EP3382099B1 - Road finisher with heating element for a screed - Google Patents

Road finisher with heating element for a screed Download PDF

Info

Publication number
EP3382099B1
EP3382099B1 EP17163614.5A EP17163614A EP3382099B1 EP 3382099 B1 EP3382099 B1 EP 3382099B1 EP 17163614 A EP17163614 A EP 17163614A EP 3382099 B1 EP3382099 B1 EP 3382099B1
Authority
EP
European Patent Office
Prior art keywords
screed
control device
resistance heating
generator
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17163614.5A
Other languages
German (de)
French (fr)
Other versions
EP3382099A1 (en
Inventor
Martin Buschmann
Ralf Weiser
Roman Munz
Christian Dr. Pawlik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP17163614.5A priority Critical patent/EP3382099B1/en
Priority to PL17163614T priority patent/PL3382099T3/en
Priority to JP2018044006A priority patent/JP6637536B2/en
Priority to CN201820414988.XU priority patent/CN208933801U/en
Priority to CN201810255223.0A priority patent/CN108691259B/en
Priority to BR102018006136-4A priority patent/BR102018006136B1/en
Priority to US15/938,795 priority patent/US10538886B2/en
Publication of EP3382099A1 publication Critical patent/EP3382099A1/en
Application granted granted Critical
Publication of EP3382099B1 publication Critical patent/EP3382099B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/42Machines for imparting a smooth finish to freshly-laid paving courses other than by rolling, tamping or vibrating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4833Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with tamping or vibrating means for consolidating or finishing, e.g. immersed vibrators, with or without non-vibratory or non-percussive pressing or smoothing means
    • E01C19/4853Apparatus designed for railless operation, e.g. crawler-mounted, provided with portable trackway arrangements
    • E01C19/486Apparatus designed for railless operation, e.g. crawler-mounted, provided with portable trackway arrangements with non-vibratory or non-percussive pressing or smoothing means; with supplemental elements penetrating the paving to work the material thereof
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/14Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces for heating or drying foundation, paving, or materials thereon, e.g. paint
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/10Heated screeds
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/14Extendable screeds

Definitions

  • the present invention relates to a road paver with resistance heating element for a screed and a method for heating compression units of a screed paver.
  • the screed with the compression units, such.
  • Glättbleche and pressure bars to heat electrically.
  • These components must be heated to prevent sticking of the also heated paving material.
  • the temperature of the paving material in the processing state is approx. 160 - 185 ° C.
  • Resistance heating elements with heating wire windings are therefore attached to the screed of the road paver, which pre-heat the screed to the required operating temperature before installation, and maintain it during the installation operation.
  • the power and voltage supply of the resistance heating elements is usually carried out by a generator which is driven by a primary drive, usually a diesel engine.
  • a primary drive usually a diesel engine.
  • individual resistance heating elements of different screed segments clocked, ie alternately, to operate, as for example in the EP 1 036 883 B1 is described.
  • the timing can also take into account the temperature of the screed segments.
  • resistance heating elements which comprise a plurality of heating coils or heating wire windings, wherein the heating power of each of the heating coils corresponds to the nominal heating power of the resistance heating element, which provides redundancy in the event of a failure of a heating coil.
  • a generator due to different engine speed provide variable electrical power, as in WO 2014/124545 A1 is described.
  • the aforementioned variants have deficits in operating the resistance heating elements and the generator in an optimum efficiency and at the same time to make the best possible use of the performance of the existing components.
  • other demands on generator and resistance heating elements are made, as is the case during installation operation.
  • screeds are known in various configurations.
  • Such screeds usually comprise a fixed size ground beam which can be dimensionally changed by selective attachment or removal of broadening members to produce the particular desired road width. This size change also requires a heating power adjustment of the screed heating.
  • the US 8,961,064 B2 and the US 2014/0294503 A1 describe one Heating system for a screed with detection of the attached widening parts.
  • EP 3 075 909 A1 a road construction machine with a network in which a part of a power line is used for data transmission.
  • the EP 2 439 333 A2 shows a heating system for a screed, in which the heating is controlled by means of temperature sensors and in case of failure of one or more temperature sensors correspondingly suitable replacement sensors are used. It is possible, depending on the heating power requirement, the heating of different areas of the screed on or off. For example, the heating can be limited to a rear section of the screed.
  • the present invention has the object to overcome the above problems and to provide a paver with a screed, which optimally exploits the generator and power capacity due to its design and control. This object is achieved by a paver with resistance heating element for a screed according to claim 1 and a method for heating compression units of a screed paver according to claim 16. Advantageous developments of the invention are specified in the dependent claims.
  • a road paver includes among other elements a generator, a control device and a screed, the screed compacting units, such as.
  • the screed compacting units such as.
  • As tamper, Glättbleche and pressure strips, and at least one of the generator with power supplied electrical resistance heating element for heating the compression units comprises.
  • the screed preferably mounted interchangeably on a tractor of the paver comprises at least one base board and widening parts and is adapted to selectively extend or remove these widening parts, which may be detachable extension elements of fixed length or sliding extension elements, from a first to at least a second one Screed configuration to be rebuilt.
  • left and right pull-out elements which are already connected to the base pile, be pulled out to obtain a larger working width.
  • the broadening parts can also be in variants, which are first attached to the base board and / or on Ausziehelementen and fixed to widen the screed.
  • the broadening can also take place by a plurality of pull-out elements and / or supplementary elements per side, and these can be fastened to one another and / or to the base pile.
  • the electrical resistance heating element comprises at least two heating wire windings which are insulated from one another by current and voltage and which are controlled individually by the control device. and can be switched off.
  • the control device is configured such that it performs the circuit of Walkerdrahtwicklonne in response to a previously determined screed configuration to distribute generated by the generator electrical power to the individual Schudrahtwicklonne.
  • the configuration ie the type, the size and the structure of the screed, is determined in order to individually switch the heating wire windings of the one or more resistance heating elements on at least the base screed.
  • the electric power provided by the generator can already be distributed on the base board on the individual Schudrahtwicklept.
  • the resistance heating element with its two or more Walkerdrahtwicklungen is formed like a module and removably attached to the screed or the compression units. This allows easy handling of the resistance heating element in case of necessary repairs or replacement. Thus, the operation can be continued with a replacement heater when a resistance heating needs repair. Also, the use of various alternative resistance heating elements with different power consumption is conceivable to change over to different operating conditions, such as a summer or winter operation.
  • control device is configured to individually switch on or off, depending on the screed configuration, each of the heating wire windings of the widening parts. If the screed configuration, ie the size and type of the base screed and, if present, the widening parts, is determined by the control device at the start of operation, then this switches the heating wire windings of the resistance heating elements of widening parts as on the base screed individually and as a function of the desired heating characteristic. Thus, for all components of the screed can be made effective and adapted to the operating parameters heating.
  • the main winding may be designed for two thirds and the auxiliary winding for one third of the total possible heating power.
  • This allows operation of the resistance heating element in four stages, zero, one third, two thirds and three thirds of the total power.
  • different heating power stages can be provided which, as described below, can be further varied by means of additional parameters.
  • the specific heating power i. the heating power per area, be varied particularly appropriate.
  • the design-related planning of different heating power ranges makes it possible to adapt the heating wire properties, such as the wire diameter, in order to ensure a heating process with the highest possible efficiency and low material load.
  • the controller is configured to automatically determine the screed configuration.
  • the control device which can be implemented as a microcomputer with appropriate software, is thus programmed to automatically obtain all the information needed to build the screed automatically at start of operation, for example when switching on the paver or the control panel and to consider for the control of screed heating.
  • the control device asks, e.g. First, the data feed channels and receives the type information of all existing screed components.
  • the components may be connected either by cable and corresponding plug connection or by radio with the control device.
  • the actual identification of the individual screed components can take place in various ways.
  • weight sensors connected to the controller may serve to determine the screed configuration, or the screed components may be provided with specific ID tags (identification codes) which are read out.
  • the respectively acquired data are then compared in particular with a database stored in the control device, which can be updated by PC interface.
  • the automatic recognition of the screed configuration offers the machine operator a considerable time saving since manual inputs do not have to be made. Only the desired heating program must be set if necessary.
  • additional sensors such as ambient temperature or screed temperature sensor, additional information relevant for the operation of the screed heating system can be collected, and the control device can then calculate heating programs and propose them to the user.
  • the paver has a power line communication (PLC) base module and the screed one or more PLC modules, which is configured and are interconnected to communicate over the existing power lines.
  • PLC power line communication
  • the control device and / or the PLC base module is configured to detect the structure of the screed by evaluation of the PLC modules by means of PLC data transmission.
  • the data signal is additionally modulated by means of a carrier frequency to the power line which is operated, for example, by 230 V or 400 V, to form the resistance heating elements.
  • the PLC basic module and the PLC modules are mounted and interconnected in such a way that the signals are coupled in and out as well as forwarding control commands.
  • the PLC data transmission is a robust transmission technology and reduces the need for further control lines. This reduces the production costs and thus the manufacturing costs and a possible need for repair. If the PLC modules, which are arranged on the screed, also serve as storage units for information on the type and construction of the screed, further electronic components can be effectively saved.
  • each heating wire winding of the resistance heating element is switched on and off by a switching relay.
  • signal transmission by means of a PLC is also a particularly advantageous variant for construction machines.
  • the paver for each Thompsondrahtwicklung a resistance heating element integrated in a marssheizelementüberwachungsmodul switching relay for connecting or disconnecting the Schudrahtwicklung on.
  • the resistance heating element monitoring module one may be arranged per heating wire winding.
  • the control device is configured and interconnected to control the switching relay via the power line by means of PLC. It is convenient to combine the circuit functions with the resistance heater monitoring modules to save space and effectively utilize existing components.
  • each switching relay of a resistance heating element is connected to a separate power line and a separate control line. Induced by the control signal, which is passed to the switching relay, this establishes or interrupts the flow of current to the Schudrahtwicklung. This allows the use of other signal transmission techniques and the modification of the control line independent of the power supply and vice versa.
  • the components of the screed so the base board and the widening parts, each having two or more resistance heating elements, wherein the number of resistance heating elements of a component is independent of the rest.
  • Each of the resistance heating elements comprises in particular at least two Schudrahtwicklitch. This makes it possible to apply different heating powers to different areas of the screed, which leads to an energy saving when different heat losses, for example from edge areas compared to central areas, occur.
  • the production of smaller modules is also simpler and less expensive, as well as replacement or repair in case of a technical defect, and also the paving operation can be maintained while the remaining resistance heating elements are operated with greater heating power for compensation. It should be noted that the statements preceding and following in this text apply to both one and more resistance heating elements per component.
  • the generator is capable of being operated at variable speed, with the power of the generator increasing with increasing speed.
  • the power and voltage supply of the resistance heating elements can be adapted to the current Schutulas pack the screed.
  • the continuously variable speed control makes it possible to adapt the heating power precisely to the ambient conditions and the operating mode.
  • the respective heating wire winding can be subjected to voltage or current at a height which permits particularly efficient operation.
  • an operating mode of the paver such as "Eco" or "Power” to select.
  • the control device on and off of Wiendrahtwicklungen For example, in a "power" mode, it may be useful to select a maximum speed for which the generator is appropriate, for example, 1500 rpm to achieve the fastest possible heating of the screed or unfavorable conditions, such as particularly low Ambient temperatures, to compensate.
  • the operating mode dependent maximum generator power is determined by the control device and is thus distributed evenly by this on the Schudrahtwicklonne.
  • the circuit of the Schudrahtwicklonne takes place so that the electrical power is used as well as possible.
  • the excitation current which generates the magnetic field can be limited.
  • maximum heating powers of, for example, 35 kW, 31 kW or 25 kW can be set. Since the switching on or off of Bankdrahtwicklonne is crucial for the power consumption of the screed and the Schudrahtwicklache should be operated in the range of their greatest efficiency, the control device is e.g.
  • the controller is configured to vary the heating power of the resistance heating element or resistive heating elements in response to a preset time program or switching pattern.
  • a preset time program or switching pattern it may be expedient to clocked the individual Schudrahtwicklitch a givessheizelements a left screed segment, ie periodically alternating, on and off with the individual Schudrahtwicklungen a becomessheizelements a right screed segment.
  • the heating power requirement due to the given conditions such as ambient temperature, temperature of the paving material, soil temperature, low, so it comes in conjunction with the heat capacity of the compression units to a low heat dissipation, the clocking leads to energy savings.
  • this allows a further subdivision of the power levels described above to eg 1/6 steps of the total power.
  • control device is configured to use signals from sensors, which, for. B. the winding temperature, the winding resistance, the speed, or the voltage output of the generator or other quantities that indicate a load on the generator to adjust the heating power of the resistance heating element or more resistance heating elements to prevent overloading of the generator.
  • sensors which, for. B. the winding temperature, the winding resistance, the speed, or the voltage output of the generator or other quantities that indicate a load on the generator to adjust the heating power of the resistance heating element or more resistance heating elements to prevent overloading of the generator.
  • the heating system can be designed such that the sensor monitored by sensors is operated temporarily with its maximum power output by connecting additional resistance heating elements, which leads in particular in the heating phase to a shortening of the heating time.
  • the heating system may additionally be designed such that later extensions, e.g. Using a generator with higher power or other resistance heating elements, can also be considered electronically.
  • Fig. 1 shows an embodiment of a paver 1 according to the invention in a schematic view, with a heated screed 3 and a tractor 5.
  • a mounting mechanism screeds 3 different types can be interchangeable attached to the tractor 5.
  • a compression unit 7 At the bottom of the screed 3 is a compression unit 7, which forms a flat and solid road surface from the paving material.
  • a weight sensor 8 which is attached to the suspension of the screed 3 on the tractor 5, can serve to determine the screed configuration by means of known weight values of the different models of the screed 3.
  • Fig. 2 shows a schematic view of an embodiment of a road finisher 1 according to the invention with heated screed 3 in a first screed configuration, comprising a base screed 9.
  • a first screed configuration comprising a base screed 9.
  • From the tractor 5 lead two power lines 25 to the base board 9, which essentially serve to power the screed heating and the double execution already suitable for the supply of additional widening parts.
  • the first screed configuration shown already has a sufficient width for the desired area of use.
  • Fig. 3 shows a schematic view of an embodiment of a road finisher 1 according to the invention with heated screed 3 in a second screed configuration, comprising a base board 9 and a left and a right widening part 11, 13.
  • This second screed configuration is used to make wider streets or areas, so for example to asphalt, than in Fig. 2 .
  • the widening parts 11, 13 can be detachably arranged as supplementary elements on the base pile 9 and connected to the base pile 9 via mechanical and / or hydraulic and / or electrical connections 10.
  • a distance between the base board 9 and the widening parts 11, 13 was shown in the drawing.
  • the widening parts 11, 13 are arranged flush with the base board 9, since the road surface has to be formed without bumps or ribs. This would occur if there were gaps between the widening parts 11, 13 and the base board 9.
  • the widening parts 11, 13 can also be pull-out elements, which are arranged on the base pile 9 and can be pulled out laterally wholly or partly thereof.
  • Fig. 4 shows a schematic view of the components and their interconnection of an embodiment of a road paver 1 with heated screed 3.
  • the paver 1 includes the tractor 5 and the screed 3, which includes a base board 9 and here by way of example a left and right widening part 11, 13.
  • the control device 15, a power line communication (PLC) base module 17 and a control panel 21, which is used on the control station of the paver 1 to the operator to control the screed heating on the tractor 5.
  • the tractor 5 comprises a battery 19, which for example provides a 24V power supply and for starting a prime mover, usually a diesel engine, or for supplying the electronic components with the engine off.
  • a generator G is driven by the motor and generates the electrical power for heating the screed 3.
  • a contactor 23 for securing the electronic components is provided.
  • the power lines 25 serve to supply the resistance heating elements 27, and the control signals of the PLC base module 17 are coupled into the power lines 25.
  • a variant is shown, lead away in the two power lines 25 from the contactor 23 and thus from the generator G to supply one half of the screed 3 with electricity.
  • the resistance heating elements 27 are connected via a PLC module 29 to the power lines 25.
  • the PLC module 29 receives the signals for connecting and disconnecting heating wire windings of the resistance heating elements 27 from the control device 15 or the PLC base module 17 and thus switches a switching relay 31 (FIG. Fig. 5 ) for opening and closing the power supply of the respective Schudrahtwicklung.
  • a second control panel 35 may be present on the screed 3 in order to enable a control directly on the screed 3.
  • the screed configuration may be determined by the control device 15, for example, by a weight sensor 8 which measures the weight of the screed 3 on its suspension to the tractor 5.
  • an ID tag 37 which is respectively attached to the base board 9 and widening parts 11, 13, are read out by the control device 15.
  • the weight sensor 8 or ID tag 37 is connected to the control device 15 and / or the PLC base module 17 by cable, or its data can be read by radio (eg by means of RFID technology).
  • the PLC module 29 may contain the specific information on the type and structure of the screed 3 and the record can be read by the control device 15 or the PLC base module 17.
  • PLC module 29 and ID tag 37 are not only present on the base board 9, but also on broadening parts 11, 13, which are connected via mechanical and / or hydraulic and / or electrical connections 10 to the base board 9. If no PLC technology is used, an additional control line 26 can be arranged, which connects the control device 15 to the switching relays 31 (FIG. Fig. 5 ) and transmits the control signal. Furthermore, a sensor 43 may be attached to the generator G in order to monitor its operating state and load, for example by means of measurement of the winding temperature, speed or output voltage.
  • Fig. 5 shows a detailed schematic view of a PLC module 29 and a resistance heating element 27 a heated screed 3.
  • the electronic circuit within the PLC modules 29 is configured to process the control signals intended for the respective PLC module 29, as is generally known from data transmission. From the switching relay 31 and the PLC modules 29 lead separate power lines 25 to the individual Schudrahtwicklonne 41. In this case, an LED light 33 may be interposed to indicate the operating state of the Schudrahtwicklung 41.
  • the switching relay 31 may be integrated into a resistance heating element monitoring module 32, which provides additional functions for monitoring the screed heating.
  • the resistance heating elements 27 are formed in a modular manner, that is, they are together with their Bankdrahtwicklache designed as a module disassembled and dimensionally stable.
  • the Schudrahtwicklonne 41 may be encapsulated in a thermally conductive material.
  • an additional control line 26 can be arranged, which transmits the control signal to the switching relay 31.
  • Fig. 6 shows a schematic view of the most important steps of the method 50 for heating compression units 7 of a screed 3, controlled by the control device 15.
  • the control device 15 determines the screed configuration, for example on the basis of the weight sensor 8.
  • a base beam 9 a known Weight of 2.0t and two Widening parts 11, 13 each of 0,8t have. Since the weights are specific to the individual screed models, the control device 15 can thus determine their configuration and heating performance data.
  • the ID tags 37, the screed data is stored and can be read out from the control device 15.
  • the screed data may also be stored in memory units of the PLC modules 29 or they may be entered by the operator via an interface.
  • step 53 in which the maximum possible electrical power of the generator G is determined by the control device 15.
  • the choice of operating mode, eg "Eco” or “Power”, is taken into account in which the maximum available power is limited by limiting the speed of the generator G to a maximum value in operating mode “Eco” or in the operating mode "Power "the technically possible maximum power of the generator G is allowed.
  • the control device 15 distributes electric power generated by the generator G to the heating wire windings 41 by turning them on or off.
  • a distinction must be made between a maximum electric power available for heating the screed 3 and a maximum generator power, since the generator G usually also supplies other electrical consumers with power.
  • connection and disconnection of the Wiendrahtwicklonne 41 can also be clocked, ie the individual Schudrahtwicklonne 41 are alternately applied, according to a previously calculated switching pattern, with electrical energy.
  • the screed 3 next to the compaction units 7 as tamper, Glättblechen or pressure bars, and other compression units 7 have.
  • the paver 1 can also include screeds 3 fixed working width, which are not covered by the invention.
  • the resistance heating elements 27 may be designed differently as needed, wherein the Schudrahtwicklache 41 may have different shapes and sizes. Modifications to the power and voltage supply and the control device 15 are possible in many variants.
  • the power supply can be implemented in DC or AC technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Control Of Resistance Heating (AREA)
  • Road Paving Structures (AREA)

Description

Die vorliegende Erfindung betrifft einen Straßenfertiger mit Widerstandsheizelement für eine Einbaubohle sowie ein Verfahren zum Beheizen von Verdichtungsaggregaten einer Einbaubohle eines Straßenfertigers. Bei Straßenfertigern ist es bekannt, die Einbaubohle mit den Verdichtungsaggregaten, wie z. B. Tamper, Glättbleche und Pressleisten, elektrisch zu beheizen. Diese Komponenten müssen erhitzt werden, um ein Ankleben des ebenfalls erhitzten Einbaumaterials zu verhindern. Die Temperatur des Einbaumaterials beträgt im Verarbeitungszustand ca. 160 - 185 °C. An der Einbaubohle des Straßenfertigers sind deshalb Widerstandsheizelemente mit Heizdrahtwicklungen angebracht, welche die Bohle vor dem Einbaubetrieb auf die erforderliche Betriebstemperatur vorheizen, sowie diese während des Einbaubetriebs aufrechterhalten. Die Strom- und Spannungsversorgung der Widerstandsheizelemente erfolgt dabei in der Regel durch einen Generator, welcher von einem Primärantrieb, üblicherweise einem Dieselmotor, angetrieben wird. Um die Leistungsaufnahme bzw. den Energieverbrauch der Bohlenheizung zu begrenzen, ist es bekannt, einzelne Widerstandsheizelemente unterschiedlicher Bohlensegmente getaktet, d. h. abwechselnd, zu betreiben, wie dies zum Beispiel in der EP 1 036 883 B1 beschrieben ist. Wie in der EP 1 295 990 A2 gezeigt, kann die Taktung auch die Temperatur der Bohlensegmente berücksichtigen. Aus der EP 1 555 348 B1 sind zudem Widerstandsheizelemente bekannt, welche eine Mehrzahl an Heizwendeln, bzw. Heizdrahtwicklungen umfassen, wobei die Heizleistung jeder der Heizwendeln der Nenn-Heizleistung des Widerstandsheizelements entspricht, was eine Redundanz im Falle eines Ausfalls einer Heizwendel bietet. Zudem kann ein Generator aufgrund unterschiedlicher Motordrehzahl variable elektrische Leistung erbringen, wie dies in WO 2014/124545 A1 beschrieben ist.
Die vorgenannten Varianten weisen jedoch Defizite darin auf, die Widerstandsheizelemente sowie den Generator in einem optimalen Wirkungsgrad zu betreiben und zugleich das Leistungsvermögen der vorhandenen Bauelemente bestmöglich zu nutzen. So werden insbesondere während der Aufheizphase der Einbaubohle andere Anforderungen an Generator und Widerstandsheizelemente gestellt, als dies während des Einbaubetriebs der Fall ist. Desweiteren sind Einbaubohlen in verschiedenen Konfigurationen bekannt. So gibt es neben Straßenfertigern mit Einbaubohlen fester Arbeitsbreite auch Straßenfertiger mit Einbaubohlen variabler Arbeitsbreite. Derartige Einbaubohlen umfassen üblicherweise eine Grundbohle fester Größe, welche durch selektive Anbringung oder Entfernung von Verbreiterungsteilen in ihren Abmessungen verändert werden können, um die jeweils gewünschte Straßenbreite fertigen zu können. Diese Größenänderung erfordert ebenfalls eine Heizleistungsanpassung der Bohlenheizung. Die US 8,961,064 B2 und die US 2014/0294503 A1 beschreiben ein Heizsystem für eine Einbaubohle mit Erkennung der angebrachten Verbreiterungsteile. Schließlich offenbart die EP 3 075 909 A1 eine Straßenbaumaschine mit einem Netzwerk, in dem ein Teil einer Stromleitung für eine Datenübertragung genutzt wird.
Die EP 2 439 333 A2 zeigt ein Heizsystem für eine Einbaubohle, in welchem die Beheizung mittels Temperatursensoren gesteuert wird und beim Ausfall eines oder mehrerer Temperatursensoren entsprechend geeignete Ersatzsensoren herangezogen werden. Dabei ist es möglich, je nach Heizleistungsbedarf die Beheizung unterschiedlicher Bereiche der Einbaubohle zu- oder abzuschalten. So kann z.B. die Beheizung auf einen hinteren Abschnitt der Einbaubohle beschränkt werden.
Die vorliegende Erfindung hat die Aufgabe, die genannten Probleme zu beseitigen und einen Straßenfertiger mit einer Einbaubohle bereitzustellen, welcher aufgrund seiner Bauart und Steuerung die Generator- und Leistungskapazität optimal ausnutzt. Diese Aufgabe wird erfindungsgemäß gelöst durch einen Straßenfertiger mit Widerstandsheizelement für eine Einbaubohle gemäß Anspruch 1 sowie ein Verfahren zum Beheizen von Verdichtungsaggregaten einer Einbaubohle eines Straßenfertigers gemäß Anspruch 16. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Gemäß einem Aspekt der vorliegenden Erfindung umfasst ein Straßenfertiger neben anderen Elementen einen Generator, eine Steuervorrichtung und eine Einbaubohle, wobei die Einbaubohle Verdichtungsaggregate, wie z. B. Tamper, Glättbleche und Pressleisten, und mindestens ein vom Generator mit Strom versorgbares elektrisches Widerstandsheizelement zum Beheizen der Verdichtungsaggregate umfasst. Die vorzugsweise austauschbar an einer Zugmaschine des Straßenfertigers montierte Einbaubohle umfasst zumindest eine Grundbohle und Verbreiterungsteile und ist dazu geeignet, durch selektives Anbringen oder Entfernen dieser Verbreiterungsteile, welche lösbare Ergänzungselemente fester Länge oder verschiebbare Ausziehelemente sein können, von einer ersten zu zumindest einer zweiten, davon verschiedenen Bohlenkonfiguration umgebaut zu werden. So können linke und rechte Ausziehelemente, welche bereits mit der Grundbohle verbunden sind, ausgezogen werden, um eine größere Arbeitsbreite zu erhalten. Die Verbreiterungsteile können aber auch in Varianten vorliegen, welche erst an die Grundbohle und/oder an Ausziehelementen angebracht und befestigt werden, um die Einbaubohle zu verbreitern. Auch kann die Verbreiterung durch jeweils mehrere Ausziehelemente und/oder Ergänzungselemente pro Seite erfolgen, und diese können aneinander und/oder an der Grundbohle befestigt werden. Das elektrische Widerstandsheizelement umfasst mindestens zwei voneinander strom- und spannungsisolierte Heizdrahtwicklungen, welche, gesteuert von der Steuervorrichtung, individuell zu- und abschaltbar sind. Die Steuervorrichtung ist dabei derart konfiguriert, dass sie die Schaltung der Heizdrahtwicklungen in Abhängigkeit einer zuvor ermittelten Bohlenkonfiguration vornimmt, um durch den Generator erzeugte elektrische Leistung auf die einzelnen Heizdrahtwicklungen zu verteilen. Dabei wird insbesondere die Konfiguration, also die Art, die Größe und der Aufbau der Einbaubohle ermittelt, um auf zumindest der Grundbohle die Heizdrahtwicklungen des einen oder der mehreren Widerstandsheizelemente individuell zu schalten. Somit kann die vom Generator zur Verfügung gestellte elektrische Leistung bereits auf der Grundbohle auf die einzelnen Heizdrahtwicklungen verteilt werden.
The present invention relates to a road paver with resistance heating element for a screed and a method for heating compression units of a screed paver. For road finishers, it is known the screed with the compression units, such. As tamper, Glättbleche and pressure bars to heat electrically. These components must be heated to prevent sticking of the also heated paving material. The temperature of the paving material in the processing state is approx. 160 - 185 ° C. Resistance heating elements with heating wire windings are therefore attached to the screed of the road paver, which pre-heat the screed to the required operating temperature before installation, and maintain it during the installation operation. The power and voltage supply of the resistance heating elements is usually carried out by a generator which is driven by a primary drive, usually a diesel engine. In order to limit the power consumption or the energy consumption of the screed heating, it is known, individual resistance heating elements of different screed segments clocked, ie alternately, to operate, as for example in the EP 1 036 883 B1 is described. Like in the EP 1 295 990 A2 the timing can also take into account the temperature of the screed segments. From the EP 1 555 348 B1 In addition, resistance heating elements are known which comprise a plurality of heating coils or heating wire windings, wherein the heating power of each of the heating coils corresponds to the nominal heating power of the resistance heating element, which provides redundancy in the event of a failure of a heating coil. In addition, a generator due to different engine speed provide variable electrical power, as in WO 2014/124545 A1 is described.
However, the aforementioned variants have deficits in operating the resistance heating elements and the generator in an optimum efficiency and at the same time to make the best possible use of the performance of the existing components. Thus, in particular during the heating phase of the screed other demands on generator and resistance heating elements are made, as is the case during installation operation. Furthermore, screeds are known in various configurations. Thus, in addition to road pavers with screeds of fixed working width, there are also road pavers with screeds of variable working width. Such screeds usually comprise a fixed size ground beam which can be dimensionally changed by selective attachment or removal of broadening members to produce the particular desired road width. This size change also requires a heating power adjustment of the screed heating. The US 8,961,064 B2 and the US 2014/0294503 A1 describe one Heating system for a screed with detection of the attached widening parts. Finally, the reveals EP 3 075 909 A1 a road construction machine with a network in which a part of a power line is used for data transmission.
The EP 2 439 333 A2 shows a heating system for a screed, in which the heating is controlled by means of temperature sensors and in case of failure of one or more temperature sensors correspondingly suitable replacement sensors are used. It is possible, depending on the heating power requirement, the heating of different areas of the screed on or off. For example, the heating can be limited to a rear section of the screed.
The present invention has the object to overcome the above problems and to provide a paver with a screed, which optimally exploits the generator and power capacity due to its design and control. This object is achieved by a paver with resistance heating element for a screed according to claim 1 and a method for heating compression units of a screed paver according to claim 16. Advantageous developments of the invention are specified in the dependent claims.
According to one aspect of the present invention, a road paver includes among other elements a generator, a control device and a screed, the screed compacting units, such as. As tamper, Glättbleche and pressure strips, and at least one of the generator with power supplied electrical resistance heating element for heating the compression units comprises. The screed preferably mounted interchangeably on a tractor of the paver comprises at least one base board and widening parts and is adapted to selectively extend or remove these widening parts, which may be detachable extension elements of fixed length or sliding extension elements, from a first to at least a second one Screed configuration to be rebuilt. Thus, left and right pull-out elements, which are already connected to the base pile, be pulled out to obtain a larger working width. However, the broadening parts can also be in variants, which are first attached to the base board and / or on Ausziehelementen and fixed to widen the screed. The broadening can also take place by a plurality of pull-out elements and / or supplementary elements per side, and these can be fastened to one another and / or to the base pile. The electrical resistance heating element comprises at least two heating wire windings which are insulated from one another by current and voltage and which are controlled individually by the control device. and can be switched off. The control device is configured such that it performs the circuit of Heizdrahtwicklungen in response to a previously determined screed configuration to distribute generated by the generator electrical power to the individual Heizdrahtwicklungen. In particular, the configuration, ie the type, the size and the structure of the screed, is determined in order to individually switch the heating wire windings of the one or more resistance heating elements on at least the base screed. Thus, the electric power provided by the generator can already be distributed on the base board on the individual Heizdrahtwicklungen.

Dies bietet den Vorteil, die Beheizung der Verdichtungsaggregate möglichst homogen, je nach Anordnung der Heizdrahtwicklungen, gestalten zu können, was auch einen ungewollten Wärmeverlust verringert und damit den Wirkungsgrad erhöht. Dies reduziert nicht nur die Betriebskosten sondern erhöht auch die Verarbeitungs- bzw. Fertigungsqualität. Da also einzelne Heizdrahtwicklungen in Kombination miteinander betrieben werden und diese zudem der Bohlengeometrie angepasst angeordnet sein können, kann die einzelne Heizdrahtwicklung für einen enger umgrenzten Heizleistungsbereich, d.h. einen Bereich elektrischer Leistung, dimensioniert sein, was einerseits eine geringe Effektivität bei der Beaufschlagung mit niedriger elektrischer Leistung verhindert und andererseits eine Materialschwächung bei hoher elektrischer Leistung verhindert.This offers the advantage of being able to design the heating of the compression units as homogeneously as possible, depending on the arrangement of the heating wire windings, which also reduces unwanted heat loss and thus increases the efficiency. This not only reduces the operating costs but also increases the processing or production quality. Since individual Heizdrahtwicklungen be operated in combination with each other and this can also be arranged adapted to the plank geometry, the single Heizdrahtwicklung for a more narrow heating power range, i. a range of electrical power to be dimensioned, which on the one hand prevents low efficiency in the application of low electrical power and on the other hand prevents material weakening at high electrical power.

In einer vorteilhaften Variante ist das Widerstandsheizelement mit seinen zwei oder mehr Heizdrahtwicklungen modulartig ausgebildet und lösbar an der Einbaubohle bzw. den Verdichtungsaggregaten angebracht. Dies ermöglicht eine einfache Handhabung des Widerstandsheizelements im Falle von nötigen Reparaturen oder eines Austauschs. So kann der Betrieb mit einem Ersatzheizelement fortgesetzt werden, wenn ein Widerstandsheizelement einer Reparatur bedarf. Auch ist die Verwendung von verschiedenen alternativen Widerstandsheizelementen mit unterschiedlicher Leistungsaufnahme denkbar, um auf unterschiedliche Betriebsbedingungen, wie zum Beispiel einen Sommer- oder Winterbetrieb, umzustellen.In an advantageous variant, the resistance heating element with its two or more Heizdrahtwicklungen is formed like a module and removably attached to the screed or the compression units. This allows easy handling of the resistance heating element in case of necessary repairs or replacement. Thus, the operation can be continued with a replacement heater when a resistance heating needs repair. Also, the use of various alternative resistance heating elements with different power consumption is conceivable to change over to different operating conditions, such as a summer or winter operation.

In einer typischen Variante ist die Steuervorrichtung dazu konfiguriert, in Abhängigkeit der Bohlenkonfiguration jede der Heizdrahtwicklungen der Verbreiterungsteile individuell zu- oder abzuschalten. Wurde die Bohlenkonfiguration, also die Größe und Art der Grundbohle und, sofern vorhanden, der Verbreiterungsteile, bei Betriebsbeginn von der Steuervorrichtung ermittelt, so schaltet diese die Heizdrahtwicklungen der Widerstandsheizelemente von Verbreiterungsteilen wie auf der Grundbohle individuell und in Abhängigkeit der gewünschten Heizcharakteristik. Somit kann für alle Komponenten der Einbaubohle eine effektive und an die Betriebsparameter angepasste Beheizung erfolgen.In a typical variant, the control device is configured to individually switch on or off, depending on the screed configuration, each of the heating wire windings of the widening parts. If the screed configuration, ie the size and type of the base screed and, if present, the widening parts, is determined by the control device at the start of operation, then this switches the heating wire windings of the resistance heating elements of widening parts as on the base screed individually and as a function of the desired heating characteristic. Thus, for all components of the screed can be made effective and adapted to the operating parameters heating.

Besonders vorteilhaft wäre es, die Heizdrahtwicklungen eines Widerstandsheizelements im Sinne einer Hauptwicklung und einer Zusatzwicklung für unterschiedliche Leistungsbereiche zu dimensionieren. So kann die Hauptwicklung zum Beispiel für zwei Drittel und die Zusatzwicklung für ein Drittel der insgesamt möglichen Heizleistung ausgelegt sein. Dies ermöglicht den Betrieb des Widerstandsheizelements in vier Stufen, nämlich Null, ein Drittel, zwei Drittel und drei Drittel der Gesamtleistung. Somit können bereits bauartbedingt unterschiedliche Heizleistungsstufen vorgesehen werden, welche, wie weiter unten beschrieben, mittels zusätzlicher Parameter weiter variiert werden können. Durch eine derartige Ausführung kann die spezifische Heizleistung, d.h. die Heizleistung pro Fläche, besonders zweckmäßig variiert werden. Die bauartbedingte Planung unterschiedlicher Heizleistungsbereiche ermöglicht die Anpassung der Heizdrahtbeschaffenheit, wie zum Beispiel des Drahtdurchmessers, um einen Heizvorgang mit möglichst hohem Wirkungsgrad und geringer Materialbelastung zu gewährleisten.It would be particularly advantageous to dimension the heating wire windings of a resistance heating element in the sense of a main winding and an additional winding for different power ranges. For example, the main winding may be designed for two thirds and the auxiliary winding for one third of the total possible heating power. This allows operation of the resistance heating element in four stages, zero, one third, two thirds and three thirds of the total power. Thus, depending on the design, different heating power stages can be provided which, as described below, can be further varied by means of additional parameters. By such an embodiment, the specific heating power, i. the heating power per area, be varied particularly appropriate. The design-related planning of different heating power ranges makes it possible to adapt the heating wire properties, such as the wire diameter, in order to ensure a heating process with the highest possible efficiency and low material load.

Vorzugsweise ist die Steuervorrichtung dazu konfiguriert, die Bohlenkonfiguration automatisch zu ermitteln. Die Steuervorrichtung, welche als Mikrocomputer mit entsprechender Software implementiert werden kann, ist also derart programmiert, bei Betriebsbeginn, zum Beispiel beim Einschalten des Straßenfertigers oder des Bedienpanels, alle nötigen Informationen zum Aufbau der Einbaubohle automatisch zu beziehen und für die Steuerung der Bohlenheizung zu berücksichtigen. Die Steuervorrichtung fragt z.B. zunächst die Datenzulaufkanäle ab und erhält die Typen-Informationen aller vorhandenen Bohlenkomponenten. Dabei können die Komponenten entweder per Kabel und entsprechender Steckverbindung oder per Funk mit der Steuervorrichtung verbunden sein. Die eigentliche Identifikation der einzelnen Bohlenkomponenten kann dabei auf unterschiedlichste Art und Weise erfolgen. So können Gewichtssensoren, welche mit der Steuervorrichtung verbunden sind, dazu dienen, die Bohlenkonfiguration zu ermitteln, oder die Bohlenkomponenten können mit spezifischen ID-Tags (Identifikationscodes) versehen sein, welche ausgelesen werden. Die jeweils erfassten Daten werden dann insbesondere mit einer in der Steuervorrichtung gespeicherten Datenbank verglichen, welche durch PC-Schnittstelle aktualisiert werden kann. Die automatische Erkennung der Bohlenkonfiguration bietet dem Maschinenoperateur eine deutliche Zeitersparnis, da manuelle Eingaben nicht erfolgen müssen. Lediglich das gewünschte Heizprogramm muss gegebenenfalls eingestellt werden. Mittels zusätzlicher Sensoren, wie zum Beispiel Umgebungstemperatur- oder Bohlentemperatursensor, können zusätzliche, für den Betrieb der Bohlenheizung relevante Informationen gesammelt werden, und die Steuervorrichtung kann daraus Heizprogramme berechnen und dem Anwender vorschlagen.Preferably, the controller is configured to automatically determine the screed configuration. The control device, which can be implemented as a microcomputer with appropriate software, is thus programmed to automatically obtain all the information needed to build the screed automatically at start of operation, for example when switching on the paver or the control panel and to consider for the control of screed heating. The control device asks, e.g. First, the data feed channels and receives the type information of all existing screed components. The components may be connected either by cable and corresponding plug connection or by radio with the control device. The actual identification of the individual screed components can take place in various ways. Thus, weight sensors connected to the controller may serve to determine the screed configuration, or the screed components may be provided with specific ID tags (identification codes) which are read out. The respectively acquired data are then compared in particular with a database stored in the control device, which can be updated by PC interface. The automatic recognition of the screed configuration offers the machine operator a considerable time saving since manual inputs do not have to be made. Only the desired heating program must be set if necessary. By means of additional sensors, such as ambient temperature or screed temperature sensor, additional information relevant for the operation of the screed heating system can be collected, and the control device can then calculate heating programs and propose them to the user.

In einer gängigen Variante weist der Straßenfertiger ein Power-Line-Communication- (PLC-) Basismodul und die Einbaubohle ein oder mehrere PLC-Module auf, welche dazu konfiguriert und verschaltet sind, um über die vorhandenen Stromleitungen zu kommunizieren. Dabei ist die Steuervorrichtung und/oder das PLC-Basismodul derart konfiguriert, den Aufbau der Einbaubohle durch Auswertung der PLC-Module mittels PLC-Datenübertragung zu erfassen. Wie aus anderen Anwendungen bekannt, wird bei der PLC-Datenübertragung das Datensignal über eine Trägerfrequenz zusätzlich auf die mit z.B. 230 V oder 400 V betriebene Stromleitung zu den Widerstandsheizelementen moduliert. Das PLC-Basismodul sowie die PLC-Module sind dabei so angebracht und verschaltet, die Signale ein- und auszukoppeln sowie Steuerungsbefehle weiterzuleiten. Die PLC-Datenübertragung ist eine robuste Übertragungstechnik und reduziert den Bedarf an weiteren Steuerungsleitungen. Dies verringert den Herstellungsaufwand und damit die Herstellungskosten sowie einen möglichen Reparaturbedarf. Wenn die PLC-Module, welche auf der Einbaubohle angeordnet sind, auch als Speichereinheiten für Informationen zu Typ und Aufbau der Einbaubohle dienen, können weitere elektronische Bauteile effektiv eingespart werden.In a common variant, the paver has a power line communication (PLC) base module and the screed one or more PLC modules, which is configured and are interconnected to communicate over the existing power lines. In this case, the control device and / or the PLC base module is configured to detect the structure of the screed by evaluation of the PLC modules by means of PLC data transmission. As known from other applications, in the case of PLC data transmission, the data signal is additionally modulated by means of a carrier frequency to the power line which is operated, for example, by 230 V or 400 V, to form the resistance heating elements. The PLC basic module and the PLC modules are mounted and interconnected in such a way that the signals are coupled in and out as well as forwarding control commands. The PLC data transmission is a robust transmission technology and reduces the need for further control lines. This reduces the production costs and thus the manufacturing costs and a possible need for repair. If the PLC modules, which are arranged on the screed, also serve as storage units for information on the type and construction of the screed, further electronic components can be effectively saved.

In einer vorteilhaften Variante wird jede Heizdrahtwicklung des Widerstandsheizelements durch ein Schaltrelais zu- und abgeschaltet. Wie im vorangegangenen Absatz beschrieben, ist die Signalübertragung mittels PLC eine auch für Baumaschinen besonders vorteilhafte Variante. So kann auch die Schaltung der Heizdrahtwicklungen, also die Ansteuerung eines Schaltrelais, derart erfolgen. Dieser Aufbau bietet eine robuste und zuverlässige Steuerung und auch die Möglichkeit spätere technische Erweiterungen zu implementieren.In an advantageous variant, each heating wire winding of the resistance heating element is switched on and off by a switching relay. As described in the previous paragraph, signal transmission by means of a PLC is also a particularly advantageous variant for construction machines. Thus, the circuit of the Heizdrahtwicklungen, so the control of a switching relay, done so. This setup provides robust and reliable control and also the ability to implement later technical enhancements.

In einer weiteren Variante weist der Straßenfertiger für jede Heizdrahtwicklung eines Widerstandsheizelements ein in ein Widerstandsheizelementüberwachungsmodul integriertes Schaltrelais zum Zu- oder Abschalten der Heizdrahtwicklung auf. Je nach Ausführung des Widerstandsheizelementüberwachungsmoduls kann pro Heizdrahtwicklung je eines angeordnet sein. Es kann aber auch ein Widerstandsheizelementüberwachungsmodul für die Überwachung mehrerer Heizdrahtwicklungen oder auch mehrerer Widerstandsheizelemente verschaltet sein. Vorzugsweise ist desweiteren die Steuervorrichtung dazu konfiguriert und verschaltet, das Schaltrelais über die Stromleitung mittels PLC anzusteuern. Es ist zweckmäßig, die Schaltungsfunktionen mit den Widerstandsheizelementüberwachungsmodulen zu kombinieren, um Platz zu sparen und bereits vorhandene Bauteile effektiv zu nutzen.In another variant, the paver for each Heizdrahtwicklung a resistance heating element integrated in a Widerstandsheizelementüberwachungsmodul switching relay for connecting or disconnecting the Heizdrahtwicklung on. Depending on the design of the resistance heating element monitoring module, one may be arranged per heating wire winding. However, it is also possible to connect a resistance heating element monitoring module for monitoring a plurality of heating wire windings or even a plurality of resistance heating elements. Preferably, furthermore, the control device is configured and interconnected to control the switching relay via the power line by means of PLC. It is convenient to combine the circuit functions with the resistance heater monitoring modules to save space and effectively utilize existing components.

In einer weiteren Variante ist jedes Schaltrelais eines Widerstandsheizelements an eine separate Stromleitung und eine separate Steuerleitung angeschlossen. Veranlasst durch das Steuersignal, welches an das Schaltrelais geleitet wird, stellt dieses den Stromfluß zur Heizdrahtwicklung her oder unterbricht ihn. Dies ermöglicht die Verwendung weiterer Signalübertragungstechniken und die Modifikation der Steuerleitung unabhängig von der Stromversorgung und umgekehrt.In a further variant, each switching relay of a resistance heating element is connected to a separate power line and a separate control line. Induced by the control signal, which is passed to the switching relay, this establishes or interrupts the flow of current to the Heizdrahtwicklung. This allows the use of other signal transmission techniques and the modification of the control line independent of the power supply and vice versa.

Vorzugsweise können die Komponenten der Einbaubohle, also die Grundbohle und die Verbreiterungsteile, jeweils zwei oder mehr Widerstandsheizelemente aufweisen, wobei die Anzahl der Widerstandsheizelemente einer Komponente unabhängig von den übrigen ist. Jedes der Widerstandsheizelemente umfasst dabei insbesondere wenigstens zwei Heizdrahtwicklungen. Dies ermöglicht es, unterschiedliche Bereiche der Einbaubohle mit unterschiedlichen Heizleistungen zu beaufschlagen, was zu einer Energieeinsparung führt, wenn unterschiedliche Wärmeverluste, zum Beispiel von Randbereichen im Vergleich zu mittigen Bereichen, auftreten. Die Produktion kleinerer Module ist außerdem einfacher und kostengünstiger, was genauso für Austausch oder Reparatur bei einem technischen Defekt gilt, und auch der Straßenfertigungsbetrieb kann währenddessen aufrechterhalten werden, wenn die verbleibenden Widerstandsheizelemente zur Kompensation mit größerer Heizleistung betrieben werden. Es sei darauf hingewiesen, dass die in diesem Text vorangehenden sowie die folgenden Aussagen sowohl für ein als auch mehrere Widerstandsheizelemente pro Komponente gelten.Preferably, the components of the screed, so the base board and the widening parts, each having two or more resistance heating elements, wherein the number of resistance heating elements of a component is independent of the rest. Each of the resistance heating elements comprises in particular at least two Heizdrahtwicklungen. This makes it possible to apply different heating powers to different areas of the screed, which leads to an energy saving when different heat losses, for example from edge areas compared to central areas, occur. The production of smaller modules is also simpler and less expensive, as well as replacement or repair in case of a technical defect, and also the paving operation can be maintained while the remaining resistance heating elements are operated with greater heating power for compensation. It should be noted that the statements preceding and following in this text apply to both one and more resistance heating elements per component.

In einer typischen Variante ist der Generator dazu geeignet, mit variabler Drehzahl betrieben zu werden, wobei die Leistung des Generators mit steigender Drehzahl zunimmt. In Abhängigkeit der Drehzahl des Primärantriebs, üblicherweise eines Dieselmotors, kann so die Strom- und Spannungsversorgung der Widerstandsheizelemente an den aktuellen Heizleistungsbedarf der Einbaubohle angepasst werden. Die stufenlose Drehzahlregelung ermöglicht es zusammen mit den weiteren beschriebenen Einstellmöglichkeiten, die Heizleistung exakt an Umgebungsbedingungen und den Betriebsmodus anzupassen. Durch die Auslegung der Heizdrahtwicklungen für bestimmte Heizleistungsbereiche kann die jeweilige Heizdrahtwicklung mit Spannung oder Strom in einer Höhe beaufschlagt werden, welche einen besonders effizienten Betrieb erlaubt.In a typical variant, the generator is capable of being operated at variable speed, with the power of the generator increasing with increasing speed. Depending on the speed of the prime mover, usually a diesel engine, so the power and voltage supply of the resistance heating elements can be adapted to the current Heizleistungsbedarf the screed. The continuously variable speed control, together with the other setting options described, makes it possible to adapt the heating power precisely to the ambient conditions and the operating mode. By designing the heating wire windings for specific heating power ranges, the respective heating wire winding can be subjected to voltage or current at a height which permits particularly efficient operation.

In einer weiteren vorteilhaften Variante ist es möglich, einen Betriebsmodus des Straßenfertigers, wie z. B. "Eco" oder "Power", vorzuwählen. Damit wird eine maximale Generatordrehzahl bzw. Generatorleistung voreingestellt. In Abhängigkeit des Betriebsmodus und damit der zur Verfügung stehenden Generatorleistung regelt dann die Steuervorrichtung ein Zu- und Abschalten von Heizdrahtwicklungen. So kann es sinnvoll sein, in einem "Power"-Modus eine maximale Drehzahl, für die der Generator geeignet ist, zum Beispiel 1500 U/min zu wählen um eine schnellstmögliche Aufheizung der Einbaubohle zu erreichen oder um ungünstige Bedingungen, wie zum Beispiel besonders niedrige Umgebungstemperaturen, zu kompensieren. In einer anderen Situation kann es geboten sein, die Bohlenheizung mit einer niedrigeren als der maximal möglichen Generatordrehzahl zu betreiben und deshalb vor dem Betrieb einen "Eco"-Modus zu wählen, welcher die Drehzahl auf zum Beispiel 1200 U/min begrenzt. Dies kann sinnvoll sein, um einen geringeren Kraftstoffverbrauch oder eine niedrigere Geräuschemission zu erzielen oder weil die Umgebungsbedingungen (z.B. Umgebungstemperatur) lediglich einen niedrigeren Heizleistungsbedarf erfordern.In a further advantageous variant, it is possible to use an operating mode of the paver such. For example, "Eco" or "Power" to select. This preset a maximum generator speed or generator power. Depending on the operating mode and thus the available generator power then controls the control device on and off of Heizdrahtwicklungen. For example, in a "power" mode, it may be useful to select a maximum speed for which the generator is appropriate, for example, 1500 rpm to achieve the fastest possible heating of the screed or unfavorable conditions, such as particularly low Ambient temperatures, to compensate. In another situation, it may be necessary to operate the screed heater at a lower than the maximum possible generator speed and therefore to select an "Eco" mode prior to operation which limits the speed to, for example, 1200 rpm. This can be useful to a lower one To achieve fuel economy or lower noise emission or because the environmental conditions (eg ambient temperature) only require a lower heating power requirement.

Die vom Betriebsmodus abhängige maximale Generatorleistung wird dabei von der Steuervorrichtung ermittelt und wird so von dieser gleichmäßig auf die Heizdrahtwicklungen verteilt. Die Schaltung der Heizdrahtwicklungen erfolgt dabei so, dass die elektrische Leistung möglichst gutausgenutzt wird. Alternativ oder in Kombination zur maximalen Drehzahlvorgabe können natürlich auch andere, dem Fachmann bekannte Einstellmöglichkeiten beim Betrieb eines elektrischen Generators vorgenommen werden. So kann zum Beispiel der Erregerstrom, welcher das magnetische Feld erzeugt, begrenzt werden. So können maximale Heizleistungen von zum Beispiel 35 kW, 31 kW oder 25 kW eingestellt werden. Da die Zu- oder Abschaltung von Heizdrahtwicklungen maßgeblich für die Leistungsaufnahme der Einbaubohle ist und die Heizdrahtwicklungen im Bereich ihres größten Wirkungsgrads betrieben werden sollten, ist die Steuervorrichtung z.B. dazu ausgelegt, Heizdrahtwicklungen abzuschalten, falls der Heizleistungsbedarf in dem gewählten Modus nicht erbracht werden kann. Natürlich ist es zweckmäßig, nicht nur die Bohlenheizung sondern auch andere elektrische Verbraucher, wie zum Beispiel Beleuchtung, Steuerung oder das Laden einer Bordbatterie, ebenfalls mit elektrischer Leistung desselben Generators, welcher auch zur Energieversorgung der Bohlenheizung dient, zu betreiben. Damit steht nicht die gesamte vom Generator erzeugte elektrische Leistung für die Bohlenheizung zur Verfügung, wobei die Verteilung der elektrischen Leistung auf die Bordelektronik des Straßenfertigers weiterhin durch die Steuervorrichtung erfolgen kann. Alternativ ist es auch denkbar, einen zweiten Generator bzw. eine Lichtmaschine zur Versorgung der übrigen elektrischen Verbraucher von dem Primärantrieb antreiben zu lassen.The operating mode dependent maximum generator power is determined by the control device and is thus distributed evenly by this on the Heizdrahtwicklungen. The circuit of the Heizdrahtwicklungen takes place so that the electrical power is used as well as possible. Alternatively or in combination with the maximum speed specification, it is of course also possible to make other setting options known to the person skilled in the art in the operation of an electric generator. For example, the excitation current which generates the magnetic field can be limited. Thus, maximum heating powers of, for example, 35 kW, 31 kW or 25 kW can be set. Since the switching on or off of Heizdrahtwicklungen is crucial for the power consumption of the screed and the Heizdrahtwicklungen should be operated in the range of their greatest efficiency, the control device is e.g. designed to shut off Heizdrahtwicklungen if the Heizleistungsbedarf can not be provided in the selected mode. Of course, it is expedient not only the screed heating but also other electrical consumers, such as lighting, control or charging an on-board battery, also with electric power of the same generator, which also serves to power the screed heating to operate. Thus, not all of the electrical power generated by the generator for screed heating is available, the distribution of electrical power to the on-board electronics of the paver can continue to be done by the control device. Alternatively, it is also conceivable to have a second generator or an alternator for supplying the remaining electrical loads driven by the primary drive.

Idealerweise ist die Steuervorrichtung dazu konfiguriert, die Heizleistung des Widerstandsheizelements oder der Widerstandsheizelemente in Abhängigkeit eines voreingestellten Zeitprogramms oder Schaltmusters zu variieren. So kann es zweckmäßig sein, die einzelnen Heizdrahtwicklungen eines Widerstandsheizelements eines linken Bohlensegments getaktet, d.h. periodisch alternierend, mit den einzelnen Heizdrahtwicklungen eines Widerstandsheizelements eines rechten Bohlensegments zu- und abzuschalten. Ist der Heizleistungsbedarf aufgrund der gegebenen Bedingungen, wie zum Beispiel Umgebungstemperatur, Temperatur des Einbaumaterials, Bodentemperatur, gering, kommt es also in Verbindung mit der Wärmekapazität der Verdichtungsaggregate zu einem geringen Wärmeabfluss, so führt die Taktung zu einer Energieeinsparung. Außerdem ist dadurch eine weitere Unterteilung der oben beschriebenen Leistungsstufen auf z.B. 1/6-Schritte der Gesamtleistung möglich.Ideally, the controller is configured to vary the heating power of the resistance heating element or resistive heating elements in response to a preset time program or switching pattern. Thus, it may be expedient to clocked the individual Heizdrahtwicklungen a Widerstandsheizelements a left screed segment, ie periodically alternating, on and off with the individual Heizdrahtwicklungen a Widerstandsheizelements a right screed segment. If the heating power requirement due to the given conditions, such as ambient temperature, temperature of the paving material, soil temperature, low, so it comes in conjunction with the heat capacity of the compression units to a low heat dissipation, the clocking leads to energy savings. In addition, this allows a further subdivision of the power levels described above to eg 1/6 steps of the total power.

In einer weiteren Variante ist die Steuervorrichtung derart konfiguriert, um anhand von Signalen von Sensoren, welche z. B. die Wicklungstemperatur, den Wicklungswiderstand, die Drehzahl, oder die Spannungsabgabe des Generators oder andere Größen, die eine Belastung des Generators anzeigen, die Heizleistung des Widerstandsheizelementes oder mehrerer Widerstandsheizelemente anzupassen, um eine Überlastung des Generators zu verhindern. Somit ist für den Generator aber auch für die Heizdrahtwicklungen ein automatischer Schutz gegen Beschädigung durch zu hohe Strom- und Spannungsbeaufschlagung gegeben. Dies ist relevant bei Bedienungsfehlern, Fehlproprogrammierung der Steuervorrichtung oder dem Einsatz ungeeigneter Erweiterungssegmente. Somit werden aufwändige und teure Reparaturen oder der Austausch des Generators, der Widerstandsheizelemente oder anderer Komponenten vermieden. Gleichzeitig kann jedoch das Heizsystem derart ausgelegt sein, dass der durch Sensoren überwachte Generator temporär mit seiner maximalen Leistungsabgabe durch Zuschalten zusätzlicher Widerstandsheizelemente betrieben wird, was insbesondere in der Aufheizphase zu einer Verkürzung der Aufheizzeit führt. Das Heizsystem kann zusätzlich derart ausgelegt sein, dass spätere Erweiterungen, z.B. Verwendung eines Generators mit höherer Leistung oder anderer Widerstandsheizelemente, auch elektronisch berücksichtigt werden können.In a further variant, the control device is configured to use signals from sensors, which, for. B. the winding temperature, the winding resistance, the speed, or the voltage output of the generator or other quantities that indicate a load on the generator to adjust the heating power of the resistance heating element or more resistance heating elements to prevent overloading of the generator. Thus, for the generator but also for the Heizdrahtwicklungen automatic protection against damage caused by excessive current and voltage. This is relevant for operator errors, controller misprogramming or the use of inappropriate extension segments. Thus, costly and expensive repairs or the replacement of the generator, the resistance heating elements or other components are avoided. At the same time, however, the heating system can be designed such that the sensor monitored by sensors is operated temporarily with its maximum power output by connecting additional resistance heating elements, which leads in particular in the heating phase to a shortening of the heating time. The heating system may additionally be designed such that later extensions, e.g. Using a generator with higher power or other resistance heating elements, can also be considered electronically.

Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Figuren näher beschrieben. Dabei zeigen

Figur 1:
eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Straßenfertigers mit beheizbarer Einbaubohle,
Figur 2:
eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Straßenfertigers mit beheizbarer Einbaubohle in einer ersten Bohlenkonfiguration umfassend eine Grundbohle,
Figur 3:
eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Straßenfertigers mit beheizbarer Einbaubohle in einer zweiten Bohlenkonfiguration umfassend eine Grundbohle sowie zwei Verbreiterungsteile,
Figur 4:
eine schematische Ansicht eines Ausführungsbeispiels eines Straßenfertigers mit beheizbarer Einbaubohle, welche ein linkes und ein rechtes Verbreiterungsteil umfasst und mehrere Widerstandsheizelemente aufweist,
Figur 5:
eine schematische detaillierte Ansicht eines PLC-Moduls und eines Widerstandsheizelements einer beheizbaren Einbaubohle,
Figur 6:
eine schematische Ansicht der wichtigsten Schritte des Verfahrens, gesteuert durch die Steuervorrichtung.
Embodiments of the invention will be described in more detail below with reference to the figures. Show
FIG. 1:
a schematic view of an embodiment of a road finisher according to the invention with heated screed,
FIG. 2:
1 is a schematic view of an exemplary embodiment of a road finisher according to the invention with a heatable screed in a first screed configuration comprising a base screed;
FIG. 3:
1 is a schematic view of an exemplary embodiment of a road finisher according to the invention with a heatable screed in a second screed configuration comprising a base screed and two widening parts;
FIG. 4:
a schematic view of an embodiment of a paver with heatable screed, which comprises a left and a right widening part and has a plurality of resistance heating elements,
FIG. 5:
a schematic detailed view of a PLC module and a resistance heating element of a heated screed,
FIG. 6:
a schematic view of the most important steps of the method, controlled by the control device.

Einander entsprechende Komponenten sind in den Figuren jeweils mit gleichen Bezugszeichen versehen.Corresponding components are each provided with the same reference numerals in the figures.

Fig. 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Straßenfertigers 1 in schematischer Ansicht, mit einer beheizbaren Einbaubohle 3 und einer Zugmaschine 5. Über einen Befestigungsmechanismus können Einbaubohlen 3 verschiedener Art austauschbar an der Zugmaschine 5 angebracht werden. An der Unterseite der Einbaubohle 3 befindet sich ein Verdichtungsaggregat 7, welches aus dem Einbaumaterial einen ebenen und festen Straßenbelag formt. Ein Gewichtssensor 8, welcher an der Aufhängung der Einbaubohle 3 an der Zugmaschine 5 angebracht ist, kann dazu dienen, die Bohlenkonfiguration mittels bekannter Gewichtswerte der unterschiedlichen Modelle der Einbaubohle 3 zu bestimmen. Fig. 1 shows an embodiment of a paver 1 according to the invention in a schematic view, with a heated screed 3 and a tractor 5. About a mounting mechanism screeds 3 different types can be interchangeable attached to the tractor 5. At the bottom of the screed 3 is a compression unit 7, which forms a flat and solid road surface from the paving material. A weight sensor 8, which is attached to the suspension of the screed 3 on the tractor 5, can serve to determine the screed configuration by means of known weight values of the different models of the screed 3.

Fig. 2 zeigt eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Straßenfertigers 1 mit beheizbarer Einbaubohle 3 in einer ersten Bohlenkonfiguration, umfassend eine Grundbohle 9. Von der Zugmaschine 5 führen zwei Stromleitungen 25 zu der Grundbohle 9, welche im Wesentlichen zur Stromversorgung der Bohlenheizung dienen und durch die doppelte Ausführung bereits für die Versorgung von zusätzlichen Verbreiterungsteilen geeignet sind. Je nach benötigter elektrischer Leistung wäre auch eine einzelne Stromleitung 25 möglich und ausreichend. Die gezeigte erste Bohlenkonfiguration besitzt bereits für den gewünschten Einsatzbereich eine ausreichende Breite. Fig. 2 shows a schematic view of an embodiment of a road finisher 1 according to the invention with heated screed 3 in a first screed configuration, comprising a base screed 9. From the tractor 5 lead two power lines 25 to the base board 9, which essentially serve to power the screed heating and the double execution already suitable for the supply of additional widening parts. Depending on the required electrical power and a single power line 25 would be possible and sufficient. The first screed configuration shown already has a sufficient width for the desired area of use.

Fig. 3 zeigt eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Straßenfertigers 1 mit beheizbarer Einbaubohle 3 in einer zweiten Bohlenkonfiguration, umfassend eine Grundbohle 9 sowie ein linkes und ein rechtes Verbreiterungsteil 11, 13. Diese zweite Bohlenkonfiguration dient dazu, breitere Straßen oder Flächen zu fertigen, also zum Beispiel zu asphaltieren, als in Fig. 2. Die Verbreiterungsteile 11, 13 können lösbar als Ergänzungselemente an der Grundbohle 9 angeordnet sein und über mechanische und/oder hydraulische und/oder elektrische Verbindungen 10 mit der Grundbohle 9 verbunden sein. Um die Verbindungen 10 darzustellen, wurde jeweils ein Abstand zwischen der Grundbohle 9 und den Verbreiterungsteilen 11, 13 in der Zeichnung dargestellt. Tatsächlich sind die Verbreiterungsteile 11, 13 bündig an der Grundbohle 9 angeordnet, da der Straßenbelag ohne Unebenheiten oder Rippen geformt werden muss. Derlei träte auf, wenn Abstände zwischen den Verbreiterungsteilen 11, 13 und der Grundbohle 9 vorhanden wären. Die Verbreiterungsteile 11, 13 können auch Ausziehelemente sein, welche an der Grundbohle 9 angeordnet und von dieser seitlich ganz oder teilweise ausziehbar sind. Fig. 3 shows a schematic view of an embodiment of a road finisher 1 according to the invention with heated screed 3 in a second screed configuration, comprising a base board 9 and a left and a right widening part 11, 13. This second screed configuration is used to make wider streets or areas, so for example to asphalt, than in Fig. 2 , The widening parts 11, 13 can be detachably arranged as supplementary elements on the base pile 9 and connected to the base pile 9 via mechanical and / or hydraulic and / or electrical connections 10. In order to illustrate the connections 10, a distance between the base board 9 and the widening parts 11, 13 was shown in the drawing. In fact, the widening parts 11, 13 are arranged flush with the base board 9, since the road surface has to be formed without bumps or ribs. This would occur if there were gaps between the widening parts 11, 13 and the base board 9. The widening parts 11, 13 can also be pull-out elements, which are arranged on the base pile 9 and can be pulled out laterally wholly or partly thereof.

Fig. 4 zeigt eine schematische Ansicht der Komponenten und deren Verschaltung eines Ausführungsbeispiels eines Straßenfertigers 1 mit beheizbarer Einbaubohle 3. Der Straßenfertiger 1 umfasst die Zugmaschine 5 und die Einbaubohle 3, welche eine Grundbohle 9 und hier beispielhaft ein linkes und rechtes Verbreiterungsteil 11, 13 umfasst. Üblicherweise sind auf der Zugmaschine 5 angebracht die Steuervorrichtung 15, ein Power-Line-Communication- (PLC-) Basismodul 17 und ein Bedienpult 21, welches auf dem Bedienstand des Straßenfertigers 1 dem Operateur zur Steuerung der Bohlenheizung dient. Außerdem umfasst die Zugmaschine 5 eine Batterie 19, welche zum Beispiel eine 24V-Spannungsversorgung bietet und zum Anlassen eines Primärantriebs, üblicherweise eines Dieselmotors, oder zur Versorgung der elektronischen Komponenten bei ausgeschaltetem Motor dient. Ein Generator G wird durch den Motor angetrieben und erzeugt die elektrische Leistung zur Beheizung der Einbaubohle 3. Desweiteren ist ein Schütz 23 zur Sicherung der elektronischen Komponenten vorgesehen. Fig. 4 shows a schematic view of the components and their interconnection of an embodiment of a road paver 1 with heated screed 3. The paver 1 includes the tractor 5 and the screed 3, which includes a base board 9 and here by way of example a left and right widening part 11, 13. Usually, the control device 15, a power line communication (PLC) base module 17 and a control panel 21, which is used on the control station of the paver 1 to the operator to control the screed heating on the tractor 5. In addition, the tractor 5 comprises a battery 19, which for example provides a 24V power supply and for starting a prime mover, usually a diesel engine, or for supplying the electronic components with the engine off. A generator G is driven by the motor and generates the electrical power for heating the screed 3. Furthermore, a contactor 23 for securing the electronic components is provided.

Wie in der Darstellung gezeigt, dienen die Stromleitungen 25 zur Versorgung der Widerstandsheizelemente 27, und die Steuersignale des PLC-Basismoduls 17 werden in die Stromleitungen 25 eingekoppelt. Hier ist eine Variante gezeigt, in der zwei Stromleitungen 25 vom Schütz 23 und somit vom Generator G wegführen, um jeweils eine Hälfte der Einbaubohle 3 mit Strom zu versorgen. Bei geeigneter Dimensionierung ist jedoch auch nur eine einzelne Stromleitung 25 möglich, welche vom Schütz 23 auf der Zugmaschine 5 zur Einbaubohle 3 führt und sich auf der Einbaubohle 3 zu den Widerstandsheizelementen 27 aufteilt. Die Widerstandsheizelemente 27 sind über ein PLC-Modul 29 an die Stromleitungen 25 angeschlossen. Das PLC-Modul 29 empfängt die Signale zur Zu- und Abschaltung von Heizdrahtwicklungen der Widerstandsheizelemente 27 von der Steuervorrichtung 15 bzw. dem PLC-Basismodul 17 und schaltet damit ein Schaltrelais 31 (Fig. 5) zum Öffnen und Schließen der Stromversorgung der jeweiligen Heizdrahtwicklung. Zusätzlich zum Bedienpult 21 kann auch ein zweites Bedienpult 35 an der Einbaubohle 3 vorhanden sein, um eine Steuerung direkt an der Einbaubohle 3 zu ermöglichen.As shown in the diagram, the power lines 25 serve to supply the resistance heating elements 27, and the control signals of the PLC base module 17 are coupled into the power lines 25. Here, a variant is shown, lead away in the two power lines 25 from the contactor 23 and thus from the generator G to supply one half of the screed 3 with electricity. With suitable dimensioning, however, only a single power line 25 is possible, which leads from the contactor 23 on the tractor 5 to the screed 3 and is divided on the screed 3 to the resistance heating elements 27. The resistance heating elements 27 are connected via a PLC module 29 to the power lines 25. The PLC module 29 receives the signals for connecting and disconnecting heating wire windings of the resistance heating elements 27 from the control device 15 or the PLC base module 17 and thus switches a switching relay 31 (FIG. Fig. 5 ) for opening and closing the power supply of the respective Heizdrahtwicklung. In addition to the control panel 21, a second control panel 35 may be present on the screed 3 in order to enable a control directly on the screed 3.

Die Bohlenkonfiguration kann von der Steuervorrichtung 15 zum Beispiel durch einen Gewichtssensor 8, welcher das Gewicht der Einbaubohle 3 an deren Aufhängung an der Zugmaschine 5 misst, ermittelt werden. Alternativ dazu oder zusätzlich kann auch ein ID-Tag 37, welcher jeweils an der Grundbohle 9 und an Verbreiterungsteilen 11, 13 angebracht ist, von der Steuervorrichtung 15 ausgelesen werden. Dabei ist der Gewichtssensor 8 oder ID-Tag 37 mit der Steuervorrichtung 15 und/oder dem PLC-Basismodul 17 per Kabel verbunden, oder seine Daten können per Funk (z.B. mittels RFID-Technik) ausgelesen werden. Auch das PLC-Modul 29 kann die spezifischen Informationen zu Typ und Aufbau der Einbaubohle 3 enthalten und der Datensatz kann von der Steuervorrichtung 15 oder dem PLC-Basismodul 17 ausgelesen werden. PLC-Modul 29 und ID-Tag 37 sind dabei nicht nur auf der Grundbohle 9 vorhanden, sondern auch auf Verbreiterungsteilen 11, 13, welche über mechanische und/oder hydraulische und/oder elektrische Verbindungen 10 mit der Grundbohle 9 verbunden sind. Wird keine PLC-Technik eingesetzt, kann eine zusätzliche Steuerleitung 26 angeordnet sein, welche die Steuervorrichtung 15 mit den Schaltrelais 31 (Fig. 5) verbindet und das Steuersignal überträgt. Desweiteren kann ein Sensor 43 an dem Generator G angebracht sein, um dessen Betriebszustand und Belastung, z.B. mittels Messung der Wicklungstemperator, Drehzahl oder abgegebenen Spannung, zu überwachen.The screed configuration may be determined by the control device 15, for example, by a weight sensor 8 which measures the weight of the screed 3 on its suspension to the tractor 5. Alternatively or additionally, an ID tag 37, which is respectively attached to the base board 9 and widening parts 11, 13, are read out by the control device 15. In this case, the weight sensor 8 or ID tag 37 is connected to the control device 15 and / or the PLC base module 17 by cable, or its data can be read by radio (eg by means of RFID technology). Also, the PLC module 29 may contain the specific information on the type and structure of the screed 3 and the record can be read by the control device 15 or the PLC base module 17. PLC module 29 and ID tag 37 are not only present on the base board 9, but also on broadening parts 11, 13, which are connected via mechanical and / or hydraulic and / or electrical connections 10 to the base board 9. If no PLC technology is used, an additional control line 26 can be arranged, which connects the control device 15 to the switching relays 31 (FIG. Fig. 5 ) and transmits the control signal. Furthermore, a sensor 43 may be attached to the generator G in order to monitor its operating state and load, for example by means of measurement of the winding temperature, speed or output voltage.

Fig. 5 zeigt eine detaillierte schematische Ansicht eines PLC-Moduls 29 und eines Widerstandsheizelements 27 einer beheizbaren Einbaubohle 3. Wird die Beheizung der Einbaubohle 3 mittels PLC gesteuert, so gelangt über die Stromleitung 25 der elektrische Strom und das Steuersignal zum Schaltrelais 31, wobei dieses derart mit der Stromleitung 25 verschaltet ist, dass aufgrund des Steuersignals das Schaltrelais 31 den Stromfluss zum Widerstandsheizelement 27 herstellt oder unterbricht. Jedes Schaltrelais 31 schaltet eine von hier zwei Heizdrahtwicklungen 41 des Widerstandsheizelements 27 und ist mit der Heizdrahtwicklung 41 durch je eine weitere Stromleitung 25 verbunden. Die Zuleitung vom Generator G zu den Schaltrelais 31 bzw. den PLC-Modulen 29 kann bei geeigneter Wahl der Leitungsdimensionen durch eine einzelne Stromleitung 25 erfolgen, welche sich vor den PLC-Modulen 29 zu diesen hin teilt. Genauso sind auch mehr als zwei Stromleitungen 25 denkbar. Die elektronische Schaltung innerhalb der PLC-Module 29 ist dabei so konfiguriert, um die für das jeweilige PLC-Modul 29 bestimmten Steuerungssignale zu verarbeiten, wie dies allgemein aus der Datenübertragung bekannt ist. Von den Schaltrelais 31 bzw. den PLC-Modulen 29 führen separate Stromleitungen 25 zu den einzelnen Heizdrahtwicklungen 41. Dabei kann eine LED-Leuchte 33 zwischengeschaltet sein, um den Arbeitszustand der Heizdrahtwicklung 41 anzuzeigen. Zusätzlich kann das Schaltrelais 31 in ein Widerstandsheizelementüberwachungsmodul 32 integriert sein, welches zusätzliche Funktionen zur Überwachung der Bohlenbeheizung bietet. Vorzugsweise sind die Widerstandsheizelemente 27 modulartig ausgebildet, d.h. sie sind samt ihrer Heizdrahtwicklungen als Modul demontierbar und formstabil ausgebildet. Die Heizdrahtwicklungen 41 können dabei in einem wärmeleitenden Material gekapselt sein. Fig. 5 shows a detailed schematic view of a PLC module 29 and a resistance heating element 27 a heated screed 3. If the heating of the screed 3 controlled by PLC, so passes through the power line 25, the electric current and the control signal to the switching relay 31, which is so with the Power line 25 is connected, that due to the control signal, the switching relay 31 establishes or interrupts the flow of current to the resistance heating element 27. Each switching relay 31 switches one of two heating wire windings 41 of the resistance heating element 27 and is connected to the heating wire winding 41 by a respective further power line 25. The supply line from the generator G to the switching relay 31 and the PLC modules 29 can be carried out with a suitable choice of the line dimensions by a single power line 25, which shares in front of the PLC modules 29 towards them. Similarly, more than two power lines 25 are conceivable. The electronic circuit within the PLC modules 29 is configured to process the control signals intended for the respective PLC module 29, as is generally known from data transmission. From the switching relay 31 and the PLC modules 29 lead separate power lines 25 to the individual Heizdrahtwicklungen 41. In this case, an LED light 33 may be interposed to indicate the operating state of the Heizdrahtwicklung 41. In addition, the switching relay 31 may be integrated into a resistance heating element monitoring module 32, which provides additional functions for monitoring the screed heating. Preferably, the resistance heating elements 27 are formed in a modular manner, that is, they are together with their Heizdrahtwicklungen designed as a module disassembled and dimensionally stable. The Heizdrahtwicklungen 41 may be encapsulated in a thermally conductive material.

Wird keine PLC-Kommunikation eingesetzt, kann eine zusätzliche Steuerleitung 26 angeordnet sein, welche das Steuersignal zu den Schaltrelais 31 überträgt.If no PLC communication is used, an additional control line 26 can be arranged, which transmits the control signal to the switching relay 31.

Fig. 6 zeigt eine schematische Ansicht der wichtigsten Schritte des Verfahrens 50 zur Beheizung von Verdichtungsaggregaten 7 einer Einbaubohle 3, gesteuert durch die Steuervorrichtung 15. In Schritt 51 ermittelt die Steuervorrichtung 15 die Bohlenkonfiguration, zum Beispiel anhand des Gewichtssensors 8. So kann z.B. eine Grundbohle 9 ein bekanntes Gewicht von 2,0t und zwei Verbreiterungsteile 11, 13 von je 0,8t haben. Da die Gewichte spezifisch für die einzelnen Bohlenmodelle sind, kann so die Steuervorrichtung 15 deren Konfiguration und Heizleistungsdaten ermitteln. Alternativ sind in elektronischen Speichereinheiten, den ID-Tags 37, die Bohlendaten gespeichert und können von der Steuervorrichtung 15 ausgelesen werden. Alternativ können die Bohlendaten auch in Speichereinheiten der PLC-Module 29 gespeichert sein oder sie werden vom Bediener über eine Schnittstelle eingegeben.
Dann schließt sich ein weiterer Schritt 53 an, in welchem die maximal mögliche elektrische Leistung des Generators G durch die Steuervorrichtung 15 ermittelt wird. Dabei wird die Wahl des Betriebsmodus, z.B. "Eco" oder "Power", berücksichtigt, in welchem die maximal zur Verfügung stehende Leistung begrenzt wird, indem im Betriebsmodus "Eco" die Drehzahl des Generators G auf einen Maximalwert begrenzt oder aber im Betriebsmodus "Power" die technisch mögliche Maximalleistung des Generators G zugelassen wird.
Im Anschluss daran, in Schritt 55, verteilt die Steuervorrichtung 15 vom Generator G erzeugte elektrische Leistung auf die Heizdrahtwicklungen 41 durch Zu- oder Abschalten derselben. Wie bereits oben erwähnt, ist zwischen einer maximalen für die Beheizung der Einbaubohle 3 zur Verfügung stehenden elektrischen Leistung und einer maximalen Generatorleistung zu unterscheiden, da der Generator G üblicherweise noch andere elektrische Verbraucher mit Strom versorgt. Die Zu- und Abschaltung der Heizdrahtwicklungen 41 kann auch getaktet erfolgen, d.h. die einzelnen Heizdrahtwicklungen 41 werden im Wechsel, nach einem zuvor berechneten Schaltmuster, mit elektrischer Energie beaufschlagt.
Ausgehend von den oben dargestellten Ausführungsformen eines Straßenfertigers 1 mit beheizbarer Einbaubohle 3 sind vielerlei Variationen desselben möglich. So kann die Einbaubohle 3 neben den Verdichtungsaggregaten 7 wie Tamper, Glättblechen oder Pressleisten, auch andere Verdichtungsaggregate 7 aufweisen. Ebenso kann der Straßenfertiger 1 auch Einbaubohlen 3 fester Arbeitsbreite umfassen, die jedoch nicht von der Erfindung erfasst sind. Die Widerstandsheizelemente 27 können je nach Bedarf unterschiedlich gestaltet sein, wobei die Heizdrahtwicklungen 41 unterschiedliche Formen und Größen haben können. Modifikationen an der Strom- und Spannungsversorgung sowie der Steuervorrichtung 15 sind in vielerlei Varianten möglich. So kann beispielsweise die Stromversorgung in Gleich- oder Wechselstromtechnik ausgeführt sein.
Fig. 6 shows a schematic view of the most important steps of the method 50 for heating compression units 7 of a screed 3, controlled by the control device 15. In step 51, the control device 15 determines the screed configuration, for example on the basis of the weight sensor 8. Thus, for example, a base beam 9 a known Weight of 2.0t and two Widening parts 11, 13 each of 0,8t have. Since the weights are specific to the individual screed models, the control device 15 can thus determine their configuration and heating performance data. Alternatively, in electronic storage units, the ID tags 37, the screed data is stored and can be read out from the control device 15. Alternatively, the screed data may also be stored in memory units of the PLC modules 29 or they may be entered by the operator via an interface.
This is followed by a further step 53, in which the maximum possible electrical power of the generator G is determined by the control device 15. The choice of operating mode, eg "Eco" or "Power", is taken into account in which the maximum available power is limited by limiting the speed of the generator G to a maximum value in operating mode "Eco" or in the operating mode "Power "the technically possible maximum power of the generator G is allowed.
Following this, in step 55, the control device 15 distributes electric power generated by the generator G to the heating wire windings 41 by turning them on or off. As already mentioned above, a distinction must be made between a maximum electric power available for heating the screed 3 and a maximum generator power, since the generator G usually also supplies other electrical consumers with power. The connection and disconnection of the Heizdrahtwicklungen 41 can also be clocked, ie the individual Heizdrahtwicklungen 41 are alternately applied, according to a previously calculated switching pattern, with electrical energy.
Starting from the above embodiments of a road finisher 1 with heated screed 3 many variations of the same are possible. Thus, the screed 3 next to the compaction units 7 as tamper, Glättblechen or pressure bars, and other compression units 7 have. Likewise, the paver 1 can also include screeds 3 fixed working width, which are not covered by the invention. The resistance heating elements 27 may be designed differently as needed, wherein the Heizdrahtwicklungen 41 may have different shapes and sizes. Modifications to the power and voltage supply and the control device 15 are possible in many variants. For example, the power supply can be implemented in DC or AC technology.

Claims (18)

  1. Road paver (1) having a generator (G), a control device (15) and a screed (3), the screed (3) comprising a basic screed (9) and broadening parts (11, 13) and being suited for being modified, by selectively attaching or detaching these broadening parts (11, 13), from a first to at least a second, different screed configuration, the basic screed (9) and the broadening parts (11, 13) each comprising a compacting unit (7) and at least one electric resistance heating element (27) that can be supplied with power by the generator (G) for heating the compacting unit (7),
    characterized in that
    the resistance heating element (27) comprising at least two resistance wire windings (41) being current- and voltage-isolated from each other,
    wherein the control device (15) is configured to individually switch on or off each one of the resistance wire windings (41) of the resistance heating element (27) of the basic screed (9) depending on the screed configuration determined by the control device (15) to distribute electrical power generated by the generator (G) to the individual resistance wire windings (41).
  2. Road paver according to claim 1, characterized in that the resistance heating element (27) is designed modularly and is detachably attached to the screed (3).
  3. Road paver according to one of the preceding claims, characterized in that the control device (15) is configured to individually switch on or off each one of the resistance wire windings (41) of the broadening parts (11, 13) depending on the screed configuration.
  4. Road paver according to one of the preceding claims, characterized in that the resistance wire windings (41) of the resistance heating element (27) are designed to output different heating powers.
  5. Road paver according to one of the preceding claims, characterized in that the control device (15) is configured to automatically determine the screed configuration.
  6. Road paver according to one of the preceding claims, characterized in that the control device (15) is configured to detect the design of the screed (3) by means of a weight sensor (8) or an ID tag (37).
  7. Road paver according to one of the preceding claims, characterized in that the road paver (1) comprises a Power Line Communication (PLC) base module (17) and the screed (3) comprises one or several PLC modules (29), and the control device (15) and/or the PLC base module (17) are configured to detect the design of the screed (3) by evaluating the PLC modules (29) by PLC.
  8. Road paver according to one of the preceding claims, characterized in that for each resistance wire winding (41) of the resistance heating element (27), a switching relay (31) is provided for switching on or off the resistance wire winding (41), wherein preferably the control device (15) is configured and connected to control the switching relay (31) via the power line (25) by means of Power Line Communication.
  9. Road paver according to one of the preceding claims, characterized in that for each resistance wire winding (41) of the resistance heating element (27), a switching relay (32) integrated in a heating element monitoring module (32) is provided for switching on or off the resistance wire winding (41), wherein the control device (15) is preferably configured and connected to control the switching relay (31) via a power line (25) by means of Power Line Communication.
  10. Road paver according to claim 8 or 9, characterized in that a separate power line (25) and a separate control line (26) are connected to each switching relay (31) of a resistance heating element (27), and the control device (15) is configured and connected to control the switching relay (31) via the separate control line (26).
  11. Road paver according to one of the preceding claims, characterized in that the basic screed (9) and/or the broadening parts (11, 13) comprise two or more resistance heating elements (27) each, wherein each of the resistance heating elements (27) comprises at least two resistance wire windings (41).
  12. Road paver according to one of the preceding claims, characterized in that the generator (G) is suited to be operated at variable speeds, the power of the generator (G) being increased with an increased speed.
  13. Road paver according to claim 12, characterized in that, depending on the setting of an operating mode of the road paver (1), a maximum generator speed can be pre-set, and that the resistance wire windings (41) can be switched on and off by the control device (15) depending on a maximally available generator power.
  14. Road paver according to one of the preceding claims, characterized in that the control device (15) is configured to vary the heating power of the resistance heating element (27) or the resistance heating elements (27) depending on a pre-set timed program or switching pattern.
  15. Road paver according to one of the preceding claims, characterized in that the control device (15) is configured to process signals from sensors (43) which measure the winding temperature, the winding resistance, the speed or the voltage output and thus the load of the generator (G), and to adapt the heating power of the resistance heating element (27) or the resistance heating elements (27) to prevent the generator (G) from being overloaded.
  16. Method for heating compacting units (7) of a screed (3) of a road paver (1) comprising a basic screed (9) and selectively attachable or detachable broadening parts (11, 13), by means of one or several electric resistance heating elements (27), wherein the resistance heating elements (27) are provided with power from a generator (G), and wherein a control device (15) controls the heating of the compacting units (7),
    characterized in that
    each of the resistance heating elements (27) comprises at least two resistance wire windings (41) being current- and voltage-isolated from each other, and the control device (15) determines a screed configuration assumed by the screed (3), i.e. the presence of the broadening parts (11, 13) in addition to the basic screed (9), and the maximally possible electrical power of the generator (G), and switches on or off the individual resistance wire windings (41) of the resistance heating elements (27) depending on at least the screed configuration and pre-set parameters to distribute electrical power generated by the generator (G) to the individual resistance wire windings (41).
  17. Method according to claim 16, characterized in that the control device (15) automatically determines the screed configuration.
  18. Method according to one of claims 16 or 17, characterized in that a switching relay (31) assigned to one single resistance wire winding (41) of the resistance heating element (27) each is controlled by the control device (15) via a power line (25) by Power Line Communication to switch on or off the resistance wire winding (41).
EP17163614.5A 2017-03-29 2017-03-29 Road finisher with heating element for a screed Active EP3382099B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17163614.5A EP3382099B1 (en) 2017-03-29 2017-03-29 Road finisher with heating element for a screed
PL17163614T PL3382099T3 (en) 2017-03-29 2017-03-29 Road finisher with heating element for a screed
JP2018044006A JP6637536B2 (en) 2017-03-29 2018-03-12 Road pavement machine with screed heating element
CN201810255223.0A CN108691259B (en) 2017-03-29 2018-03-27 Road paver with heating element of ironing device
CN201820414988.XU CN208933801U (en) 2017-03-29 2018-03-27 Sub-base grader with ironing machine heating element
BR102018006136-4A BR102018006136B1 (en) 2017-03-29 2018-03-27 ROAD PAVER WITH HEATING ELEMENT FOR TABLE AND METHOD FOR HEATING COMPACTION UNITS
US15/938,795 US10538886B2 (en) 2017-03-29 2018-03-28 Road paver with heating element for a screed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17163614.5A EP3382099B1 (en) 2017-03-29 2017-03-29 Road finisher with heating element for a screed

Publications (2)

Publication Number Publication Date
EP3382099A1 EP3382099A1 (en) 2018-10-03
EP3382099B1 true EP3382099B1 (en) 2019-03-27

Family

ID=58454968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17163614.5A Active EP3382099B1 (en) 2017-03-29 2017-03-29 Road finisher with heating element for a screed

Country Status (5)

Country Link
US (1) US10538886B2 (en)
EP (1) EP3382099B1 (en)
JP (1) JP6637536B2 (en)
CN (2) CN208933801U (en)
PL (1) PL3382099T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012298A1 (en) * 2015-09-23 2017-03-23 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Method of operating a self-propelled road paver and paver therefor
PL3382099T3 (en) * 2017-03-29 2019-09-30 Joseph Vögele AG Road finisher with heating element for a screed
US11028540B2 (en) * 2018-09-26 2021-06-08 Carlson Paving Products, Inc. Apparatus and method for a hold-down assembly
CN113013223B (en) * 2019-12-20 2023-03-14 上海新微技术研发中心有限公司 Method for manufacturing silicon carbide semiconductor device
EP3945159B1 (en) * 2020-07-29 2024-03-27 Joseph Vögele AG Switching device for an electric slab heating device of a road finisher
EP3961837A1 (en) * 2020-08-31 2022-03-02 Siemens Aktiengesellschaft Method for monitoring a coil temperature
EP4198201A1 (en) * 2021-12-14 2023-06-21 Volvo Construction Equipment AB Method for controlling an actual power output from a screed heating control device for heating a screed device of a paver, control unit, computer program, computer readable medium, screed heating control device for controlling an actual power output for heating a screed device of a paver, and paver
US20240035238A1 (en) 2022-07-29 2024-02-01 Caterpillar Paving Products Inc. Adjusting a setting of a screed assembly based on temperature data of the screed assembly

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536744B2 (en) * 1986-12-17 1996-09-18 大成ロテック株式会社 Road surface heating car and gas supply device for road surface heating car
DE19605926C1 (en) * 1996-02-17 1997-05-07 Abg Allg Baumaschinen Gmbh Road-laying machine with task-specific control loops and processors
JPH11245137A (en) 1998-03-03 1999-09-14 Amada Co Ltd Part identification in plate work and device thereof
US6334735B1 (en) * 1999-02-11 2002-01-01 Blaw Knox Construction Equipment Corporation Controller for a paving screed heating system
DE19912248A1 (en) 1999-03-18 2000-09-21 Voegele Ag J Process for heating the screed of a paver, and electrical heating device
US6318928B1 (en) 2000-01-07 2001-11-20 Astec Industries, Inc. Method and apparatus for electrically heating a screed assembly in a paving machine
US6433735B1 (en) * 2000-12-26 2002-08-13 Telefonaktiebolaget (Lme) Mobile terminal and system and method for determining the geographic location of a mobile terminal
US7641419B1 (en) * 2001-09-24 2010-01-05 Caterpillar Paving Products Inc Heating control system for a screed
CN2536642Y (en) * 2002-04-19 2003-02-19 陕西中大机械集团有限责任公司 Multifunctional spreader screeding device
DE202004021585U1 (en) 2004-01-19 2009-06-04 Joseph Voegele Ag pavers
EP1566484A1 (en) * 2004-02-23 2005-08-24 BITELLI S.p.A. Control for screed heaters
JP4931048B2 (en) 2006-07-31 2012-05-16 キャタピラー エス エー アール エル Control device for work machine
JP2009085884A (en) 2007-10-02 2009-04-23 Kyushu Hitachi Maxell Ltd Chair-type scales
EP2239374B2 (en) 2009-04-03 2017-03-15 Joseph Vögele AG Paver
EP2366830B1 (en) 2010-03-18 2016-05-11 Joseph Vögele AG Method and system for applying a street pavement
WO2011135846A1 (en) * 2010-04-27 2011-11-03 範多機械株式会社 Asphalt finisher
US8568058B2 (en) * 2010-10-07 2013-10-29 Caterpillar Paving Products Inc. Electric screed heat control system and method of heating screed plates
US9045871B2 (en) 2012-12-27 2015-06-02 Caterpillar Paving Products Inc. Paving machine with operator directed saving and recall of machine operating parameters
US20150361626A1 (en) * 2013-02-14 2015-12-17 Ammann Schweiz Ag Method for heating a paver screed of a road paver
US9234931B2 (en) * 2013-03-08 2016-01-12 Caterpillar Inc. Fault detection system with leakage current detection
US8961064B2 (en) * 2013-04-01 2015-02-24 Caterpillar Paving Products Inc. System and method for screed extension identification
EP3361003A1 (en) 2013-06-11 2018-08-15 Joseph Vögele AG Paver having a screed
JP6118713B2 (en) * 2013-11-12 2017-04-19 住友建機株式会社 Asphalt finisher
PL3075909T3 (en) 2015-03-30 2018-02-28 Joseph Vögele AG Road construction machine with network for data transmission and use of a portion of a power line
PL3128077T3 (en) * 2015-08-04 2019-10-31 Voegele Ag J Paver and method for determining screed configuration
US20160185164A1 (en) 2016-03-04 2016-06-30 Caterpillar Paving Products Inc. Automated drive tire pneumatic air system for wheeled pavers
PL3382099T3 (en) * 2017-03-29 2019-09-30 Joseph Vögele AG Road finisher with heating element for a screed

Also Published As

Publication number Publication date
JP2018168690A (en) 2018-11-01
US10538886B2 (en) 2020-01-21
PL3382099T3 (en) 2019-09-30
CN108691259B (en) 2020-10-20
BR102018006136A2 (en) 2019-03-19
CN208933801U (en) 2019-06-04
EP3382099A1 (en) 2018-10-03
CN108691259A (en) 2018-10-23
US20180282952A1 (en) 2018-10-04
JP6637536B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
EP3382099B1 (en) Road finisher with heating element for a screed
EP3075909B1 (en) Road construction machine with network for data transmission and use of a portion of a power line
EP1036883B1 (en) Process for heating a screed of a road paver and corresponding road paver
EP3353349B1 (en) Method for operating a self-propelling road paver and road paver therefor
WO2007033825A1 (en) Method for controlling a group of glow plugs for a diesel engine
EP3527721B1 (en) Road finisher with output adjusters for electrical insert heating devices
DE112013005529T5 (en) Integrated generator for heating a screed
DE112012002593T5 (en) Heating control for planks
EP2956584B1 (en) Method for heating a paver screed
EP2420621B1 (en) Paver and method for operating a paver
DE102006010083A1 (en) Glow plugs group controlling method for diesel engine, involves calculating electric resistance of glow plugs by subtracting resistance of supply line of plug glowing element during engine operation
DE102017106654A1 (en) SYSTEM AND METHOD FOR MONITORING A CONDITION OF AN ASPHALT MACHINE
WO2013189733A2 (en) Wind farm having a plurality of network feed-in points
EP3440976B1 (en) Accumulator of a household appliance and method for operating a household appliance
DE19842043B4 (en) A method for automatically and consumer-oriented minimization of the total power consumption and peak power of a group of individual electrical consumers connected to a power supply network
EP3051024A1 (en) Method for monitoring a plank heater of a road finishing machine
DE102013008032B4 (en) Method and device for electrically heating a paver screed
EP3945159B1 (en) Switching device for an electric slab heating device of a road finisher
DE102016015674A1 (en) Paver. Control unit and method for operating a road paver
DE20305577U1 (en) Road repairer has electric heater for pile installation and with monitoring circuit for heater
EP2283400A2 (en) Method for operating a modular automation device
EP4183925A1 (en) Heating system for a construction machine
DE102016218276A1 (en) VOLTAGE MOTOR VEHICLE ELECTRIC SYSTEM
DE102022126161A1 (en) SYSTEM, INSTALLATION AND METHOD FOR USING AN INTEGRATED GENERATOR IN A MOBILE MACHINE AS A JOB SITE CHARGING STATION
DE102022127661A1 (en) Road construction machine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1113245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017000980

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017000980

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1113245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230223

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 8

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8