. In the example shown line 10 represents the PDF for €0.1 coins, line 11 is the PDF for €0.05 coins, line 12 is the PDF for €1.0 coins, line 13 is the PDF for €0.50 coins, line 14 is the PDF for €2 coins, line 15 is the PDF for €0.02 coins, line 16 is the PDF for €0.01 coins, and line 17 is the PDF for €0.20 coins. It should be understood that this family of PDFs is an example only, each transaction device will have a unique set of PDFs and these may change over time.
  • It can be seen from line 10 in Figure 3 that the probability of coin starvation occurring for €0.1 coins, for example, crosses the acceptable threshold probability at around 500 transactions. In contrast, the PDF for €0.10 coins (line 16) does not exceed the threshold until around 900 transactions.
  • For a particular given denomination i the probability of running out as a function of n is given by: f i n = q i 1 σ i 2 πn e ( x i ) 2 2 n 2 σ i 2 x
    Figure imgb0004
  • Equation (4) can be expressed in terms of an the error function: f i n = 1 2 er f q i i σ i n 2 + 1 2
    Figure imgb0005
  • From equation (5) a global risk function F(n) for a coin starvation event occurring for any one of the m denominations can be determined and this is given by: F n = 1 i = 1 m 1 f i n
    Figure imgb0006
  • Equation (6) provides a means of predicting the probability of each denomination running out after a certain number of transactions given an initial quantity of coins q m for each of the m denominations. An example of a global probability function is shown as line 20 in Figure 4.
  • If T is the predetermined threshold probability, i.e. the maximum acceptable probability of a coin starvation event irrespective of denomination, then T comprises a set t 1, t 2 , ..., t m of maximum acceptable probabilities for a coin starvation event for each denomination. From equation (6) T is defined as: T = 1 i = 1 m 1 t i
    Figure imgb0007
  • Assuming that the probability of a coin starvation event occurring is the same for each denomination, i.e. t1 = t2 = ... tm = t, then t is defined as: t = 1 T m
    Figure imgb0008
  • From equation (6) a value N can be determined, where N is the number of transactions that have occurred before the likelihood of a coin starvation event for any one of the m denominations of coins has reached the probability T.
  • OPTIMISATION
  • Conventionally, transaction device operators prefer to maximise the time period between transaction device replenishment operations whilst maintaining a more-or-less constant monetary balance in each of the transaction devices for which they are responsible.
  • Maximising the time period between replenishments and maintaining a constant monetary balance is equivalent to maximising the number of transactions that have occurred before the probability density function for a particular denomination is equal to t. From this it is possible to define a constant total monetary value Z for a transaction device with a given coin capacity cmax , where: Z = i = 1 m υ i q i
    Figure imgb0009
    c max i = 1 m c i q i
    Figure imgb0010
  • Here υ i
    Figure imgb0011
    is the monetary value of the ith denomination (€2 for example), and c i is the number of units of capacity occupied by a coin of the ith denomination. Here, a unit of capacity can be the volume that a single coin (or banknote) occupies or it might be the width of the coin (or banknote). Alternatively, the unit of capacity might be the proportion of the total capacity of the transaction device a single coin occupies or some other suitable metric of capacity.
  • To determine optimal coin levels for each coin denomination it is necessary to perform a redistribution operation on the number of units of capacity that are allocated to each of the coin denominations. This process follows the steps described below.
  • Step 1
  • The number qi of coins of the denomination having the largest value of n i at probability t is reduced and the number of coins for the denomination with the lowest value of n i at probability t is increased by a weighted amount that satisfies the combined requirements of equations (9) and (10). A new value of n i at probability t is then determined for each denomination and these new values are compared with the median value for n i from the family of denomination distributions [see Figure 3]. The process is repeated until one of either of the recalculated values for n i changes from being more than the value of the median n i to being less than the value of the median n i , or one of either of the recalculated n i changes from being less than the value of the median n i to being more than the value of the median n i . At this point a new value for N is determined and the current value for each q i is recorded.
  • Step 2
  • Step 1 is repeated until the numerical range n 1- n 8 has become fixed and no substantial change is seen and/or the value of N has reached a static limit and further iterations of Step 2 yield no overall change.
  • When Step 2 has reached a static conclusion the current values for each q 1 to q 8 are rounded to the nearest whole number and these values are determined to be the optimum coin replenishment levels for each of the respective eight coin denominations.
  • From the static value of N a time period can be calculated from which an optimum coin replenishment frequency can be determined. Typically, this will be calculated by determining the average time span between transactions and multiplying this period by N to yield a future time point by when a replenishment operation should take place.
  • EXAMPLE
  • Figure 3 shows a family of distributions for Euro coins. After executing the steps discussed above the following values for q were determined:
    • q 1 (€0.1 coin) = 50
    • q 2 (€0.05 coin) = 25
    • q 3 (€1.0 coin) = 165
    • q 4 (€0.50 coin) = 80
    • q 5 (€2.0 coin) = 138
    • q 6 (€0.02 coin) = 15
    • q 7 (€0.01 coin) = 10
    • q 8 (€0.2 coin) = 75
    • N = 560 transactions.
  • For this particular transaction device, the average time between transactions was determined to be approximately 25 minutes. From this it is calculated that the optimum frequency for replenishment operations would be 560 hours, which equates to 10 days when rounded to the nearest whole number of days.
  • Consequently, the cash float for this particular device is €502.65 made up of the above numbers of coins for each denomination, and the transaction device needs to be replenished with this amount every 10 days until and unless a repeat of the above described calculation steps yields a different float level and/or replenishment frequency. It should be noted that this example is specific to a certain transaction device for a particular transaction observance period, and that for any given transaction device 1, the process of float optimisation is dynamic and is executed repeatedly. The frequency of execution of the optimisation process, and the number of historical transactions that are observed before conducting an optimisation, is determined an implemented by the operator of the transaction device(s).
  • Typically, the float level and replenishment frequency will be determined by operation of the transaction control means 6 statistics module, and this information will be displayed on the display unit 7 from where the details can be noted by a transaction operative during a routine visit to the transaction device 1.
  • In some situations, it may be desirable to ensure that the quantity of certain denominations of coins never falls below a predetermined minimum or goes above a predetermined maximum. In this instance if the q i allocation for a particular denomination in Step 1 or Step 2 becomes too low or too high, then the process switches to the denomination with the next lowest or next highest n i as appropriate.
  • Figure 5 shows the change in the replenishment frequency for a given transaction device subsequent to the execution and implementation of the above described optimisation process.
  • Graph 21 shows the occurrences 21' of refill operations before optimisation, and graph 22 shows the frequency of refill operations after optimisation. It can be seen from a comparison of the two graphs that the occurrences 22' of refill operations after optimisation has clearly reduced and the period between replenishment operations has become more regular.
  • Figure 6 illustrates an alternative embodiment of the present invention in which optimisation of float levels for a network of transaction devices is controlled from a central, remote location.
  • Here, a plurality of transaction devices is connected to a transaction server 24 and/or a central transaction terminal 25 via a network 23. The network 23 may be wired or wireless, but preferably the transaction server 24 and/or the central transaction terminal 25 communicate with the transaction devices 1 over the Internet.
  • In this embodiment transaction data is collected by the transaction control means 6 from each of the transaction devices 1, and this data is transferred to the transaction server 24. The transaction server 24 includes a statistics module [not shown] which collates and stores the transaction data for each transaction device and performs the statistical analysis and optimisation steps as described above.
  • The operator of the network of transaction devices can access the results of the statistical and optimisation procedure via a central transaction terminal 25. The central transaction terminal 25 will display to the operator a suitable user interface which details the location and identity of each transaction device 1 in the network, along with the forecast float level (comprising the quantity q i for each currency item denomination) and the date at which the next replenishment operation should occur. Alternatively, this information is automatically forwarded to the central transaction terminal 25 from the transaction server 24 at suitable periodic intervals.
  • Advantageously, this enables the operator to plan and schedule a replenishment routine that takes into account the location, replenishment forecast date and requisite float level for each of the transaction devices within the network of devices for which the operator has responsibility.

Claims (16)

1. A method of managing currency item replenishment in a transaction device configured to accept a plurality m of currency item denominations, wherein the method comprises analysing transaction history data to produce at least one statistical distribution from which an optimum currency item replenishment period and currency item replenishment levels are determined.
2. A method as claimed in claim 1, wherein the method comprises:
monitoring a plurality of monetary transactions executed by said transaction apparatus;
determine for each of the plurality of currency item denominations a net payout per transaction distribution over the plurality of monetary transactions;
determine a probability density function for currency exhaustion after n transactions for each of the m currency item denominations;
determine a global risk function for currency exhaustion of at least one of the plurality of currency item denominations after n transactions based on the m probability density functions;
iteratively adjust the probability density function for each of the m currency item denominations by exchanging currency item quantity allocation q between the m currency item denominations until the number of transactions N at which the global risk function equals a predetermined probability T converges to a stationary value; and
use the stationary value of N to calculate the optimum currency item replenishment period and set q for which N is stationary to be the optimum currency item replenishment level.
3. A method as claimed in claim 2, wherein q comprises a set of currency item quantity allocations and for i = 1 to m, q = q1 + q2 + ... + qm.
4. A method as claimed in claim 3, wherein the optimum currency item replenishment period is calculated using the average time elapsed between each of the n transactions.
5. A method as claimed in claim 2, wherein transaction history data is monitored and collected locally by the transaction apparatus.
6. A method as claimed in claim 2, wherein transaction history data is monitored and collected by a remote processing means via a wired or a wireless network connection.
7. A method as claimed in claim 5 or 6, wherein a transaction control means is configured to record transaction history data.
8. A method as claimed in claim 7, wherein the transaction control means includes a statistics module.
9. A method as claimed in claim 6, wherein the remote processing means includes a statistics module.
10. A method as claimed in any preceding claim, wherein the transaction device is configured to accept and process coins and/or banknotes.
10. A transaction device configured to accept a plurality m of currency item denominations, wherein said transaction device comprises:
a currency item validator unit including a currency item input/output;
a currency item storage means;
a currency item transport mechanism interconnecting the currency item validator unit and the currency item storage means; and
transaction control means connected to the currency item validator unit and the currency item storage means;
wherein the transaction control means is configured to record transaction history data.
11. A transaction device as claimed in claim 10, wherein the transaction control means includes a statistics module configured to execute statistical analysis of transaction history data.
12. A transaction device as claimed in claim 10, wherein the transaction device includes a wired or wireless network interface configured to communicate with a remote processing means.
13. A transaction device as claimed in claim 10, wherein the transaction device is configured to accept and process coins and/or banknotes.
14. A transaction device as claimed in any of claims 10, wherein said transaction control means is configured to execute the method as claimed in any of claims 1 to 6.
15. A transaction device as claimed in claim 12, wherein the remote processing means is configured to execute the method as claimed in any of claims 1 to 6.
EP17197216.9A 2017-10-19 2017-10-19 A transaction device and a method of currency item replenishment in a transaction device Active EP3474243B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES17197216T ES2919791T3 (en) 2017-10-19 2017-10-19 Transaction device and method of replenishing currency elements in a transaction device
EP17197216.9A EP3474243B1 (en) 2017-10-19 2017-10-19 A transaction device and a method of currency item replenishment in a transaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17197216.9A EP3474243B1 (en) 2017-10-19 2017-10-19 A transaction device and a method of currency item replenishment in a transaction device

Publications (2)

Publication Number Publication Date
EP3474243A1 true EP3474243A1 (en) 2019-04-24
EP3474243B1 EP3474243B1 (en) 2022-04-20

Family

ID=60143588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17197216.9A Active EP3474243B1 (en) 2017-10-19 2017-10-19 A transaction device and a method of currency item replenishment in a transaction device

Country Status (2)

Country Link
EP (1) EP3474243B1 (en)
ES (1) ES2919791T3 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158539A1 (en) * 2002-12-25 2004-08-12 Fujitsu Limited Operation plan devising system, operation plan devising apparatus and computer readable record medium storing an operation plan devising program
US20100082355A1 (en) * 2008-09-30 2010-04-01 Bank Of America Corporation Forecasting levels of currency usage and need
US20110225087A1 (en) * 2004-06-21 2011-09-15 Agrawal Subhash C Method of and apparatus for forecasting cash demand and load schedules for money dispensers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158539A1 (en) * 2002-12-25 2004-08-12 Fujitsu Limited Operation plan devising system, operation plan devising apparatus and computer readable record medium storing an operation plan devising program
US20110225087A1 (en) * 2004-06-21 2011-09-15 Agrawal Subhash C Method of and apparatus for forecasting cash demand and load schedules for money dispensers
US20100082355A1 (en) * 2008-09-30 2010-04-01 Bank Of America Corporation Forecasting levels of currency usage and need

Also Published As

Publication number Publication date
EP3474243B1 (en) 2022-04-20
ES2919791T3 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP5671073B2 (en) Currency acceptance device
EP3816948B1 (en) Money depositing/dispensing apparatus
US20210056794A1 (en) Money handling apparatus
JP4452109B2 (en) Fund management system and fund management method
US10169947B1 (en) Transaction device and a method of currency item replenishment in a transaction device
US8651378B2 (en) System and method for monitoring a validator
EP1050857B1 (en) Currency handling apparatus
EP3474243B1 (en) A transaction device and a method of currency item replenishment in a transaction device
GB2553539A (en) A transaction device and a method of currency item replenishment in a transaction device
CN109697520B (en) Transaction device and method for supplementing money items in transaction device
EP0988621B1 (en) Currency handling apparatus
GB2341475A (en) Method and apparatus for controlling the dispensing of money
EP4191504A1 (en) Money processing system and money processing method
EP1777664B1 (en) Coin return process
US11935369B2 (en) Universal cassette for recirculation of bills in multiple systems
US20230326280A1 (en) Mixed denomination cash cassette currency counter
JP2022126476A (en) Security delivery planning device, security delivery planning system, security delivery planning method, and program
JP2021082105A (en) vending machine
JP3419971B2 (en) Coin processing equipment
JPH05197864A (en) Automatic transaction machine
AU2012202011A1 (en) System and Method for Monitoring a Validator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20171019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602017056176

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G07D0011000000

Ipc: G07D0011245000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G07D 11/34 20190101ALI20211018BHEP

Ipc: G07D 11/245 20190101AFI20211018BHEP

INTG Intention to grant announced

Effective date: 20211102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017056176

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1485801

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2919791

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220728

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1485801

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017056176

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231101

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420