EP3372700B1 - Method for making forged tial components - Google Patents

Method for making forged tial components Download PDF

Info

Publication number
EP3372700B1
EP3372700B1 EP17160397.0A EP17160397A EP3372700B1 EP 3372700 B1 EP3372700 B1 EP 3372700B1 EP 17160397 A EP17160397 A EP 17160397A EP 3372700 B1 EP3372700 B1 EP 3372700B1
Authority
EP
European Patent Office
Prior art keywords
forging
blank
deformation
forged
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17160397.0A
Other languages
German (de)
French (fr)
Other versions
EP3372700A1 (en
Inventor
Falko Dr. Heutling
Claudia Kunze
Ulrike Dr. Habel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to ES17160397T priority Critical patent/ES2753242T3/en
Priority to EP17160397.0A priority patent/EP3372700B1/en
Priority to US15/915,290 priority patent/US10737314B2/en
Publication of EP3372700A1 publication Critical patent/EP3372700A1/en
Application granted granted Critical
Publication of EP3372700B1 publication Critical patent/EP3372700B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/025Closed die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/41Hardening; Annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/174Titanium alloys, e.g. TiAl

Definitions

  • titanium aluminides or TiAl alloys Due to their low specific weight and their mechanical properties, components made of titanium aluminides or TiAl alloys are of interest for use in gas turbines, in particular aircraft turbines.
  • Titanium aluminides or TiAl alloys are hereby understood as meaning alloys which contain titanium and aluminum as main constituents, so that their chemical composition has constituents with the highest proportions of aluminum and titanium.
  • TiAl alloys are characterized by the formation of intermetallic phases, such as y - TiAl or ⁇ 2 - Ti 3 Al, which give the material good strength properties.
  • TiAl alloys are not easy to process and the microstructures of TiAl materials need to be precisely adjusted to achieve the desired mechanical properties.
  • the invention proposes that, in the case of a forging process for the production of a forged component from a TiAl alloy, the forming by forging be carried out in such a way that a homogeneous deformation takes place for the entire component. It has been shown that with a uniform deformation over the entire component, in a simple manner a homogeneous microstructure of the forged component can be achieved, so that the property profile of the forged component over the entire component is homogeneous. Accordingly, a blank is provided for the forging, the shape of which is selected such that the deformation over the entire volume of the blank or of the blank forged from the blank is substantially the same.
  • a forged semi-finished product can thus be understood in particular to be a forged upper part or forged intermediate product, which can be processed via one or more processing steps to form a finished component, for example a turbine blade.
  • Under a blank can be understood in particular a forging material, which can be processed by a forging process to the semifinished product.
  • the degree of deformation ⁇ is defined as the natural logarithm of the ratio of final dimension x 1 after deformation to initial dimension x 0 in the case of a one-dimensional dimensional change in a Cartesian reference system.
  • the blank can now be shaped in such a way that the degree of deformation has a defined value in one of the directions of the reference system, for example the x, y or z direction of a Cartesian reference system, in one of the directions of the reference system, and only within that or that the degree of deformation in several directions of the reference system or in each direction, in particular each main direction of the reference system has a defined value and deviates from this only within the allowable fluctuation range.
  • the shape of the blank can be chosen so that the transformation to be performed has a defined degree of deformation, which is within the usable volume of the forged Semifinished from the defined value of the degree of deformation by a maximum of ⁇ 0.5, in particular ⁇ 0.25 deviates.
  • the defined value of the degree of deformation may in particular be greater than or equal to 0.7, so that a minimum deformation takes place to that extent.
  • the degree of deformation of 0.7 within the usable volume is not exceeded, so that the entire material of the forged semi-finished product undergoes a minimum deformation by forging.
  • the defined value of the degree of deformation can be kept as low as possible in order to keep the cost of forming low. Accordingly, the value of the degree of deformation may be less than or equal to 2.5, in particular less than or equal to 2.0.
  • the shape of the blank can be selected so that along the longitudinal axis of the blank, so the axis with the largest dimension, the mass is distributed so that more mass is present at the two ends than in the middle of the blank.
  • the blank can be divided along its longitudinal axis into three equally long regions or sections, namely a first and second end region and a central region wherein the mass of the blank is distributed in the regions so that there is more mass in the end regions than in the central region , Accordingly, the blank may be formed such that M M ⁇ M E1 ⁇ M E2 where M M is the mass of the blank in the central region, M E1 is the mass of the blank in the first end region and M E2 is the mass of the blank in the second end region.
  • the blank can satisfy the condition: M M ⁇ M E2 / 1.25.
  • alloyed titanium aluminide alloys which are especially suitable for niobium and molybdenum can be used.
  • Such alloys are also referred to as TNM alloys.
  • an alloy of 27 to 30 weight percent aluminum, 8 to 10 weight percent niobium, and 1 to 3 weight percent molybdenum may be used, the remainder being titanium.
  • the aluminum content may be selected in the range of 28.1 to 29.1 weight percent aluminum, while 8.5 to 9.6 weight percent niobium and 1.8 to 2.8 weight percent molybdenum may be added.
  • the alloy may be alloyed with boron in the range of 0.01 to 0.04 weight percent boron, more preferably 0.019 to 0.034 weight percent boron.
  • the alloy may include unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ⁇ 0.05% by weight of chromium, ⁇ 0.05% by weight of silicon, ⁇ 0.08 wt% oxygen, ⁇ 0.02 wt% carbon, ⁇ 0.015 wt% nitrogen, ⁇ 0.005 wt% hydrogen, ⁇ 0.06 wt% iron, ⁇ 0.15 wt% copper, ⁇ 0.02 wt% nickel and ⁇ 0.001 wt% yttrium , Further constituents may be contained individually in the range of 0 to 0.05 percent by weight or in total from 0 to 0.2 percent by weight.
  • unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ⁇ 0.05% by weight of chromium, ⁇ 0.05% by weight of silicon,
  • the forging of the blank can be carried out in particular as isothermal forging, wherein only a single-stage forming, so only one forming step preferably can be carried out in only one forging without a further forming or forging takes place in another forging die. In this way, the cost of forming can be kept low.
  • one-stage means both that the forming process takes place in a single continuous process, and that only a single transformation takes place in the production process.
  • the forming of the cast, for example, not yet formed blank for semi-finished can be done in a single forging step, without further transformation to the finished component is necessary. So it does not have to be pressed several times and from different directions, but it is only a press or a die with two forms required between which the blank is inserted and formed during pressing of the two forms against each other. The forged part does not have to be moved or moved between different forging steps.
  • the forging of the corresponding components can be carried out by drop forging in the temperature range of the ⁇ + ⁇ + ⁇ phase region, wherein the forging temperature in the range of 1150 ° C to 1200 ° C can lie.
  • a corresponding die can be kept at the temperature by heating during the forging process.
  • an inert ambient atmosphere may be adjusted during forging.
  • the forged semi-finished products may be subjected to a two-stage heat treatment, wherein the first stage of the heat treatment provides for recrystallization annealing below the ⁇ / ⁇ transformation temperature for a period of 50 to 100 minutes.
  • the annealing at a temperature below the ⁇ / ⁇ transformation temperature, where ⁇ -titanium is converted to ⁇ -TiAl in accordance with the phase diagram for the TiAl alloy used can be as close as possible to the ⁇ / ⁇ transformation temperature, with a temperature of 8%, in particular 4%, below the ⁇ / ⁇ - conversion temperature should not be fallen below.
  • the recrystallization annealing may preferably be carried out for 60 to 90 minutes, especially 70 to 80 minutes.
  • the first stage of the heat treatment with the recrystallization annealing may be followed by a second stage of heat treatment with stabilizing annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 hours.
  • the stabilization annealing can be carried out in particular in the temperature range from 825 ° C. to 925 ° C., preferably from 850 ° C. to 900 ° C., with a holding time of from 345 minutes to 375 minutes.
  • the cooling in the recrystallization annealing can be done by air cooling, wherein in the temperature range between 1300 ° C and 900 ° C, the cooling rate ⁇ 3 ° C per second should be to set a fine-lamellar microstructure of ⁇ 2 -Ti 3 Al and ⁇ -TiAl, which required mechanical properties guaranteed.
  • the cooling in the second heat treatment stage, so the stabilization annealing, can be done with correspondingly lower cooling rates in the oven.
  • the heat treatment steps are carried out as accurately as possible at the corresponding selected temperature.
  • an increasingly accurate adjustment of the temperature and keeping the components at the appropriate temperatures with increasing Expenses connected so that for an economically meaningful processing a compromise must be found.
  • a temperature adjustment with a deviation in the range of 5 ° C to 10 ° C up and down from the setpoint temperature has proven to be advantageous.
  • the selected target temperature for the heat treatment steps of the present invention can be set and held up and down in a corresponding temperature window of 5 ° C to 10 ° C deviation from the target temperature.
  • the precursor material may also be made by metal injection molding (MIM), powder metallurgy, additive processes (e.g., 3D printing, cladding), or combinations thereof.
  • MIM metal injection molding
  • the blanks or the starting material can be hot-isostatically pressed before forging. It may be advantageous to machine the starting material before forging on all sides or locally with a material-removing machining process in order to work off surface edge zones and / or to give the blank the desired shape for the subsequent shaping. Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.
  • the blanks can be produced by melting in vacuo or inert gas with self-consumable electrodes or in the cooled crucible by means of plasma arc melting, wherein a single or multiple remelting of the alloy can be performed.
  • the remelting may be by vacuum induction melting or vacuum arc remelting (VIM vacuum induction melting), and the cast material may be hot isostatically pressed using temperatures ⁇ 1200 ° C at a pressure ⁇ 100 MPa and a holding time ⁇ 4 hours can.
  • the forged semi-finished product can be post-processed with a material-removing machining process to produce the finished component.
  • a material-removing machining process Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.
  • FIGS. 1a and 1b show the sequence of process steps in the implementation of an embodiment of the method according to the invention.
  • a blank 5 is produced by filling a molten TiAl alloy into a mold 1 having a cavity 2 corresponding to the shape of the blank 5 to be produced.
  • the casting blank 4 After pouring the TiAl alloy in the mold 1 and solidifying the TiAl alloy, the casting blank 4 can be correspondingly pressed in a system 3 for hot isostatic pressing in order to compact the green cast iron 4 and to close possible cast blanks or the like.
  • the hot - isostatic pressing thus does not serve the transformation of the casting blank 4, but only the material compression.
  • the blank 5 can be additionally subjected to a material-removing post-processing, for example by machining or by electrochemical machining.
  • the correspondingly produced blank 5 is forged in a drop forging 6 to a near net shape, forged semi-finished 9, wherein the drop forge 6 has two Gesenkhohlformen 7 and 8, which define between them a cavity corresponding to the shape of the forged semi-finished product 9, as in the dashed representation of the FIG. 1b is shown.
  • the TiAl alloy is formed into the forged semifinished product 9.
  • the deformation of the blank 5 for the forged semi-finished product 9 can be carried out by isothermal forging at a temperature which is as constant as possible.
  • the compression of the Gesenkhohlformen 7 and 8 is indicated by the arrows in the FIG. 1b shown.
  • a finished turbine blade 10 with an airfoil 13, a blade root 11 and a shroud 12 is present.
  • results in the process of the invention can be prepared by a single forming step by isothermal forging in a drop forging 6 a near net shape of the component to be produced, so that the post-processing can be minimized.
  • FIG. 2 shows in Examples 1 to 3 different courses of the mass distribution over the longitudinal axis of a blank 5, as they can be used in the present invention.
  • FIG. 2 shows that a blank 5 can be divided into equal sections along the longitudinal axis of the blank 5, wherein within these sections different masses of the blank are present, namely at the two ends of the longitudinal axis respectively more mass than in a central region.
  • the mass of the respective areas at the ends can be the same or different sizes.
  • FIG. 3 shows a so-called quasibinary state diagram of a TiAl alloy as can be used in the present invention.
  • Quasi-binary means that in the state shown only the proportions of two components, in the present case Ti and Al change, and the other alloying constituents, in this case Nb and Mo, remain constant.
  • the dashed working field 14 lies in the ⁇ + ⁇ + ⁇ phase region and indicates the temperature range in which isothermal forging can be carried out with the corresponding composition of the TiAl alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Architecture (AREA)
  • Forging (AREA)

Description

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von geschmiedeten Bauteilen aus einer TiAl - Legierung, insbesondere von Bauteilen für Gasturbinen, vorzugsweise Flugturbinen und insbesondere Turbinenschaufeln für Niederdruckturbinen.The present invention relates to a method for producing forged components from a TiAl alloy, in particular components for gas turbines, preferably aircraft turbines and in particular turbine blades for low-pressure turbines.

STAND DER TECHNIKSTATE OF THE ART

Bauteile aus Titanaluminiden bzw. TiAl - Legierungen sind aufgrund ihres geringen spezifischen Gewichts und ihrer mechanischen Eigenschaften für den Einsatz in Gasturbinen, insbesondere Flugturbinen, interessant.Due to their low specific weight and their mechanical properties, components made of titanium aluminides or TiAl alloys are of interest for use in gas turbines, in particular aircraft turbines.

Unter Titanaluminiden bzw. TiAl - Legierungen werden hierbei Legierungen verstanden, die als Hauptbestandteile Titan und Aluminium aufweisen, sodass deren chemische Zusammensetzung als Bestandteile mit den höchsten Anteilen Aluminium und Titan aufweist. Darüber hinaus zeichnen sich TiAl - Legierungen durch die Ausbildung von intermetallischen Phasen, wie y - TiAl oder α2 - Ti3Al aus, die dem Werkstoff gute Festigkeitseigenschaften verleihen.Titanium aluminides or TiAl alloys are hereby understood as meaning alloys which contain titanium and aluminum as main constituents, so that their chemical composition has constituents with the highest proportions of aluminum and titanium. In addition, TiAl alloys are characterized by the formation of intermetallic phases, such as y - TiAl or α 2 - Ti 3 Al, which give the material good strength properties.

Allerdings sind TiAl - Legierungen nicht einfach zu verarbeiten und die Gefüge von TiAl - Werkstoffen müssen exakt eingestellt werden, um die gewünschten mechanischen Eigenschaften zu erzielen.However, TiAl alloys are not easy to process and the microstructures of TiAl materials need to be precisely adjusted to achieve the desired mechanical properties.

So ist beispielsweise aus der DE 10 2011 110 740 B4 ein Verfahren zur Herstellung geschmiedeter TiAl - Bauteile bekannt, bei welchem nach dem Schmieden eine zweistufige Wärmebehandlung zur Einstellung eines gewünschten Gefüges durchgeführt wird. Auch die Dokumente DE 10 2015 103 422 B3 und EP 2 386 663 A1 offenbaren Verfahren zur Herstellung von Bauteilen aus TiAl - Legierungen.For example, from the DE 10 2011 110 740 B4 a method for producing forged TiAl - components is known, in which after the forging a two-stage heat treatment is carried out to set a desired structure. Also the documents DE 10 2015 103 422 B3 and EP 2 386 663 A1 disclose methods of making components from TiAl alloys.

In der europäischen Offenlegungsschrift EP 2 386 663 A1 wird bereits die Problematik angesprochen, dass bei TiAl - Legierungen häufig das Problem auftreten kann, dass das Gefüge inhomogen ausgebildet ist und somit auch die Eigenschaften des TiAl - Werkstoffs Inhomogenitäten aufweisen. Dies ist jedoch für einen Einsatz der TiAl - Legierungen in Strömungsmaschinen, wie Flugtriebwerken, unerwünscht. Die EP 2 386 663 A1 schlägt hierzu eine Wärmebehandlung des umgeformten TiAl - Werkstoffs zur Durchführung einer Rekristallisation vor. Allerdings kann damit das Problem der inhomogenen Gefügeausbildung nicht vollständig gelöst werden.In the European patent application EP 2 386 663 A1 Already the problem is addressed that with TiAl alloys the problem often arises that the structure is formed inhomogeneous and therefore also the properties of the TiAl material exhibit inhomogeneities. However, this is undesirable for use of the TiAl alloys in turbomachines, such as aircraft engines. The EP 2 386 663 A1 proposes for this a heat treatment of the transformed TiAl material to carry out a recrystallization. However, this does not completely solve the problem of inhomogeneous microstructure education.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Herstellungsverfahren für die Herstellung von Bauteilen aus TiAl - Werkstoffen bereit zu stellen, welche in Gasturbinen, insbesondere Flugturbinen, vorzugsweise im Bereich der Niederdruckturbine, eingesetzt werden können und eine homogene Gefügeausbildung und somit ein homogenes Eigenschaftsprofil aufweisen.It is therefore an object of the present invention to provide a production method for the production of components made of TiAl materials, which can be used in gas turbines, in particular aircraft turbines, preferably in the region of the low-pressure turbine, and have a homogeneous microstructure and thus a homogeneous property profile.

TECHNISCHE LÖSUNGTECHNICAL SOLUTION

Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method having the features of claim 1. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung schlägt vor, bei einem Schmiedeverfahren zur Herstellung eines geschmiedeten Bauteils aus einer TiAl - Legierung die Umformung durch das Schmieden so durchzuführen, dass eine homogene Umformung für das gesamte Bauteil stattfindet. Es hat sich nämlich gezeigt, dass bei einer gleichmäßigen Umformung über das gesamte Bauteil hinweg, in einfacher Weise eine homogene Gefügeausbildung des geschmiedeten Bauteils erreicht werden kann, sodass auch das Eigenschaftsprofil des geschmiedeten Bauteils über das gesamte Bauteil homogen ist. Entsprechend wird für das Schmieden ein Rohling bereitgestellt, dessen Form so gewählt wird, dass die Umformung über dem gesamten Volumen des Rohlings bzw. des aus dem Rohling geschmiedeten Halbzeugs im Wesentlichen gleich ist. Hierzu wird ein definierter Umformgrad eingestellt, von dem lediglich um ±1 über dem gesamten nutzbaren Volumen des geschmiedeten Halbzeugs abgewichen wird. Unter nutzbarem Volumen des geschmiedeten Halbzeugs wird der Bereich des geschmiedeten Halbzeugs verstanden, der dem herzustellenden, geschmiedeten Bauteil entspricht, beispielsweise dem Bereich oder dem Volumen einer herzustellenden Turbinenschaufel. Entsprechend wird unter dem nutzbaren Volumen des geschmiedeten Halbzeugs der Bereich des geschmiedeten Halbzeugs verstanden, der nach einer materialabtragenden Nachbearbeitung nach dem Schmieden als fertiges Bauteil verbleibt. Unter einem geschmiedeten Halbzeug kann somit insbesondere ein Schmiederohteil oder geschmiedetes Zwischenerzeugnis verstanden werden, das über einen oder mehrere Bearbeitungsschritte zu einem fertigen Bauteil, beispielsweise einer Turbinenschaufel, bearbeitet werden kann. Unter einem Rohling kann insbesondere ein Schmiedeeinsatzmaterial verstanden werden, das durch einen Schmiedeprozess zu dem Halbzeug verarbeitet werden kann.The invention proposes that, in the case of a forging process for the production of a forged component from a TiAl alloy, the forming by forging be carried out in such a way that a homogeneous deformation takes place for the entire component. It has been shown that with a uniform deformation over the entire component, in a simple manner a homogeneous microstructure of the forged component can be achieved, so that the property profile of the forged component over the entire component is homogeneous. Accordingly, a blank is provided for the forging, the shape of which is selected such that the deformation over the entire volume of the blank or of the blank forged from the blank is substantially the same. For this purpose, a defined degree of deformation is set, of which only for ± 1 over the entire usable volume of the forged Derived from the semi-finished product. The usable volume of the forged semi-finished product is understood to be the area of the forged semi-finished product which corresponds to the forged component to be produced, for example the area or the volume of a turbine blade to be produced. Accordingly, the usable volume of the forged semi-finished product is understood to be the area of the forged semi-finished product which remains after the forging as a finished component after a material-removing post-processing. A forged semi-finished product can thus be understood in particular to be a forged upper part or forged intermediate product, which can be processed via one or more processing steps to form a finished component, for example a turbine blade. Under a blank can be understood in particular a forging material, which can be processed by a forging process to the semifinished product.

Der Umformgrad ϕ ist hierbei bei einer eindimensionalen Abmessungsänderung in einem kartesischen Bezugssystem definiert als der natürliche Logarithmus des Verhältnisses von Endabmessung x1 nach der Umformung zur Anfangsabmessung x0. Bei einer dreidimensionalen Umformung wird die Umformung durch den größten Umformungsgrad ϕg charakterisiert, der gegeben ist durch: φ g = φ max = ½ φ x + φ y + φ z

Figure imgb0001
wobei ϕx, ϕy, ϕz die Umformgrade in x - , y - und z - Richtung sind.In this case, the degree of deformation φ is defined as the natural logarithm of the ratio of final dimension x 1 after deformation to initial dimension x 0 in the case of a one-dimensional dimensional change in a Cartesian reference system. In the case of a three-dimensional transformation, the deformation is characterized by the greatest degree of transformation φ g , which is given by: φ G = φ Max = ½ φ x + φ y + φ z
Figure imgb0001
where φ x , φ y , φ z are the degrees of deformation in the x, y and z directions.

Der Rohling kann nun so geformt werden, dass der Umformgrad bei der Umformung zum gewünschten geschmiedeten Halbzeug in einer der Richtungen des Bezugssystems, also beispielsweise der x - , y - oder z - Richtung eines kartesischen Bezugssystems einen definierten Wert aufweist und von diesem nur innerhalb der zulässigen Schwankungsbreite abweicht oder dass der Umformgrad in mehreren Richtungen des Bezugssystems oder in jeder Richtung, insbesondere jeder Hauptrichtung des Bezugssystems einen definierten Wert aufweist und von diesem nur innerhalb der zulässigen Schwankungsbreite abweicht. Darüber hinaus ist es auch möglich den Rohling so auszubilden, dass von den Umformgraden verschiedener Richtungen der wertmäßig größte und/oder der wertmäßig kleinste Umformgrad die vorgegebenen Bedingungen der homogenen Umformung erfüllt.The blank can now be shaped in such a way that the degree of deformation has a defined value in one of the directions of the reference system, for example the x, y or z direction of a Cartesian reference system, in one of the directions of the reference system, and only within that or that the degree of deformation in several directions of the reference system or in each direction, in particular each main direction of the reference system has a defined value and deviates from this only within the allowable fluctuation range. Moreover, it is also possible to form the blank in such a way that from the degree of deformation of different directions the value-wise largest and / or the value-wise smallest degree of forming fulfills the given conditions of the homogeneous forming.

Insbesondere kann die Form des Rohlings so gewählt werden, dass die durchzuführende Umformung einen definierten Umformgrad aufweist, der innerhalb des nutzbaren Volumens des geschmiedeten Halbzeugs von dem definierten Wert des Umformgrads maximal um ± 0,5, insbesondere ± 0,25 abweicht.In particular, the shape of the blank can be chosen so that the transformation to be performed has a defined degree of deformation, which is within the usable volume of the forged Semifinished from the defined value of the degree of deformation by a maximum of ± 0.5, in particular ± 0.25 deviates.

Der definierte Wert des Umformgrades kann insbesondere größer oder gleich 0,7 sein, sodass eine Mindestumformung in diesem Maße stattfindet. Vorzugsweise wird der Umformgrad von 0,7 innerhalb des nutzbaren Volumens nicht unterschritten, sodass das gesamte Material des geschmiedeten Halbzeugs eine Mindestumformung durch das Schmieden erfährt.The defined value of the degree of deformation may in particular be greater than or equal to 0.7, so that a minimum deformation takes place to that extent. Preferably, the degree of deformation of 0.7 within the usable volume is not exceeded, so that the entire material of the forged semi-finished product undergoes a minimum deformation by forging.

Darüber hinaus kann der definierte Wert des Umformgrades möglichst gering gehalten werden, um den Aufwand für das Umformen niedrig zu halten. Entsprechend kann der Wert des Umformgrades kleiner oder gleich 2,5, insbesondere kleiner oder gleich 2,0 betragen.In addition, the defined value of the degree of deformation can be kept as low as possible in order to keep the cost of forming low. Accordingly, the value of the degree of deformation may be less than or equal to 2.5, in particular less than or equal to 2.0.

Die Umformgeschwindigkeit, also die Änderung des Umformgrads pro Zeiteinheit, kann beim Schmieden im Bereich von 0,01 bis 0,5 1/s und insbesondere im Bereich von 0,025 bis 0,25 1/s liegen.The forming speed, ie the change in the degree of deformation per unit time, during forging can be in the range of 0.01 to 0.5 1 / s and in particular in the range of 0.025 to 0.25 1 / s.

Darüber hinaus kann die Form des Rohlings so gewählt werden, dass entlang der Längsachse des Rohlings, also der Achse mit der größten Dimension, die Masse so verteilt wird, dass an den beiden Enden mehr Masse vorliegt als in der Mitte des Rohlings. Hierzu kann der Rohling entlang seiner Längsachse in drei gleich lange Bereiche oder Abschnitte unterteilt werden, und zwar einen ersten und zweiten Endbereich sowie einen Mittelbereich wobei die Masse des Rohlings in den Bereichen so verteilt ist, dass in den Endbereichen mehr Masse vorliegt als in dem Mittelbereich. Entsprechend kann der Rohling so ausgebildet werden, dass gilt: MM < ME1 ≤ ME2 wobei MM die Masse des Rohlings im Mittelbereich, ME1 die Masse des Rohlings im ersten Endbereich und ME2 die Masse des Rohlings im zweiten Endbereich ist.In addition, the shape of the blank can be selected so that along the longitudinal axis of the blank, so the axis with the largest dimension, the mass is distributed so that more mass is present at the two ends than in the middle of the blank. For this purpose, the blank can be divided along its longitudinal axis into three equally long regions or sections, namely a first and second end region and a central region wherein the mass of the blank is distributed in the regions so that there is more mass in the end regions than in the central region , Accordingly, the blank may be formed such that M M <M E1 ≦ M E2 where M M is the mass of the blank in the central region, M E1 is the mass of the blank in the first end region and M E2 is the mass of the blank in the second end region.

Weiterhin kann der Rohling die Bedingung erfüllen: MM ≤ ME2/1,25.Furthermore, the blank can satisfy the condition: M M ≦ M E2 / 1.25.

Für die Herstellung von geschmiedeten Bauteilen aus TiAl-Legierungen, insbesondere für Gasturbinenbauteile, wie beispielsweise Niederdruckturbinen-Turbinenschaufeln, sind vor allem mit Niob und Molybdän legierte Titanaluminid - Legierungen verwendbar. Derartige Legierungen werden auch als TNM-Legierungen bezeichnet.For the production of forged components from TiAl alloys, in particular for gas turbine components, such as, for example, low-pressure turbine turbine blades, alloyed titanium aluminide alloys which are especially suitable for niobium and molybdenum can be used. Such alloys are also referred to as TNM alloys.

Für das vorliegende Verfahren kann eine Legierung mit 27 bis 30 Gewichtsprozent Aluminium, 8 bis 10 Gewichtsprozent Niob und 1 bis 3 Gewichtsprozent Molybdän verwendet werden, wobei der Rest durch Titan gebildet sein kann.For the present process, an alloy of 27 to 30 weight percent aluminum, 8 to 10 weight percent niobium, and 1 to 3 weight percent molybdenum may be used, the remainder being titanium.

Der Aluminiumgehalt kann insbesondere im Bereich von 28,1 bis 29,1 Gewichtsprozent Aluminium gewählt werden, während 8,5 bis 9,6 Gewichtsprozent Niob und 1,8 bis 2,8 Gewichtsprozent Molybdän zulegiert sein können.In particular, the aluminum content may be selected in the range of 28.1 to 29.1 weight percent aluminum, while 8.5 to 9.6 weight percent niobium and 1.8 to 2.8 weight percent molybdenum may be added.

Darüber hinaus kann die Legierung mit Bor legiert sein, und zwar im Bereich von 0,01 bis 0,04 Gewichtsprozent Bor, insbesondere 0,019 bis 0,034 Gewichtsprozent Bor.In addition, the alloy may be alloyed with boron in the range of 0.01 to 0.04 weight percent boron, more preferably 0.019 to 0.034 weight percent boron.

Ferner kann die Legierung unvermeidbare Verunreinigungen bzw. weitere Bestandteile wie Kohlenstoff, Sauerstoff, Stickstoff, Wasserstoff, Chrom, Silizium, Eisen, Kupfer, Nickel und Yttrium aufweisen, wobei deren Gehalt ≤ 0,05 Gewichtsprozent Chrom, ≤ 0,05 Gewichtsprozent Silizium, ≤ 0,08 Gewichtsprozent Sauerstoff, ≤ 0,02 Gewichtsprozent Kohlenstoff, ≤ 0,015 Gewichtsprozent Stickstoff, ≤ 0,005 Gewichtsprozent Wasserstoff, ≤ 0,06 Gewichtsprozent Eisen, ≤ 0,15 Gewichtsprozent Kupfer, ≤ 0,02 Gewichtsprozent Nickel und ≤ 0,001 Gewichtsprozent Yttrium betragen kann. Weitere Bestandteile können einzeln im Bereich von 0 bis 0,05 Gewichtsprozent bzw. insgesamt von 0 bis 0,2 Gewichtsprozent enthalten sein.Further, the alloy may include unavoidable impurities such as carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, the content of which is ≦ 0.05% by weight of chromium, ≦ 0.05% by weight of silicon, ≦ 0.08 wt% oxygen, ≤ 0.02 wt% carbon, ≤ 0.015 wt% nitrogen, ≤ 0.005 wt% hydrogen, ≤ 0.06 wt% iron, ≤ 0.15 wt% copper, ≤ 0.02 wt% nickel and ≤ 0.001 wt% yttrium , Further constituents may be contained individually in the range of 0 to 0.05 percent by weight or in total from 0 to 0.2 percent by weight.

Das Schmieden des Rohlings kann insbesondere als isothermes Schmieden durchgeführt werden, wobei lediglich eine einstufige Umformung, also lediglich ein Umformschritt vorzugsweise in lediglich einem Schmiedegesenk vorgenommen werden kann, ohne dass ein weiteres Umformen oder Schmieden in einem anderen Schmiedegesenk erfolgt. Auf diese Weise kann der Aufwand für das Umformen niedrig gehalten werden.The forging of the blank can be carried out in particular as isothermal forging, wherein only a single-stage forming, so only one forming step preferably can be carried out in only one forging without a further forming or forging takes place in another forging die. In this way, the cost of forming can be kept low.

Einstufig bedeutet hierbei somit sowohl, dass der Umformvorgang in einem einzigen kontinuierlichen Vorgang stattfindet, als auch, dass nur eine einzige Umformung im Herstellungsverfahren stattfindet.In this case, one-stage means both that the forming process takes place in a single continuous process, and that only a single transformation takes place in the production process.

Demnach kann das Umformen des beispielsweise gegossenen, noch nicht umgeformten Rohlings zum Halbzeug in einem einzigen Schmiedeschritt erfolgen, ohne dass eine weitere Umformung zum fertigen Bauteil nötig ist. Es muss also nicht mehrfach und aus unterschiedlichen Richtungen gepresst werden, sondern es ist lediglich eine Presse bzw. ein Gesenk mit zwei Formen erforderlich, zwischen denen der Rohling eingelegt und beim Pressen der beiden Formen gegeneinander umgeformt wird. Dabei muss das Schmiedeteil also nicht zwischen verschiedenen Schmiedeschritten umgelegt oder bewegt werden.Accordingly, the forming of the cast, for example, not yet formed blank for semi-finished can be done in a single forging step, without further transformation to the finished component is necessary. So it does not have to be pressed several times and from different directions, but it is only a press or a die with two forms required between which the blank is inserted and formed during pressing of the two forms against each other. The forged part does not have to be moved or moved between different forging steps.

Das Schmieden der entsprechenden Bauteile kann durch Gesenkschmieden im Temperaturbereich des α+γ+β - Phasengebiets erfolgen, wobei die Schmiedetemperatur im Bereich von 1150°C bis 1200°C liegen kann. Ein entsprechendes Gesenk kann durch Heizen während des Schmiedevorgangs auf der Temperatur gehalten werden. Abhängig vom Material des Gesenks kann eine inerte Umgebungsatmosphäre während des Schmiedens eingestellt werden.The forging of the corresponding components can be carried out by drop forging in the temperature range of the α + γ + β phase region, wherein the forging temperature in the range of 1150 ° C to 1200 ° C can lie. A corresponding die can be kept at the temperature by heating during the forging process. Depending on the material of the die, an inert ambient atmosphere may be adjusted during forging.

Nach dem Schmieden können die geschmiedeten Halbzeuge einer zweistufigen Wärmebehandlung unterzogen werden, wobei die erste Stufe der Wärmebehandlung ein Rekristallisationsglühen unterhalb der γ/α - Umwandlungstemperatur für eine Zeitdauer von 50 bis 100 Minuten vorsieht. Das Glühen bei einer Temperatur unterhalb der γ/α - Umwandlungstemperatur, bei der entsprechend dem Phasendiagramm für die verwendete TiAl - Legierung α-Titan in γ-TiAl umgewandelt wird, kann möglichst nahe an der γ/α - Umwandlungstemperatur stattfinden, wobei eine Temperatur von 8 %, insbesondere 4 %, unterhalb der γ/α - Umwandlungstemperatur nicht unterschritten werden soll.After forging, the forged semi-finished products may be subjected to a two-stage heat treatment, wherein the first stage of the heat treatment provides for recrystallization annealing below the γ / α transformation temperature for a period of 50 to 100 minutes. The annealing at a temperature below the γ / α transformation temperature, where α-titanium is converted to γ-TiAl in accordance with the phase diagram for the TiAl alloy used, can be as close as possible to the γ / α transformation temperature, with a temperature of 8%, in particular 4%, below the γ / α - conversion temperature should not be fallen below.

Das Rekristallisationsglühen kann vorzugsweise für 60 bis 90 Minuten, insbesondere 70 bis 80 Minuten, durchgeführt werden.The recrystallization annealing may preferably be carried out for 60 to 90 minutes, especially 70 to 80 minutes.

Der ersten Stufe der Wärmebehandlung mit dem Rekristallisationsglühen kann sich eine zweite Stufe der Wärmebehandlung mit einem Stabilisierungsglühen im Temperaturbereich von 800°C bis 950°C für 5 bis 7 Stunden anschließen.The first stage of the heat treatment with the recrystallization annealing may be followed by a second stage of heat treatment with stabilizing annealing in the temperature range of 800 ° C to 950 ° C for 5 to 7 hours.

Das Stabilisierungsglühen kann insbesondere im Temperaturbereich von 825°C bis 925°C, vorzugsweise von 850°C bis 900°C bei einer Haltedauer von 345 Minuten bis 375 Minuten durchgeführt werden.The stabilization annealing can be carried out in particular in the temperature range from 825 ° C. to 925 ° C., preferably from 850 ° C. to 900 ° C., with a holding time of from 345 minutes to 375 minutes.

Die Abkühlung beim Rekristallisationsglühen kann durch Luftabkühlung erfolgen, wobei im Temperaturbereich zwischen 1300°C und 900°C die Abkühlgeschwindigkeit ≥ 3°C pro Sekunde sein soll, um ein feinlamellares Gefüge aus α2-Ti3Al und γ-TiAl einzustellen, welches die erforderlichen mechanischen Eigenschaften gewährleistet.The cooling in the recrystallization annealing can be done by air cooling, wherein in the temperature range between 1300 ° C and 900 ° C, the cooling rate ≥ 3 ° C per second should be to set a fine-lamellar microstructure of α 2 -Ti 3 Al and γ-TiAl, which required mechanical properties guaranteed.

Die Abkühlung bei der zweiten Wärmebehandlungsstufe, also dem Stabilisierungsglühen, kann mit entsprechend niedrigeren Abkühlgeschwindigkeiten im Ofen erfolgen.The cooling in the second heat treatment stage, so the stabilization annealing, can be done with correspondingly lower cooling rates in the oven.

Für die Einstellung des Gefüges und Reproduzierbarkeit einer entsprechenden Gefügeeinstellung ist es von Bedeutung, dass die Wärmebehandlungsschritte möglichst genau bei der entsprechend gewählten Temperatur durchgeführt werden. Allerdings ist eine zunehmend exakte Einstellung der Temperatur und Halten der Bauteile auf den entsprechenden Temperaturen mit wachsendem Aufwand verbunden, so dass für eine wirtschaftlich sinnvolle Bearbeitung ein Kompromiss gefunden werden muss. Für die Wärmebehandlung von geschmiedeten TiAl - Bauteilen hat sich eine Temperatureinstellung mit einer Abweichung im Bereich von 5°C bis 10°C nach oben und unten von der Soll - Temperatur als vorteilhaft herausgestellt. Entsprechend kann die gewählte Soll - Temperatur für die Wärmebehandlungsschritte der vorliegenden Erfindung in einem entsprechenden Temperaturfenster mit 5°C bis 10°C Abweichung von der Soll - Temperatur nach oben und unten eingestellt und gehalten werden.For the adjustment of the microstructure and reproducibility of a corresponding structural adjustment, it is important that the heat treatment steps are carried out as accurately as possible at the corresponding selected temperature. However, an increasingly accurate adjustment of the temperature and keeping the components at the appropriate temperatures with increasing Expenses connected, so that for an economically meaningful processing a compromise must be found. For the heat treatment of forged TiAl components, a temperature adjustment with a deviation in the range of 5 ° C to 10 ° C up and down from the setpoint temperature has proven to be advantageous. Accordingly, the selected target temperature for the heat treatment steps of the present invention can be set and held up and down in a corresponding temperature window of 5 ° C to 10 ° C deviation from the target temperature.

Als Rohlinge für das Schmieden können gegossene und/oder heiß - isostatisch gepresste Rohlinge eingesetzt werden. Alternativ zum Gießen kann das Vormaterial auch über Metallformspritzen (MIM), pulvermetallurgische Verfahren, additive Verfahren (z.B. 3D-Druck, Auftragsschweißen) oder Kombinationen davon hergestellt werden. Unabhängig von der Herstellung können die Rohlinge bzw. das Vormaterial vor dem Schmieden heiß-isostatisch gepresst werden. Es kann vorteilhaft sein, das Vormaterial vor dem Schmieden allseitig oder lokal mit einem materialabtragenden Bearbeitungsverfahren zu bearbeiten, um Oberflächenrandzonen abzuarbeiten und/oder dem Rohling die gewünschte Form für die anschließende Umformung zu geben. Als materialabtragendes Bearbeitungsverfahren kann jedes geeignete Verfahren eingesetzt werden, insbesondere spanabhebende Verfahren oder elektrochemische Bearbeitungsverfahren.As blanks for forging cast and / or hot isostatically pressed blanks can be used. As an alternative to casting, the precursor material may also be made by metal injection molding (MIM), powder metallurgy, additive processes (e.g., 3D printing, cladding), or combinations thereof. Regardless of the production, the blanks or the starting material can be hot-isostatically pressed before forging. It may be advantageous to machine the starting material before forging on all sides or locally with a material-removing machining process in order to work off surface edge zones and / or to give the blank the desired shape for the subsequent shaping. Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.

Die Rohlinge können durch Erschmelzen im Vakuum oder Schutzgas mit selbstverzehrenden Elektroden oder im gekühlten Tiegel mittels Plasmalichtbogenschmelzen hergestellt werden, wobei ein einmaliges oder mehrmaliges Umschmelzen der Legierung durchgeführt werden kann. Das Umschmelzen kann mittels Vakuuminduktionsschmelzen oder Vakuumlichtbogenumschmelzen (VIM vacuum induction melting; VAR vacuum arc remelting) erfolgen und das abgegossene Material kann heiß-isostatisch gepresst werden, wobei Temperaturen ≥ 1200°C bei einem Druck ≥ 100 MPa und einer Haltezeit ≥ 4 Stunden angewendet werden können.The blanks can be produced by melting in vacuo or inert gas with self-consumable electrodes or in the cooled crucible by means of plasma arc melting, wherein a single or multiple remelting of the alloy can be performed. The remelting may be by vacuum induction melting or vacuum arc remelting (VIM vacuum induction melting), and the cast material may be hot isostatically pressed using temperatures ≥ 1200 ° C at a pressure ≥ 100 MPa and a holding time ≥ 4 hours can.

Nach dem Schmieden und vor oder vorzugsweise nach der zweistufigen Wärmebehandlung kann das geschmiedete Halbzeug mit einem materialabtragenden Bearbeitungsverfahren nachbearbeitet werden, um das fertige Bauteil zu erzeugen. Als materialabtragendes Bearbeitungsverfahren kann jedes geeignete Verfahren eingesetzt werden, insbesondere spanabhebende Verfahren oder elektrochemische Bearbeitungsverfahren.After forging and before or preferably after the two-stage heat treatment, the forged semi-finished product can be post-processed with a material-removing machining process to produce the finished component. Any suitable method can be used as the material-removing machining method, in particular metal-cutting methods or electrochemical machining methods.

KURZBESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die beigefügten Zeichnungen zeigen in rein schematischer Weise in

Figuren 1a und 1b
einen Verfahrensablauf zur Herstellung einer Turbinenschaufel gemäß der vorliegenden Erfindung, in
Figur 2
ein Diagramm zur Verdeutlichung möglicher Masseverteilungen in einem Rohling für das Schmieden und in
Figur 3
ein Zustandsdiagramm für eine TiAl - Legierung, wie sie bei der vorliegenden Erfindung eingesetzt werden kann, mit der Angabe des Phasenfeldes, in dem das Schmieden bzw. die Umformung stattfindet.
The accompanying drawings show in a purely schematic manner in FIG
FIGS. 1a and 1b
a method of manufacturing a turbine blade according to the present invention, in
FIG. 2
a diagram to illustrate possible mass distributions in a blank for forging and in
FIG. 3
a state diagram for a TiAl alloy, as can be used in the present invention, with the indication of the phase field in which the forging takes place or the transformation takes place.

AUSFÜHRUNGSBEISPIELEEMBODIMENTS

Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden detaillierten Beschreibung der Ausführungsbeispiele deutlich. Allerdings ist die Erfindung nicht auf diese Ausführungsbeispiele beschränkt.Further advantages, characteristics and features of the present invention will become apparent in the following detailed description of the embodiments. However, the invention is not limited to these embodiments.

Die Figuren 1a und 1b zeigen die Abfolge der Verfahrensschritte bei der Durchführung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens.The FIGS. 1a and 1b show the sequence of process steps in the implementation of an embodiment of the method according to the invention.

Zu Beginn wird ein Rohling 5 hergestellt, indem in eine Gießform 1 mit einem Hohlraum 2 entsprechend der Form des herzustellenden Rohlings 5 eine schmelzflüssige TiAl - Legierung eingefüllt wird.Initially, a blank 5 is produced by filling a molten TiAl alloy into a mold 1 having a cavity 2 corresponding to the shape of the blank 5 to be produced.

Nach dem Abgießen der TiAl - Legierung in der Form 1 und Erstarren der TiAl - Legierung kann der Gussrohling 4 in einer Anlage 3 für heiß - isostatisches Pressen entsprechend gepresst werden, um den Gussrohling 4 zu verdichten und mögliche Gusslunker oder dergleichen zu schließen. Das heiß - isostatische Pressen dient somit nicht der Umformung des Gussrohlings 4, sondern lediglich der Materialverdichtung.After pouring the TiAl alloy in the mold 1 and solidifying the TiAl alloy, the casting blank 4 can be correspondingly pressed in a system 3 for hot isostatic pressing in order to compact the green cast iron 4 and to close possible cast blanks or the like. The hot - isostatic pressing thus does not serve the transformation of the casting blank 4, but only the material compression.

Danach kann der Rohling 5 zusätzliche einer materialabtragenden Nachbearbeitung unterzogen werden, beispielsweise durch spanabhebende Verfahren oder durch elektrochemische Bearbeitung.Thereafter, the blank 5 can be additionally subjected to a material-removing post-processing, for example by machining or by electrochemical machining.

Der entsprechend hergestellte Rohling 5 wird in einer Gesenkschmiede 6 zu einem endkonturnahen, geschmiedeten Halbzeug 9 geschmiedet, wobei die Gesenkschmiede 6 zwei Gesenkhohlformen 7 und 8 aufweist, die zwischen sich eine Kavität entsprechend der Form des zu schmiedenden Halbzeugs 9 definieren, wie in der gestrichelten Darstellung der Figur 1b gezeigt ist. Durch das Zusammenpressen der Gesenkhohlformen 7 und 8 mit dem dazwischen angeordneten Rohling 5 wird die TiAl - Legierung zu dem geschmiedeten Halbzeug 9 umgeformt. Durch ein entsprechendes Erwärmen der Gesenkhohlformen 7 und 8 kann die Umformung des Rohlings 5 zum geschmiedeten Halbzeug 9 durch isothermes Schmieden bei einer möglichst konstanten Temperatur durchgeführt werden. Das Zusammenpressen der Gesenkhohlformen 7 und 8 ist durch die Pfeile in der Figur 1b dargestellt.The correspondingly produced blank 5 is forged in a drop forging 6 to a near net shape, forged semi-finished 9, wherein the drop forge 6 has two Gesenkhohlformen 7 and 8, which define between them a cavity corresponding to the shape of the forged semi-finished product 9, as in the dashed representation of the FIG. 1b is shown. By compressing the die cavities 7 and 8 with the blank 5 arranged therebetween, the TiAl alloy is formed into the forged semifinished product 9. By a corresponding heating of the die cavity molds 7 and 8, the deformation of the blank 5 for the forged semi-finished product 9 can be carried out by isothermal forging at a temperature which is as constant as possible. The compression of the Gesenkhohlformen 7 and 8 is indicated by the arrows in the FIG. 1b shown.

Nach dem isothermen Schmieden liegt ein endkonturnahes, geschmiedetes Halbzeug 9 vor, welches zu dem fertigen Bauteil, nämlich einer Turbinenschaufel 10, durch eine materialabtragende Nachbearbeitung gefertigt werden kann. Die Nachbearbeitung durch Materialabtrag kann durch spanabhebende Verfahren oder elektrochemische Bearbeitungsverfahren durchgeführt werden.After isothermal forging, there is a forged, semi-finished product 9 near the final shape, which can be manufactured into a finished component, namely a turbine blade 10, by means of a material-removing finishing operation. Post-processing by material removal can be performed by machining or electrochemical machining processes.

Nach der Nachbearbeitung liegt eine fertige Turbinenschaufel 10 mit einem Schaufelblatt 13, einem Schaufelfuß 11 und einem Deckband 12 vor.After finishing, a finished turbine blade 10 with an airfoil 13, a blade root 11 and a shroud 12 is present.

Wie sich aus den Figuren 1a und 1b ergibt, kann bei dem erfindungsgemäßen Verfahren durch einen einzigen Umformschritt durch isothermes Schmieden in einer Gesenkschmiede 6 eine endkonturnahe Form des herzustellenden Bauteils hergestellt werden, sodass die Nachbearbeitung minimiert werden kann. Durch die erfindungsgemäße Verwendung eines Rohlings 5 für das isotherme Schmieden, der in seiner Form auf das isotherme Gesenkschmieden abgestimmt ist, ist insbesondere sichergestellt, dass bei der Umformung des Rohlings 5 zu dem geschmiedeten Halbzeug 9 eine über dem Bauteil möglichst gleichmäßigen Umformung stattfindet, wobei eine Mindestumformung nicht unterschritten wird, aber die Umformung so gering wie möglich gehalten werden kann. Dadurch kann eine homogene Gefügeeinstellung bei der TiAl - Legierung vorgenommen werden, sodass die Eigenschaften des Werkstoffs homogen über der fertigen Turbinenschaufel 10 vorliegen.As is clear from the FIGS. 1a and 1b results in the process of the invention can be prepared by a single forming step by isothermal forging in a drop forging 6 a near net shape of the component to be produced, so that the post-processing can be minimized. The inventive use of a blank 5 for isothermal forging, which is tuned in its shape to the isothermal drop forging, it is particularly ensured that takes place during the deformation of the blank 5 to the forged semi-finished product 9 over the component as uniform as possible deformation, wherein a Minimum deformation is not below, but the deformation can be kept as low as possible. As a result, it is possible to achieve a homogeneous microstructure adjustment in the case of the TiAl alloy so that the properties of the material are present homogeneously over the finished turbine blade 10.

Die Figur 2 zeigt in den Beispielen 1 bis 3 verschiedene Verläufe der Massenverteilung über der Längsachse eines Rohlings 5, wie sie bei der vorliegenden Erfindung Verwendung finden können. Figur 2 zeigt, dass ein Rohling 5 in gleich große Abschnitte entlang der Längsachse des Rohlings 5 eingeteilt werden kann, wobei innerhalb dieser Abschnitte unterschiedliche Massen des Rohlings vorliegen, nämlich an den beiden Enden der Längsachse jeweils mehr Masse als in einem mittleren Bereich. Die Masse der jeweiligen Bereiche an den Enden kann dabei gleich oder unterschiedlich groß sein.The FIG. 2 shows in Examples 1 to 3 different courses of the mass distribution over the longitudinal axis of a blank 5, as they can be used in the present invention. FIG. 2 shows that a blank 5 can be divided into equal sections along the longitudinal axis of the blank 5, wherein within these sections different masses of the blank are present, namely at the two ends of the longitudinal axis respectively more mass than in a central region. The mass of the respective areas at the ends can be the same or different sizes.

Die Figur 3 zeigt ein sogenanntes quasibinäres Zustandsdiagramm einer TiAl - Legierung, wie sie bei der vorliegenden Erfindung eingesetzt werden kann. Quasibinär bedeutet, dass sich im gezeigten Zustandsbereich lediglich die Anteile von zwei Bestandteilen, vorliegend Ti und Al ändern, und die übrigen Legierungsbestandteile, vorliegend Nb und Mo, konstant bleiben. Das gestrichelte Arbeitsfeld 14 liegt im α + β + γ - Phasengebiet und zeigt den Temperaturbereich an, in welchen bei der entsprechenden Zusammensetzung der TiAl - Legierung das isotherme Schmieden durchgeführt werden kann. Die γ/α - Umwandlungstemperatur entspricht im Phasendiagramm der Linie zwischen dem β + α - Phasengebiet und dem α + β + γ - Phasengebiet Obwohl die vorliegende Erfindung anhand der Ausführungsbeispiele detailliert beschrieben worden ist, ist für den Fachmann selbst verständlich, dass die Erfindung nicht auf diese Ausführungsbeispiele beschränkt ist, sondern dass vielmehr Abwandlungen in der Weise vorgenommen werden können, dass einzelne Merkmale weggelassen oder andersartige Kombinationen von Merkmalen verwirklicht werden können, solange der Schutzbereich der beigefügten Ansprüche nicht verlassen wird.The FIG. 3 FIG. 12 shows a so-called quasibinary state diagram of a TiAl alloy as can be used in the present invention. Quasi-binary means that in the state shown only the proportions of two components, in the present case Ti and Al change, and the other alloying constituents, in this case Nb and Mo, remain constant. The dashed working field 14 lies in the α + β + γ phase region and indicates the temperature range in which isothermal forging can be carried out with the corresponding composition of the TiAl alloy. Although the present invention has been described in detail with reference to the working examples, it will be understood by those skilled in the art that the invention is not limited to the γ / α transformation temperature is limited to these embodiments, but that modifications can instead be made in such a way that individual features can be omitted or other types of combinations of features can be realized, as long as the scope of the appended claims is not abandoned.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Gießformmold
22
Hohlraumcavity
33
Anlage zum heiß - isostatischen PressenPlant for hot isostatic pressing
44
Gießrohlingcast blank
55
Rohlingblank
66
GesenkschmiedeGesenkschmiede
77
GesenkhohlformGesenkhohlform
88th
GesenkhohlformGesenkhohlform
99
geschmiedetes Halbzeugforged semi-finished product
1010
Turbinenschaufelturbine blade
1111
Schaufelfußblade
1212
Deckbandshroud
1313
Schaufelblattairfoil
1414
Arbeitsfeldfield of work

Claims (19)

  1. Method for producing a forged component (10) from a TiAl alloy, in particular a turbine blade, in which a blank (5) made of a TiAl alloy is provided and deformed into a forged semi-finished product (9) by forging, a usable volume being defined in the forged semi-finished product, which volume corresponds to the forged component which is to be produced, characterized in that the shape of the blank (5) is selected such that the degree of deformation ϕg, caused by forging, within the usable volume of the forged semi-finished product has a defined value which, over the usable volume, deviates from the defined value by at most ±1, where ϕg=1/2(|ϕx|+|ϕy|+|ϕz|), where ϕx, ϕy, ϕz are the degrees of deformation in the x, y and z directions and are each defined as the natural logarithm of the ratio of the relevant final dimension in the x, y or z direction after the deformation to the relevant initial dimension in the x, y or z direction.
  2. Method according to claim 1, characterized in that the degree of deformation within the usable volume of the forged semi-finished product (9) deviates from the defined value by at most ±0.5, in particular ±0.25.
  3. Method according to either of the preceding claims, characterized in that the defined value of the degree of deformation is greater than or equal to 0.7, the degree of deformation in particular not falling below 0.7 within the usable volume.
  4. Method according to any of the preceding claims, characterized in that the defined value of the degree of deformation is less than or equal to 2.5, in particular less than or equal to 2.0.
  5. Method according to any of the preceding claims, characterized in that the deformation speed is in the range of from 0.01 to 0.5 1/s, in particular from 0.025 to 0.25 1/s.
  6. Method according to any of the preceding claims, characterized in that the shape of the blank (5) is selected such that the blank is subdivided into three equal regions along the longitudinal axis of the blank, specifically a first and a second end region and a central region, where MM < ME1 ≤ ME2 and MM is the mass of the blank in the central region, ME1 is the mass of the blank in the first end region and ME2 is the mass of the blank in the second end region.
  7. Method according to claim 7, characterized in that MM ≤ ME2/1.25.
  8. Method according to any of the preceding claims, characterized in that a TiAl alloy comprising niobium and molybdenum, in particular an alloy comprising 27 to 30 wt.% aluminum, 8 to 10 wt.% niobium and 1 to 3 wt.% molybdenum, is used.
  9. Method according to claim 8, characterized in that an alloy comprising 0.01 to 0.04 wt.% boron is used.
  10. Method according to either claim 8 or claim 9, characterized in that an alloy is used which comprises, in addition to unavoidable impurities, at least one additional constituent from the group comprising carbon, oxygen, nitrogen, hydrogen, chromium, silicon, iron, copper, nickel and yttrium, it being possible for the content thereof to be ≤ 0.05 wt.% chromium, ≤ 0.05 wt.% silicon, ≤ 0.08 wt.% oxygen, ≤ 0.02 wt.% carbon, ≤ 0.015 wt.% nitrogen, ≤ 0.005 wt.% hydrogen, ≤ 0.06 wt.% iron, ≤ 0.15 wt.% copper, ≤ 0.02 wt.% nickel and ≤ 0.001 wt.% yttrium.
  11. Method according to any of claims 8 to 10, characterized in that an alloy is used of which the chemical composition comprises titanium in an amount such that the alloy, together with the other constituents of claims 8 to 10, makes up 100 wt.%.
  12. Method according to any of the preceding claims, characterized in that the deformation takes place by isothermal forging, in particular drop forging in the temperature range of the α+γ+β phase region of the TiAl alloy, in particular at a forging temperature of between 1150°C and 1200°C.
  13. Method according to any of the preceding claims, characterized in that, after being deformed by isothermal forging, the TiAl alloy is subjected to a two-stage heat treatment, the first stage of the heat treatment being recrystallization annealing for 50 to 100 minutes at a temperature below the γ/α transformation temperature, and the second stage of the heat treatment being stabilization annealing in the temperature range of from 800°C to 950°C for 5 to 7 h, and the cooling rate in the first heat treatment step in the temperature range of between 1300°C and 900°C being greater than or equal to 3°C/s.
  14. Method according to claim 13, characterized in that the recrystallization annealing is carried out for 60 to 90 minutes, in particular for 70 to 80 minutes, and/or the stabilization annealing is carried out in the temperature range of from 825°C to 925°C, in particular 850°C to 900°C and/or for 345 to 375 minutes.
  15. Method according to any of the preceding claims, characterized in that the temperature during the heat treatment is adjusted up and down and maintained with a precision of a 5°C to 10°C deviation from the target temperature.
  16. Method according to any of the preceding claims, characterized in that blanks (5) are used as a starting material for forging, which blanks are produced by at least one of the methods from the group comprising casting, metal injection molding (MIM), powder metallurgy methods, additive processes, 3D printing, deposition welding, hot isostatic pressing and material-removing machining methods.
  17. Method according to any of the preceding claims, characterized in that the isothermal forging and/or the deformation takes place in a single-stage deformation step, in particular in a forging die, and/or the isothermal forging is carried out as drop forging using a heated die.
  18. Method according to any of the preceding claims, characterized in that the blank (5) provided is unforged and is deformed into the semi-finished product by means of only one forging step, the one forging step being carried out in particular such that two halves of a die are each pressed in only one direction and against one other in order to deform the blank between the halves into the semi-finished product (9).
  19. Method according to any of the preceding claims, characterized in that the forged semi-finished product (9), which in particular has been deformed using only one forging step, is finished using a material-removing machining method, in particular by chip-removing machining, preferably milling and/or electrochemical machining, in order to produce the forged component, in particular without further deformation, and/or in that the forged component is a blade of a turbomachine, in particular a turbine blade, preferably of a low-pressure turbine.
EP17160397.0A 2017-03-10 2017-03-10 Method for making forged tial components Active EP3372700B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES17160397T ES2753242T3 (en) 2017-03-10 2017-03-10 Procedure for manufacturing forged TiAl components
EP17160397.0A EP3372700B1 (en) 2017-03-10 2017-03-10 Method for making forged tial components
US15/915,290 US10737314B2 (en) 2017-03-10 2018-03-08 Method for producing forged TiAl components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17160397.0A EP3372700B1 (en) 2017-03-10 2017-03-10 Method for making forged tial components

Publications (2)

Publication Number Publication Date
EP3372700A1 EP3372700A1 (en) 2018-09-12
EP3372700B1 true EP3372700B1 (en) 2019-10-09

Family

ID=58277184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17160397.0A Active EP3372700B1 (en) 2017-03-10 2017-03-10 Method for making forged tial components

Country Status (3)

Country Link
US (1) US10737314B2 (en)
EP (1) EP3372700B1 (en)
ES (1) ES2753242T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209315A1 (en) 2018-06-12 2019-12-12 MTU Aero Engines AG Process for producing a component from gamma - TiAl and corresponding manufactured component
DE102018209881A1 (en) * 2018-06-19 2019-12-19 MTU Aero Engines AG Process for producing a forged component from a TiAl alloy
CN109365731B (en) * 2018-12-11 2020-10-20 陕西宏远航空锻造有限责任公司 Die forging method for high-temperature alloy precision-forged blade
DE102020214700A1 (en) 2020-11-23 2022-05-25 MTU Aero Engines AG METHOD OF MANUFACTURING A COMPONENT FROM A TIAL ALLOY AND COMPONENT MADE ACCORDINGLY
CN113043648B (en) * 2021-03-08 2024-01-26 洛阳航辉新材料有限公司 Hot isostatic pressing method of flat plate castings
CN115679231B (en) * 2022-09-16 2024-03-19 中南大学 Process for improving high-temperature plasticity of titanium-aluminum-based alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509768B1 (en) 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A COMPONENT AND COMPONENTS FROM A TITANIUM ALUMINUM BASE ALLOY
DE102011110740B4 (en) 2011-08-11 2017-01-19 MTU Aero Engines AG Process for producing forged TiAl components
DE102015103422B3 (en) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20180257127A1 (en) 2018-09-13
EP3372700A1 (en) 2018-09-12
US10737314B2 (en) 2020-08-11
ES2753242T3 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
EP3372700B1 (en) Method for making forged tial components
EP0513407B1 (en) Method of manufacture of a turbine blade
AT393842B (en) METHOD FOR FORGING NICKEL-BASED SUPER ALLOYS AND AN OBJECT FROM A NICKEL-BASED SUPER ALLOY WITH IMPROVED LUBRICABILITY
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
EP1287173B1 (en) $g(G)-TIAL ALLOY-BASED COMPONENT COMPRISING AREAS HAVING A GRADUATED STRUCTURE
DE102015103422B3 (en) Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
EP2990141B1 (en) Method for producing TiAl components
EP3269838A1 (en) High temperature resistant tial alloy and method for production thereof, and component from a corresponding tial alloy
EP3682988A1 (en) Method for producing rotor blades from ni base alloys and rotor blade produced according to said method
DE112014003143T5 (en) Process for the preparation of a starting material for the separation treatment
EP3581668A1 (en) Method for producing a component from gamma tial and correspondingly manufactured component
EP0396185B1 (en) Process for preparing semi-finished creep resistant products from high melting metal
WO2003008655A2 (en) Moulded piece made from an intermetallic gamma tial material
EP3427858A1 (en) Forging at high temperatures, in particular of titanium aluminides
EP1341945B1 (en) Method for producing components with a high load capacity from tial alloys
EP3655559B1 (en) Powder made of an alloy containing molybdenum, silicon and boron, use of said powder and additive production method for a workpiece made of said powder
WO2012071600A1 (en) Method for producing an object from a metal or an alloy by means of large plastic deformation, object produced therefrom, and pressing tool therefor
WO2019228663A1 (en) Method for developing forging materials
WO2022105967A1 (en) Method for producing a component from an alloy, and correspondingly produced component
EP3077557B1 (en) Method for producing titanium-aluminum components
EP0045984B1 (en) Process for manufacturing an article from a heat-resisting alloy
DE102012013778A1 (en) Forming tool for massive forming of metal material, has die cavity that is formed corresponding to the shape of component, whose regions with steel material, are formed with different material properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181002

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002480

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1188889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2753242

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002480

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200310

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1188889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 7

Ref country code: DE

Payment date: 20230320

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 7